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Introduction: To address the core challenges of inaccurate fruit occlusion 
localization and inefficient robotic arm dynamic obstacle avoidance in 
complex, unstructured agricultural environments, this study proposes an 
integrated algorithm for harvesting.
Methods: The proposed algorithm is built upon an improved YOLOv8 model and 
the BIT* planner. The YOLOv8 model was enhanced by introducing the Swin 
Transformer module to improve multi-scale feature fusion and global context 
modeling. The BIT* planner was integrated with a BiLSTM network to endow it 
with dynamic obstacle prediction capabilities, thereby constructing a unified 
architecture for visual perception and motion planning.
Results: Experimental results demonstrated that the algorithm achieved real- 
time performance with a processing frame rate of 32.7 fps and an inference time 
of 32.6 ms for target localization, with a localization error standard deviation as 
low as 1.70 mm. In obstacle avoidance planning, it achieved a balance with 
manipulator energy consumption of 124.58 J, while controlling the 
computational load and memory resource consumption per task to 22.7 
GFlops and 187 MB, respectively.
Discussion: This approach provides a high-precision, low-energy-consumption 
cooperative control solution for agricultural harvesting robots, advancing the 
practical application of automated fruit and vegetable harvesting.

KEYWORDS

agriculture, automated harvesting, BIT*, robotic arm, YOLOv8

1 Background

Harvesting is one of the most labor-intensive and time-consuming steps in the 
production of fruits and vegetables. Its level of automation and intelligence directly 
impacts production efficiency, cost control, and industrial upgrading (Liu and Liu, 
2024). Therefore, developing efficient, precise, and autonomous intelligent harvesting 
robot systems holds significant practical and economic value for freeing up labor, 
advancing agricultural modernization, and ensuring food security (Zhou et al., 2022). 
Among these, the precise target localization of the perception module and the dexterous 
obstacle avoidance path planning of the execution module represent two critical 
technological bottlenecks determining system performance (Zeeshan and Aized, 2023). 
In complex, unstructured natural field environments, harvesting targets (such as fruits) are 
frequently disrupted by factors including variable lighting, foliage obstruction, similar 
colors and textures, variable scales, and overlapping clusters. This places extremely high 
demands on the robustness and accuracy of visual detection algorithms (Panduranga et al., 
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2024). Simultaneously, when executing grasping tasks, robotic arms 
must navigate dense, intertwined crop branches to plan collision- 
free, highly efficient trajectories. Any planning failure or delay may 
lead to task interruption or crop damage. The performance and 
dependability of path planning algorithms in real-time are severely 
hampered by this (Droukas et al., 2023).

To address these challenges, numerous experts in the field of 
smart agriculture have embarked on exploratory research. To 
overcome the difficulties of identifying clustered tomato fruits 
and selecting the best picking locations in challenging situations, 
Bai et al. (2023) developed a two-step localization technique that 
integrated multi-feature extraction and geometry analysis for target 
recognition in harvesting. This approach could achieve precise fruit 
region identification and accurate stem-picking point localization 
(Bai et al., 2023). To address the challenge of accurately detecting 
tomato fruits and stems in complex agricultural environments, Miao 
et al. (2023) proposed an integrated detection algorithm combining 
traditional image processing with you only look once version 5 
(YOLOv5). Through multi-method fusion and error compensation 
strategies, this research could achieve precise determination of 
tomato ripeness and accurate stem localization, providing reliable 
guidance for efficient robotic harvesting (Miao et al., 2023). Gong 
et al. (2022) suggested a geometric feature reconstruction technique 
based on multi-source image fusion and an extended mask region- 
based convolutional neural network (Mask R-CNN) to address the 
problem of inadequate visual positioning accuracy in fruit-picking 
robots operating in obscured situations. By integrating multi-source 
image registration with shape-position recovery algorithms, this 
approach could achieve high-precision 3D geometric 
reconstruction and picking point localization for occluded 
tomatoes (Gong et al., 2022). To address the high labor costs and 
fruit identification/localization challenges in strawberry picking, Hu 
et al. (2022) proposed a recognition and localization method 
integrating instance segmentation with stereo vision. By 
combining a dual-network architecture of Mask R-CNN and 
YOLOv3 with the 3D localization technology of the Zeid stereo 
vision camera, this research could achieve precise identification and 
3D spatial localization of ripe strawberries, providing accurate target 
location information for picking robots (Hu et al., 2022).

To solve the problems of excessive path planning time and low 
picking efficiency in unstructured orchard environments, Zhang 
et al. (2024) suggested a heuristic dynamic rapidly-exploring 
random tree connect (HDRRT) motion planning algorithm for 
robotic arms obstacle avoidance planning obstacle avoidance 
planning. By using a dual-structure strategy that combined 
heuristic dynamic step size strategies and adaptive target gravity, 
this study could successfully decrease path planning time and path 
cost while increasing planning success rates (Zhang et al., 2024). Liu 
(2022) addressed the low efficiency of apple-picking robots in 
unstructured orchard situations by proposing the hierarchical 
optimal path planning (HOPP) method. This study significantly 
reduced the computational time required for three-dimensional 
picking path planning by combining a two-layer structure with 
distance-constrained K-means clustering and traveling salesman 
problem solutions. This approach achieved globally optimal 
harvesting path planning for multi-objective fruit harvesting (Liu, 
2022). A view planner based on an active vision technique was 
proposed by Yi et al. (2024) to solve the problem of accurately 

localizing fruit-picking points in heavily obstructed settings. 
Through a three-step structure, including candidate view 
generation, spatial coverage score function optimization, and 
iterative viewpoint adjustment, this research effectively addressed 
stem occlusion issues, significantly improving the robot’s picking 
success rate and operational efficiency (Yi et al., 2024). Xu et al. 
(2021) proposed an improved artificial potential field algorithm to 
address the issues of local minima and insufficient obstacle shape 
perception in traditional methods for robotic arms 3D path 
planning. By incorporating a repulsive isopotential surface 
movement mechanism and a local path optimization structure, 
this research effectively resolved local minima traps and enabled 
obstacle shape perception, significantly enhancing path planning 
success rates and motion smoothness (Xu et al., 2021). In summary, 
existing research exhibits a typical architecture characterized by 
“decoupling perception and planning modules” in its technical 
approach. Its core advantages lie in its perception layer. 
Techniques such as multi-source information fusion, the 
integration of traditional and deep learning, and stereo vision 
effectively enhance the robustness of target recognition and the 
accuracy of positioning for fruits and vegetables in static 
environments. At the planning layer, strategies including 
heuristic random sampling, hierarchical task decomposition, and 
active perception decision-making significantly optimize path cost 
and static obstacle avoidance success rates. However, this 
architecture has fundamental limitations. The perception and 
planning stages operate in an unidirectional, open-loop manner. 
They lack real-time visual feedback adjustments based on motion 
states. The visual module exhibits insufficient generalization 
capabilities against dynamic occlusions and sudden lighting 
changes. Moreover, the planning module generally lacks explicit 
modeling and prediction of dynamic obstacle movement trends. 
Consequently, the system faces constraints in overall adaptability, 
real-time responsiveness, and closed-loop stability within highly 
unstructured, dynamically changing field environments.

YOLOv8 extracts features through a backbone network (BN), 
fuses multi-scale information via a neck network, and finally 
performs both bounding box (BOB) regression and classification 
prediction simultaneously through a detection head (Li et al., 2024). 
Batch informed trees* (BIT*) combines graph search with random 
sampling, pruning ineffective regions using heuristic information, 
and progressively optimizes path costs through iterative batch 
processing (Kyaw et al., 2022). However, YOLOv8 exhibits 
insufficient perception of occluded objects and small fruit stems. 
BIT* lacks a mechanism for reacting to dynamic barriers and has 
poor processing efficiency in high-dimensional areas (Xu and Li, 
2025; Tamizi et al., 2024). XAmong them, the perception module 
uses YOLOv8 as its framework and incorporates the Swin 
Transformer as its BN. Its sliding window attention mechanism 
improves the accuracy of fruit target recognition and localization in 
complex occlusion environments by enhancing multi-scale feature 
fusion (MSFF) and global context modeling. The planning module 
utilizes the BIT* framework, integrating a BiLSTM network to 
predict dynamic obstacle movement trends. Temporal modeling 
enhances the robotic arm’s foresight and adaptability in path search, 
enabling efficient and smooth obstacle avoidance in dynamic, 
unstructured environments. Both modules achieve information 
integration through hand-eye calibration and coordinate 
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transformation, ultimately forming a unified “perception-decision- 
control” collaborative system. This approach ensures positioning 
accuracy and planning efficiency while significantly reducing 
computational and energy consumption costs. Its innovation lies 
in its ability to achieve synergistic breakthroughs in perception, 
decision-making, and control. This is accomplished through multi- 
scale feature enhancement, spatio-temporal context modeling, 
adaptive sampling strategies, and dynamic cost function 
optimization.

2 Methodology

This section comprises two parts. The first part introduces the 
Swin Transformer module based on the YOLOv8 object detection 
framework to construct a rapid and precise fruit-picking target 
localization module. It enhances fruit recognition accuracy (RA) in 
complex environments through MSFF and global context modeling. 
The second part combines the BiLSTM’s temporal prediction 
capabilities with the BIT* path planning algorithm to develop a 
RAOA module with dynamic obstacle response capabilities. Finally, 
the two modules are integrated through hand-eye calibration and 
coordinate transformation mechanisms to form a complete vision- 
motion control closed-loop system. This realizes the YOLOv8-B* 
algorithm architecture from fruit recognition to picking 
path planning.

2.1 Harvesting target positioning module 
based on YOLOv8

In automated harvesting systems for fruits and vegetables, 
robotic arms serve as the core execution units. Their grasping 
success rate and operational efficiency heavily depend on the 
precise spatial localization of target fruits. Accurate, real-time 
identification and localization of fruit positions are fundamental 
prerequisites for achieving damage-free grasping while avoiding 
collisions and mispicks. Consequently, this study employs 
YOLOv8 as the foundation for target localization during 

harvesting operations. YOLOv8 is selected as the core visual 
localization framework primarily due to its classic balance in 
object detection tasks, robust multi-scale feature extraction 
(MSFE) capabilities, and potential for lightweight deployment. Its 
efficient cross stage partial network with feature fusion (C2F) 
architecture and decoupled detector head design provide a stable 
and scalable baseline. Compared to subsequent versions that focus 
on specific tasks or architectures, YOLOv8 has broader industrial 
deployment validation and more experience with lightweight 
optimization. This makes it better suited for agricultural 
embedded scenarios with dual constraints on reliability and 
computational resources (Ma et al., 2024). The architecture of 
YOLOv8 is illustrated in Figure 1.

In Figure 1, the YOLOv8 network architecture primarily consists 
of three components: the BN, the neck network, and the detection 
head. It achieves MSFE and fusion through modules such as 
convolution + batchnorm + sigmoid, C2F, and spatial pyramid 
pooling fast (Gao et al., 2024). The detection performance of 
YOLOv8 relies on optimizing the total loss function. The model 
learns end-to-end by minimizing the discrepancy between projected 
values and ground truth annotations while concurrently predicting 
item BOB coordinates, category labels, and object presence 
confidence scores during training (Gao et al., 2023). Equation 1
illustrates that the weighted sum of the three terms is the definition 
of the total loss function. 

Ltotal � λ1L
cls + λ2L

box + λ3L
obj (1)

In Equation 1, Lcls represents the classification loss. Lbox denotes 
the BOB regression loss. Lobj signifies the object confidence loss. 
λ1, λ2, λ3{ } serves as the weighting coefficient for each loss term, 

balancing the optimization scales across different tasks. Specifically, 
Lcls employs binary cross-entropy (BCE) loss to calculate the 
discrepancy between predicted and ground-truth categories. Lbox

utilizes a combination of distribution focal (DF) loss and complete 
intersection over union (CIoU) loss. While CIoU thoroughly takes 
into account overlap area, center point distance, and aspect ratio to 
obtain more accurate BOB regression, DF optimizes the focused 
distribution of BOB position probability. Lobj also employs BCE loss 
to determine whether an object exists within the BOB (Ayyad et al., 
2025). Localization results can be directly output as fruit center 
coordinates and size information for subsequent robotic arms 
motion planning and grasp pose estimation.

However, the CNN backbone of YOLOv8 has limited 
capabilities for modeling global contextual information and long- 
range dependencies. The ST achieves powerful global modeling 
capabilities while maintaining computational efficiency through 
its sliding window mechanism (Pal et al., 2023). Therefore, this 
study incorporates the ST into the BN of YOLOv8 to enable more 
precise feature extraction and localization of occluded or densely 
clustered objects in complex environments. Figure 2 depicts the 
structure of the ST.

In Figure 2, the ST adopts a hierarchical architecture. Based on 
window-based multi-head self-attention (W-MSA) and shifted 
window MSA (SW-MSA), it constructs a general-purpose BN 
capable of efficiently processing visual tasks. Its core lies in the 
W-MSA computation, where the standard self-attention (SA) 
calculation is expressed in Equation 2. 

FIGURE 1 
Schematic illustration of the YOLOv8 architecture.
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Attention Q,K,V( ) � Softmax
QKT

��
dk

􏽰 + B􏼠 􏼡V (2)

In Equation 2, Q,K,V{ } represents the query, key, and value 
matrices. dk denotes the dimension of the key vector. 

��
dk

􏽰
is used to 

scale the dot product results, preventing softmax gradient 
saturation. B is the relative position bias, introducing spatial 
position priors for each attention head to enhance the model’s 
perception of geometric structures. To greatly reduce computational 
complexity, the ST splits the input image into non-overlapping 
windows and calculates SA within each window (Wang et al., 2023). 
To further enable cross-window connections, the alternately applied 
SW-MSA shifts window partitions, allowing attention computations 
to extend beyond original window boundaries. Equation 3 can be 
used to represent two consecutive ST blocks. 

ẑl �W − MSA LN zl−1􏼐 􏼑􏼐 􏼑 + zl−1

zl � MLP LN ẑl􏼐 􏼑􏼐 􏼑 + ẑl

ẑl+1 � SW − MSA LN zl􏼐 􏼑􏼐 􏼑 + zl

zl+1 � MLP LN ẑl+1
􏼐 􏼑􏼐 􏼑 + ẑl+1

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

In Equation 3, zl−1, zl, zl+1􏼈 􏼉 represents the output features of 
layers l− 1, l, and l + 1. ẑl, ẑl+1􏽮 􏽯 denotes the residual output after the 
MSA module. LN indicates the layer normalization (LN) operation. 
MLP refers to the multilayer perceptron (MLP), which performs 
nonlinear transformation and feature enhancement. This 
architecture ensures trainability in deep networks through 
residual connections and LN, while progressively integrating local 
and global information at each stage via the alternating W-MSA and 
SW-MSA mechanism (Tang et al., 2025). Consequently, the study 

FIGURE 2 
Schematic illustration of the ST architecture.

FIGURE 3 
Schematic illustration of the harvesting target positioning module architecture.
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centers on introducing the ST-based YOLOv8 to construct a 
harvesting target positioning module. Its structure is illustrated 
in Figure 3.

In Figure 3, this module centers on the YOLOv8 network, 
replacing the original backbone with a ST for deep feature 
extraction to enhance representation capabilities for occluded and 
small target fruits. A feature pyramid network (FPN) and path 
aggregation network (PANet) structure make up the neck after the 
backbone, allowing multi-scale feature propagation using both top- 
down and bottom-up methods. Lastly, a decoupled detection head 
allows the independent prediction of object category confidence 
scores and precise geographical coordinates by separating the 
classification work from the BOB regression task. Through these 
enhancements, the harvesting target positioning module achieves 
accurate fruit object recognition and highly reliable localization in 
complex agricultural environments, providing high-quality visual 
input for subsequent robotic arms grasping planning.

2.2 Obstacle avoidance module for robotic 
arms based on BIT* and YOLOv8-B* 
algorithm construction

The harvesting target positioning module developed in this 
study achieves high-precision spatial localization of fruit targets. 
However, its output provides only static coordinate information and 
lacks dynamic path planning capabilities for robotic arms 
movements. In unstructured orchard environments, effective 
obstacle avoidance along the robotic arms’ path is crucial for 
successful harvesting. BIT* significantly enhances RRT’s 
convergence efficiency through batch sampling and heuristic 
pruning mechanisms. Its incremental graph update structure 
continuously integrates real-time perception data to adapt to 
dynamic environments. Unlike gradient-based optimization or 
data-driven planning methods, BIT does not require 
differentiable environment models or large-scale labeled 
trajectories. Through state space sampling and pruning, it 
achieves robust and efficient dynamic obstacle avoidance in 
unstructured scenarios. Therefore, this study utilizes BIT* as the 

foundation for RAOA operations. Figure 4 provides an illustration 
of its operational procedures (Nenavath and Perumal, 2024).

In Figure 4, the operational flow of BIT* constitutes an iterative 
batch sampling process. It intelligently expands sampling batches 
within the state space and searches for random geometric 
configurations to identify and continuously optimize paths. BIT* 
explores the solution space by maintaining a tree structure 
T � (V, E). Among these, the vertex set V represents explored 
states, while the edge set E denotes feasible paths between states. 
Its core lies in generating a sampling batch during each iteration and 
computing heuristic values to guide the search direction. For any 
configuration q formed by the joint angles of an arbitrary robotic 
arms, its heuristic value is jointly determined by the cost ccurrent of 
the current solution and the estimated cost (EC) ĥ(q) to the target. 
The algorithm first constructs two search trees from the start and 
target points, respectively, and continuously performs heuristic 
sorting, as shown in Equation 4 (Huynh et al., 2023). 

f q( 􏼁 � g q( 􏼁 + ĥ q( 􏼁

v q( 􏼁 � min ccurrent, g q( 􏼁 + ĥ q( 􏼁􏼐 􏼑
􏼨 (4)

In Equation 4, g(q) represents the actual path cost from the 
starting point qstart to the current state q (e.g., path length (PL)). ĥ(q)
denotes the heuristic EC from q to the target point qgoal, typically 
using Euclidean distance. f(q) is used to prioritize candidate 
expansion nodes, favoring exploration in potentially optimal path 
directions. ccurrent represents the total path cost of currently known 
feasible solutions. v(q) denotes the upper bound on path cost 
achievable via node F, used for ranking and pruning (Xu et al., 
2022). In each batch processing, if v(q)> ccurrent holds, it indicates 
that the node cannot produce a better solution and is pruned. The 
algorithm only expands vertices that satisfy f(q)≤ ccurrent and 
v(q)≤ ccurrent, thereby effectively pruning search regions unlikely 
to improve the current solution. Whenever a new solution or a better 
solution is found, ccurrent is updated, and the search restarts to find a 
better path on a more finely sampled graph (Johnson et al., 2023).

However, the standard BIT* algorithm is primarily optimized 
for static environments and struggles to effectively handle dynamic 
changes such as leaf swaying in orchards. Long-range relationships 

FIGURE 4 
Schematic of the BIT* operating flow.
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and forward-backward contextual information in time-series data 
can be effectively captured by BiLSTM thanks to its special 
bidirectional gated recurrent structure (Yu et al., 2024). 
Therefore, this study introduces BiLSTM into BIT*. Its core 
function is to capture the temporal movement patterns of 
dynamic obstacles. It learns trends in direction and velocity 
changes from historical trajectories through a bidirectional gating 
mechanism, enabling predictions of future positions within short 
time intervals. These predictions serve as prior knowledge that is fed 
into the BIT* algorithm. This allows the algorithm to proactively 
avoid areas where dynamic obstacles are expected to be during the 
path search. This enhances the planning system’s foresight and 
improves the success rate of dynamic obstacle avoidance. The 
structure of BiLSTM is shown in Figure 5.

In Figure 5, the BiLSTM consists of two independent LSTM 
layers, forward and backward, which process the sequence input in 
the forward and reverse directions, respectively. The hidden state 
(HS) outputs from both directions are ultimately combined to 
capture the full contextual information. The core of the BiLSTM 
is its gating mechanism. Its computational steps involve the forget 
gate ft, the input gate it, the output gate ot, and cell state (CS) 
updates. At time step t, the forward LSTM (denoted as LSTML) first 
determines which information should be forgotten and which new 
information needs to be stored, as shown in Equation 5 (Kumudham 
et al., 2024). 

ft � σ Wf · ht−1, xt[ ] + bf􏼐 􏼑

it � σ Wi · ht−1, xt[ ] + bi( )

Ĉt � tanh WC · ht−1, xt[ ] + bC( )

Ct � ft*Ct−1 + it*Ĉt

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

In Equation 5, xt represents the current input. bf, bi, bC􏽮 􏽯

denotes the corresponding bias. Wf,Wi,Wi􏽮 􏽯 signifies the 
corresponding weight. ht−1 indicates the HS from the previous 
time step. ft determines which information from the previous 
CS Ct−1 should be retained or forgotten. it, together with the 

candidate CS Ĉt, jointly determines which information needs to 
be updated into the CS at the current time step. Ct is the current CS, 
computed jointly by ft, Ct−1, and Ĉt. Next, based on the updated CS, 
LSTML computes ot and the current HS ht, as shown in Equation 6. 

ot � σ Wo · ht−1, xt[ ] + bo( )

ht � ot* tanh Ct( )
􏼨 (6)

In Equation 6, Wo and bo represent the weights and bias of ot, 
respectively. For the reverse LSTM (denoted as LSTMR), it is 
computed in the same manner but operates in reverse along the 
time series, thereby generating the reverse HS h′

t (Zhai et al., 2024). 
Finally, the output of the BiLSTM at time step t is the concatenation 
of the forward HS ht and the backward HS h′

t, yielding yt � [ht, h′
t]. 

This enables the model to fuse bidirectional contextual information 
across the entire sequence. The BiLSTM takes as input a time-based, 
sliding-window sequence of dynamic obstacle states, each of which 
typically contains three-dimensional position coordinates. This 
sequence is continuously acquired and provided by the system 
during operation through its real-time perception and tracking 
module. The network’s final output is a predicted sequence of 
dynamic obstacle positions over several future planning cycles. 
This sequence is converted into a dynamic cost map that directly 
guides the generation of collision-free trajectories for the BIT* 
search. Consequently, this study investigates the BIT* based on 
the fusion capabilities of the BiLSTM for temporal prediction, 
constructing a RAOA module. Figure 6 displays its structure.

In Figure 6, this module employs the BIT* algorithm as its core 
framework. Through its iterative batch sampling and heuristic 
pruning mechanisms, it achieves efficient and asymptotically 
optimal path planning for robotic arms in complex, unstructured 
environments. This module integrates a BiLSTM neural network, 
leveraging its powerful bidirectional long-range temporal 
dependency modeling capabilities to accurately predict the 
movement trends of dynamic obstacles such as swaying branches 

FIGURE 5 
Schematic illustration of the BiLSTM architecture.
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and leaves. This predictive information is incorporated into the BIT* 
search process from the beginning, which significantly enhances the 
planning system’s forward-looking decision-making capabilities and 
the robustness of dynamic obstacle avoidance. Ultimately, this 
ensures the robotic arms generates collision-free trajectories that 
are safe, smooth, and actively adapt to environmental changes. In 
summary, this research integrates the harvesting target positioning 
module with the RAOA module to construct the YOLOv8-B* 
harvesting target positioning and RAOA algorithm. Its overall 
structure is illustrated in Figure 7.

In Figure 7, the algorithm first employs the ST BN within the 
harvesting target positioning module to extract multi-scale global 
features, enhancing the model’s perception of occluded targets and 
complex backgrounds. The YOLOv8 framework then utilizes its FPN 
to achieve MSFF. An uncoupled detection head simultaneously 
performs fruit classification and precise localization, ultimately 
outputting the fruit’s exact pixel coordinates. Subsequently, hand- 
eye calibration converts the 2D coordinates into a 3D pose within the 
robot’s base coordinate system. This pose, along with depth point 
cloud data, is input into the RAOA module. Within this module, a 

FIGURE 6 
Schematic illustration of the RAOA module architecture.

FIGURE 7 
Schematic illustration of the YOLOv8-B* structure.
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BiLSTM network predicts the motion trajectories of dynamic 
obstacles. The BIT* algorithm performs real-time, collision-free 
path planning based on environmental geometry and dynamic 
prediction results. It ultimately generates an optimal sequence of 
motion trajectories for the joint space of the robotic arms.

Additionally, in practical deployment, the visual system adopted 
in this research employs an “eye-on-hand” configuration, where the 
camera is fixed outside the robot’s workspace. This setup stabilizes 
the camera’s field of view during robotic arm movements. This 
enables continuous observation of the relationships between the 
robotic arm, the target fruit, and dynamic obstacles. It provides the 
BIT* planner with stable, global environmental perception input. 
This setup avoids the severe perspective shifts and occlusion issues 
inherent in “eye-on-hand” configurations caused by robotic arm 
motion. It simplifies the complexity of hand-eye calibration and 
coordinate transformation, thereby enhancing the robustness and 
real-time performance of the entire vision servo system.

3 Results and analysis

Testing is done in two dimensions: target localization and 
obstacle avoidance planning, to confirm the efficacy of the 
suggested YOLOv8-B* algorithm in intricate agricultural settings. 
The target localization dimension evaluates fruit RA and localization 
deviation by constructing test sets with varying occlusions and 
lighting conditions. The obstacle avoidance planning dimension 
analyzes path planning efficiency by generating dynamic and 
static obstacles in typical orchard scenarios. The algorithm’s 
efficacy is comprehensively validated through comparative 
experiments. The testing conducts systematic testing on a mobile 
robotic platform equipped with a six-degree-of-freedom robotic arm. 
Using peach trees and their fruits as representative subjects, 
algorithm validation is performed specifically for their 
characteristics of dense growth and susceptibility to obstruction 
by branches and foliage. Subsequent simulations and performance 
analyses are all based on this specific crop scenario.

To ensure the validity of statistical inference, the study rigorously 
selects appropriate statistical methods based on data characteristics. 
Performance metrics for the target localization experiment are 
calculated using a large-scale independent test set. To account for 
environmental uncertainty, metrics for the obstacle avoidance 
planning experiment are obtained through independent, repeated 
runs across 30 randomly generated dynamic scenarios. For all 
intergroup comparisons of continuous performance metrics, this 
study employs independent samples t-tests to assess the significance 
of mean differences. Benefiting from ample samples and experimental 
repetitions, the sample mean distributions of performance metrics 
satisfies the conditions of the central limit theorem, meeting the 
requirements for parametric testing. All significance results (e.g., 
p < 0.05, p < 0.01) are based on this test, indicating that 
improvements in algorithm performance are statistically significant.

3.1 Target positioning performance testing

In target localization performance testing, the study leverages 
the PyTorch deep learning framework to implement the YOLOv8- 

B* architecture. OpenCV is utilized for image preprocessing and 
result visualization, with the Ultralytics YOLOv8 open-source code 
repository serving as the foundation for algorithm development. 
Python 3.8 automates testing frameworks simulated various typical 
agricultural scenarios, including multi-object occlusion, sudden 
lighting changes, and foliage interference. This approach supports 
configurable dynamic environmental parameters and real-time 
system stress testing. Parameter settings align with those 
described in the research methodology section. The study 
employs the PhenoBench dataset as both the test and training 
sets (stratified randomly split 2:8). This dataset comprises over 
100,000 high-resolution aerial images of farmland captured by 
drones, providing pixel-level annotated crop semantic 
segmentation masks and annotations for more than 500,000 crop 
leaf instances. The PhenoBench dataset closely mirrors the visual 
challenges encountered in close-range harvesting scenarios by 
encompassing dense crop arrangements, complex foliage 
occlusions, and variable lighting conditions. Its large-scale, high- 
quality pixel-level annotations enable models to learn more 
generalizable feature representations, thereby enhancing 
robustness in both structured and unstructured orchard 
environments. Consequently, selecting this dataset for algorithm 
validation is both reasonable and representative (Weyler 
et al., 2024).

Additionally, the study compares methods from references 
(Miao et al., 2023; Gong et al., 2022; Hu et al., 2022) with 
YOLOv8-B*, specifically YOLOv5 and traditional image 
processing fusion algorithm (YOLOv5T), multisource image- 
fused mask R-CNN (MMRC), and YOLOv3 and mask R-CNN 
integrated dual-network framework (YOLOv3MR). These methods 
represent state-of-the-art approaches from 2022 to 2024, 
encompassing technical paradigms such as traditional and deep 
learning fusion, multi-source information perception, and dual- 
network collaborative optimization. They provide a 
comprehensive validation of YOLOv8-B*’s object localization 
performance. To validate the performance of the algorithm in 
complex, unstructured field environments, as described in the 
background section, field images of peach trees exhibiting typical 
occlusions, uneven lighting, and foliage interference are selected for 
testing. The target localization performance of different methods is 
visually compared, with results shown in Figure 8.

In Figure 8, YOLOv5T’s feature extraction capability is 
constrained by the simple fusion of traditional image processing 
with YOLOv5, resulting in the detection of only 17 fruits (recall rate 
of 77.3%). This highlights the limitations of local modeling 
mechanisms in complex environments. MMRC detects 18 fruits 
(81.8%) by relying on multi-source image registration strategies, but 
its geometric reconstruction process suffers from cumulative errors. 
Although YOLOv3MR receives 19 detections (86.4%) through dual 
network integration with YOLOv3 and Mask R-CNN, it fails to 
resolve issues of insufficient feature alignment and sensitivity to 
occlusion. Additionally, YOLOv8-B* significantly enhances spatial 
perception of partially occluded fruits through ST’s W-MSA/SW- 
MSA, achieving 21 detections (95.5%) to lead the evaluation. The 
W-MSA/SW-MSA mechanism allows the model to infer and fill in 
visual details in areas blocked by foliage. This is done by creating 
connections between non-local windows. This allows the model to 
use contextual information from unobscured parts of the fruit. This 
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directly validates its effective handling of unstructured challenges, 
such as “branch occlusion” and “scale variation,” as defined in the 
background. It demonstrates that the introduced global attention 
mechanism significantly improves robustness of visual perception in 
complex, real-world environments. Subsequently, to quantitatively 
assess model accuracy and robustness, the study compares RA and 
recall under occlusion (RO) across different methods. The former 

represents the proportion of correctly identified fruits compared to 
the total number of fruits. The latter indicates the proportion of 
successfully detected fruits among all obscured fruits under 
occlusion conditions. The results are shown in Figure 9.

In Figure 9a, YOLOv8-B* achieves a significantly higher RA 
range of 93.0%–96.5% compared to the baseline model (p < 0.001). 
By incorporating the ST module to enhance MSFF and global 

FIGURE 8 
Visual validation of the model’s object localization performance.

FIGURE 9 
Validation of target localization accuracy and robustness. (a) MRA difference (b) RO difference.

Frontiers in Mechanical Engineering frontiersin.org09

Xu 10.3389/fmech.2026.1741396

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2026.1741396


context modeling, it effectively improves fruit RA detection under 
complex occlusions. This improvement stems from the Swin 
Transformer’s ability to surpass the local receptive field 
limitations of traditional CNNs by incorporating discriminative 
features throughout the entire image. This makes it more robust 
against inter-class confusion caused by uneven lighting or similar 
colors. YOLOv5T, relying on traditional image processing and 
simple YOLOv5 fusion, is limited in feature extraction capability, 
achieving an RA range of only 85.2%–89.8%. MMRC partially 
improves perception through its multi-source image fusion 
strategy, attaining an RA of 88.8%–92.4%. In Figure 9b, 
YOLOv8-B* also demonstrates a significant lead in RO ranges of 
85.1%–89.7% under occlusion scenarios (p < 0.001). This advantage 
stems from the ST’s sliding window mechanism, which enhances 
feature retention and spatial reasoning capabilities for partially 
occluded objects. Specifically, SW-MSA enables cross-window 
information exchange through window shifting, allowing the 
model to “borrow” features from adjacent visible regions to 
enhance the representation of the occluded fruit body. Although 
YOLOv3MR achieves relatively high recall rates (80.2%–85.9%) by 
integrating YOLOv3 and Mask R-CNN, it does not fundamentally 
resolve the issue of feature loss caused by occlusion. MMRC relies on 
multi-source registration and geometric reconstruction, yielding RO 
values of 75.3%–82.7%. The localization error (LE) of the different 
methods is then compared to evaluate the positioning accuracy of 
the models. LE is defined as the Euclidean distance between the 
predicted fruit center and the ground-truth center, as shown 
in Figure 10.

In Figures 10a,b, YOLOv8-B* exhibits an average LE of 
12.33 mm with the lowest standard deviation (1.70 mm), 
demonstrating significantly superior performance compared to 
YOLOv5T (23.21 mm, p < 0.001), MMRC (19.18 mm, p < 0.01), 
and YOLOv3MR (15.70 mm, p < 0.05). The main source of this 
benefit is the W-MSA and SW-MSA processes of the ST, which 
improve its capacity to represent global spatial relationships. This 
mechanism enables BOB regression to anchor more precisely to the 
visible portion of the fruit and its geometric center, reducing drift 

errors caused by misleading local features. In typical scenarios, 
YOLOv8-B* achieves an optimal value of 9.8 mm in Scenario 6, 
where its sliding window attention effectively captures the geometric 
features of occluded fruits. The model can more accurately infer the 
complete contours and center positions of partially obscured fruits 
through global context, thereby achieving millimeter-level 
positioning accuracy. YOLOv3MR achieves 13.5 mm in Scenario 
1 but overlaps with YOLOv8-B*’s 12.9 mm performance in Scenario 
10, revealing limitations in feature alignment during dual-network 
integration. MMRC’s minimum value of 15.5 mm in Scenario 
28 remains higher than YOLOv8-B* in most scenarios, indicating 
that multi-source image registration fails to resolve cumulative error 
issues. YOLOv5T exhibits a maximum error of 28.2 mm in Scenario 
10, highlighting the instability of traditional frameworks under 
dynamic lighting conditions. To evaluate the model’s object 
localization efficiency and real-time performance, this study 
compares the processing frame rate (PFR) and inference time 
(IT) across different methods, as displayed in Table 1.

In Table 1, YOLOv8-B* achieves the optimal performance- 
speed balance with a frame rate of 32.7 fps and a latency of 32.6 ms. 
Its IT is significantly lower than MMRC (55.1 ms, p < 0.001) and 
YOLOv3MR (35.0 ms, p < 0.01), attributed to YOLOv8’s C2F 
module and decoupled detection head effectively mitigating the 
computational overhead of ST. Although Swin Transformer 
introduces global computations, its windowed attention design 
effectively complements YOLOv8’s efficient feature extraction 
pipeline and keeps computational complexity within acceptable 
limits. Although YOLOv5T achieves the highest frame rate of 
46.1 fps in Scenario 20, this comes at the expense of localization 
accuracy. MMRC exhibits a worst latency of 59.1 m in Scenario 30, 
revealing inherent bottlenecks in multi-source fusion. 
YOLOv3MR achieves the best IT of 31.7 ms in Scenario 25, 
overlapping with YOLOv8-B* performance, yet its average 
frame rate of 27.1 fps remains insufficient. YOLOv8-B* 
simultaneously achieves 34.9 fps and 28.3 ms latency in 
Scenario 20, validating the synergistic advantages of global 
modeling and lightweight design.

FIGURE 10 
Validation of the model’s localization accuracy. (a) LE difference (b) Means and standard deviation.
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3.2 Obstacle avoidance performance 
verification of robotic arms

For RAOA performance validation, the study constructs a 
multi-scenario integrated testing environment within the Gazebo 
simulation platform, featuring dense orchards, crop row aisles, 
and mobile obstacles. Robot control and algorithm deployment 
are implemented via ROS. Continuous multi-source data streams 
are captured at high precision: point cloud from depth cameras 
(30Hz), LiDAR scans (40Hz), and robotic arm joint torques (1kHz 
sampling). These streams encompasses typical stress events 
marked by dynamic foliage interference, sudden obstacle 
intrusions, and multi-target harvesting path conflicts. The 
robot and algorithm implementation architecture aligns with 
the target positioning performance testing. Furthermore, the 
study compares YOLOv8-B* with methods from (Zhang et al., 
2024; Liu, 2022; Yi et al., 2024): HDRRT, HOPP, and active vision- 
based view planner (AVVP). These advanced methods from 
2022–2024 encompass dynamic sampling path planning, 
hierarchical optimization decision-making, and active 
perception planning, comprehensively validating YOLOv8-B*’s 
RAOA capabilities. The study first selects four ripe fruits as targets 
within a 1.5 m3 space. Different methods are employed to control 
the robotic arms for fruit picking. By comparing the picking paths 

generated by each method, their planning efficiency is intuitively 
evaluated, as shown in Figure 11.

In Figure 11a, the YOLOv8-B* algorithm effectively avoids 
obstacles and generates a globally optimal path through its 
improved heuristic search structure and dynamic weight 
adjustment mechanism, achieving a minimum distance of 
2.27 m, significantly outperforming the comparison model. The 
BiLSTM’s dynamic obstacle prediction prior enables the BIT* 
algorithm to proactively avoid areas where obstacles may appear 
in the future during heuristic pruning. This directs the search 
toward safer, more direct pathways and prevents path detours 
caused by temporary obstacle avoidance. In Figure 11b, HDRRT 
(2.39 m) enhances exploration efficiency through random tree 
expansion but remains inferior to YOLOv8-B*’s structured search 
strategy. This fully demonstrates the core influence of algorithmic 
architecture on path planning performance in complex 
environments. In Figure 11c, HOPP (2.46 m) relies on a 
traditional rule base, resulting in numerous sharp angles in the 
path and generating redundant acceleration/deceleration phases 
during RA motion. In Figure 11d, AVVP (3.06 m) integrates 
visual perception but fails to prioritize targets, resulting in the 
longest planned path. The YOLOv8-B* model has shorter global 
paths, which directly reduces the overall exposure risk and 
cumulative collision probability for robotic arms navigating 

TABLE 1 Validation of the model’s object localization efficiency and real-time performance.

Task scenarios PFR (fps) IT (ms)

YOLOv5T MMRC YOLOv3MR YOLOv8-B* YOLOv5T MMRC YOLOv3MR YOLOv8-B*

5 46.3 22.3 30.1 32.0 25.3 62.4 35.3 32.3

10 43.7 22.4 28.1 31.3 20.8 57.6 39.3 34.9

15 45.1 15.4 26.9 31.1 24.3 46.1 38.8 34.3

20 46.1 19.3 25.4 34.9 20.9 52.9 33.8 28.3

25 44.0 20.0 26.9 35.7 19.3 52.4 31.7 34.4

30 40.3 18.5 25.3 31.0 22.1 59.1 30.8 31.6

Means 44.3 19.7 27.1 32.7 22.1 55.1 35.0 32.6

Standard deviation 2.0 2.4 1.6 1.9 2.1 5.3 3.2 2.3

FIGURE 11 
Efficiency verification of harvesting path planning. (a) Yv8-B* (b) HDRRT (c) HOPP (d) AVVP.
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through dense obstacles. This extends the fault-free operation 
time of robotic arms in unstructured environments with tangled 
branches, thereby enhancing picking efficiency. Subsequently, the 
study compares the single obstacle avoidance PL and single 
planning time (SPT) across different methods to evaluate the 
overall efficiency of obstacle avoidance planning, as shown 
in Figure 12.

In Figure 12a, the PL range of YOLOv8-B* (9.8 cm-1 to 15.0 cm-1) 
significantly exceeds that of HDRRT (18.5 cm-1 to 24.3 cm-1, p < 
0.001) and HOPP’s 15.2 cm–20.4 cm (p < 0.01), and AVVP’s 
13.0 cm–18.7 cm (p < 0.05). Its BIT* algorithm generates 
compact paths through heuristic pruning and BiLSTM dynamic 
obstacle prediction. The prediction error of BiLSTM primarily 
influences the conservatism of pruning: high-confidence 
predictions enable BIT* to prune future safe regions more 
aggressively, directly planning shorter paths. Whereas with low 
confidence, the algorithm retains a wider safety margin, slightly 
increasing PL to ensure robustness. AVVP achieves an optimal 
single point of 13.0 cm, but increases to 18.4 cm in Scenario 30, 
indicating instability in its view iteration mechanism. HDRRT’s 
random sampling results in the highest path redundancy, reaching 
23.4 cm in Scenario 0. In environments with dense obstacles, the 
more compact path of YOLOv8-B* enables the robotic arm’s end- 
effector to navigate narrow spaces with smaller movements and 
closer adherence to the intended trajectory. This significantly reduces 
unexpected scrapes or collisions caused by path redundancy. In 
Figure 12b, YOLOv8-B* also significantly outperforms 
competitors (p < 0.001) with an SPT range of 1.45 s–2.86 s, 
where its BiLSTM-augmented architecture compresses the search 
space through spatio-temporal modeling. By preemptively excluding 
a large number of invalid sampling regions containing future 
collision risks, BiLSTM’s predictions reduce the number of 
vertices and edges that BIT* needs to evaluate. This substantially 
lowers the computational overhead per iteration. Although HOPP 

achieves 2.42 s in Scenario 0, its peak value of 3.87 s overlaps with 
YOLOv8-B*, revealing the computational burden of hierarchical 
optimization. HDRRT is the least efficient in random sampling, 
taking 3.04 s–5.25 s YOLOv8-B*’s extremely short planning time 
enables the system to perform high-frequency replanning. The 
robotic arm can adjust its trajectory nearly in real time when 
encountering sudden dynamic obstacles, such as swaying 
branches, or target position updates. This ability is a prerequisite 
for achieving reliable dynamic obstacle avoidance. The study also 
compares the energy consumption of manipulator (ECM) across 
different methods to evaluate model efficiency, as shown in Figure 13.

In Figures 13a,b, the average ECM of YOLOv8-B* is 124.58 J, 
significantly lower than that of HDRRT (228.35 J, p < 0.001), HOPP 
(186.68 J, p < 0.01), and AVVP (158.52 J, p < 0.05). This advantage 
stems from the BIT* algorithm generating optimal paths to 
minimize redundant motion, combined with BiLSTM dynamic 
prediction to avoid abrupt stops and re-planning. BiLSTM’s 
precise predictions enable the robotic arm to smoothly navigate 
around dynamic obstacles in advance, avoiding the abrupt braking 
and re-acceleration processes common in traditional reactive 
obstacle avoidance. This represents one of the key mechanisms 
for reducing energy consumption. YOLOv8-B* achieves the lowest 
energy consumption of 95 J in Scenario 1, where its heuristic 
pruning and spatio-temporal prediction effectively optimize 
trajectories. The shorter PL combined with forward-looking 
speed planning enables the joint motor to operate within its 
high-efficiency range most of the time. This reduces the 
additional torque required to overcome inertia and minimizes 
energy loss. Although AVVP achieves 128 J in Scenario 20, 
overlapping with YOLOv8-B*’s 142 J performance in Scenario 1, 
its view iteration mechanism causes additional kinetic energy 
consumption to rise to 143 J in Scenario 8. HOPP achieves low 
energy consumption of 153 J in Scenario 23, but does not consider 
joint torque continuity, resulting in energy consumption as high as 

FIGURE 12 
Validation of the model’s comprehensive efficiency in obstacle avoidance planning. (a) PL difference (b) SPT difference.
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223 J in Scenarios 11 and 12. HDRRT’s random sampling leads to 
path redundancy, causing the highest energy consumption of 283 J 
in cenario 30. YOLOv8-B* has a lower kinetic energy consumption 
that directly reflects the smoothness and efficiency of the robotic 
arm’s trajectory. This avoids abrupt acceleration and deceleration 
caused by emergency obstacle avoidance or suboptimal path 
planning. This stable motion further reduces the risk of contact 
collisions between the end-effector and fruits or branches due to 
vibration or inertia. Subsequent studies compares the single-task 
computational load (CL) and memory consumption (MC) of 
different methods to evaluate the models’ potential for broader 
application, as displayed in Table 2.

Table 2 shows that YOLOv8-B* achieves optimal resource 
efficiency with a CL of 22.7 GFlops and MC of 187 MB. Its CL 
is significantly lower than AVVP’s 63.9 GFlops (p < 0.001). Its MC is 
significantly lower than HOPP’s 249 MB (p < 0.01). This advantage 
stems from the synergistic optimization of BIT* heuristic search and 
BiLSTM prediction, which reduces computational iterations, while 
the ST window attention mechanism minimizes memory usage 

through parameter sharing. As a lightweight temporal module, 
BiLSTM replaces the dynamic environment modeling 
traditionally achieved through extensive sampling and collision 
detection, fundamentally reducing the computational complexity 
of the planner. Among these, YOLOv8-B* achieves the lowest CL of 
21.3 GFlops in Scenarios 10 and 30. While HDRRT reaches 
19.9 GFlops in Scenario 30, overlapping with YOLOv8-B*’s 
performance, this comes at the cost of reduced path quality. 
AVVP, benefiting from multi-source perception and view 
iteration optimization, achieves peak loads of 72.2 GFlops and 
72.6 GFlops in Scenarios 5 and 30, respectively. HOPP’s 
hierarchical structure requires pre-storing global path 
information, leading to MC of 315 MB in Scenario 5, 
significantly exceeding YOLOv8-B*’s 187 MB performance in the 
same scenario. The reduced computational and memory demands of 
YOLOv8-B* ensure stable operation of the algorithm on onboard 
computing units. This frees ample resources for processing high- 
frequency visual feedback and continuous obstacle avoidance 
planning. This safeguards the real-time performance and 

FIGURE 13 
Validation of the model’s economic efficiency. (a) ECM difference (b) Means and standard deviation.

TABLE 2 Validation of the model’s potential for promotion and application.

Task scenarios CL (GFlops) MC (MB)

HDRRT HOPP AVVP YOLOv8-B* HDRRT HOPP AVVP YOLOv8-B*

5 20.3 25.5 72.2 22.7 171 315 212 187

10 23.5 23.9 49.4 21.3 160 224 221 205

15 25.1 32.8 54.5 21.9 167 245 253 207

20 24.4 23.6 64.4 24.5 160 247 186 171

25 23.2 28.2 70.1 24.2 126 232 231 190

30 19.9 22.4 72.6 21.3 167 230 259 160

Means 22.7 26.1 63.9 22.7 159 249 227 187

Standard deviation 2.0 3.5 9.0 1.3 15 31 25 17
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reliability of the entire perception-planning loop in complex 
scenarios, forming the foundational system for achieving 
sustained safe obstacle avoidance. The deep collaboration 
between modules significantly reduces the system’s overall 
resource consumption compared to the simple sum of individual 
modules, demonstrating the superiority of the architectural design.

To validate the necessity of the base module design, the study 
performs ablation tests on the base module. Visual backbones are 
replaced with YOLOv5, YOLOv10, efficient channel attention 
(ECA), squeeze-and-excitation (SE) attention, mobile vision 
Transformer (MobileViT), and convolution-enhanced 
Transformer (ConvFormer). Planners are replaced with rapidly- 
exploring random tree star (RRT*) and RRT with eXact anytime 
optimization (RRTX). LSTM and temporal convolutional network 
(TCN) are used to replace the temporal predictor (BiLSTM). The 
results are shown in Table 3.

As shown in Table 3, the complete model (Yv8-B*) achieves 
optimal overall performance in terms of RA (96.5%), PL 
(12.4 cm), and CL (22.7 GFlops). Ablation experiments reveal 
that removing Swin Transformer (A1) significantly degrades RA 
(p < 0.001) and increases PL. This demonstrates its critical role in 
enhancing RA and generating compact paths through global 
modeling. Removing BiLSTM (A2) substantially increases PL 
to 18.7 cm (p < 0.001), validating dynamic prediction’s core 
contribution to path planning efficiency. In module 
replacements, MobileViT and ConvFormer both yields lower 
RA (94.6%, 95.0%) than the full model with longer paths. ECA 
and SE demonstrates weaker accuracy and path performance. 
Replacing BIT with RRT and RRTX increases PL to 15.9 cm and 
16.4 cm respectively (p < 0.01), with RRTX achieving higher CL. 
Substituting BiLSTM with LSTM and TCN also results in longer 
PLs. Experiments quantitatively confirm that the selected Swin 
Transformer and BiLSTM modules achieve the optimal balance 
among RA, path planning efficiency, and CL.

4 Discussion and conclusion

To address the challenges of inaccurate fruit localization and 
inefficient dynamic obstacle avoidance in complex agricultural 
environments, this study proposed the YOLOv8-B* fusion 
algorithm based on an enhanced YOLOv8 and BIT*. By 
incorporating the ST module to enhance MSFF and global 
context modeling, and integrating a BiLSTM network to endow 
the BIT* algorithm with dynamic obstacle prediction capabilities, an 
integrated perception-decision-control harvesting robot system was 
constructed. Experiments demonstrated that YOLOv8-B* achieved 
RA of 93.0%–96.5%, RO of 85.1%–89.7%, and a mean LE of 
12.33 mm in the target localization dimension. Compared to the 
optimal reference model, it improved accuracy by 3.5% and reduced 
LE by 21.5%. Moreover, in the obstacle avoidance planning 
dimension, it achieved a PL of 9.8 cm–5.0 cm and a planning 
time of 1.45 s–2.86 s, reducing PL by 17.8% and improving planning 
efficiency by 38.2% compared to the optimal comparison model. In 
actual deployment, the ECM is reduced to 124.58 J, with single-task 
CL and MC at 22.7 GFlops and 187 MB respectively. Compared to 
mainstream methods, resource consumption is reduced by an 
average of 42.3% and 24.9%, validating the algorithm’s 
comprehensive advantages in accuracy, efficiency, energy 
consumption, and resource economy.

The architectural innovation of YOLOv8-B* lies in its dual- 
module coordination mechanism: The visual perception module 
based on ST overcomes the local perception limitations of 
traditional CNNs through a sliding window attention 
mechanism, significantly enhancing the representation capability 
of occluded object features. The BIT*-enhanced planning module 
addresses the response lag issue for dynamic obstacles by combining 
spatio-temporal context prediction with heuristic search. The two 
components form a closed-loop system through hand-eye 
calibration, enabling seamless transition from fruit recognition to 

TABLE 3 Verification of absorption/replacement for basic modules.

Settings YOLOv8 Swin transformer BIT* BiLSTM RA (%) PL (cm) CL (GFlops)

Full (Yv8-B*) ✓ ✓ ✓ ✓ 96.5 12.4 22.7

A1 (w/o Swin Transformer) ✓ × ✓ ✓ 90.1 13.1 18.4

A2 (w/o BiLSTM) ✓ ✓ ✓ × 95.8 18.7 21.8

A3 (w/o SwinT and BiLSTM) ✓ × ✓ × 89.6 19.2 17.2

YOLOv5 — ✓ ✓ ✓ 93 13.8 24.5

YOLOv10 — ✓ ✓ ✓ 95.3 12.9 25.7

ECA ✓ — ✓ ✓ 92.7 14.5 19.3

SE attention ✓ — ✓ ✓ 93.4 14.2 19.5

MobileViT ✓ — ✓ ✓ 94.6 13.6 20.3

ConvFormer ✓ — ✓ ✓ 95 13.3 23

RRT* ✓ ✓ — ✓ 96 15.9 19.7

RRTX ✓ ✓ — ✓ 96.1 16.4 26.4

LSTM ✓ ✓ ✓ — 95.9 13.8 22

TCN ✓ ✓ ✓ — 95.8 14.1 23.4
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path planning. This research has achieved a significant reduction in 
the CL and memory footprint of single-task operations, compared 
to the typical computing power and memory capacity of 
mainstream embedded AI computing platforms like Jetson 
Orin NX. This indicates that the Yv8-B* algorithm architecture 
possesses the potential for direct porting to such platforms and 
achieving real-time operation. However, the research has several 
limitations. First, the ST module has high computational 
demands, so it needs to be optimized and validated further for 
deployment on embedded devices. BiLSTM’s dynamic prediction 
relies on historical data quality, potentially leading to error 
accumulation under extreme occlusion scenarios. Future work 
will address these challenges through the design of a lightweight 
hybrid attention mechanism that balances computational 
efficiency and model performance. Additionally, the 
development of model lightweighting and operator 
optimization deployment strategies tailored for edge computing 
platforms like Jetson will ensure the stable, real-time operation of 
the algorithm in actual onboard robot systems. Additionally, a 
multi-sensor fusion dynamic obstacle trajectory compensation 
algorithm will be developed to enhance system robustness in 
adverse environments.
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