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Background: Magnetic Resonance Imaging (MRI) and ultrasound are central to 

tumour diagnosis and treatment planning. Although Deep learning (DL) models 

achieve strong prediction performance, high computational demand and 

limited explainability can hinder clinical adoption. Common post hoc 

Explainable Artificial Intelligence (XAI) methods namely Grad-CAM, LIME, and 

SHAP often yield fragmented or anatomically misaligned saliency maps.

Methods: We propose SpikeNet, a hybrid framework that combines 

Convolutional Neural Networks (CNNs) for spatial feature encoding with 

Spiking Neural Networks (SNNs)for efficient, event driven processing. 

SpikeNet includes a native saliency module that produces explanations during 

inference. We also introduce XAlign, a metric that quantifies alignment 

between explanations and expert tumour annotations by integrating regional 

concentration, boundary adherence, and dispersion penalties. Evaluation 

follows patient level cross validation on TCGA–LGG (MRI, 22 folds) and BUSI 

(ultrasound, 5 folds), with slice level predictions aggregated to patient level 

decisions and BUSI treated as a three class task. We report per image latency 

and throughput alongside accuracy, precision, recall, F1, AUROC, and AUPRC.

Results: SpikeNet achieved high prediction performance with tight variability 

across folds. On TCGA–LGG it reached 97.12 + 0.63% accuracy and 

97.43 + 0.60% F1; on BUSI it reached 98.23 + 0.58% accuracy and 

98.32 + 0.50% F1. Patient level AUROC and AUPRC with 95% confidence 

intervals further support these findings. On a single NVIDIA RTX 3090 with 

batch size 16 and FP32 precision, per image latency was about 31 ms and 

throughput about 32 images per second, with the same settings applied to all 

baselines. Using XAlign, SpikeNet produced explanations with higher 

alignment than Grad-CAM, LIME, and SHAP on both datasets. Dataset level 

statistics, paired tests, and sensitivity analyses over XAlign weights and 

explanation parameters confirmed robustness.

Conclusion: SpikeNet delivers accurate, low latency, and explainable analysis 

for MRI and ultrasound by unifying CNN based spatial encoding, sparse 

spiking computation, and native explanations. The XAlign metric provides a 

clinically oriented assessment of explanation fidelity and supports consistent 

comparison across methods. These results indicate the potential of SpikeNet 

and XAlign for trustworthy and efficient clinical decision support.
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1 Introduction

Magnetic Resonance Imaging (MRI) and ultrasound are 

widely used to identify and manage brain and breast tumours. 

MRI offers high soft–tissue contrast that supports precise 

delineation of intracranial lesions, whereas ultrasound provides a 

portable, non–ionising, and cost–effective option for breast 

cancer screening and diagnosis. Despite their clinical value, 

interpretation remains resource intensive and requires 

specialised expertise, which can be challenging in high– 

throughput or resource–limited settings.

Deep learning (DL) has advanced automated analysis for 

classification, segmentation, and prognosis. Architectures including 

EfficientNetB7, ResNet–50, VGG–19, AlexNet, DenseNet50, and 

InceptionResNetV2 have reported strong results across medical 

imaging tasks. Two factors continue to limit routine clinical 

impact: limited transparency of model decisions, often referred to 

as the black–box problem (1, 2), and high computational demand 

at inference (3). Large parameter counts, long runtimes, and 

substantial hardware requirements reduce practicality in settings 

that require fast or interactive decision support.

Explainability is essential for clinical adoption where 

transparency and accountability are required. Post–hoc 

Explainable Artificial Intelligence (XAI) methods namely Grad– 

CAM (4), LIME (5, 6), and SHAP (7, 8) highlight image regions 

that in<uence predictions. However, these approaches often 

yield fragmented or anatomically misaligned maps and may not 

consistently re<ect model reasoning across modalities (9, 10). 

Standardised and clinically aligned evaluation of explanations is 

also limited.

We present SpikeNet, a hybrid framework that couples 

Convolutional Neural Networks (CNNs) for spatial encoding 

with Spiking Neural Networks (SNNs) for temporally sparse, 

event–driven processing. This design reduces redundant 

computation while preserving discriminative capacity (11, 12). 

SpikeNet includes a native explanation head that produces 

saliency maps during inference, which avoids reliance on 

separate post–hoc procedures. We also introduce XAlign, a 

metric that quantifies how well explanations align with expert 

tumour annotations by jointly assessing regional concentration, 

boundary adherence, and dispersion outside annotated lesions.

We evaluate SpikeNet on two clinically relevant modalities: 

brain MRI from TCGA–LGG and breast ultrasound from BUSI. 

Evaluation follows patient–level cross–validation protocols (22– 

fold for TCGA–LGG and 5–fold for BUSI), with slice–level 

predictions aggregated to patient–level decisions. BUSI is treated 

as a three–class problem (benign, malignant, normal) using a 

softmax output with categorical cross–entropy. Results show 

high accuracy and tight variability across folds on both datasets, 

together with low single–image latency and high throughput. 

On the same hardware and batch size, SpikeNet achieves about 

31 ms per image and roughly 32 images per second, while 

conventional baselines exhibit higher latency. Explanation 

quality, measured with XAlign, is consistently higher than 

Grad–CAM, LIME, and SHAP on both modalities. Sensitivity 

analyses for XAlign weights and for explanation parameters, 

along with dataset–level statistics and paired tests, indicate that 

the advantages are robust. Our contributions are as follows: 

• We propose SpikeNet, a hybrid CNN–SNN approach that 

combines spatial feature encoding with sparse, event–driven 

computation to deliver strong predictive performance with 

low latency and high throughput.

• We design a native explanation head that generates faithful 

saliency maps during inference, improving localisation 

without relying solely on post–hoc methods.

• We introduce XAlign, a quantitative metric for explanation 

fidelity that integrates regional concentration, boundary 

alignment, and dispersion penalties to re<ect clinical expectations.

• We conduct a rigorous, patient–level evaluation on TCGA– 

LGG (MRI) and BUSI (ultrasound). Protocols include cross– 

validation with three independent seeds, patient–level 

aggregation, AUROC and AUPRC with 95% confidence 

intervals, per–class metrics for BUSI, and detailed runtime 

reporting with latency and throughput.

• We provide robustness evidence through sensitivity analyses of 

XAlign weights and explanation parameters, and through 

dataset–level statistics with paired significance tests.

The remainder of this paper is organized as follows: Section 2

reviews related literature. Section 3 describes the datasets and 

preprocessing pipeline. The SpikeNet architecture is introduced 

in Section 4, followed by the proposed XAlign metric in Section 

5. Experimental results are presented in Section 6, with detailed 

discussion in Section 7, and conclusions outlined in Section 8.

2 Relevant studies

Table 1 provides an expanded summary of recent studies that 

integrate XAI and related supervision paradigms within medical 

imaging pipelines. Prior work has primarily emphasised post-hoc 

explainability for classification and segmentation tasks, employing 

CNN-based models including ResNet-50, DenseNet201, VGG-16/ 

19, and EfficientNet variants, as well as hybrid designs like ViT- 

D-CNN and SThy-Net. Widely used XAI methods include Grad- 

CAM, Grad-CAM++, Saliency Maps, LIME, and SHAP.

In brain MRI applications, Grad-CAM remains the dominant 

choice, but most works lack quantitative assessment of fidelity 

against expert annotations. Similarly, in breast ultrasound 

imaging, several studies employ Grad-CAM, LIME, or SHAP, 

but without reporting alignment with ground-truth masks or 

computational feasibility. These gaps limit clinical reliability.

Beyond post-hoc XAI, weak- and limited-supervision strategies 

have recently emerged as complementary directions for improving 

interpretability and efficiency. Scribble-supervised approaches such 

as HELPNet (23) and cross-image matching (24) demonstrate how 

sparse annotations can provide strong guidance for segmentation. 

Human-attention-guided methods, such as gaze-to-insight 

frameworks (25), directly integrate visual attention signals to 

enhance explanation plausibility. Other advances, including semi- 

supervised unpaired segmentation with task-affinity consistency 

(26) and dynamic contrastive learning with confidence and 
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confusion priors (27), utilise consistency or contrastive objectives to 

mitigate annotation scarcity and labelling noise.

While these regimes utilise sparse supervision to regularise 

representation learning, our proposed XAlign metric addresses 

a different but complementary gap: the rigorous post-hoc 

evaluation of explanation fidelity against dense expert 

annotations. Unlike weak-supervision methods that focus on 

learning under sparse labels, XAlign explicitly measures spatial 

alignment and boundary consistency of saliency maps with full 

clinical masks. This distinction positions XAlign as an 

orthogonal tool for validating explanation quality, and it can be 

used to quantitatively assess both post-hoc XAI methods and 

weakly supervised approaches in a unified framework.

These observations collectively highlight persistent 

shortcomings in the current landscape. Despite the promise of 

weak supervision, clinically validated, quantitatively assessed, 

and computationally efficient explanation metrics remain 

underdeveloped. Addressing these challenges is critical to 

establishing trustworthy AI deployment in medical imaging.

3 Method and materials

3.1 Implementation environment

The experiments were conducted using Python, selected for its 

versatility and extensive ecosystem of DL libraries. Model training 

and evaluation were performed on a computational system 

equipped with an AMD Ryzen 7 5700X eight-core processor 

and an NVIDIA GeForce RTX 4080 GPU with 16 GB of 

memory, ensuring the necessary computational resources for 

efficient execution of DL workloads.

3.2 Dataset

This study utilises two publicly available and fully de- 

identified medical imaging datasets to evaluate the proposed 

framework. The first is the TCGA-LGG (Lower Grade Glioma) 

FLAIR dataset, hosted on The Cancer Imaging Archive (TCIA) 

(28), which is distributed under institutional ethical approvals 

that allow unrestricted research use. The second is the Breast 

Ultrasound Images (BUSI) dataset (29), released with expert- 

provided annotations and made openly accessible for research 

purposes. As both datasets are anonymized prior to release and 

contain no identifiable patient information, no additional 

Institutional Review Board (IRB) approval was required for the 

present study.

3.2.1 TCGA–LGG (brain MRI dataset)
The brain tumour dataset comprises preoperative FLAIR 

(Fluid-Attenuated Inversion Recovery) MRI scans from the 

TCGA–LGG cohort. In the original release, 120 patient cases 

were available, sourced from five distinct clinical institutions. In 

prior studies, a subset of 110 patients with complete genomic 

cluster annotations was often used to enable imaging-genomic 

correlation tasks. However, since the present study focuses 

exclusively on imaging-based classification, genomic information 

is not required. We therefore restored the full 120-patient 

imaging cohort for analysis.

To ensure methodological transparency, we also performed a 

sensitivity analysis comparing the 110-patient subset and the full 

120-patient cohort. The inclusion of the additional 10 cases did 

not materially alter classification accuracy or explanation quality 

(differences were <0.3% across all metrics). Consequently, all 

reported experiments in this manuscript use the full 120-patient 

cohort, while acknowledging the prior convention of using 110 

cases for consistency with earlier literature.

A patient-wise 22-fold cross-validation protocol was adopted 

to ensure independence between training, validation, and testing 

sets. In each fold, one patient subset was reserved for testing, 

another for validation, and the remaining 20 subsets were used 

for training. Model performance is reported as the mean + 

standard deviation across all folds. This design guaranteed that 

no slices from the same patient appeared in both training and 

evaluation sets, thereby eliminating data leakage.

TABLE 1 Summary of studies integrating XAI or weak supervision in medical imaging.

Study Modality Approach XAI/weak-supervision methods XAI Eval Comp. Time

Pereira et al. (13) MRI CNNs Grad-CAM No No

Natekar et al. (14) MRI Dense-UNet, Res-UNet Grad-CAM No No

Yan et al. (15) MRI VGG-19 Grad-CAM++ No No

Narayankar and Baligar (16) MRI CNN LIME, SHAP No No

Mzoughi et al. (17) MRI ViT-D-CNN Grad-CAM, LIME No No

Mahesh et al. (18) MRI EfficientNetB0 Grad-CAM No No

Al-Jebrni et al. (19) Ultrasound SThy-Net Grad-CAM No No

Karimzadeh et al. (20) Ultrasound MT-BI-RADS SHAP No No

Jabeen et al. (21) Ultrasound EfficientNet-B7, ResNet Grad-CAM No No

Snehitha et al. (22) Ultrasound ResNet-50 LIME No No

Zhang et al. (23) MRI CNN-based segmentation Scribble supervision (HELPNet) Partial No

Chen et al. (24) MRI Cross-image matching Scribble-based segmentation Partial No

Chen et al. (25) MRI Vision-Language model Human gaze supervision Partial No

Chen et al. (26) MRI Semi-supervised Task-affinity consistency Partial No

Chen et al. (27) MRI CNN-based segmentation Dynamic contrastive learning Partial No
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All FLAIR scans were manually annotated by a researcher with 

specialized training in neuroradiology and subsequently verified 

by a board-certified radiologist. Annotations were performed 

using an in-house labeling tool. The dataset includes spatially 

registered FLAIR images and corresponding pixel-wise ground 

truth masks, enabling precise evaluation of tumour localization 

and segmentation performance.

3.2.2 Breast ultrasound images (BUSI)
The BUSI dataset comprises 857 greyscale ultrasound images 

categorized into three classes: benign (210 images), malignant 

(437 images), and normal (210 images), resulting in an 

imbalanced class distribution. Images were acquired from female 

patients aged 25–75 years, with particular relevance to early- 

stage breast cancer detection in younger women under 40. Each 

image is provided in PNG format with an average spatial 

resolution of 500 � 500 pixels. Expert-annotated binary masks 

are available for the tumour-containing images, serving as 

ground truth for lesion localisation and classification.

3.3 Data pre-processing

To ensure consistency in input dimensions, intensity 

distributions, and model compatibility across both datasets, a 

unified data pre-processing pipeline was implemented. This pipeline 

encompassed patient-level partitioning, spatial standardisation, and 

intensity normalisation, with dataset-specific adjustments applied 

where necessary.

3.3.1 Image resizing

To standardize spatial input dimensions, all images were 

resized to a resolution of 224 � 224 pixels. Let I [ R
H�W 

denote the original input image of height H and width W. The 

resizing operation is defined as:

I0 ¼ R(I, 224, 224), (1) 

where R(�) denotes the bilinear interpolation function, with zero- 

padding applied when the original aspect ratio deviated from the 

target dimensions.

3.3.2 Intensity normalisation

Following resizing, intensity normalisation was applied to 

standardize pixel distributions across both datasets. Each 

image was normalized using a fixed mean m ¼ [0:5, 0:5, 0:5] 

and standard deviation s ¼ [0:5, 0:5, 0:5] for each channel 

c [ {1, 2, 3}, following:

I00(i,j,c) ¼
I0(i,j,c) � mc

sc
, (2) 

where I00(i,j,c) represents the normalized pixel value at spatial 

location (i, j) in channel c, and I0 is the resized image.

3.3.3 TCGA–LGG dataset

Preprocessing was conducted on the registered FLAIR images 

and their corresponding binary tumour masks. Since these were 

originally stored in NIfTI format (.nii), volumetric slices 

were extracted and treated as individual 2D samples. Unlike 

the initial version of this study, all slices were retained after 

patient-level partitioning, including those without visible tumour 

regions. This ensures that evaluation re<ects the full clinical 

distribution of images. To reduce imbalance, optional 

downsampling of non-informative slices was applied only within 

the training folds, never in validation or testing. Each slice and 

its corresponding mask were resized to 224 � 224 pixels using 

Equation 1, and intensities were normalized using Equation 2.

For performance reporting, slice-level predictions were 

aggregated into patient-level outputs by majority voting across 

slices, and accuracy, precision, recall, and F1-score were 

computed at the patient level. Patient-wise 22-fold cross- 

validation was adopted to guarantee independence between 

training, validation, and testing subsets, with results reported as 

mean + standard deviation across folds.

3.3.4 BUSI dataset
The BUSI dataset consists of 2D greyscale ultrasound 

images stored in PNG format, accompanied by binary 

segmentation masks for the benign and malignant classes. Each 

greyscale image Igray [ R
H�W was resized to 224 � 224, and 

then replicated across three channels to form an RGB- 

compatible tensor, as presented in Equation 3:

I0RGB(i, j) ¼ [Igray(i, j), Igray(i, j), Igray(i, j)] [ R
224�224�3: (3) 

Normalisation was subsequently applied using Equation 2. To 

address class imbalance, class weights were computed from 

inverse class frequencies and incorporated into the loss function 

(30). A patient-wise 5-fold cross-validation scheme was 

employed, stratified by benign and malignant labels to preserve 

class balance. As in TCGA–LGG, strict patient-level 

independence was maintained by ensuring that no images from 

the same patient appeared in both training and evaluation sets.

This harmonized pre-processing strategy ensured that both 

datasets were standardized in terms of spatial resolution, 

intensity distribution, and input format, while enforcing patient- 

level independence. The unified approach supports robust 

statistical evaluation and enables fair comparison across datasets 

in the proposed framework.

4 Proposed framework

The proposed framework SpikeNet utilises a hybrid 

architecture combining convolutional neural networks (CNNs) 

(31) with spiking neural network (SNN) activations (32) to 

enhance both predictive performance and computational 

efficiency. The pipeline integrates feature extraction, spiking 

dynamics, and classification to detect tumours in brain MRI and 
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breast ultrasound images. The detailed procedures are 

described below.

4.1 Diagnosis

The backbone of SpikeNet employs a CNN for feature 

extraction, utilising its hierarchical architecture to process and 

extract spatial features from input images. Let I [ R
H�W�C 

represent the input image, where H, W, and C denote the 

height, width, and number of channels, respectively. The 

convolutional and pooling layers refine these features to 

generate a high-dimensional feature map F [ R
d�h�w, defined 

in Equation 4:

F ¼ CNN features(I), (4) 

where CNN features denotes the convolutional layers responsible 

for extracting multi-scale features.

The extracted feature map F is <attened into a vector 

f [ R
d�h�w and passed into a fully connected layer integrated 

with spiking neuron activation. This layer is modelled using the 

Integrate-and-Fire (IF) mechanism. The membrane potential 

dynamics are expressed in Equations 5 and 6 as:

V(t þ 1) ¼ bV(t) þ W � f , (5) 

S(t) ¼ 1, if V(t) � Vth,
0, otherwise,

�

(6) 

where b is the decay factor, W denotes synaptic weights, V(t) is 

the membrane potential, and S(t) is the spike output.

For temporal dynamics, each input is propagated over T ¼ 10 

discrete simulation steps. After each spike, the membrane 

potential is reset to zero (hard reset policy). To enable gradient- 

based optimization, a surrogate gradient approximation was 

used: the derivative of the Heaviside step function was replaced 

by a piecewise linear surrogate defined as

@S

@V
� max 0, 1 � jV � Vthj

� �

:

Spiking thresholds were set to Vth ¼ 1:0, with decay factor 

b ¼ 0:9. Synaptic weights were initialized with Kaiming 

uniform initialisation.

4.1.1 Classification

For the TCGA–LGG dataset, tumour detection is binary 

(tumour vs. no tumour). The output layer consists of a single 

neuron producing a logit z, transformed with the sigmoid 

activation function is shown in Equation 7:

P(y ¼ 1jx) ¼ 1

1 þ exp ( � z)
: (7) 

The model is trained using the Binary Cross-Entropy (BCE) loss, 

presented in Equation 8:

LBCE ¼ � 1

N

X

N

i¼1

yi log (ŷi) þ (1 � yi) log (1 � ŷi)½ �, (8) 

For the BUSI dataset, which contains three classes (benign, 

malignant, normal), the output layer produces a logit vector 

z [ R
3. A softmax activation converts logits into 

class probabilities as shown in Equation 9:

P(y ¼ kjx) ¼ exp (zk)
P3

j¼1 exp (zj)
, k [ {1, 2, 3}: (9) 

The model is trained with the Categorical Cross-Entropy 

(CCE) loss as given in Equation 10:

LCCE ¼ � 1

N

X

N

i¼1

X

3

k¼1

yi,k log (ŷi,k), (10) 

where yi,k is the one-hot encoded ground-truth label for sample i 

and class k, and ŷi,k is the predicted probability for class k. During 

inference, the predicted label ŷ is assigned as formulated in 

Equation 11:

ŷ ¼ arg max
k[{1,2,3}

P(y ¼ kjx): (11) 

4.1.2 Training details

SpikeNet was trained using the Adam Optimiser with an 

initial learning rate of 1 � 10�4, reduced by a factor of 0.1 on 

plateau. Models were trained for 100 epochs with a batch size of 

16. Early stopping with patience of 15 epochs was used to 

prevent overfitting. Standard image augmentations (random 

rotations, horizontal/vertical <ips, intensity normalisation) were 

applied during training. All experiments were seeded with a 

fixed random seed (42) to ensure reproducibility. All spiking 

TABLE 2 Training and spiking hyperparameters used in SpikeNet.

Parameter Value

Time steps (T) 10

Reset policy Hard reset to zero

Surrogate gradient Piecewise linear, max (0, 1 � jV � Vthj)
Threshold (Vth) 1.0

Decay factor (b) 0.9

Weight initialisation Kaiming uniform

Optimiser Adam

Initial learning rate 1 � 10�4

Learning rate schedule Reduce on plateau (factor 0.1)

Batch size 16

Epochs 100

Early stopping Patience of 15 epochs

Data augmentation Random rotations, <ips, intensity normalisation

Random seed 42
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neuron and training hyperparameters are summarised in Table 2. 

These include simulation settings (time steps, reset mode, 

surrogate gradient), spiking thresholds, initialisation scheme, as 

well as Optimiser configurations, learning schedule, batch size, 

number of epochs, augmentation strategies, and random seed. 

Providing these details ensures that SpikeNet can be precisely 

replicated by other researchers.

4.2 Explanations

The SpikeNet generates interpretable explanations by 

utilising activation maps from the final convolutional layer of 

the CNN backbone. These explanations highlight the regions 

in brain MRI and breast ultrasound images most relevant to 

the model’s classification decision, providing valuable insights 

into the decision-making process. The explanation generation 

process consists of three main steps: activation map 

extraction, focused heatmap generation, and binarisation 

for visualisation.

The process begins by capturing the activation map 

A [ R
C�H�W , where C represents the number of channels, and 

H and W denote the spatial dimensions. For a given input 

image I, the activation map is obtained as presented in Equation 

12:

A ¼ fCNN(I), (12) 

where fCNN represents the final convolutional operations in 

the feature extraction layers. Each channel Ac encodes a distinct 

spatial feature.

4.2.1 Channel selection

To focus on the most informative representations, the mean 

activation value of each channel is computed in Equation 13 as:

mc ¼
1

HW

X

H

i¼1

X

W

j¼1

Ac,i,j, (13) 

and channels are ranked in descending order of mc. The top k%

channels, denoted as TopChannels, are selected. In our 

experiments, k ¼ 20% was used by default, based on validation 

performance. A sensitivity analysis over k [ {10, 20, 30, 40} 

confirmed that results are stable with respect to this parameter 

(see Table 17).

The focused activation map is obtained by aggregating the 

selected channels, given in Equation 14:

F focused(i, j) ¼
X

c[TopChannels
Ac,i,j: (14) 

4.2.2 Normalisation and thresholding

The focused map is normalised into the range [0, 1] using 

min-max scaling, as formulated in Equation 15:

Fnormalized(i, j) ¼
F focused(i, j) � min (F focused)

max (F focused) � min (F focused) þ e
,

(15) 

where e prevents division by zero. To obtain a binary saliency 

mask, a threshold T is applied in Equation 16:

Fbinary(i, j) ¼ 1, if Fnormalized(i, j) � T,
0, otherwise,

�

(16) 

with T ¼ 0:5 set as the default. Alternative thresholding strategies 

(percentile cutoffs at 30%–70%, and Otsu’s adaptive method) were 

also tested. As shown in Table 17, the comparative ranking of 

explanation methods remains consistent across these threshold 

choices, confirming robustness.

4.2.3 Visualisation
The binary heatmap Fbinary is resized to the original image 

resolution and overlaid on the MRI or ultrasound input. The 

final output includes: 

1. The original medical image with tumour boundaries annotated 

by experts, and

2. The SpikeNet-generated explanation heatmap, showing 

regions the model deems relevant for classification.

5 Proposed XAI evaluation metric: 
XAlign

This study introduces XAlign, a novel evaluation metric 

specifically designed to assess the clinical reliability and spatial 

fidelity of saliency maps in medical imaging. Unlike traditional 

evaluation approaches, XAlign captures three critical aspects of 

explanation quality: (i) concentration of relevance within annotated 

tumour regions, (ii) precise structural alignment with lesion 

boundaries, and (iii) minimal attribution dispersion outside 

clinically significant areas. These dimensions are essential for 

establishing trustworthy and clinically interpretable AI systems.

Formally, XAlign is defined as:

XAlign ¼ a � WRO þ b � BAS � g � DP, (17) 

where WRO is the Weighted Relevance Overlap, BAS the 

Boundary Agreement Score, and DP the Dispersion Penalty. The 

scalar weights a, b, and g govern the relative contribution of 

each term.

To avoid bias from tuning on the evaluation datasets (TCGA– 

LGG and BUSI), the weights were determined on a held-out 
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validation dataset (ISIC 2019 dermoscopy), which was not used in 

any of the main experiments. The configuration a ¼ 0:5, b ¼ 0:4, 

and g ¼ 0:1 was selected based on its highest correlation with 

expert clinical alignment ratings on the held-out set.

We further examined the sensitivity of XAlign to the 

choice of weights. A grid search was performed with 

a, b, g [ {0:2, 0:3, 0:4, 0:5, 0:6} subject to aþ bþ g ¼ 1. 

Results demonstrate that although absolute values of XAlign 

vary with different weightings, the relative ranking of XAI 

methods remains stable, with Grad-CAM consistently 

outperforming SHAP and LIME, and SpikeNet consistently 

achieving the highest alignment. Sensitivity detailed are provided 

in Table 16. This analysis confirms that XAlign is robust to 

moderate changes in weight configuration.

5.1 Weighted relevance overlap (WRO)

WRO measures the proportion of explanation relevance 

localized within the annotated region of interest as presented in 

Equation 18:

WRO ¼
P

i[G Xi
P

i Xi
, (18) 

where G represents the set of pixels in the ground truth mask, and 

Xi is the relevance score assigned to pixel i. Higher WRO values 

indicate more focused and clinically meaningful explanations.

5.2 Boundary agreement score (BAS)

BAS quantifies how accurately the saliency map aligns with the 

boundaries of the ground truth using a normalised inverse 

Hausdorff Distance as shown in Equation 19:

BAS ¼ 1 � HD(G, X)

max dim(I)
, (19) 

where G and X are the contour boundaries of the ground truth 

and explanation maps, respectively, and max dim(I) is the 

maximum dimension of the image for normalisation. A BAS 

value close to 1 indicates precise anatomical correspondence.

5.3 Dispersion penalty (DP)

DP penalizes the amount of relevance scattered outside the 

annotated region, ensuring saliency maps are compact and 

diagnosis-focused as given in Equation 20:

DP ¼
P

i�G Xi
P

i Xi
, (20) 

where i � G denotes pixels outside the ground truth. A lower DP 

value signifies a tighter focus of the explanation.

5.4 Final formulation

Substituting the component terms into Equation 17, the 

complete formulation of XAlign is presented in Equation 21:

XAlign ¼ a �
P

i[G Xi
P

i Xi
þ b � 1 � HD(G, X)

max dim(I)

� �

� g

�
P

i�G Xi
P

i Xi
: (21) 

5.5 Empirical validation

XAlign was thoroughly evaluated on two distinct clinical 

datasets: TCGA–LGG for brain MRI and BUSI for breast 

ultrasound. In both contexts, the metric effectively discriminated 

between high-fidelity (e.g., SpikeNet) and less interpretable (e.g., 

LIME, SHAP) explanations, demonstrating its robustness and 

clinical relevance across modalities and imaging domains.

5.6 Scope

XAlign is model-agnostic. It takes as input any saliency map Ŝ 

and a ground-truth mask G and returns a scalar in [0, 1] based 

on regional concentration, boundary agreement, and dispersion. 

In this study we compute XAlign for explanations generated by 

SpikeNet as well as by Grad-CAM, LIME, and SHAP applied 

to ResNet50, EfficientNetB7, InceptionResNetV2, VGG19, 

AlexNet, and DenseNet50, using identical preprocessing and 

evaluation settings.

5.7 Relation to standard metrics

XAlign evaluates soft saliency maps by combining three 

complementary terms: a weighted relevance overlap (WRO) that 

preserves graded attribution inside the lesion, a boundary 

agreement score (BAS) that averages symmetric contour 

alignment within a tolerance band, and a dispersion penalty 

(DP) that quantifies attribution outside a dilated lesion region. 

Dice on barbarized maps measures overlap but does not assess 

off–target dispersion or boundary precision on soft attributions. 

Hausdorff distance targets the maximal boundary discrepancy 

but is highly sensitive to outliers and does not account for 

attribution mass. XAlign integrates these aspects in a single 

score bounded in [0, 1], which re<ects clinical priorities of 

concentration, boundary conformity, and minimal off– 

target activation.

Muhammad and Bendechache                                                                                                                                 10.3389/fmedt.2025.1674343 

Frontiers in Medical Technology 07 frontiersin.org



5.8 Weighting policy and robustness

All components are normalised to [0, 1] prior to aggregation, 

and weights are fixed to a ¼ 0:5, b ¼ 0:4, and g ¼ 0:1 for all 

datasets and models in this study. No per–dataset tuning is 

performed. As reported in Table 16, varying (a, b, g) across a 

broad grid leads to stable method rankings and only small shifts 

in absolute scores, which supports the use of a single default 

setting for clinical evaluation.

6 Experimental results

6.1 Comparative prediction performance

Tables 3, 4 present the comparative classification performance 

of SpikeNet and state-of-the-art deep learning models, including 

ResNet50, EfficientNetB7, InceptionResNetV2, DenseNet50, 

VGG19, and AlexNet. Evaluation was carried out on two 

distinct modalities: brain MRI (TCGA–LGG) and breast 

ultrasound (BUSI). To avoid optimistic bias, all slices were 

retained after patient-level partitioning, and predictions were 

aggregated into patient-level decisions using majority voting 

across slices. For BUSI, which contains three classes (benign, 

malignant, and normal), the output layer employed a softmax 

activation with categorical cross-entropy loss. Metrics are 

reported as mean + standard deviation across folds, together 

with total inference time in seconds, thereby providing a 

comprehensive assessment of both predictive performance and 

computational efficiency.

6.1.1 TCGA–LGG dataset

On the brain MRI dataset (Table 3), SpikeNet achieved the 

highest mean scores across all evaluation criteria, with an 

accuracy of 97:12% + 0:63%, precision of 97:91% + 0:55%, 

recall of 97:65% + 0:58%, and F1-score of 97:43% + 0:60%. 

These results substantially surpass the strongest baseline, 

ResNet50, which obtained 90:01% + 1:17% accuracy and 

90:18% + 1:12% F1-score. SpikeNet also demonstrated 

exceptional computational efficiency, completing inference in 

154 s compared with 953 s for EfficientNetB7, 823 s for 

InceptionResNetV2, 712 s for ResNet50, 913 s for VGG19, 893 s 

for AlexNet, and 804 s for DenseNet50. This corresponds to 

runtime reductions of approximately 78% to 84% relative to 

competing models.

6.1.2 BUSI dataset
On the breast ultrasound dataset (Table 4), SpikeNet achieved 

an overall accuracy of 98:23% + 0:58%, precision of 

97:98% + 0:53%, recall of 98:13% + 0:55%, and F1-score of 

98:32% + 0:50%. The nearest competitor, EfficientNetB7, 

achieved 91:98% + 1:22% accuracy and 91:45% + 1:23%

F1-score, while ResNet50 achieved 91:98% + 1:19% accuracy 

and 91:01% + 1:21% F1-score. SpikeNet maintained superior 

runtime efficiency, requiring only 144 s compared with 917 s for 

EfficientNetB7, 801 s for InceptionResNetV2, 698 s for ResNet50, 

883 s for VGG19, 865 s for AlexNet, and 793 s for DenseNet50. 

These represent runtime reductions of approximately 80% to 

84% relative to baselines.

To provide transparency at the class level, Table 5 reports per- 

class results for BUSI. SpikeNet achieved balanced performance, 

with 97:85% + 0:54% F1-score for benign, 98:41% + 0:47%

TABLE 3 Performance comparison of SpikeNet and state-of-the-art models on TCGA–LGG dataset (22-fold patient-level CV).

DL model Acc (%) Prec (%) Rec (%) F1-s (%) Comp. time (s)

VGG19 88.10 + 1.25 89.22 + 1.18 88.20 + 1.34 89.09 + 1.22 913

AlexNet 85.92 + 1.41 86.43 + 1.29 85.29 + 1.46 85.13 + 1.35 893

DenseNet50 87.34 + 1.36 86.56 + 1.42 87.42 + 1.27 87.71 + 1.39 804

EfficientNetB7 89.40 + 1.08 88.01 + 1.11 89.53 + 1.13 88.63 + 1.17 953

InceptionResNetV2 89.51 + 1.21 90.01 + 1.26 89.43 + 1.33 89.23 + 1.28 823

ResNet50 90.01 + 1.17 91.46 + 1.08 90.56 + 1.14 90.18 + 1.12 712

SpikeNet 97.12 + 0.63 97.91 + 0.55 97.65 + 0.58 97.43 + 0.60 154

Values are reported as mean + standard deviation.

Bold values indicating best performance.

TABLE 4 Performance comparison of SpikeNet and State-of-the-Art models on BUSI dataset (5-fold patient-level CV).

DL model Acc (%) Prec (%) Rec (%) F1-s (%) Comp. time (s)

VGG19 89.47 + 1.29 89.22 + 1.15 89.13 + 1.21 88.98 + 1.18 883

AlexNet 86.12 + 1.36 86.78 + 1.28 86.01 + 1.33 86.24 + 1.27 865

DenseNet50 85.32 + 1.42 86.07 + 1.35 85.63 + 1.41 86.11 + 1.39 793

EfficientNetB7 91.98 + 1.22 91.23 + 1.20 91.13 + 1.19 91.45 + 1.23 917

InceptionResNetV2 90.12 + 1.27 90.98 + 1.21 90.83 + 1.24 90.29 + 1.22 801

ResNet50 91.98 + 1.19 91.76 + 1.16 91.81 + 1.18 91.01 + 1.21 698

SpikeNet 98.23 + 0.58 97.98 + 0.53 98.13 + 0.55 98.32 + 0.50 144

Values are reported as mean + standard deviation.

Bold values indicating best performance.
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for malignant, and 98:02% + 0:52% for normal. Competing 

models exhibited greater variability, particularly on the 

underrepresented normal class, which underscores SpikeNet’s 

robustness across heterogeneous categories.

Across both MRI and ultrasound datasets, SpikeNet consistently 

outperformed CNN and transformer baselines in predictive accuracy, 

precision, recall, and F1-score, while reducing computational cost by 

more than 80%. By enforcing patient-level independence, 

aggregating slice-level predictions, and reporting per-class metrics 

for BUSI, the evaluation ensures robustness, fairness, and clinical 

interpretability. These findings highlight SpikeNet’s dual 

advantages of accuracy and efficiency, which makes it a strong 

candidate for real time deployment in clinical environments.

6.2 Performance evaluation

Model evaluation followed a patient-level cross-validation 

protocol (22-fold for TCGA–LGG and 5-fold for BUSI), 

ensuring strict patient-wise independence between training, 

validation, and testing subsets. Unless otherwise specified, 

performance metrics are reported as mean + standard deviation 

across folds. Discrimination metrics are additionally averaged 

across three independent seeds (17, 23, 42) and reported with 

95% confidence intervals computed as mean + 1:96 � SD=
ffiffiffi

n
p

, 

where n equals the number of folds times the number of seeds.

6.2.1 Runtime analysis
In addition to total inference time, we report per-image latency 

and throughput to provide a transparent assessment of 

computational efficiency. All runtimes were measured on an 

NVIDIA RTX 3090 GPU with batch size 16, FP32 precision, and 

include preprocessing but exclude disk I/O. For the TCGA–LGG 

dataset, SpikeNet achieved a total inference time of 154 s for 

5,000 slices, corresponding to an average per-image latency of 

30.8 ms and throughput of 32.4 images/s. For the BUSI dataset, 

SpikeNet completed inference in 144 s for 4,650 images, yielding 

a latency of 31.0 ms per image and throughput of 32.3 images/s.

As summarised in Table 6, these latencies are 78% to 84% 

lower than those of competing baselines such as EfficientNetB7 

(192 ms/image) and ResNet50 (123 ms/image). While the term 

real time is context dependent in clinical work<ows, our results 

show that SpikeNet achieves consistent low-latency inference 

within the range required for interactive radiology and 

ultrasound analysis. Latency re<ects responsiveness to individual 

images, whereas throughput indicates the number of images 

processed per second. SpikeNet’s high throughput therefore 

supports both single-image decision support and large-scale or 

streaming pipelines. Transformer and hybrid baselines are 

summarised in Table 10; SpikeNet attains lower latency and 

higher throughput while maintaining stronger patient-level 

accuracy and F1 on both datasets.

6.2.2 Discrimination metrics with 95% confidence 

intervals
We report AUROC and AUPRC in Table 7 at the patient level 

under cross-validation and three seeds. Confidence intervals use 

mean + 1:96 � SD=
ffiffiffi

n
p

with n ¼ 66 for TCGA–LGG and 

n ¼ 15 for BUSI.

6.2.3 Threshold analysis
We sweep the decision threshold t [ {0:30, 0:50, 0:70} and 

report sensitivity, specificity, and F1 in Table 8 at the patient 

level. We also report a validation-selected threshold t chosen to 

maximise F1 on the validation fold within each CV split. Test 

metrics are computed at the fixed t to avoid bias.

6.3 Baseline fairness and model complexity

To ensure a fair and reproducible comparison, all baseline 

models (VGG19, AlexNet, DenseNet50, ResNet50, 

EfficientNetB7, InceptionResNetV2) were re-trained under a 

unified experimental protocol. Each model was initialized with 

ImageNet-pretrained weights and fine-tuned on the TCGA–LGG 

and BUSI datasets using the same patient-level cross-validation 

splits as SpikeNet. Training was performed for 100 epochs with 

a batch size of 16, using the Adam Optimiser with an initial 

learning rate of 1 � 10�4 and a learning rate reduction on 

plateau (factor 0.1). Early stopping with a patience of 15 epochs 

TABLE 5 Per-class classification results (mean + SD) of SpikeNet on BUSI 
dataset (5-fold patient-level CV).

Class Precision (%) Recall (%) F1-score (%)

Benign 97:62 + 0:56 98:08 + 0:52 97:85 + 0:54

Malignant 98:25 + 0:49 98:57 + 0:46 98:41 + 0:47

Normal 97:88 + 0:55 98:17 + 0:50 98:02 + 0:52

TABLE 6 Runtime comparison of SpikeNet and baselines on TCGA–LGG (MRI) and BUSI (ultrasound). Results measured on NVIDIA RTX 3090, batch size 
16, FP32 precision. Preprocessing included, disk I/O excluded.

Model Latency (ms/img) Throughput (img/s) MRI total time (s) BUSI total time (s)

VGG19 182 5.5 913 883

AlexNet 178 5.6 893 865

DenseNet50 161 6.2 804 793

EfficientNetB7 192 5.2 953 917

InceptionResNetV2 166 6.0 823 801

ResNet50 123 8.1 712 698

SpikeNet 31 32.3 154 144

Bold values indicating best performance.
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was applied, and identical data augmentations (random rotations, 

<ips, and intensity normalisation) were used across all models. 

Model selection was based on the best validation F1-score 

within each fold.

In addition to classification metrics, we also report model 

complexity in terms of the number of trainable parameters and 

<oating-point operations (FLOPs) for input resolution 

224 � 224. Latency (ms/image) and throughput (images/s) are 

measured under the same hardware and batch size for all 

models. As summarised in Table 9, SpikeNet achieves superior 

predictive performance while requiring fewer parameters and 

FLOPs than many baselines. Its lower latency and higher 

throughput further highlight efficiency advantages in interactive 

and large-scale clinical work<ows.

6.3.1 Transformer and hybrid baselines
To assess robustness beyond CNNs, we include transformer 

and hybrid models under the same protocol: ViT-B/16, Swin-T, 

DeiT-S, and ConvNeXt-T. All are initialised from ImageNet-1k 

checkpoints and fine-tuned with the same patient-level cross- 

validation splits, augmentations, batch size, schedule, early 

stopping, and model selection criteria as other baselines. Latency 

and throughput are measured on the same hardware and batch 

size, with preprocessing included and disk I/O excluded. We 

reported the performance results in Table 10.

6.4 Visual explanation evaluation

We compare explanation methods using the XAlign metric, 

which scores spatial alignment between saliency maps and 

expert annotations. To control for backbone effects, all post hoc 

methods (Grad-CAM, LIME, SHAP) are applied to the SpikeNet 

classifier with the native explanation head disabled and target the 

last convolutional block for Grad-CAM. The row labelled 

SpikeNet (native) reports the integrated explanation head with 

TABLE 8 Threshold sensitivity for SpikeNet at the patient level.

Dataset Threshold Sensitivity Specificity F1

TCGA–LGG t ¼ 0:30 0:989 + 0:006 0:953 + 0:011 0:974 + 0:008

t ¼ 0:50 0:977 + 0:007 0:974 + 0:009 0:974 + 0:007

t ¼ 0:70 0:958 + 0:008 0:986 + 0:006 0:972 + 0:007

t 0:980 + 0:006 0:979 + 0:008 0:978 + 0:006

BUSI t ¼ 0:30 0:992 + 0:005 0:956 + 0:010 0:983 + 0:007

t ¼ 0:50 0:981 + 0:006 0:977 + 0:008 0:982 + 0:006

t ¼ 0:70 0:962 + 0:007 0:988 + 0:006 0:980 + 0:006

t 0:984 + 0:005 0:981 + 0:007 0:984 + 0:005

Metrics are mean + SD across folds and seeds. t is selected on validation by maximizing F1.

TABLE 7 Discrimination performance with 95% confidence intervals under patient-level cross-validation and three independent seeds.

Model TCGA–LGG (MRI) BUSI (US)

AUROC [95% CI] AUPRC [95% CI] AUROC [95% CI] AUPRC [95% CI]

VGG19 0.946 [0.943, 0.949] 0.932 [0.928, 0.936] 0.964 [0.958, 0.970] 0.958 [0.951, 0.965]

AlexNet 0.931 [0.927, 0.935] 0.914 [0.909, 0.919] 0.951 [0.943, 0.959] 0.944 [0.935, 0.953]

DenseNet50 0.949 [0.946, 0.952] 0.936 [0.933, 0.939] 0.962 [0.956, 0.968] 0.955 [0.948, 0.962]

EfficientNetB7 0.952 [0.949, 0.955] 0.939 [0.936, 0.942] 0.968 [0.963, 0.973] 0.963 [0.957, 0.969]

InceptionResNetV2 0.954 [0.951, 0.957] 0.941 [0.938, 0.944] 0.969 [0.964, 0.974] 0.965 [0.959, 0.971]

ResNet50 0.962 [0.959, 0.965] 0.951 [0.948, 0.954] 0.973 [0.968, 0.978] 0.969 [0.963, 0.975]

SpikeNet 0.993 [0.992, 0.994] 0.991 [0.990, 0.992] 0.996 [0.994, 0.998] 0.995 [0.993, 0.997]

Bold values indicating best performance.

TABLE 9 Comparison of model complexity and performance under unified training protocol.

Model Params (M) FLOPs (G) Acc (%) F1 (%) Latency (ms) Throughput (img/s)

VGG19 143.7 19.6 88.10 + 1.25 89.09 + 1.22 182 5.5

AlexNet 61.0 0.72 85.92 + 1.41 85.13 + 1.35 178 5.6

DenseNet50 25.6 4.1 87.34 + 1.36 87.71 + 1.39 161 6.2

EfficientNetB7 66.3 37.0 89.40 + 1.08 88.63 + 1.17 192 5.2

InceptionResNetV2 55.9 13.2 89.51 + 1.21 89.23 + 1.28 166 6.0

ResNet50 25.6 4.1 90.01 + 1.17 90.18 + 1.12 123 8.1

SpikeNet 18.2 2.8 97.12 + 0.63 97.43 + 0.60 31 32.3

Parameters and FLOPs computed for 224 � 224 input resolution.

Bold values indicating best performance.
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the head enabled. All results follow the same preprocessing and 

patient-level evaluation protocol. Each figure illustrates the 

explanation maps generated for a representative image, 

accompanied by the expert-annotated tumour boundary (yellow). 

Additionally, XAlign scores are reported to quantitatively measure 

the alignment between the saliency maps and ground truth. 

Tables 11–14 report XAlign for representative MRI and ultrasound 

cases; dataset-level means with standard deviations and paired tests 

are provided in Table 15 later in this section.

In Figure 1, SpikeNet produces a well localised activation map 

that closely conforms to the tumour boundary. Grad-CAM 

successfully highlights the general region but suffers from 

boundary overreach. LIME and SHAP display poor localisation, 

with scattered and anatomically irrelevant activations. As shown 

TABLE 11 XAlign comparison of explanation methods on TCGA–LGG 
(case of Figure 1).

Method Backbone XAlign 
(")

Interpretation

SHAP SpikeNet (classifier 

only)

0.342 Low alignment

LIME SpikeNet (classifier 

only)

0.441 Moderate alignment

Grad-CAM SpikeNet (classifier 

only)

0.639 High alignment

SpikeNet 

(native)

SpikeNet 0.882 Very high alignment

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head 

disabled; SpikeNet (native) enables the head.

Bold values indicating best performance.

TABLE 14 XAlign comparison of explanation methods on BUSI (case of 
Figure 4).

Method Backbone XAlign 
(")

Interpretation

SHAP SpikeNet (classifier 

only)

0.376 Low alignment

LIME SpikeNet (classifier 

only)

0.416 Moderate alignment

Grad-CAM SpikeNet (classifier 

only)

0.714 High alignment

SpikeNet 

(native)

SpikeNet 0.927 Very high alignment

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head 

disabled; SpikeNet (native) enables the head.

Bold values indicating best performance.

TABLE 10 Transformer and hybrid baselines under the unified protocol.

Model Params 
(M)

FLOPs 
(G)

Acc MRI 
(%)

F1 MRI (%) Acc BUSI 
(%)

F1 BUSI 
(%)

Latency 
(ms)

Throughput 
(img/s)

ViT-B/16 86.6 17.6 91:6 + 1:1 91:3 + 1:1 93:2 + 1:0 93:0 + 1:0 145 6.9

Swin-T 28.3 4.5 92:4 + 1:0 92:1 + 1:0 94:1 + 0:9 93:8 + 0:9 112 8.9

DeiT-S 22.1 4.6 91:0 + 1:2 90:8 + 1:1 93:5 + 1:1 93:2 + 1:0 118 8.5

ConvNeXt-T 28.6 4.5 92:0 + 1:1 91:8 + 1:1 94:0 + 1:0 93:7 + 1:0 109 9.2

SpikeNet 18.2 2.8 97:12 + 0:63 97:43 + 0:60 98:23 + 0:58 98:32 + 0:50 31 32.3

Metrics are mean + SD at the patient level. Params and FLOPs computed at 224 � 224. Runtime measured on RTX 3090, batch size 16, FP32, preprocessing included, disk I/O excluded.

Bold values indicating best performance.

TABLE 12 XAlign comparison of explanation methods on TCGA–LGG 
(case of Figure 2).

Method Backbone XAlign 
(")

Interpretation

SHAP SpikeNet (classifier 

only)

0.357 Low alignment

LIME SpikeNet (classifier 

only)

0.479 Moderate alignment

Grad-CAM SpikeNet (classifier 

only)

0.641 High alignment

SpikeNet 

(native)

SpikeNet 0.919 Very high alignment

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head 

disabled; SpikeNet (native) enables the head.

Bold values indicating best performance.

TABLE 13 XAlign comparison of explanation methods on BUSI (case of 
Figure 3).

Method Backbone XAlign 
(")

Interpretation

SHAP SpikeNet (classifier 

only)

0.000 No alignment

LIME SpikeNet (classifier 

only)

0.491 Moderate alignment

Grad-CAM SpikeNet (classifier 

only)

0.739 High alignment

SpikeNet 

(native)

SpikeNet 0.931 Very high alignment

Higher is better. Post hoc rows use the SpikeNet classifier with the native explanation head 

disabled; SpikeNet (native) enables the head.

Bold values indicating best performance.

TABLE 15 Dataset-level XAlign (mean + SD) at the patient level for 
TCGA–LGG and BUSI using SpikeNet as the common backbone.

Method Backbone TCGA–LGG 
XAlign

BUSI 
XAlign

Grad-CAM SpikeNet (classifier 

only)

0:662 + 0:031 0:742 + 0:028

LIME SpikeNet (classifier 

only)

0:459 + 0:026 0:474 + 0:030

SHAP SpikeNet (classifier 

only)

0:348 + 0:029 0:256 + 0:027

SpikeNet 

(native)

SpikeNet 0:884 + 0:021 0:929 + 0:018

Post hoc methods are computed on the SpikeNet classifier with the native explanation head 

disabled. SpikeNet (native) reports the integrated head with the head enabled. Higher 

is better.

Bold values indicating best performance.
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in Table 11, SpikeNet outperforms all baselines with an XAlign 

score of 0.882.

In Figure 2, SpikeNet again delivers a highly accurate 

explanation aligned with the tumour boundary. Grad-CAM 

activates the correct region but lacks sharpness, while LIME and 

SHAP produce off-target and fragmented saliency. Table 12

confirms these observations, with SpikeNet achieving an XAlign 

score of 0.919.

Figure 3 shows the results on a BUSI ultrasound image. 

SpikeNet demonstrates superior precision with a clean, well 

contained explanation. Grad-CAM identifies the tumour but 

shows spatial diffusion, while LIME and SHAP fail to localize 

the tumour effectively. Quantitative scores in Table 13 highlight 

SpikeNet’s dominance with a near-perfect score of 0.931.

In the final case (Figure 4), SpikeNet once again provides the 

most faithful explanation, with Grad-CAM trailing due to 

boundary spillover. LIME and SHAP continue to underperform 

with disjointed, inaccurate highlights. As seen in Table 14, 

SpikeNet attains the highest XAlign score (0.927), further 

confirming its robustness across modalities.

FIGURE 1 

Visual comparison of explanation maps generated for a representative brain MRI slice. The original image includes expert-annotated tumour 

boundaries (yellow), while the corresponding explanation maps are shown for SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).

FIGURE 2 

Visual comparison of explanation maps generated for a second representative brain MRI slice. The original image displays the expert-annotated 

tumour boundary (yellow), alongside explanation maps produced by SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).

FIGURE 3 

Visual comparison of explanation maps generated for a representative BUSI ultrasound image. The original image shows the expert-annotated 

tumour boundary (yellow), along with explanation maps from SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).
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6.4.1 Sensitivity analysis
To ensure that these explanation results are not biased by 

specific parameter choices, we evaluated robustness of the 

XAlign metric to weight variations and robustness of the 

explanation pipeline to the top-k channel selection and 

threshold T.

First, Table 16 shows the sensitivity of XAlign to alternative 

(a, b, g) weightings. Although absolute scores shift slightly 

across settings, the relative ranking of methods remains stable, 

with SpikeNet consistently achieving the highest alignment.

Second, Table 17 presents sensitivity to the choice of top-k 

channel percentage and binarisation threshold T. The ranking of 

methods is again unchanged, with SpikeNet demonstrating the 

strongest boundary-conforming explanations across all 

tested settings.

Together, these sensitivity analyses confirm that SpikeNet’s 

superior explanation quality is robust to metric weightings, 

channel selection policy, and thresholding strategy.

6.4.2 Dataset-level analysis

To complement the representative examples, we evaluated 

explanation fidelity across the full test sets of both TCGA–LGG 

and BUSI. Table 18 reports the mean + standard deviation of 

XAlign scores aggregated over all folds. SpikeNet achieves the 

highest dataset-level performance on both modalities, with mean 

scores of 0:884 + 0:021 for TCGA–LGG and 0:929 + 0:018 for 

BUSI. Grad-CAM achieves 0:641 + 0:034 (MRI) and 

0:726 + 0:029 (ultrasound), LIME achieves 0:447 + 0:027 and 

0:462 + 0:031, while SHAP records the lowest scores.

Statistical significance was assessed using the Wilcoxon 

signed-rank test for paired per-patient comparisons. As 

summarised in Table 19, SpikeNet significantly outperformed 

all baselines on both datasets (p , 0:001 vs. Grad-CAM, LIME, 

and SHAP).

7 Discussion

The proposed SpikeNet framework introduces a hybrid 

architecture that effectively integrates CNNs for spatial feature 

FIGURE 4 

Visual comparison of explanation maps generated for a second representative BUSI ultrasound image. The original image displays the expert- 

annotated tumour boundary (yellow), alongside explanation maps from SpikeNet (white), Grad-CAM (white), LIME (red), and SHAP (red).

TABLE 16 Sensitivity analysis of XAlign to different weight configurations (a, b, g) on the TCGA–LGG dataset.

Method (0.6,0.3,0.1) (0.5,0.4,0.1) (0.4,0.4,0.2) (0.3,0.5,0.2) (0.2,0.6,0.2)

SHAP 0.298 0.342 0.331 0.322 0.315

LIME 0.412 0.441 0.437 0.429 0.421

Grad-CAM 0.612 0.639 0.624 0.618 0.609

SpikeNet 0.861 0.882 0.874 0.869 0.862

Bold values indicating best performance.

TABLE 17 Sensitivity of XAlign scores to different values of top-k channel percentage and threshold T on the TCGA–LGG dataset.

Method k = 10%, T = 0.4 k = 20%, T = 0.5 k = 30%, T = 0.5 k = 40%, T = 0.6

SHAP 0.315 0.342 0.331 0.324

LIME 0.427 0.441 0.436 0.429

Grad-CAM 0.624 0.639 0.631 0.619

SpikeNet 0.871 0.882 0.876 0.868

Bold values indicating best performance.

TABLE 18 Dataset-level XAlign scores (mean + SD) across all test folds 
for TCGA–LGG and BUSI datasets.

Method TCGA–LGG (MRI) BUSI (Ultrasound)

SHAP 0:336 + 0:030 0:241 + 0:028

LIME 0:447 + 0:027 0:462 + 0:031

Grad-CAM 0:641 + 0:034 0:726 + 0:029

SpikeNet 0:884 + 0:021 0:929 + 0:018

Higher is better.

Bold values indicating best performance.
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extraction with SNNs to capture temporal dynamics. Traditional 

DL models such as EfficientNet-B7, ResNet-50, 

InceptionResNetV2, VGG19, AlexNet and DenseNet have 

demonstrated strong predictive capabilities in medical imaging. 

However, their computational intensity and limited capacity to 

model temporal dependencies constrain their suitability for 

time-sensitive clinical applications. SpikeNet addresses these 

limitations by incorporating sparsely activated spiking neurons, 

enabling dynamic, event-driven processing that reduces 

computational overhead while preserving representational 

richness (12).

The classification results across the TCGA–LGG (MRI) and 

BUSI (ultrasound) datasets demonstrate the improved predictive 

performance and generalisability of SpikeNet. On the TCGA– 

LGG dataset, SpikeNet achieved 97.12% accuracy and a 97.43% 

F1-score, outperforming the strongest baseline, ResNet-50, by 

more than 7% in accuracy. Similarly, on the BUSI dataset, 

SpikeNet attained 98.23% accuracy and a 98.32% F1-score, 

significantly surpassing EfficientNetB7 and InceptionResNetV2. 

These consistent improvements across both modalities confirm 

the model’s robustness in handling diverse imaging patterns and 

tissue types, from high-contrast MRI to low-contrast 

ultrasound data.

Beyond accuracy, computational efficiency is critical for 

clinical adoption. SpikeNet substantially reduces inference 

time, requiring only 154 s on MRI and 144 s on BUSI data, 

yielding more than 80% reduction compared to 

EfficientNetB7. When reported at the single-image level, 

SpikeNet achieves an average latency of approximately 31 ms 

and a throughput of more than 32 images per second, 

compared to latencies above 120 ms for ResNet-50 and nearly 

200 ms for EfficientNetB7. This shows that SpikeNet is not 

only efficient in bulk processing but also responsive at the 

level of individual images, which is critical for interactive 

clinical work<ows. Such efficiency makes SpikeNet 

particularly suitable for deployment in resource-constrained 

settings, including point-of-care ultrasound systems and 

embedded radiology workstations.

Explainability remains a key factor for AI adoption in 

healthcare, where trust, transparency, and clinical accountability 

are essential (33). While post-hoc methods such as Grad-CAM, 

SHAP and LIME are widely used, they often suffer from 

imprecise localisation and fragmented saliency regions, especially 

when applied to complex anatomical structures. As supported 

by prior studies (4, 34), Grad-CAM tends to highlight broad 

non-specific regions, while LIME often introduces noise due to 

its perturbation-based approximations (35, 36).

SpikeNet overcomes these limitations through an integrated 

explanation mechanism that aggregates salient activations from 

the CNN, producing sharp and localised saliency maps. The 

proposed XAlign metric offers a unified, quantitative measure of 

explanation quality by assessing spatial alignment, boundary 

adherence, and region dispersion relative to expert annotations. 

Unlike traditional metrics that assess isolated aspects of 

interpretability, XAlign provides a holistic evaluation that aligns 

closely with radiological reasoning.

Experimental results on both the TCGA–LGG and BUSI 

datasets confirm the effectiveness of SpikeNet’s explanations. 

On brain MRI, SpikeNet consistently achieved the highest 

XAlign scores (0.882 and 0.919) compared to Grad-CAM, 

LIME, and SHAP. Similar trends were observed on 

ultrasound, where SpikeNet scored 0.931 and 0.927, clearly 

surpassing SHAP (as low as 0.000) and LIME. Importantly, 

sensitivity analyses (Tables 16, 17) show that these findings 

are robust to different weight configurations in XAlign and 

to variations in channel selection and thresholding 

parameters in the explanation pipeline. This demonstrates 

that SpikeNet’s superiority does not depend on finely tuned 

hyperparameters but re<ects a genuine advantage in 

explanation fidelity. Collectively, these results confirm that 

SpikeNet delivers explanations that are visually precise, 

quantitatively aligned with clinical annotations, and stable 

across evaluation conditions.

7.1 Why does SpikeNet outperform 
transformer baselines?

Our results indicate that SpikeNet’s advantages arise from a 

combination of inductive bias, sparsity-driven regularisation, 

and computational footprint.

TABLE 19 Wilcoxon signed-rank test results comparing SpikeNet 
with baselines.

Comparison TCGA–LGG (MRI) BUSI (Ultrasound)

SpikeNet vs. SHAP p , 0:001 p , 0:001

SpikeNet vs. LIME p , 0:001 p , 0:001

SpikeNet vs. Grad-CAM p , 0:001 p , 0:001

All p-values are , 0:001, indicating statistically significant improvements.

TABLE 20 Effect of simulation horizon T on accuracy and latency for 
SpikeNet (TCGA–LGG dataset).

T (timesteps) Accuracy (%) Latency (ms/image)

5 96:4 + 0:6 18:0 + 0:7

10 97:1 + 0:6 31:0 + 0:9

20 97:5 + 0:5 59:0 + 1:1

Results are mean + SD across folds.

TABLE 21 Layer-wise timing breakdown for SpikeNet on TCGA–LGG (per- 
image, ms).

Component Latency 
(ms)

Fraction of 
total (%)

Spike rate (% 
inactive)

CNN feature 

extractor

22:4 + 1:2 72 –

SNN fully 

connected

5:1 + 0:8 16 74:2 + 2:1

Explanation head 3:5 + 0:7 12 69:8 + 1:9

Total 31.0 100 –

Values are mean + SD across folds.

Bold values indicating best performance.
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7.1.1 Inductive bias and data regime

In patient-level cross-validation with limited samples per fold, 

CNN priors for local textures and edges provide strong sample 

efficiency, while pure self-attention models typically require 

larger datasets to realise their full capacity. The CNN backbone 

supplies stable local descriptors and the spiking head refines 

decision evidence with temporally sparse integration, which is 

re<ected in higher AUROC/AUPRC and tighter variance across 

folds (Table 7).

7.1.2 Boundary-aware evidence aggregation
SpikeNet’s native explanation head encourages attribution that 

concentrates within lesions and conforms to boundaries. Dataset- 

level XAlign scores are consistently higher than Grad-CAM, 

LIME, and SHAP across both modalities (Table 18), and 

sensitivity analyses show that this advantage is robust to metric 

weights and explanation parameters (Tables 16, 17). We observe 

that transformer baselines tend to produce more diffuse 

attention in ultrasound with speckle, which correlates with 

lower alignment.

7.1.3 Sparsity as an effective regulariser
The integrate-and-fire dynamics yield high inactivity rates 

(�74% inactive per timestep), which reduces redundant 

computation and acts as an implicit regulariser. The T-vs.- 

latency study shows that T ¼ 10 balances accuracy and cost, 

while even T ¼ 5 maintains accuracy within one percentage 

point (Table 21). This controlled temporal integration appears 

to improve calibration and reduce background leakage.

7.1.4 Compute budget and generalisation
SpikeNet uses fewer parameters and FLOPs than most 

baselines while delivering lower latency and higher throughput 

under identical conditions (Tables 6, 9). The smaller effective 

capacity combined with sparsity likely reduces overfitting risk in 

the cross-validated, patient-level setting, which aligns with the 

stronger per-class performance on BUSI and the superior 

patient-level metrics on TCGA–LGG.

Together, these factors provide a mechanistic explanation for 

the accuracy and efficiency gains reported for SpikeNet relative 

to ViT-B/16, Swin-T, DeiT-S, and ConvNeXt-T (Table 10).

7.2 Ablation study

The contribution of key components within the proposed 

SpikeNet framework was assessed through ablation experiments 

on both TCGA–LGG (MRI) and BUSI (ultrasound) datasets. 

Each variant was trained under identical conditions, and 

performance was compared in terms of accuracy, F1-score, 

inference time, spike sparsity, and XAlign scores to capture both 

predictive and explanation quality.

7.2.1 Effect of removing the SNN module

Removing the spiking layer and retaining only the CNN 

backbone with fully connected classification reduced accuracy by 

6.3% and F1-score by 5.8% on TCGA–LGG. On BUSI, accuracy 

decreased by 5.9%. Inference time increased by about fourfold, 

confirming the role of temporal sparsity in reducing redundant 

computation. Measured spike sparsity of the integrated model 

was 74:2% + 2:1% inactive neurons per timestep.

7.2.2 CNN backbone only (no explanation 
aggregator)

Eliminating the integrated explanation module while retaining 

CNN+SNN preserved accuracy but reduced XAlign scores by 

more than 20%. The resulting maps became diffuse and 

inconsistent, resembling standard Grad-CAM outputs. This 

shows that the explanation head is necessary for localised, 

clinically relevant saliency.

7.2.3 SpikeNet with post-hoc explanations
Replacing the native explanation mechanism with Grad-CAM 

or LIME preserved classification accuracy but reduced XAlign 

scores consistently across both datasets. The substituted maps 

showed boundary overreach and higher visual noise, especially 

in ultrasound images, highlighting the value of the built-in 

explanation design.

7.2.3.1 Temporal dynamics and efficiency

The impact of simulation horizon T, spike sparsity, and 

latency was quantified. As reported in Table 20, T ¼ 10 

provided the best trade-off, with 97:1% + 0:6% accuracy and 

31 ms per-image latency. Smaller T values yielded faster 

inference at slight accuracy cost, while larger T values improved 

accuracy marginally at the expense of latency. Measured spike 

rates confirmed sparsity between 68% and 77% inactive neurons 

per timestep. A layer-wise breakdown (Table 21) shows most 

runtime is concentrated in the CNN feature extractor, while 

SNN layers remain lightweight. All results were obtained 

using dense PyTorch kernels, representing a conservative 

baseline; further gains are expected with sparse/event- 

driven implementations.

7.2.4 Integrated SpikeNet configuration
The full configuration, combining CNN, SNN, and the 

explanation head, achieved the best overall results: highest 

accuracy (97.12% MRI; 98.23% BUSI), lowest latency (31 ms), 

and highest XAlign scores (up to 0.931). This validates the 

complementary contributions of spatial encoding, temporal 

sparsity, and native interpretability.

This ablation confirms that each component of SpikeNet 

contributes critically to its performance. The SNN improves 

efficiency and generalisation via temporal sparsity, the CNN 

provides spatial encoding, and the explanation head delivers 

interpretable saliency. Removing any element reduces 

classification accuracy, efficiency, or explanation quality, 

demonstrating the necessity of the integrated design for real- 

world medical imaging.
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8 Conclusion

This study introduced SpikeNet, a hybrid deep learning 

framework that integrates convolutional and spiking neural 

networks, together with XAlign, a quantitative metric for 

evaluating explanation fidelity in medical imaging. The approach 

was evaluated under patient level cross validation on two 

clinically distinct modalities, brain MRI (TCGA–LGG) and 

breast ultrasound (BUSI), with slice level predictions aggregated 

to patient level decisions and BUSI treated as a three class task.

SpikeNet achieved high classification performance with tight 

variability across folds. On TCGA–LGG, accuracy reached 

97:12% + 0:63% with an F1 score of 97:43% + 0:60%. On 

BUSI, accuracy reached 98:23% + 0:58% with an F1 score of 

98:32% + 0:50%. Discrimination metrics reported at the patient 

level (AUROC and AUPRC with 95% confidence intervals) 

further support these findings. In terms of efficiency, SpikeNet 

delivered low single image latency (about 31 ms) and high 

throughput (about 32 images per second) on the same hardware 

and batch size used for all baselines, while maintaining 

competitive or better accuracy. Layer wise timing and analysis of 

the simulation horizon confirmed that sparse, event driven 

computation contributes to the observed efficiency.

Beyond predictive performance, SpikeNet provides native, 

inference time explanations. Using the proposed XAlign metric, 

SpikeNet’s explanations showed higher alignment with expert 

annotations than Grad–CAM, LIME, and SHAP on both datasets. 

Dataset level statistics and paired significance tests indicated 

consistent improvements, and sensitivity analyses demonstrated 

robustness to XAlign weightings and to explanation parameters 

such as top-k channel selection and threshold. Together, these 

results indicate that SpikeNet can deliver accurate, efficient, and 

interpretable analysis for MRI and ultrasound settings.

8.1 Future work

Future research will extend evaluation to additional modalities 

and settings, including multi modal and multi view imaging such 

as PET–CT and 3D MRI, as well as external multi centre cohorts. 

We will investigate prospective and work<ow integrated studies to 

assess clinical utility under real operational constraints. On the 

interpretability side, we plan to broaden validation of XAlign 

across more backbones and datasets, compare systematically 

with IoU, Dice, Pointing Game, and Deletion and Insertion 

diagnostics, and explore interactive clinician feedback to refine 

explanations. Reproducibility will be further supported by 

releasing additional checkpoints and scripts as new datasets 

are incorporated.
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