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Background: Magnetic Resonance Imaging (MRI) and ultrasound are central to
tumour diagnosis and treatment planning. Although Deep learning (DL) models
achieve strong prediction performance, high computational demand and
limited explainability can hinder clinical adoption. Common post hoc
Explainable Artificial Intelligence (XAl) methods namely Grad-CAM, LIME, and
SHAP often yield fragmented or anatomically misaligned saliency maps.
Methods: We propose SpikeNet, a hybrid framework that combines
Convolutional Neural Networks (CNNs) for spatial feature encoding with
Spiking Neural Networks (SNNs)for efficient, event driven processing.
SpikeNet includes a native saliency module that produces explanations during
inference. We also introduce XAlign, a metric that quantifies alignment
between explanations and expert tumour annotations by integrating regional
concentration, boundary adherence, and dispersion penalties. Evaluation
follows patient level cross validation on TCGA-LGG (MRI, 22 folds) and BUSI
(ultrasound, 5 folds), with slice level predictions aggregated to patient level
decisions and BUSI treated as a three class task. We report per image latency
and throughput alongside accuracy, precision, recall, F1, AUROC, and AUPRC.
Results: SpikeNet achieved high prediction performance with tight variability
across folds. On TCGA-LGG it reached 97.12 + 0.63% accuracy and
97.43 + 0.60% F1; on BUSI it reached 98.23 + 0.58% accuracy and
98.32 + 0.50% F1. Patient level AUROC and AUPRC with 95% confidence
intervals further support these findings. On a single NVIDIA RTX 3090 with
batch size 16 and FP32 precision, per image latency was about 31 ms and
throughput about 32 images per second, with the same settings applied to all
baselines. Using XAlign, SpikeNet produced explanations with higher
alignment than Grad-CAM, LIME, and SHAP on both datasets. Dataset level
statistics, paired tests, and sensitivity analyses over XAlign weights and
explanation parameters confirmed robustness.

Conclusion: SpikeNet delivers accurate, low latency, and explainable analysis
for MRI and ultrasound by unifying CNN based spatial encoding, sparse
spiking computation, and native explanations. The XAlign metric provides a
clinically oriented assessment of explanation fidelity and supports consistent
comparison across methods. These results indicate the potential of SpikeNet
and XAlign for trustworthy and efficient clinical decision support.
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1 Introduction

Magnetic Resonance Imaging (MRI) and ultrasound are
widely used to identify and manage brain and breast tumours.
MRI offers high soft-tissue contrast that supports precise
delineation of intracranial lesions, whereas ultrasound provides a
portable, non-ionising, and cost-effective option for breast
cancer screening and diagnosis. Despite their clinical value,
interpretation remains resource intensive and requires
specialised expertise, which can be challenging in high-
throughput or resource-limited settings.

Deep learning (DL) has advanced automated analysis for
classification, segmentation, and prognosis. Architectures including
EfficientNetB7, ResNet-50, VGG-19, AlexNet, DenseNet50, and
InceptionResNetV2 have reported strong results across medical
imaging tasks. Two factors continue to limit routine clinical
impact: limited transparency of model decisions, often referred to
as the black-box problem (1, 2), and high computational demand
at inference (3). Large parameter counts, long runtimes, and
substantial hardware requirements reduce practicality in settings
that require fast or interactive decision support.

Explainability is essential for clinical adoption where
Post-hoc
Explainable Artificial Intelligence (XAI) methods namely Grad-
CAM (4), LIME (5, 6), and SHAP (7, 8) highlight image regions

that influence predictions. However, these approaches often

transparency and accountability are required.

yield fragmented or anatomically misaligned maps and may not
consistently reflect model reasoning across modalities (9, 10).
Standardised and clinically aligned evaluation of explanations is
also limited.

We present SpikeNet, a hybrid framework that couples
Convolutional Neural Networks (CNNs) for spatial encoding
with Spiking Neural Networks (SNNs) for temporally sparse,
event-driven processing. This design reduces redundant
computation while preserving discriminative capacity (11, 12).
SpikeNet includes a native explanation head that produces
saliency maps during inference, which avoids reliance on
separate post-hoc procedures. We also introduce XAlign, a
metric that quantifies how well explanations align with expert
tumour annotations by jointly assessing regional concentration,
boundary adherence, and dispersion outside annotated lesions.

We evaluate SpikeNet on two clinically relevant modalities:
brain MRI from TCGA-LGG and breast ultrasound from BUSI.
Evaluation follows patient-level cross—validation protocols (22-
fold for TCGA-LGG and 5-fold for BUSI), with slice-level
predictions aggregated to patient-level decisions. BUSI is treated
as a three—class problem (benign, malignant, normal) using a
softmax output with categorical cross—entropy. Results show
high accuracy and tight variability across folds on both datasets,
together with low single-image latency and high throughput.
On the same hardware and batch size, SpikeNet achieves about
31 ms per image and roughly 32 images per second, while
conventional baselines exhibit higher latency. Explanation
quality, measured with XAlign, is consistently higher than
Grad-CAM, LIME, and SHAP on both modalities. Sensitivity

analyses for XAlign weights and for explanation parameters,
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along with dataset-level statistics and paired tests, indicate that
the advantages are robust. Our contributions are as follows:

o We propose SpikeNet, a hybrid CNN-SNN approach that
combines spatial feature encoding with sparse, event-driven
computation to deliver strong predictive performance with
low latency and high throughput.

o We design a native explanation head that generates faithful
saliency maps during inference, improving localisation
without relying solely on post-hoc methods.

o We introduce XAlign, a quantitative metric for explanation
fidelity ~that boundary

alignment, and dispersion penalties to reflect clinical expectations.

integrates regional concentration,

o We conduct a rigorous, patient-level evaluation on TCGA-
LGG (MRI) and BUSI (ultrasound). Protocols include cross—
validation with three independent seeds, patient-level
aggregation, AUROC and AUPRC with 95% confidence
intervals, per—class metrics for BUSI, and detailed runtime
reporting with latency and throughput.

» We provide robustness evidence through sensitivity analyses of
XAlign weights and explanation parameters, and through
dataset-level statistics with paired significance tests.

The remainder of this paper is organized as follows: Section 2
reviews related literature. Section 3 describes the datasets and
preprocessing pipeline. The SpikeNet architecture is introduced
in Section 4, followed by the proposed XAlign metric in Section
5. Experimental results are presented in Section 6, with detailed
discussion in Section 7, and conclusions outlined in Section 8.

2 Relevant studies

Table 1 provides an expanded summary of recent studies that
integrate XAI and related supervision paradigms within medical
imaging pipelines. Prior work has primarily emphasised post-hoc
explainability for classification and segmentation tasks, employing
CNN-based models including ResNet-50, DenseNet201, VGG-16/
19, and EfficientNet variants, as well as hybrid designs like ViT-
D-CNN and SThy-Net. Widely used XAI methods include Grad-
CAM, Grad-CAM++, Saliency Maps, LIME, and SHAP.

In brain MRI applications, Grad-CAM remains the dominant
choice, but most works lack quantitative assessment of fidelity
against expert annotations. Similarly, in breast ultrasound
imaging, several studies employ Grad-CAM, LIME, or SHAP,
but without reporting alignment with ground-truth masks or
computational feasibility. These gaps limit clinical reliability.

Beyond post-hoc XAI, weak- and limited-supervision strategies
have recently emerged as complementary directions for improving
interpretability and efficiency. Scribble-supervised approaches such
as HELPNet (23) and cross-image matching (24) demonstrate how
sparse annotations can provide strong guidance for segmentation.
Human-attention-guided methods, such as gaze-to-insight
frameworks (25), directly integrate visual attention signals to
enhance explanation plausibility. Other advances, including semi-
supervised unpaired segmentation with task-affinity consistency
(26) and dynamic contrastive learning with confidence and
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TABLE 1 Summary of studies integrating XAl or weak supervision in medical imaging.

‘ Modallty Approach XAl/weak-supervision methods XAI Eval

10.3389/fmedt.2025.1674343

Pereira et al. (13) CNNs

Natekar et al. (14) MRI Dense-UNet, Res-UNet
Yan et al. (15) MRI VGG-19

Narayankar and Baligar (16) MRI CNN

Mzoughi et al. (17) MRI ViT-D-CNN

Mahesh et al. (18) MRI EfficientNetB0

Al-Jebrni et al. (19) Ultrasound SThy-Net

Karimzadeh et al. (20) Ultrasound MT-BI-RADS

Jabeen et al. (21) Ultrasound EfficientNet-B7, ResNet
Snehitha et al. (22) Ultrasound ResNet-50

Zhang et al. (23) MRI CNN-based segmentation
Chen et al. (24) MRI Cross-image matching
Chen et al. (25) MRI Vision-Language model
Chen et al. (26) MRI Semi-supervised

Chen et al. (27) MRI CNN-based segmentation

confusion priors (27), utilise consistency or contrastive objectives to
mitigate annotation scarcity and labelling noise.

While these regimes utilise sparse supervision to regularise
representation learning, our proposed XAlign metric addresses
a different but complementary gap: the rigorous post-hoc
evaluation of explanation fidelity against dense expert
annotations. Unlike weak-supervision methods that focus on
learning under sparse labels, XAlign explicitly measures spatial
alignment and boundary consistency of saliency maps with full
clinical masks. This distinction positions XAlign as an
orthogonal tool for validating explanation quality, and it can be
used to quantitatively assess both post-hoc XAI methods and
weakly supervised approaches in a unified framework.

These  observations  collectively  highlight  persistent
shortcomings in the current landscape. Despite the promise of
weak supervision, clinically validated, quantitatively assessed,
and computationally efficient explanation metrics remain
underdeveloped. Addressing these challenges is critical to
establishing trustworthy AI deployment in medical imaging.

3 Method and materials
3.1 Implementation environment

The experiments were conducted using Python, selected for its
versatility and extensive ecosystem of DL libraries. Model training
and evaluation were performed on a computational system
equipped with an AMD Ryzen 7 5700X eight-core processor
and an NVIDIA GeForce RTX 4080 GPU with 16 GB of
memory, ensuring the necessary computational resources for
efficient execution of DL workloads.

3.2 Dataset

This study utilises two publicly available and fully de-
identified medical imaging datasets to evaluate the proposed
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Grad-CAM

Grad-CAM No No
Grad-CAM++ No No
LIME, SHAP No No
Grad-CAM, LIME No No
Grad-CAM No No
Grad-CAM No No
SHAP No No
Grad-CAM No No
LIME No No
Scribble supervision (HELPNet) Partial No
Scribble-based segmentation Partial No
Human gaze supervision Partial No
Task-affinity consistency Partial No
Dynamic contrastive learning Partial No

framework. The first is the TCGA-LGG (Lower Grade Glioma)
FLAIR dataset, hosted on The Cancer Imaging Archive (TCIA)
(28), which is distributed under institutional ethical approvals
that allow unrestricted research use. The second is the Breast
Ultrasound Images (BUSI) dataset (29), released with expert-
provided annotations and made openly accessible for research
purposes. As both datasets are anonymized prior to release and
contain no identifiable patient information, no additional
Institutional Review Board (IRB) approval was required for the
present study.

3.2.1 TCGA-LGG (brain MRI dataset)

The brain tumour dataset comprises preoperative FLAIR
(Fluid-Attenuated Inversion Recovery) MRI scans from the
TCGA-LGG cohort. In the original release, 120 patient cases
were available, sourced from five distinct clinical institutions. In
prior studies, a subset of 110 patients with complete genomic
cluster annotations was often used to enable imaging-genomic
correlation tasks. However, since the present study focuses
exclusively on imaging-based classification, genomic information
is not required. We therefore restored the full 120-patient
imaging cohort for analysis.

To ensure methodological transparency, we also performed a
sensitivity analysis comparing the 110-patient subset and the full
120-patient cohort. The inclusion of the additional 10 cases did
not materially alter classification accuracy or explanation quality
(differences were <0.3% across all metrics). Consequently, all
reported experiments in this manuscript use the full 120-patient
cohort, while acknowledging the prior convention of using 110
cases for consistency with earlier literature.

A patient-wise 22-fold cross-validation protocol was adopted
to ensure independence between training, validation, and testing
sets. In each fold, one patient subset was reserved for testing,
another for validation, and the remaining 20 subsets were used
for training. Model performance is reported as the mean +
standard deviation across all folds. This design guaranteed that
no slices from the same patient appeared in both training and
evaluation sets, thereby eliminating data leakage.
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All FLAIR scans were manually annotated by a researcher with
specialized training in neuroradiology and subsequently verified
by a board-certified radiologist. Annotations were performed
using an in-house labeling tool. The dataset includes spatially
registered FLAIR images and corresponding pixel-wise ground
truth masks, enabling precise evaluation of tumour localization
and segmentation performance.

3.2.2 Breast ultrasound images (BUSI)

The BUSI dataset comprises 857 greyscale ultrasound images
categorized into three classes: benign (210 images), malignant
(437 images), and normal (210 images), resulting in an
imbalanced class distribution. Images were acquired from female
patients aged 25-75 years, with particular relevance to early-
stage breast cancer detection in younger women under 40. Each
image is provided in PNG format with an average spatial
resolution of 500 x 500 pixels. Expert-annotated binary masks
are available for the tumour-containing images, serving as
ground truth for lesion localisation and classification.

3.3 Data pre-processing

To ensure consistency in input dimensions, intensity
distributions, and model compatibility across both datasets, a
unified data pre-processing pipeline was implemented. This pipeline
encompassed patient-level partitioning, spatial standardisation, and
intensity normalisation, with dataset-specific adjustments applied

where necessary.

3.3.1 Image resizing

To standardize spatial input dimensions, all images were
resized to a resolution of 224 x 224 pixels. Let I € R™*W
denote the original input image of height H and width W. The
resizing operation is defined as:

I' = R(I, 224, 224), (1)

where R(-) denotes the bilinear interpolation function, with zero-
padding applied when the original aspect ratio deviated from the
target dimensions.

3.3.2 Intensity normalisation

Following resizing, intensity normalisation was applied to
Each
image was normalized using a fixed mean u = [0.5, 0.5, 0.5]
and standard deviation o = [0.5, 0.5, 0.5] for each channel
c €11, 2, 3}, following:

standardize pixel distributions across both datasets.

I —u
1" _ (o) c
lijo == @

4 s Tepresents the normalized pixel value at spatial

where I{l

location (4, j) in channel ¢, and I’ is the resized image.
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3.3.3 TCGA-LGG dataset

Preprocessing was conducted on the registered FLAIR images
and their corresponding binary tumour masks. Since these were
originally stored in NIfTT format (.nii), volumetric slices
were extracted and treated as individual 2D samples. Unlike
the initial version of this study, all slices were retained after
patient-level partitioning, including those without visible tumour
regions. This ensures that evaluation reflects the full clinical
distribution of images. To reduce imbalance, optional
downsampling of non-informative slices was applied only within
the training folds, never in validation or testing. Each slice and
its corresponding mask were resized to 224 x 224 pixels using
Equation 1, and intensities were normalized using Equation 2.

For performance reporting, slice-level predictions were
aggregated into patient-level outputs by majority voting across
slices, and accuracy, precision, recall, and Fl-score were
computed at the patient level. Patient-wise 22-fold cross-
validation was adopted to guarantee independence between
training, validation, and testing subsets, with results reported as

mean + standard deviation across folds.

3.3.4 BUSI dataset

The BUSI dataset consists of 2D greyscale ultrasound
in PNG format,
segmentation masks for the benign and malignant classes. Each

images stored accompanied by binary
greyscale image Iy, € R™*" was resized to 224 x 224, and
then replicated across three channels to form an RGB-

compatible tensor, as presented in Equation 3:

T (s ) = Ugray(is 1)s Igray (is ), Lgray(iy )] € RZV2H30(3)

Normalisation was subsequently applied using Equation 2. To
address class imbalance, class weights were computed from
inverse class frequencies and incorporated into the loss function

(30). A patient-wise 5-fold cross-validation scheme was
employed, stratified by benign and malignant labels to preserve
class balance. As in TCGA-LGG, strict patient-level

independence was maintained by ensuring that no images from
the same patient appeared in both training and evaluation sets.

This harmonized pre-processing strategy ensured that both
datasets were standardized in terms of spatial resolution,
intensity distribution, and input format, while enforcing patient-
level independence. The unified approach supports robust
statistical evaluation and enables fair comparison across datasets
in the proposed framework.

4 Proposed framework

The proposed framework SpikeNet utilises a hybrid
architecture combining convolutional neural networks (CNNs)
(31) with spiking neural network (SNN) activations (32) to
enhance both predictive performance and computational
efficiency. The pipeline integrates feature extraction, spiking

dynamics, and classification to detect tumours in brain MRI and
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breast ultrasound images. The detailed procedures are

described below.

4.1 Diagnosis

The backbone of SpikeNet employs a CNN for feature
extraction, utilising its hierarchical architecture to process and
extract spatial features from input images. Let I € RF*Wx¢
represent the input image, where H, W, and C denote the
height, width, and number of channels, respectively. The
convolutional and pooling layers refine these features to
generate a high-dimensional feature map F € R, defined

in Equation 4:
F = CNN features(Ds €

where CNN ¢, oo denotes the convolutional layers responsible
for extracting multi-scale features.

The extracted feature map F is flattened into a vector
f € R and passed into a fully connected layer integrated
with spiking neuron activation. This layer is modelled using the
Integrate-and-Fire (IF) mechanism. The membrane potential
dynamics are expressed in Equations 5 and 6 as:

ViE+1)=BVH)+W-f, (5)
1, iV > Vy,,
8(8) = {0, otherwise, th Q)

where B is the decay factor, W denotes synaptic weights, V(t) is
the membrane potential, and S(¢) is the spike output.

For temporal dynamics, each input is propagated over T = 10
discrete simulation steps. After each spike, the membrane
potential is reset to zero (hard reset policy). To enable gradient-
based optimization, a surrogate gradient approximation was
used: the derivative of the Heaviside step function was replaced
by a piecewise linear surrogate defined as

S
ETa max (0, 1 — |V — Vy ).
Spiking thresholds were set to Vi, = 1.0, with decay factor

B=0.9. Synaptic weights were initialized with Kaiming

uniform initialisation.

4.1.1 Classification

For the TCGA-LGG dataset, tumour detection is binary
(tumour vs. no tumour). The output layer consists of a single
neuron producing a logit z, transformed with the sigmoid
activation function is shown in Equation 7:

1

@)
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The model is trained using the Binary Cross-Entropy (BCE) loss,
presented in Equation 8:

N
Loce = ;D ilog G + (1 - log1 =3, ®
=1

For the BUSI dataset, which contains three classes (benign,
malignant, normal), the output layer produces a logit vector
zER. A
class probabilities as shown in Equation 9:

softmax  activation converts logits into

exp (zx)

P(y = kjx) = — 2K
b= =

, ke{1,2,3}. )

The model is trained with the Categorical Cross-Entropy
(CCE) loss as given in Equation 10:

1 N 3 .
Locr = =50 Y _yiklog (i), (10)

i=1 k=1

where y; is the one-hot encoded ground-truth label for sample i
and class k, and y; is the predicted probability for class k. During
inference, the predicted label y is assigned as formulated in
Equation 11:

y= argkg{lla,az)f3}P(y:k|x). (11)

4.1.2 Training details

SpikeNet was trained using the Adam Optimiser with an
initial learning rate of 1 x 107%, reduced by a factor of 0.1 on
plateau. Models were trained for 100 epochs with a batch size of
16. Early stopping with patience of 15 epochs was used to
prevent overfitting. Standard image augmentations (random
rotations, horizontal/vertical flips, intensity normalisation) were
applied during training. All experiments were seeded with a
fixed random seed (42) to ensure reproducibility. All spiking

TABLE 2 Training and spiking hyperparameters used in SpikeNet.

Time steps (T) 10
Reset policy Hard reset to zero

Surrogate gradient Piecewise linear, max (0, 1 — |V — Vi, |)

Threshold (Vy,) 1.0

Decay factor () 0.9

Weight initialisation Kaiming uniform
Optimiser Adam

Initial learning rate 1x107*

Learning rate schedule
Batch size 16
Epochs 100

Reduce on plateau (factor 0.1)

Early stopping Patience of 15 epochs

Data augmentation Random rotations, flips, intensity normalisation

Random seed 42
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neuron and training hyperparameters are summarised in Table 2.
These include simulation settings (time steps, reset mode,
surrogate gradient), spiking thresholds, initialisation scheme, as
well as Optimiser configurations, learning schedule, batch size,
number of epochs, augmentation strategies, and random seed.
Providing these details ensures that SpikeNet can be precisely
replicated by other researchers.

4.2 Explanations

The SpikeNet generates interpretable explanations by
utilising activation maps from the final convolutional layer of
the CNN backbone. These explanations highlight the regions
in brain MRI and breast ultrasound images most relevant to
the model’s classification decision, providing valuable insights
into the decision-making process. The explanation generation
of three
extraction, focused heatmap generation, and binarisation

process consists main steps: activation map
for visualisation.

The process begins by capturing the activation map
A € ROV where C represents the number of channels, and
H and W denote the spatial dimensions. For a given input
image I, the activation map is obtained as presented in Equation

12:

A = fonn(D, (12)

where foNN represents the final convolutional operations in
the feature extraction layers. Each channel A, encodes a distinct
spatial feature.

4.2.1 Channel selection
To focus on the most informative representations, the mean
activation value of each channel is computed in Equation 13 as:

(13)

and channels are ranked in descending order of u.. The top k%

channels, denoted as TopChannels, are selected. In our
experiments, k = 20% was used by default, based on validation
performance. A sensitivity analysis over k € {10, 20, 30, 40}
confirmed that results are stable with respect to this parameter
(see Table 17).

The focused activation map is obtained by aggregating the

selected channels, given in Equation 14:

Focused (b 1) = Z Acgij- (14)

ccTopChannels
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4.2.2 Normalisation and thresholding
The focused map is normalised into the range [0, 1] using
min-max scaling, as formulated in Equation 15:

Focused (b J) — min (F g5 yged)
max (Ffocused) — min (Ffocused) te
(15)

Fhormalized (b /) =

where € prevents division by zero. To obtain a binary saliency
mask, a threshold T is applied in Equation 16:

. 1, ifF ized(
) )5 normalized
5 blnary(l’ i) { 0, otherwise,

iNZT g

with T = 0.5 set as the default. Alternative thresholding strategies
(percentile cutoffs at 30%-70%, and Otsu’s adaptive method) were
also tested. As shown in Table 17, the comparative ranking of
explanation methods remains consistent across these threshold
choices, confirming robustness.

4.2.3 Visualisation

The binary heatmap Fbinary is resized to the original image
resolution and overlaid on the MRI or ultrasound input. The
final output includes:

1. The original medical image with tumour boundaries annotated
by experts, and

2. The
regions the model deems relevant for classification.

SpikeNet-generated explanation heatmap, showing

5 Proposed XAl evaluation metric:
XAlign

This study introduces XAlign, a novel evaluation metric
specifically designed to assess the clinical reliability and spatial
fidelity of saliency maps in medical imaging. Unlike traditional
evaluation approaches, XAlign captures three critical aspects of
explanation quality: (i) concentration of relevance within annotated
tumour regions, (ii) precise structural alignment with lesion
boundaries, and (iii) minimal attribution dispersion outside
clinically significant areas. These dimensions are essential for
establishing trustworthy and clinically interpretable AI systems.

Formally, XAlign is defined as:

XAlign = a- WRO + 8- BAS — y- DP, (17)
where WRO is the Weighted Relevance Overlap, BAS the
Boundary Agreement Score, and DP the Dispersion Penalty. The
scalar weights «, B, and 7y govern the relative contribution of
each term.

To avoid bias from tuning on the evaluation datasets (TCGA-
LGG and BUSI), the weights were determined on a held-out
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validation dataset (ISIC 2019 dermoscopy), which was not used in
any of the main experiments. The configuration a = 0.5, 8 = 0.4,
and y = 0.1 was selected based on its highest correlation with
expert clinical alignment ratings on the held-out set.

We further examined the sensitivity of XAlign to the
choice of weights. A grid performed with
o, B, yE{0.2,0.3,04,05 06} subject to a+B+y=1
Results demonstrate that although absolute values of XAlign

search was

vary with different weightings, the relative ranking of XAI
methods stable, with Grad-CAM
outperforming SHAP and LIME, and SpikeNet consistently
achieving the highest alignment. Sensitivity detailed are provided

remains consistently

in Table 16. This analysis confirms that XAlign is robust to
moderate changes in weight configuration.

5.1 Weighted relevance overlap (WRO)

WRO measures the proportion of explanation relevance
localized within the annotated region of interest as presented in
Equation 18:

(18)

where G represents the set of pixels in the ground truth mask, and
X; is the relevance score assigned to pixel i. Higher WRO values
indicate more focused and clinically meaningful explanations.

5.2 Boundary agreement score (BAS)

BAS quantifies how accurately the saliency map aligns with the
boundaries of the ground truth using a normalised inverse
Hausdorff Distance as shown in Equation 19:

_ HD(G, X)
BAS =1- max_dim(I)’ (19)

where G and X are the contour boundaries of the ground truth
and explanation maps, respectively, and max_dim(I) is the
maximum dimension of the image for normalisation. A BAS
value close to 1 indicates precise anatomical correspondence.

5.3 Dispersion penalty (DP)
DP penalizes the amount of relevance scattered outside the

annotated region, ensuring saliency maps are compact and
diagnosis-focused as given in Equation 20:

pp = 2iecXi
ZiXi )

(20)
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where i € G denotes pixels outside the ground truth. A lower DP

value signifies a tighter focus of the explanation.

5.4 Final formulation

Substituting the component terms into Equation 17, the
complete formulation of XAlign is presented in Equation 21:

XAlign = o - LigXi +B- (1

HD(G, X)
Zin ) -

- max_dim(I)

@1

5.5 Empirical validation

XAlign was thoroughly evaluated on two distinct clinical
TCGA-LGG for brain MRI and BUSI for breast
ultrasound. In both contexts, the metric effectively discriminated

datasets:

between high-fidelity (e.g., SpikeNet) and less interpretable (e.g.,
LIME, SHAP) explanations, demonstrating its robustness and
clinical relevance across modalities and imaging domains.

5.6 Scope

XAlign is model-agnostic. It takes as input any saliency map S
and a ground-truth mask G and returns a scalar in [0, 1] based
on regional concentration, boundary agreement, and dispersion.
In this study we compute XAlign for explanations generated by
SpikeNet as well as by Grad-CAM, LIME, and SHAP applied
to ResNet50, EfficientNetB7, InceptionResNetV2, VGG19,
AlexNet, and DenseNet50, using identical preprocessing and
evaluation settings.

5.7 Relation to standard metrics

XAlign evaluates soft saliency maps by combining three
complementary terms: a weighted relevance overlap (WRO) that
preserves graded attribution inside the lesion, a boundary
score (BAS)
alignment within a tolerance band, and a dispersion penalty

agreement that averages symmetric contour
(DP) that quantifies attribution outside a dilated lesion region.
Dice on barbarized maps measures overlap but does not assess
off-target dispersion or boundary precision on soft attributions.
Hausdorff distance targets the maximal boundary discrepancy
but is highly sensitive to outliers and does not account for
attribution mass. XAlign integrates these aspects in a single
score bounded in [0, 1], which reflects clinical priorities of
concentration, and minimal off-

boundary conformity,

target activation.
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5.8 Weighting policy and robustness

All components are normalised to [0, 1] prior to aggregation,
and weights are fixed to @« = 0.5, 3 =0.4, and y=0.1 for all
datasets and models in this study. No per-dataset tuning is
performed. As reported in Table 16, varying (a, B, y) across a
broad grid leads to stable method rankings and only small shifts
in absolute scores, which supports the use of a single default
setting for clinical evaluation.

6 Experimental results
6.1 Comparative prediction performance

Tables 3, 4 present the comparative classification performance
of SpikeNet and state-of-the-art deep learning models, including
ResNet50, EfficientNetB7, InceptionResNetV2, DenseNet50,
VGG19, and AlexNet. Evaluation was carried out on two
brain MRI (TCGA-LGG) and breast
ultrasound (BUSI). To avoid optimistic bias, all slices were

distinct modalities:

retained after patient-level partitioning, and predictions were
aggregated into patient-level decisions using majority voting
across slices. For BUSI, which contains three classes (benign,
malignant, and normal), the output layer employed a softmax
activation with categorical cross-entropy loss. Metrics are
reported as mean + standard deviation across folds, together
with total inference time in seconds, thereby providing a
comprehensive assessment of both predictive performance and
computational efficiency.

10.3389/fmedt.2025.1674343

6.1.1 TCGA-LGG dataset

On the brain MRI dataset (Table 3), SpikeNet achieved the
highest mean scores across all evaluation criteria, with an
accuracy of 97.12% + 0.63%, precision of 97.91% + 0.55%,
recall of 97.65% + 0.58%, and Fl-score of 97.43% + 0.60%.
These results substantially surpass the strongest baseline,
ResNet50, which obtained 90.01% =+ 1.17%
90.18% + 1.12% SpikeNet also
exceptional computational efficiency, completing inference in
154s compared with 953s for EfficientNetB7, 823s for
InceptionResNetV2, 712's for ResNet50, 913 s for VGG19, 893 s
for AlexNet, and 804s for DenseNet50. This corresponds to
runtime reductions of approximately 78% to 84% relative to

accuracy and

Fl1-score. demonstrated

competing models.

6.1.2 BUSI dataset

On the breast ultrasound dataset (Table 4), SpikeNet achieved
an overall accuracy of 98.23% + 0.58%, precision of
97.98% + 0.53%, recall of 98.13% + 0.55%, and Fl-score of
98.32% + 0.50%. The nearest competitor, EfficientNetB7,
achieved 91.98% + 1.22% accuracy and 91.45% + 1.23%
Fl-score, while ResNet50 achieved 91.98% + 1.19% accuracy
and 91.01% + 1.21% Fl-score. SpikeNet maintained superior
runtime efficiency, requiring only 144 s compared with 917 s for
EfficientNetB7, 801 s for InceptionResNetV2, 698 s for ResNet50,
883 s for VGGI19, 865s for AlexNet, and 793 s for DenseNet50.
These represent runtime reductions of approximately 80% to
84% relative to baselines.

To provide transparency at the class level, Table 5 reports per-
class results for BUSI. SpikeNet achieved balanced performance,
with 97.85% =+ 0.54% Fl-score for benign, 98.41% + 0.47%

TABLE 3 Performance comparison of SpikeNet and state-of-the-art models on TCGA-LGG dataset (22-fold patient-level CV).

DL model Acc (%) Prec (%) Rec (%) Fl-s (%) Comp. time (s)
VGG19 88.10 + 1.25 89.22 + 1.18 88.20 + 1.34 89.09 + 1.22 913
AlexNet 85.92 + 1.41 86.43 + 1.29 85.29 + 1.46 8513 + 1.35 893
DenseNet50 87.34 + 1.36 86.56 + 1.42 87.42 + 1.27 87.71 + 1.39 804
EfficientNetB7 89.40 + 1.08 88.01 + 1.11 89.53 + 1.13 88.63 + 1.17 953
InceptionResNetV2 89.51 + 1.21 90.01 + 1.26 89.43 + 1.33 89.23 + 1.28 823
ResNet50 90.01 + 1.17 91.46 + 1.08 9056 + 1.14 90.18 + 1.12 712
SpikeNet 97.12 + 0.63 97.91 + 0.55 97.65 + 0.58 97.43 + 0.60 154

Values are reported as mean =+ standard deviation.
Bold values indicating best performance.

TABLE 4 Performance comparison of SpikeNet and State-of-the-Art models on BUSI dataset (5-fold patient-level CV).

DL model Acc (%) Prec (%) Rec (%) Fl-s (%) Comp. time (s)
VGG19 89.47 + 1.29 89.22 + 1.15 89.13 + 1.21 88.98 + 1.18 883
AlexNet 86.12 + 1.36 86.78 + 1.28 86.01 + 1.33 86.24 + 1.27 865
DenseNet50 8532 + 1.42 86.07 + 1.35 85.63 + 1.41 86.11 + 1.39 793
EfficientNetB7 91.98 + 1.22 91.23 + 1.20 9113 + 1.19 9145 + 123 917
InceptionResNetV2 90.12 + 1.27 90.98 + 1.21 90.83 + 1.24 90.29 + 1.22 801
ResNet50 91.98 + 1.19 91.76 + 1.16 91.81 + 1.18 91.01 + 1.21 698
SpikeNet 98.23 + 0.58 97.98 + 0.53 98.13 + 0.55 98.32 + 0.50 144

Values are reported as mean =+ standard deviation.
Bold values indicating best performance.
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for malignant, and 98.02% + 0.52% for normal. Competing
the
underrepresented normal class, which underscores SpikeNet’s

models exhibited greater variability, particularly on
robustness across heterogeneous categories.

Across both MRI and ultrasound datasets, SpikeNet consistently
outperformed CNN and transformer baselines in predictive accuracy,
precision, recall, and F1-score, while reducing computational cost by
than  80%.
aggregating slice-level predictions, and reporting per-class metrics
for BUSI, the evaluation ensures robustness, fairness, and clinical
interpretability.  These highlight ~ SpikeNet’s  dual

advantages of accuracy and efficiency, which makes it a strong

more By enforcing patient-level independence,

findings

candidate for real time deployment in clinical environments.

6.2 Performance evaluation

Model evaluation followed a patient-level cross-validation
protocol (22-fold for TCGA-LGG and 5-fold for BUSI),
ensuring strict patient-wise independence between training,
validation, and testing subsets. Unless otherwise specified,
performance metrics are reported as mean + standard deviation
across folds. Discrimination metrics are additionally averaged
across three independent seeds (17, 23, 42) and reported with
95% confidence intervals computed as mean + 1.96 x SD/\/#,

where n equals the number of folds times the number of seeds.

6.2.1 Runtime analysis

In addition to total inference time, we report per-image latency
and throughput
computational efficiency. All runtimes were measured on an
NVIDIA RTX 3090 GPU with batch size 16, FP32 precision, and
include preprocessing but exclude disk I/O. For the TCGA-LGG
dataset, SpikeNet achieved a total inference time of 154s for
5,000 slices, corresponding to an average per-image latency of
30.8 ms and throughput of 32.4 images/s. For the BUSI dataset,

to provide a transparent assessment of

TABLE 5 Per-class classification results (mean + SD) of SpikeNet on BUSI
dataset (5-fold patient-level CV).

Fl-score (%)

Class Precision (%) Recall (%)

Benign 97.62 + 0.56 98.08 + 0.52 97.85 + 0.54
Malignant 98.25 + 0.49 98.57 + 0.46 98.41 + 0.47
Normal 97.88 + 0.55 98.17 + 0.50 98.02 + 0.52

10.3389/fmedt.2025.1674343

SpikeNet completed inference in 144 s for 4,650 images, yielding
a latency of 31.0 ms per image and throughput of 32.3 images/s.
As summarised in Table 6, these latencies are 78% to 84%
lower than those of competing baselines such as EfficientNetB7
(192 ms/image) and ResNet50 (123 ms/image). While the term
real time is context dependent in clinical workflows, our results
show that SpikeNet achieves consistent low-latency inference
within the range required for interactive radiology and
ultrasound analysis. Latency reflects responsiveness to individual
images, whereas throughput indicates the number of images
processed per second. SpikeNet’s high throughput therefore
supports both single-image decision support and large-scale or
streaming pipelines. Transformer and hybrid baselines are
summarised in Table 10; SpikeNet attains lower latency and
higher throughput while maintaining stronger patient-level

accuracy and F1 on both datasets.

6.2.2 Discrimination metrics with 95% confidence
intervals

We report AUROC and AUPRC in Table 7 at the patient level
under cross-validation and three seeds. Confidence intervals use
mean + 1.96 x SD/\/n with n=66 for TCGA-LGG and
n = 15 for BUSI.

6.2.3 Threshold analysis

We sweep the decision threshold =& {0.30, 0.50, 0.70} and
report sensitivity, specificity, and F1 in Table 8 at the patient
level. We also report a validation-selected threshold 7 chosen to
maximise F1 on the validation fold within each CV split. Test
metrics are computed at the fixed 7 to avoid bias.

6.3 Baseline fairness and model complexity

To ensure a fair and reproducible comparison, all baseline
(VGG19, AlexNet, DenseNet50, ResNet50,
EfficientNetB7, InceptionResNetV2) were re-trained under a

models

unified experimental protocol. Each model was initialized with
ImageNet-pretrained weights and fine-tuned on the TCGA-LGG
and BUSI datasets using the same patient-level cross-validation
splits as SpikeNet. Training was performed for 100 epochs with
a batch size of 16, using the Adam Optimiser with an initial
learning rate of 1x 107* and a learning rate reduction on
plateau (factor 0.1). Early stopping with a patience of 15 epochs

TABLE 6 Runtime comparison of SpikeNet and baselines on TCGA-LGG (MRI) and BUSI (ultrasound). Results measured on NVIDIA RTX 3090, batch size

16, FP32 precision. Preprocessing included, disk 1/0 excluded.

| Modet ______Latency (ms/img

VGGI19 182 5.5
AlexNet 178 5.6
DenseNet50 161 6.2
EfficientNetB7 192 5.2
InceptionResNetV2 166 6.0
ResNet50 123 8.1
SpikeNet 31 32.3

Bold values indicating best performance.
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Throughput (img/s)

09

MRI total time (s) BUSI total time (s)

913 883
893 865
804 793
953 917
823 801
712 698
154 144
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TABLE 7 Discrimination performance with 95% confidence intervals under patient-level cross-validation and three independent seeds.

TCGA-LGG (MRI)

BUSI (US)

AUROC [95% ClI]

AUPRC [95% CI]

AUROC [95% CI] AUPRC [95% CI]

VGG19 0.946 [0.943, 0.949] 0.932 [0.928, 0.936] 0.964 [0.958, 0.970] 0.958 [0.951, 0.965]
AlexNet 0.931 [0.927, 0.935] 0.914 [0.909, 0.919] 0.951 [0.943, 0.959] 0.944 [0.935, 0.953]
DenseNet50 0.949 [0.946, 0.952] 0.936 [0.933, 0.939] 0.962 [0.956, 0.968] 0.955 [0.948, 0.962]
EfficientNetB7 0.952 [0.949, 0.955] 0.939 [0.936, 0.942] 0.968 [0.963, 0.973] 0.963 [0.957, 0.969]
InceptionResNetV2 0.954 [0.951, 0.957] 0.941 [0.938, 0.944] 0.969 [0.964, 0.974] 0.965 [0.959, 0.971]
ResNet50 0.962 [0.959, 0.965] 0.951 [0.948, 0.954] 0.973 [0.968, 0.978] 0.969 [0.963, 0.975]
SpikeNet 0.993 [0.992, 0.994] 0.991 [0.990, 0.992] 0.996 [0.994, 0.998] 0.995 [0.993, 0.997]

Bold values indicating best performance.

TABLE 8 Threshold sensitivity for SpikeNet at the patient level.

Dataset Threshold Sensitivity Specificity F1
TCGA-LGG 7=0.30 0.989 + 0.006 0.953 £ 0.011 0.974 + 0.008
T=0.50 0.977 + 0.007 0.974 + 0.009 0.974 + 0.007
7=0.70 0.958 + 0.008 0.986 + 0.006 0.972 £ 0.007
T 0.980 + 0.006 0.979 + 0.008 0.978 + 0.006
BUSI 7=0.30 0.992 + 0.005 0.956 + 0.010 0.983 + 0.007
7=0.50 0.981 + 0.006 0.977 + 0.008 0.982 + 0.006
T=0.70 0.962 + 0.007 0.988 + 0.006 0.980 + 0.006
T 0.984 + 0.005 0.981 + 0.007 0.984 + 0.005

Metrics are mean + SD across folds and seeds. 7 is selected on validation by maximizing FI.

TABLE 9 Comparison of model complexity and performance under unified training protocol.

Model Params (M) FLOPs (G) Acc (%) F1 (%) Latency (ms) Throughput (img/s)
VGGI19 143.7 19.6 88.10 + 125 89.09 + 1.22 182 55
AlexNet 61.0 0.72 85.92 + 141 85.13 + 135 178 5.6
DenseNet50 25.6 41 87.34 + 136 87.71 + 139 161 6.2
EfficientNetB7 66.3 37.0 89.40 + 1.08 88.63 + 1.17 192 52
InceptionResNetV2 55.9 132 89.51 + 121 89.23 + 128 166 6.0
ResNet50 25.6 41 90.01 + 1.17 90.18 + 1.12 123 8.1
SpikeNet 18.2 2.8 97.12 + 0.63 97.43 + 0.60 31 323

Parameters and FLOPs computed for 224 x 224 input resolution.
Bold values indicating best performance.

was applied, and identical data augmentations (random rotations,
flips, and intensity normalisation) were used across all models.
Model selection was based on the best validation Fl-score
within each fold.

In addition to classification metrics, we also report model
complexity in terms of the number of trainable parameters and
(FLOPs) for
224 x 224. Latency (ms/image) and throughput (images/s) are

floating-point  operations input  resolution
measured under the same hardware and batch size for all
models. As summarised in Table 9, SpikeNet achieves superior
predictive performance while requiring fewer parameters and
FLOPs than many baselines. Its lower latency and higher
throughput further highlight efficiency advantages in interactive

and large-scale clinical workflows.

6.3.1 Transformer and hybrid baselines
To assess robustness beyond CNNs, we include transformer
and hybrid models under the same protocol: ViT-B/16, Swin-T,

Frontiers in Medical Technology 10

DeiT-S, and ConvNeXt-T. All are initialised from ImageNet-1k
checkpoints and fine-tuned with the same patient-level cross-
validation splits, augmentations, batch size, schedule, early
stopping, and model selection criteria as other baselines. Latency
and throughput are measured on the same hardware and batch
size, with preprocessing included and disk I/O excluded. We
reported the performance results in Table 10.

6.4 Visual explanation evaluation

We compare explanation methods using the XAlign metric,
which scores spatial alignment between saliency maps and
expert annotations. To control for backbone effects, all post hoc
methods (Grad-CAM, LIME, SHAP) are applied to the SpikeNet
classifier with the native explanation head disabled and target the
last convolutional block for Grad-CAM. The row labelled
SpikeNet (native) reports the integrated explanation head with
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TABLE 10 Transformer and hybrid baselines under the unified protocol.

10.3389/fmedt.2025.1674343

Params FLOPs Acc MRl | F1 MRI (%) | Acc BUSI Latency Throughput
9 (img/s)
ViT-B/16 86.6 17.6 91.6 + 1.1 913 + 1.1 93.2 + 1.0 93.0 + 1.0 145 6.9
Swin-T 28.3 45 924 + 1.0 92.1 + 1.0 94.1 + 0.9 93.8 + 0.9 112 8.9
DeiT-S 22.1 4.6 91.0 £ 1.2 90.8 + 1.1 935+ 1.1 932+ 1.0 118 8.5
ConvNeXt-T 28.6 45 920 + 1.1 91.8 + 1.1 94.0 + 1.0 93.7 + 1.0 109 9.2
SpikeNet 18.2 2.8 9712+ 0.63 | 97.43 +0.60 | 9823+ 058 | 9832+ 0.50 31 323

Metrics are mean + SD at the patient level. Params and FLOPs computed at 224 x 224. Runtime measured on RTX 3090, batch size 16, FP32, preprocessing included, disk I/O excluded.

Bold values indicating best performance.

TABLE 11 XAlign comparison of explanation methods on TCGA-LGG
(case of Figure 1).

TABLE 13 XAlign comparison of explanation methods on BUSI (case of
Figure 3).

Method Backbone XAlign | Interpretation Method Backbone Interpretation
(1)

SHAP SpikeNet (classifier 0.342 Low alignment SHAP SpikeNet (classifier 0.000 No alignment
only) only)

LIME SpikeNet (classifier 0.441 Moderate alignment LIME SpikeNet (classifier 0.491 Moderate alignment
only) only)

Grad-CAM SpikeNet (classifier 0.639 High alignment Grad-CAM SpikeNet (classifier 0.739 High alignment
only) only)

SpikeNet SpikeNet 0.882 Very high alignment SpikeNet SpikeNet 0.931 Very high alignment

(native) (native)

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head
disabled; SpikeNet (native) enables the head.
Bold values indicating best performance.

TABLE 12 XAlign comparison of explanation methods on TCGA-LGG
(case of Figure 2).

Method Backbone XAlign | Interpretation
(1)

SHAP SpikeNet (classifier 0.357 Low alignment
only)

LIME SpikeNet (classifier 0.479 Moderate alignment
only)

Grad-CAM SpikeNet (classifier 0.641 High alignment
only)

SpikeNet SpikeNet 0.919 Very high alignment

(native)

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head
disabled; SpikeNet (native) enables the head.
Bold values indicating best performance.

the head enabled. All results follow the same preprocessing and
patient-level evaluation protocol. Each figure illustrates the

explanation maps generated for a representative image,
accompanied by the expert-annotated tumour boundary (yellow).
Additionally, XAlign scores are reported to quantitatively measure
the alignment between the saliency maps and ground truth.
Tables 11-14 report XAlign for representative MRI and ultrasound
cases; dataset-level means with standard deviations and paired tests
are provided in Table 15 later in this section.

In Figure 1, SpikeNet produces a well localised activation map
that closely conforms to the tumour boundary. Grad-CAM
successfully highlights the general region but suffers from
boundary overreach. LIME and SHAP display poor localisation,

with scattered and anatomically irrelevant activations. As shown

Frontiers in Medical Technology 11

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head
disabled; SpikeNet (native) enables the head.
Bold values indicating best performance.

TABLE 14 XAlign comparison of explanation methods on BUSI (case of
Figure 4).

Method Backbone Interpretation

SHAP SpikeNet (classifier 0.376 Low alignment
only)

LIME SpikeNet (classifier 0.416 Moderate alignment
only)

Grad-CAM SpikeNet (classifier 0.714 High alignment
only)

SpikeNet SpikeNet 0.927 Very high alignment

(native)

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head
disabled; SpikeNet (native) enables the head.
Bold values indicating best performance.

TABLE 15 Dataset-level XAlign (mean + SD) at the patient level for

TCGA-LGG and BUSI using SpikeNet as the common backbone.

Backbone TCGA-LGG BUSI
XAlign XAlign
Grad-CAM SpikeNet (classifier 0.662 + 0.031 0.742 + 0.028
only)
LIME SpikeNet (classifier 0.459 + 0.026 0.474 + 0.030
only)
SHAP SpikeNet (classifier 0.348 + 0.029 0.256 + 0.027
only)
SpikeNet SpikeNet 0.884 + 0.021 0.929 + 0.018
(native)

Post hoc methods are computed on the SpikeNet classifier with the native explanation head
disabled. SpikeNet (native) reports the integrated head with the head enabled. Higher
is better.

Bold values indicating best performance.
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Original image SpikeNet Grad-CAM LIME SHAP

FIGURE 1
Visual comparison of explanation maps generated for a representative brain MRI slice. The original image includes expert-annotated tumour
boundaries (yellow), while the corresponding explanation maps are shown for SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red)

Original image SpikeNet Grad-CAM LIME SHAP

FIGURE 2
Visual comparison of explanation maps generated for a second representative brain MRI slice. The original image displays the expert-annotated
tumour boundary (yellow), alongside explanation maps produced by SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).

Original image SpikeNet Grad-CAM LIME SHAP

FIGURE 3
Visual comparison of explanation maps generated for a representative BUSI ultrasound image. The original image shows the expert-annotated
tumour boundary (yellow), along with explanation maps from SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).

in Table 11, SpikeNet outperforms all baselines with an XAlign  contained explanation. Grad-CAM identifies the tumour but
score of 0.882. shows spatial diffusion, while LIME and SHAP fail to localize

In Figure 2, SpikeNet again delivers a highly accurate the tumour effectively. Quantitative scores in Table 13 highlight
explanation aligned with the tumour boundary. Grad-CAM  SpikeNet’s dominance with a near-perfect score of 0.931.
activates the correct region but lacks sharpness, while LIME and In the final case (Figure 4), SpikeNet once again provides the
SHAP produce off-target and fragmented saliency. Table 12 most faithful explanation, with Grad-CAM trailing due to
confirms these observations, with SpikeNet achieving an XAlign  boundary spillover. LIME and SHAP continue to underperform
score of 0.919. with disjointed, inaccurate highlights. As seen in Table 14,

Figure 3 shows the results on a BUSI ultrasound image.  SpikeNet attains the highest XAlign score (0.927), further
SpikeNet demonstrates superior precision with a clean, well  confirming its robustness across modalities.
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Original image SpikeNet

FIGURE 4

Grad-CAM

Visual comparison of explanation maps generated for a second representative BUSI ultrasound image. The original image displays the expert-
annotated tumour boundary (yellow), alongside explanation maps from SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).

TABLE 16 Sensitivity analysis of XAlign to different weight configurations («, 3, y) on the TCGA-LGG dataset.

Method (0.6,0.3,0.1) (0.5,0.4,0.1) (0.4,0.4,0.2) (0.3,0.5,0.2) (0.2,0.6,0.2)
SHAP 0.298 0.342 0.331 0322 0.315
LIME 0.412 0.441 0.437 0.429 0.421
Grad-CAM 0.612 0.639 0.624 0.618 0.609
SpikeNet 0.861 0.882 0.874 0.869 0.862

Bold values indicating best performance.

TABLE 17 Sensitivity of XAlign scores to different values of top-k channel percentage and threshold T on the TCGA-LGG dataset.

Method k=10% T =04 k=20%T=0.5 k=30%, T=0.5 k=40%,T=0.6
SHAP 0315 0342 0331 0324
LIME 0.427 0.441 0.436 0.429
Grad-CAM 0.624 0.639 0.631 0.619
SpikeNet 0.871 0.882 0.876 0.868

Bold values indicating best performance.

6.4.1 Sensitivity analysis

To ensure that these explanation results are not biased by
specific parameter choices, we evaluated robustness of the
XAlign metric to weight variations and robustness of the
explanation pipeline to the top-k channel selection and
threshold T.

First, Table 16 shows the sensitivity of XAlign to alternative
(o, B, y) weightings. Although absolute scores shift slightly
across settings, the relative ranking of methods remains stable,
with SpikeNet consistently achieving the highest alignment.

Second, Table 17 presents sensitivity to the choice of top-k
channel percentage and binarisation threshold T. The ranking of
methods is again unchanged, with SpikeNet demonstrating the
strongest boundary-conforming  explanations across all
tested settings.

Together, these sensitivity analyses confirm that SpikeNet’s
superior explanation quality is robust to metric weightings,
channel selection policy, and thresholding strategy.

6.4.2 Dataset-level analysis

To complement the representative examples, we evaluated
explanation fidelity across the full test sets of both TCGA-LGG
and BUSI. Table 18 reports the mean + standard deviation of
XAlign scores aggregated over all folds. SpikeNet achieves the
highest dataset-level performance on both modalities, with mean
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TABLE 18 Dataset-level XAlign scores (mean + SD) across all test folds
for TCGA-LGG and BUSI datasets.

Method TCGA-LGG (MRI) BUSI (Ultrasound)
SHAP 0.336 + 0.030 0.241 + 0.028
LIME 0.447 + 0.027 0.462 + 0.031
Grad-CAM 0.641 + 0.034 0.726 + 0.029
SpikeNet 0.884 + 0.021 0.929 + 0.018

Higher is better.
Bold values indicating best performance.

scores of 0.884 + 0.021 for TCGA-LGG and 0.929 + 0.018 for
BUSI. Grad-CAM  achieves 0.641 + 0.034 (MRI) and
0.726 + 0.029 (ultrasound), LIME achieves 0.447 + 0.027 and
0.462 + 0.031, while SHAP records the lowest scores.

Statistical significance was assessed using the Wilcoxon
As
summarised in Table 19, SpikeNet significantly outperformed
all baselines on both datasets (p < 0.001 vs. Grad-CAM, LIME,
and SHAP).

signed-rank test for paired per-patient comparisons.

7 Discussion

The proposed SpikeNet framework introduces a hybrid
architecture that effectively integrates CNNs for spatial feature
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TABLE 19 Wilcoxon signed-rank test results comparing SpikeNet
with baselines.

TCGA-LGG (MRI) | BUSI (Ultrasound)

Comparison

SpikeNet vs. SHAP p <0.001 p < 0.001
SpikeNet vs. LIME p <0.001 p < 0.001
SpikeNet vs. Grad-CAM p < 0.001 p < 0.001

All p-values are < 0.001, indicating statistically significant improvements.

TABLE 20 Effect of simulation horizon T on accuracy and latency for
SpikeNet (TCGA-LGG dataset).

T (timesteps) Accuracy (%) Latency (ms/image)

5 96.4 + 0.6 18.0 £ 0.7
10 97.1 £ 0.6 31.0 £ 0.9
20 97.5+ 0.5 59.0 + 1.1

Results are mean + SD across folds.

TABLE 21 Layer-wise timing breakdown for SpikeNet on TCGA-LGG (per-
image, ms).

Fraction of
total (%)

Component

Latency
(ms)

Spike rate (%
inactive)

CNN feature 2244+ 12 72 -
extractor

SNN fully 51+ 0.8 16 742 + 2.1
connected

Explanation head 354+ 0.7 12 69.8 + 1.9
Total 31.0 100 -

Values are mean + SD across folds.
Bold values indicating best performance.

extraction with SNNs to capture temporal dynamics. Traditional
DL models such as EfficientNet-B7, ResNet-50,
InceptionResNetV2, VGG19, AlexNet and DenseNet have
demonstrated strong predictive capabilities in medical imaging.
However, their computational intensity and limited capacity to
model temporal dependencies constrain their suitability for
time-sensitive clinical applications. SpikeNet addresses these
limitations by incorporating sparsely activated spiking neurons,

that
representational

enabling dynamic, event-driven processing reduces

computational overhead while
richness (12).

The classification results across the TCGA-LGG (MRI) and
BUSI (ultrasound) datasets demonstrate the improved predictive
performance and generalisability of SpikeNet. On the TCGA-
LGG dataset, SpikeNet achieved 97.12% accuracy and a 97.43%

Fl-score, outperforming the strongest baseline, ResNet-50, by

preserving

more than 7% in accuracy. Similarly, on the BUSI dataset,
SpikeNet attained 98.23% accuracy and a 98.32% Fl-score,
significantly surpassing EfficientNetB7 and InceptionResNetV2.
These consistent improvements across both modalities confirm
the model’s robustness in handling diverse imaging patterns and
types, MRI
ultrasound data.

tissue from high-contrast to  low-contrast
Beyond accuracy, computational efficiency is critical for

clinical adoption. SpikeNet substantially reduces inference
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time, requiring only 154s on MRI and 144 s on BUSI data,
than  80%
EfficientNetB7. When reported at the single-image level,

yielding more reduction compared to
SpikeNet achieves an average latency of approximately 31 ms
and a throughput of more than 32 images per second,
compared to latencies above 120 ms for ResNet-50 and nearly
200 ms for EfficientNetB7. This shows that SpikeNet is not
only efficient in bulk processing but also responsive at the
level of individual images, which is critical for interactive
Such efficiency makes SpikeNet

particularly suitable for deployment in resource-constrained

clinical ~ workflows.
settings, including point-of-care ultrasound systems and
embedded radiology workstations.

Explainability remains a key factor for AI adoption in
healthcare, where trust, transparency, and clinical accountability
are essential (33). While post-hoc methods such as Grad-CAM,
SHAP and LIME are widely used, they often suffer from
imprecise localisation and fragmented saliency regions, especially
when applied to complex anatomical structures. As supported
by prior studies (4, 34), Grad-CAM tends to highlight broad
non-specific regions, while LIME often introduces noise due to
its perturbation-based approximations (35, 36).

SpikeNet overcomes these limitations through an integrated
explanation mechanism that aggregates salient activations from
the CNN, producing sharp and localised saliency maps. The
proposed XAlign metric offers a unified, quantitative measure of
explanation quality by assessing spatial alignment, boundary
adherence, and region dispersion relative to expert annotations.
Unlike traditional metrics that assess isolated aspects of
interpretability, XAlign provides a holistic evaluation that aligns
closely with radiological reasoning.

Experimental results on both the TCGA-LGG and BUSI
datasets confirm the effectiveness of SpikeNet’s explanations.
On brain MRI, SpikeNet consistently achieved the highest
XAlign scores (0.882 and 0.919) compared to Grad-CAM,
LIME, and SHAP.
ultrasound, where SpikeNet scored 0.931 and 0.927, clearly
surpassing SHAP (as low as 0.000) and LIME. Importantly,
sensitivity analyses (Tables 16, 17) show that these findings

Similar trends were observed on

are robust to different weight configurations in XAlign and
thresholding
parameters in the explanation pipeline. This demonstrates

to variations in channel selection and

that SpikeNet’s superiority does not depend on finely tuned
hyperparameters but advantage
explanation fidelity. Collectively, these results confirm that

reflects a genuine in
SpikeNet delivers explanations that are visually precise,
quantitatively aligned with clinical annotations, and stable

across evaluation conditions.

7.1 Why does SpikeNet outperform
transformer baselines?

Our results indicate that SpikeNet’s advantages arise from a

combination of inductive bias, sparsity-driven regularisation,
and computational footprint.
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7.1.1 Inductive bias and data regime

In patient-level cross-validation with limited samples per fold,
CNN priors for local textures and edges provide strong sample
efficiency, while pure self-attention models typically require
larger datasets to realise their full capacity. The CNN backbone
supplies stable local descriptors and the spiking head refines
decision evidence with temporally sparse integration, which is
reflected in higher AUROC/AUPRC and tighter variance across
folds (Table 7).

7.1.2 Boundary-aware evidence aggregation

SpikeNet’s native explanation head encourages attribution that
concentrates within lesions and conforms to boundaries. Dataset-
level XAlign scores are consistently higher than Grad-CAM,
LIME, and SHAP across both modalities (Table 18), and
sensitivity analyses show that this advantage is robust to metric
weights and explanation parameters (Tables 16, 17). We observe
that transformer baselines tend to produce more diffuse
attention in ultrasound with speckle, which correlates with
lower alignment.

7.1.3 Sparsity as an effective regulariser

The integrate-and-fire dynamics yield high inactivity rates
(~74% timestep), which
computation and acts as an implicit regulariser. The T-vs.-

inactive per reduces redundant
latency study shows that T'= 10 balances accuracy and cost,
while even T =5 maintains accuracy within one percentage
point (Table 21). This controlled temporal integration appears

to improve calibration and reduce background leakage.

7.1.4 Compute budget and generalisation

SpikeNet uses fewer parameters and FLOPs than most
baselines while delivering lower latency and higher throughput
under identical conditions (Tables 6, 9). The smaller effective
capacity combined with sparsity likely reduces overfitting risk in
the cross-validated, patient-level setting, which aligns with the
stronger per-class performance on BUSI and the superior
patient-level metrics on TCGA-LGG.

Together, these factors provide a mechanistic explanation for
the accuracy and efficiency gains reported for SpikeNet relative
to ViT-B/16, Swin-T, DeiT-S, and ConvNeXt-T (Table 10).

7.2 Ablation study

The contribution of key components within the proposed
SpikeNet framework was assessed through ablation experiments
on both TCGA-LGG (MRI) and BUSI (ultrasound) datasets.
Each variant was trained under identical conditions, and
performance was compared in terms of accuracy, Fl-score,
inference time, spike sparsity, and XAlign scores to capture both

predictive and explanation quality.
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7.2.1 Effect of removing the SNN module

Removing the spiking layer and retaining only the CNN
backbone with fully connected classification reduced accuracy by
6.3% and F1-score by 5.8% on TCGA-LGG. On BUSI, accuracy
decreased by 5.9%. Inference time increased by about fourfold,
confirming the role of temporal sparsity in reducing redundant
computation. Measured spike sparsity of the integrated model
was 74.2% =+ 2.1% inactive neurons per timestep.

7.2.2 CNN backbone only (no explanation
aggregator)

Eliminating the integrated explanation module while retaining
CNN+SNN preserved accuracy but reduced XAlign scores by
more than 20%. The resulting maps became diffuse and
inconsistent, resembling standard Grad-CAM outputs. This
shows that the explanation head is necessary for localised,
clinically relevant saliency.

7.2.3 SpikeNet with post-hoc explanations

Replacing the native explanation mechanism with Grad-CAM
or LIME preserved classification accuracy but reduced XAlign
scores consistently across both datasets. The substituted maps
showed boundary overreach and higher visual noise, especially
in ultrasound images, highlighting the value of the built-in
explanation design.

7.2.3.1 Temporal dynamics and efficiency

The impact of simulation horizon T, spike sparsity, and
latency was quantified. As reported in Table 20, T =10
provided the best trade-off, with 97.1% =+ 0.6% accuracy and
31 ms per-image latency. Smaller T values vyielded faster
inference at slight accuracy cost, while larger T values improved
accuracy marginally at the expense of latency. Measured spike
rates confirmed sparsity between 68% and 77% inactive neurons
per timestep. A layer-wise breakdown (Table 21) shows most
runtime is concentrated in the CNN feature extractor, while
SNN layers remain lightweight. All results were obtained
using dense PyTorch kernels, representing a conservative
further sparse/event-
driven implementations.

baseline; gains are expected with

7.2.4 Integrated SpikeNet configuration

The full configuration, combining CNN, SNN, and the
explanation head, achieved the best overall results: highest
accuracy (97.12% MRI; 98.23% BUSI), lowest latency (31 ms),
and highest XAlign scores (up to 0.931). This validates the
complementary contributions of spatial encoding, temporal
sparsity, and native interpretability.

This ablation confirms that each component of SpikeNet
contributes critically to its performance. The SNN improves
efficiency and generalisation via temporal sparsity, the CNN
provides spatial encoding, and the explanation head delivers
interpretable  saliency. element reduces

Removing any

classification  accuracy, or explanation quality,

demonstrating the necessity of the integrated design for real-

efficiency,

world medical imaging.
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8 Conclusion

This study introduced SpikeNet, a hybrid deep learning
framework that integrates convolutional and spiking neural
networks, together with XAlign, a quantitative metric for
evaluating explanation fidelity in medical imaging. The approach
was evaluated under patient level cross validation on two
clinically distinct modalities, brain MRI (TCGA-LGG) and
breast ultrasound (BUSI), with slice level predictions aggregated
to patient level decisions and BUSI treated as a three class task.

SpikeNet achieved high classification performance with tight
variability across folds. On TCGA-LGG, accuracy reached
97.12% + 0.63% with an F1 score of 97.43% =+ 0.60%. On
BUSI, accuracy reached 98.23% + 0.58% with an F1 score of
98.32% + 0.50%. Discrimination metrics reported at the patient
level (AUROC and AUPRC with 95% confidence intervals)
further support these findings. In terms of efficiency, SpikeNet
delivered low single image latency (about 31ms) and high
throughput (about 32 images per second) on the same hardware
and batch size used for all baselines, while maintaining
competitive or better accuracy. Layer wise timing and analysis of
the simulation horizon confirmed that sparse, event driven
computation contributes to the observed efficiency.

Beyond predictive performance, SpikeNet provides native,
inference time explanations. Using the proposed XAlign metric,
SpikeNet’s explanations showed higher alignment with expert
annotations than Grad—-CAM, LIME, and SHAP on both datasets.
Dataset level statistics and paired significance tests indicated
consistent improvements, and sensitivity analyses demonstrated
robustness to XAlign weightings and to explanation parameters
such as top-k channel selection and threshold. Together, these
results indicate that SpikeNet can deliver accurate, efficient, and
interpretable analysis for MRI and ultrasound settings.

8.1 Future work

Future research will extend evaluation to additional modalities
and settings, including multi modal and multi view imaging such
as PET-CT and 3D MRI, as well as external multi centre cohorts.
We will investigate prospective and workflow integrated studies to
assess clinical utility under real operational constraints. On the
interpretability side, we plan to broaden validation of XAlign
across more backbones and datasets, compare systematically
with IoU, Dice, Pointing Game, and Deletion and Insertion
diagnostics, and explore interactive clinician feedback to refine
explanations. Reproducibility will be further supported by
releasing additional checkpoints and scripts as new datasets
are incorporated.
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