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YOLOvS8 and BIT*

Yingwu Xu*

Anging Vocational and Technical College, Anging, China

Introduction: To address the core challenges of inaccurate fruit occlusion
localization and inefficient robotic arm dynamic obstacle avoidance in
complex, unstructured agricultural environments, this study proposes an
integrated algorithm for harvesting.

Methods: The proposed algorithm is built upon an improved YOLOv8 model and
the BIT* planner. The YOLOvV8 model was enhanced by introducing the Swin
Transformer module to improve multi-scale feature fusion and global context
modeling. The BIT* planner was integrated with a BiLSTM network to endow it
with dynamic obstacle prediction capabilities, thereby constructing a unified
architecture for visual perception and motion planning.

Results: Experimental results demonstrated that the algorithm achieved real-
time performance with a processing frame rate of 32.7 fps and an inference time
of 32.6 ms for target localization, with a localization error standard deviation as
low as 1.70 mm. In obstacle avoidance planning, it achieved a balance with
manipulator energy consumption of 12458 J, while controlling the
computational load and memory resource consumption per task to 22.7
GFlops and 187 MB, respectively.

Discussion: This approach provides a high-precision, low-energy-consumption
cooperative control solution for agricultural harvesting robots, advancing the
practical application of automated fruit and vegetable harvesting.

agriculture, automated harvesting, BIT*, robotic arm, YOLOv8

1 Background

Harvesting is one of the most labor-intensive and time-consuming steps in the
production of fruits and vegetables. Its level of automation and intelligence directly
impacts production efficiency, cost control, and industrial upgrading (Liu and Liu,
2024). Therefore, developing efficient, precise, and autonomous intelligent harvesting
robot systems holds significant practical and economic value for freeing up labor,
advancing agricultural modernization, and ensuring food security (Zhou et al.,, 2022).
Among these, the precise target localization of the perception module and the dexterous
obstacle avoidance path planning of the execution module represent two critical
technological bottlenecks determining system performance (Zeeshan and Aized, 2023).
In complex, unstructured natural field environments, harvesting targets (such as fruits) are
frequently disrupted by factors including variable lighting, foliage obstruction, similar
colors and textures, variable scales, and overlapping clusters. This places extremely high
demands on the robustness and accuracy of visual detection algorithms (Panduranga et al.,
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2024). Simultaneously, when executing grasping tasks, robotic arms
must navigate dense, intertwined crop branches to plan collision-
free, highly efficient trajectories. Any planning failure or delay may
lead to task interruption or crop damage. The performance and
dependability of path planning algorithms in real-time are severely
hampered by this (Droukas et al., 2023).

To address these challenges, numerous experts in the field of
smart agriculture have embarked on exploratory research. To
overcome the difficulties of identifying clustered tomato fruits
and selecting the best picking locations in challenging situations,
Bai et al. (2023) developed a two-step localization technique that
integrated multi-feature extraction and geometry analysis for target
recognition in harvesting. This approach could achieve precise fruit
region identification and accurate stem-picking point localization
(Bai et al., 2023). To address the challenge of accurately detecting
tomato fruits and stems in complex agricultural environments, Miao
et al. (2023) proposed an integrated detection algorithm combining
traditional image processing with you only look once version 5
(YOLOV5). Through multi-method fusion and error compensation
strategies, this research could achieve precise determination of
tomato ripeness and accurate stem localization, providing reliable
guidance for efficient robotic harvesting (Miao et al., 2023). Gong
et al. (2022) suggested a geometric feature reconstruction technique
based on multi-source image fusion and an extended mask region-
based convolutional neural network (Mask R-CNN) to address the
problem of inadequate visual positioning accuracy in fruit-picking
robots operating in obscured situations. By integrating multi-source
image registration with shape-position recovery algorithms, this
approach  could achieve high-precision 3D  geometric
reconstruction and picking point localization for occluded
tomatoes (Gong et al.,, 2022). To address the high labor costs and
fruit identification/localization challenges in strawberry picking, Hu
et al. (2022) proposed a recognition and localization method
integrating instance segmentation with stereo vision. By
combining a dual-network architecture of Mask R-CNN and
YOLOV3 with the 3D localization technology of the Zeid stereo
vision camera, this research could achieve precise identification and
3D spatial localization of ripe strawberries, providing accurate target
location information for picking robots (Hu et al., 2022).

To solve the problems of excessive path planning time and low
picking efficiency in unstructured orchard environments, Zhang
et al. (2024) suggested a heuristic dynamic rapidly-exploring
random tree connect (HDRRT) motion planning algorithm for
robotic arms obstacle avoidance planning obstacle avoidance
planning. By using a dual-structure strategy that combined
heuristic dynamic step size strategies and adaptive target gravity,
this study could successfully decrease path planning time and path
cost while increasing planning success rates (Zhang et al., 2024). Liu
(2022) addressed the low efficiency of apple-picking robots in
unstructured orchard situations by proposing the hierarchical
optimal path planning (HOPP) method. This study significantly
reduced the computational time required for three-dimensional
picking path planning by combining a two-layer structure with
distance-constrained K-means clustering and traveling salesman
problem solutions. This approach achieved globally optimal
harvesting path planning for multi-objective fruit harvesting (Liu,
2022). A view planner based on an active vision technique was

proposed by Yi et al. (2024) to solve the problem of accurately
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localizing fruit-picking points in heavily obstructed settings.

Through a three-step structure, including candidate view
generation, spatial coverage score function optimization, and
iterative viewpoint adjustment, this research effectively addressed
stem occlusion issues, significantly improving the robot’s picking
success rate and operational efficiency (Yi et al., 2024). Xu et al.
(2021) proposed an improved artificial potential field algorithm to
address the issues of local minima and insufficient obstacle shape
perception in traditional methods for robotic arms 3D path
planning. By incorporating a repulsive isopotential surface
movement mechanism and a local path optimization structure,
this research effectively resolved local minima traps and enabled
obstacle shape perception, significantly enhancing path planning
success rates and motion smoothness (Xu et al., 2021). In summary,
existing research exhibits a typical architecture characterized by
“decoupling perception and planning modules” in its technical
approach. Its core advantages lie in its perception layer.
Techniques such as multi-source information fusion, the
integration of traditional and deep learning, and stereo vision
effectively enhance the robustness of target recognition and the
accuracy of positioning for fruits and vegetables in static
environments. At the planning layer, strategies including
heuristic random sampling, hierarchical task decomposition, and
active perception decision-making significantly optimize path cost
and static obstacle avoidance success rates. However, this
architecture has fundamental limitations. The perception and
planning stages operate in an unidirectional, open-loop manner.
They lack real-time visual feedback adjustments based on motion
states. The visual module exhibits insufficient generalization
capabilities against dynamic occlusions and sudden lighting
changes. Moreover, the planning module generally lacks explicit
modeling and prediction of dynamic obstacle movement trends.
Consequently, the system faces constraints in overall adaptability,
real-time responsiveness, and closed-loop stability within highly
unstructured, dynamically changing field environments.

YOLOV8 extracts features through a backbone network (BN),
fuses multi-scale information via a neck network, and finally
performs both bounding box (BOB) regression and classification
prediction simultaneously through a detection head (Li et al., 2024).
Batch informed trees* (BIT*) combines graph search with random
sampling, pruning ineffective regions using heuristic information,
and progressively optimizes path costs through iterative batch
processing (Kyaw et al, 2022). However, YOLOV8 exhibits
insufficient perception of occluded objects and small fruit stems.
BIT* lacks a mechanism for reacting to dynamic barriers and has
poor processing efficiency in high-dimensional areas (Xu and Li,
2025; Tamizi et al,, 2024). XAmong them, the perception module
uses YOLOvV8 as its framework and incorporates the Swin
Transformer as its BN. Its sliding window attention mechanism
improves the accuracy of fruit target recognition and localization in
complex occlusion environments by enhancing multi-scale feature
fusion (MSFF) and global context modeling. The planning module
utilizes the BIT* framework, integrating a BiLSTM network to
predict dynamic obstacle movement trends. Temporal modeling
enhances the robotic arm’s foresight and adaptability in path search,
enabling efficient and smooth obstacle avoidance in dynamic,
unstructured environments. Both modules achieve information
calibration and coordinate

integration through hand-eye
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FIGURE 1
Schematic illustration of the YOLOV8 architecture.

transformation, ultimately forming a unified “perception-decision-
control” collaborative system. This approach ensures positioning
accuracy and planning efficiency while significantly reducing
computational and energy consumption costs. Its innovation lies
in its ability to achieve synergistic breakthroughs in perception,
decision-making, and control. This is accomplished through multi-
scale feature enhancement, spatio-temporal context modeling,
adaptive sampling function

strategies, and dynamic cost

optimization.

2 Methodology

This section comprises two parts. The first part introduces the
Swin Transformer module based on the YOLOVS object detection
framework to construct a rapid and precise fruit-picking target
localization module. It enhances fruit recognition accuracy (RA) in
complex environments through MSFF and global context modeling.
The second part combines the BiLSTM’s temporal prediction
capabilities with the BIT* path planning algorithm to develop a
RAOA module with dynamic obstacle response capabilities. Finally,
the two modules are integrated through hand-eye calibration and
coordinate transformation mechanisms to form a complete vision-
motion control closed-loop system. This realizes the YOLOv8-B*
algorithm architecture from fruit

recognition to picking

path planning.

2.1 Harvesting target positioning module
based on YOLOv8

In automated harvesting systems for fruits and vegetables,
robotic arms serve as the core execution units. Their grasping
success rate and operational efficiency heavily depend on the
precise spatial localization of target fruits. Accurate, real-time
identification and localization of fruit positions are fundamental
prerequisites for achieving damage-free grasping while avoiding
Consequently, this study employs
YOLOvV8 as the foundation for target localization during

collisions and mispicks.
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harvesting operations. YOLOV8 is selected as the core visual
localization framework primarily due to its classic balance in
object detection tasks, robust multi-scale feature extraction
(MSFE) capabilities, and potential for lightweight deployment. Its
efficient cross stage partial network with feature fusion (C2F)
architecture and decoupled detector head design provide a stable
and scalable baseline. Compared to subsequent versions that focus
on specific tasks or architectures, YOLOv8 has broader industrial
deployment validation and more experience with lightweight
optimization. This makes it better suited for agricultural
embedded scenarios with dual constraints on reliability and
computational resources (Ma et al., 2024). The architecture of
YOLOWS is illustrated in Figure 1.

In Figure 1, the YOLOV8 network architecture primarily consists
of three components: the BN, the neck network, and the detection
head. It achieves MSFE and fusion through modules such as
convolution + batchnorm + sigmoid, C2F, and spatial pyramid
pooling fast (Gao et al, 2024). The detection performance of
YOLOV8 relies on optimizing the total loss function. The model
learns end-to-end by minimizing the discrepancy between projected
values and ground truth annotations while concurrently predicting
item BOB coordinates, category labels, and object presence
confidence scores during training (Gao et al., 2023). Equation 1
illustrates that the weighted sum of the three terms is the definition
of the total loss function.

Ltotal — Achls + /\szox + A3L0bj (1)

In Equation 1, L represents the classification loss. L°* denotes
the BOB regression loss. L° signifies the object confidence loss.
{A1, A2, A3} serves as the weighting coefficient for each loss term,
balancing the optimization scales across different tasks. Specifically,
LY employs binary cross-entropy (BCE) loss to calculate the
discrepancy between predicted and ground-truth categories. L
utilizes a combination of distribution focal (DF) loss and complete
intersection over union (CIoU) loss. While CIoU thoroughly takes
into account overlap area, center point distance, and aspect ratio to
obtain more accurate BOB regression, DF optimizes the focused
distribution of BOB position probability. L also employs BCE loss
to determine whether an object exists within the BOB (Ayyad et al.,
2025). Localization results can be directly output as fruit center
coordinates and size information for subsequent robotic arms
motion planning and grasp pose estimation.
the CNN backbone of YOLOV8 has limited
capabilities for modeling global contextual information and long-
range dependencies. The ST achieves powerful global modeling

However,

capabilities while maintaining computational efficiency through
its sliding window mechanism (Pal et al.,, 2023). Therefore, this
study incorporates the ST into the BN of YOLOV8 to enable more
precise feature extraction and localization of occluded or densely
clustered objects in complex environments. Figure 2 depicts the
structure of the ST.

In Figure 2, the ST adopts a hierarchical architecture. Based on
window-based multi-head self-attention (W-MSA) and shifted
window MSA (SW-MSA), it constructs a general-purpose BN
capable of efficiently processing visual tasks. Its core lies in the
W-MSA computation, where the standard self-attention (SA)
calculation is expressed in Equation 2.
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FIGURE 2
Schematic illustration of the ST architecture.
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ST block

Schematic illustration of the harvesting target positioning module architecture.

T
Attention (Q, K, V) = Softma:x(Qi + B)V 2)

Nz

In Equation 2, {Q, K, V} represents the query, key, and value
matrices. d denotes the dimension of the key vector. +/dy is used to
scale the dot product results, preventing softmax gradient
saturation. B is the relative position bias, introducing spatial
position priors for each attention head to enhance the model’s
perception of geometric structures. To greatly reduce computational
complexity, the ST splits the input image into non-overlapping
windows and calculates SA within each window (Wang et al., 2023).
To further enable cross-window connections, the alternately applied
SW-MSA shifts window partitions, allowing attention computations
to extend beyond original window boundaries. Equation 3 can be
used to represent two consecutive ST blocks.

Frontiers in Mechanical Engineering

2
7 = MLP(LN(i’)) +7
7
z

In Equation 3, {z/7,2!,2"*1} represents the output features of
layers!—1,l,and [ + 1. {il R il“} denotes the residual output after the
MSA module. LN indicates the layer normalization (LN) operation.
MLP refers to the multilayer perceptron (MLP), which performs
This
architecture ensures trainability in deep networks through

nonlinear transformation and feature enhancement.
residual connections and LN, while progressively integrating local
and global information at each stage via the alternating W-MSA and

SW-MSA mechanism (Tang et al., 2025). Consequently, the study
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The search expands outward A new batch of
from the minimal solution samples is added, and
using a heuristic approach. the search restarts.
FIGURE 4

Schematic of the BIT* operating flow.

centers on introducing the ST-based YOLOV8 to construct a
harvesting target positioning module. Its structure is illustrated
in Figure 3.

In Figure 3, this module centers on the YOLOV8 network,
replacing the original backbone with a ST for deep feature
extraction to enhance representation capabilities for occluded and
small target fruits. A feature pyramid network (FPN) and path
aggregation network (PANet) structure make up the neck after the
backbone, allowing multi-scale feature propagation using both top-
down and bottom-up methods. Lastly, a decoupled detection head
allows the independent prediction of object category confidence
scores and precise geographical coordinates by separating the
classification work from the BOB regression task. Through these
enhancements, the harvesting target positioning module achieves
accurate fruit object recognition and highly reliable localization in
complex agricultural environments, providing high-quality visual
input for subsequent robotic arms grasping planning.

2.2 Obstacle avoidance module for robotic
arms based on BIT* and YOLOv8-B*
algorithm construction

The harvesting target positioning module developed in this
study achieves high-precision spatial localization of fruit targets.
However, its output provides only static coordinate information and
lacks dynamic path planning capabilities for robotic arms
movements. In unstructured orchard environments, effective
obstacle avoidance along the robotic arms’ path is crucial for
BIT* RRT’s

convergence efficiency through batch sampling and heuristic

successful  harvesting. significantly ~ enhances
pruning mechanisms. Its incremental graph update structure
continuously integrates real-time perception data to adapt to
dynamic environments. Unlike gradient-based optimization or
BIT does

models or

data-driven not require
differentiable labeled

trajectories. Through state space sampling and pruning, it

planning  methods,

environment large-scale

achieves robust and efficient dynamic obstacle avoidance in
unstructured scenarios. Therefore, this study utilizes BIT* as the
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foundation for RAOA operations. Figure 4 provides an illustration
of its operational procedures (Nenavath and Perumal, 2024).

In Figure 4, the operational flow of BIT* constitutes an iterative
batch sampling process. It intelligently expands sampling batches
within the state space and searches for random geometric
configurations to identify and continuously optimize paths. BIT*
explores the solution space by maintaining a tree structure
7T = (V,E). Among these, the vertex set V represents explored
states, while the edge set E denotes feasible paths between states.
Its core lies in generating a sampling batch during each iteration and
computing heuristic values to guide the search direction. For any
configuration g formed by the joint angles of an arbitrary robotic
arms, its heuristic value is jointly determined by the cost ccyrrent Of
the current solution and the estimated cost (EC) h (g) to the target.
The algorithm first constructs two search trees from the start and
target points, respectively, and continuously performs heuristic
sorting, as shown in Equation 4 (Huynh et al,, 2023).

{ f(a)=g(q)+h(q) . 4)
V(q) = min(ccurrenta g (CI) +h (q))

In Equation 4, g(q) represents the actual path cost from the
starting point gy to the current state g (e.g., path length (PL)). /1 (q)
denotes the heuristic EC from q to the target point gg,1, typically
using Euclidean distance. f(gq) is used to prioritize candidate
expansion nodes, favoring exploration in potentially optimal path
directions. ceyrrent represents the total path cost of currently known
feasible solutions. v(q) denotes the upper bound on path cost
achievable via node F, used for ranking and pruning (Xu et al,
2022). In each batch processing, if v(q) > ccurrent holds, it indicates
that the node cannot produce a better solution and is pruned. The
algorithm only expands vertices that satisfy f(q)<ccyrrent and
v(q) < Ceurrent> thereby effectively pruning search regions unlikely
to improve the current solution. Whenever a new solution or a better
solution is found, ccyrrent is updated, and the search restarts to find a
better path on a more finely sampled graph (Johnson et al., 2023).

However, the standard BIT* algorithm is primarily optimized
for static environments and struggles to effectively handle dynamic
changes such as leaf swaying in orchards. Long-range relationships
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FIGURE 5
Schematic illustration of the BiLSTM architecture.

and forward-backward contextual information in time-series data
can be effectively captured by BiLSTM thanks to its special
bidirectional gated recurrent structure (Yu et al, 2024).
Therefore, this study introduces BiLSTM into BIT*. Its core
function is to capture the temporal movement patterns of
dynamic obstacles. It learns trends in direction and velocity
changes from historical trajectories through a bidirectional gating
mechanism, enabling predictions of future positions within short
time intervals. These predictions serve as prior knowledge that is fed
into the BIT* algorithm. This allows the algorithm to proactively
avoid areas where dynamic obstacles are expected to be during the
path search. This enhances the planning system’s foresight and
improves the success rate of dynamic obstacle avoidance. The
structure of BiLSTM is shown in Figure 5.

In Figure 5, the BILSTM consists of two independent LSTM
layers, forward and backward, which process the sequence input in
the forward and reverse directions, respectively. The hidden state
(HS) outputs from both directions are ultimately combined to
capture the full contextual information. The core of the BiLSTM
is its gating mechanism. Its computational steps involve the forget
gate fy, the input gate i;, the output gate oy, and cell state (CS)
updates. At time step ¢, the forward LSTM (denoted as LSTM ) first
determines which information should be forgotten and which new
information needs to be stored, as shown in Equation 5 (Kumudham
et al., 2024).

o=y )41

i{ =o(W;- [he1, %] + b;)

C; = tanh(W¢ - U‘Et—l:xt] +bc)
C, = f*Ciy +i7C,

()

In Equation 5, x; represents the current input. {bf,b,»,bc}
denotes the corresponding bias. {Wf,W,-,W,} signifies the
corresponding weight. h;_; indicates the HS from the previous
time step. f; determines which information from the previous
CS C;-; should be retained or forgotten. i;, together with the
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candidate CS C;, jointly determines which information needs to
be updated into the CS at the current time step. C; is the current CS,
computed jointly by f¢, C;_y, and Ct. Next, based on the updated CS,
LSTM;, computes o; and the current HS A, as shown in Equation 6.
{ 0, =0(W,- [h1,x,] +bo) 6)
h; = os* tanh (C;)

In Equation 6, W, and b, represent the weights and bias of oy,
respectively. For the reverse LSTM (denoted as LSTMp), it is
computed in the same manner but operates in reverse along the
time series, thereby generating the reverse HS h; (Zhai et al., 2024).
Finally, the output of the BILSTM at time step ¢ is the concatenation
of the forward HS h; and the backward HS h;, yielding y; = [hy, h;].
This enables the model to fuse bidirectional contextual information
across the entire sequence. The BiLSTM takes as input a time-based,
sliding-window sequence of dynamic obstacle states, each of which
typically contains three-dimensional position coordinates. This
sequence is continuously acquired and provided by the system
during operation through its real-time perception and tracking
module. The network’s final output is a predicted sequence of
dynamic obstacle positions over several future planning cycles.
This sequence is converted into a dynamic cost map that directly
guides the generation of collision-free trajectories for the BIT*
search. Consequently, this study investigates the BIT* based on
the fusion capabilities of the BiLSTM for temporal prediction,
constructing a RAOA module. Figure 6 displays its structure.

In Figure 6, this module employs the BIT* algorithm as its core
framework. Through its iterative batch sampling and heuristic
pruning mechanisms, it achieves efficient and asymptotically
optimal path planning for robotic arms in complex, unstructured
environments. This module integrates a BILSTM neural network,
leveraging its powerful bidirectional long-range temporal
dependency modeling capabilities to accurately predict the

movement trends of dynamic obstacles such as swaying branches
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FIGURE 6
Schematic illustration of the RAOA module architecture.

Backbone

FIGURE 7
Schematic illustration of the YOLOv8-B* structure.

and leaves. This predictive information is incorporated into the BIT*
search process from the beginning, which significantly enhances the
planning system’s forward-looking decision-making capabilities and
the robustness of dynamic obstacle avoidance. Ultimately, this
ensures the robotic arms generates collision-free trajectories that
are safe, smooth, and actively adapt to environmental changes. In
summary, this research integrates the harvesting target positioning
module with the RAOA module to construct the YOLOvS8-B*
harvesting target positioning and RAOA algorithm. Its overall
structure is illustrated in Figure 7.

0
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In Figure 7, the algorithm first employs the ST BN within the
harvesting target positioning module to extract multi-scale global
features, enhancing the model’s perception of occluded targets and
complex backgrounds. The YOLOV8 framework then utilizes its FPN
to achieve MSFF. An uncoupled detection head simultaneously
performs fruit classification and precise localization, ultimately
outputting the fruit’s exact pixel coordinates. Subsequently, hand-
eye calibration converts the 2D coordinates into a 3D pose within the
robot’s base coordinate system. This pose, along with depth point
cloud data, is input into the RAOA module. Within this module, a
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BiLSTM network predicts the motion trajectories of dynamic
obstacles. The BIT* algorithm performs real-time, collision-free
path planning based on environmental geometry and dynamic
prediction results. It ultimately generates an optimal sequence of
motion trajectories for the joint space of the robotic arms.

Additionally, in practical deployment, the visual system adopted
in this research employs an “eye-on-hand” configuration, where the
camera is fixed outside the robot’s workspace. This setup stabilizes
the camera’s field of view during robotic arm movements. This
enables continuous observation of the relationships between the
robotic arm, the target fruit, and dynamic obstacles. It provides the
BIT* planner with stable, global environmental perception input.
This setup avoids the severe perspective shifts and occlusion issues
inherent in “eye-on-hand” configurations caused by robotic arm
motion. It simplifies the complexity of hand-eye calibration and
coordinate transformation, thereby enhancing the robustness and
real-time performance of the entire vision servo system.

3 Results and analysis

Testing is done in two dimensions: target localization and
obstacle avoidance planning, to confirm the efficacy of the
suggested YOLOVS-B* algorithm in intricate agricultural settings.
The target localization dimension evaluates fruit RA and localization
deviation by constructing test sets with varying occlusions and
lighting conditions. The obstacle avoidance planning dimension
analyzes path planning efficiency by generating dynamic and
static obstacles in typical orchard scenarios. The algorithm’s
efficacy is comprehensively validated through comparative
experiments. The testing conducts systematic testing on a mobile
robotic platform equipped with a six-degree-of-freedom robotic arm.
Using peach trees and their fruits as representative subjects,
their
characteristics of dense growth and susceptibility to obstruction

algorithm  validation is performed specifically for
by branches and foliage. Subsequent simulations and performance
analyses are all based on this specific crop scenario.

To ensure the validity of statistical inference, the study rigorously
selects appropriate statistical methods based on data characteristics.
Performance metrics for the target localization experiment are
calculated using a large-scale independent test set. To account for
environmental uncertainty, metrics for the obstacle avoidance
planning experiment are obtained through independent, repeated
runs across 30 randomly generated dynamic scenarios. For all
intergroup comparisons of continuous performance metrics, this
study employs independent samples t-tests to assess the significance
of mean differences. Benefiting from ample samples and experimental
repetitions, the sample mean distributions of performance metrics
satisfies the conditions of the central limit theorem, meeting the
requirements for parametric testing. All significance results (e.g.,
p < 005 p < 001) are based on this test, indicating that
improvements in algorithm performance are statistically significant.

3.1 Target positioning performance testing

In target localization performance testing, the study leverages
the PyTorch deep learning framework to implement the YOLOVS-
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B* architecture. OpenCV is utilized for image preprocessing and
result visualization, with the Ultralytics YOLOV8 open-source code
repository serving as the foundation for algorithm development.
Python 3.8 automates testing frameworks simulated various typical
agricultural scenarios, including multi-object occlusion, sudden
lighting changes, and foliage interference. This approach supports
configurable dynamic environmental parameters and real-time
system stress testing. Parameter settings align with those
described in the research methodology section. The study
employs the PhenoBench dataset as both the test and training
sets (stratified randomly split 2:8). This dataset comprises over
100,000 high-resolution aerial images of farmland captured by
drones, providing pixel-level ~annotated crop semantic
segmentation masks and annotations for more than 500,000 crop
leaf instances. The PhenoBench dataset closely mirrors the visual
challenges encountered in close-range harvesting scenarios by
encompassing dense crop arrangements, complex foliage
occlusions, and variable lighting conditions. Its large-scale, high-

quality pixel-level annotations enable models to learn more

generalizable  feature  representations, thereby enhancing
robustness in both structured and unstructured orchard
environments. Consequently, selecting this dataset for algorithm
validation is both reasonable and representative (Weyler

et al., 2024).

Additionally, the study compares methods from references
(Miao et al, 2023; Gong et al, 2022; Hu et al, 2022) with
YOLOvV8-B*, specifically YOLOv5 and
processing fusion algorithm (YOLOvV5T), multisource image-
fused mask R-CNN (MMRC), and YOLOv3 and mask R-CNN
integrated dual-network framework (YOLOv3MR). These methods
approaches from 2022 to 2024,
encompassing technical paradigms such as traditional and deep

traditional ~ image

represent state-of-the-art
learning fusion, multi-source information perception, and dual-
optimization. ~ They
comprehensive validation of YOLOV8-B*’s object localization

network  collaborative provide a
performance. To validate the performance of the algorithm in
complex, unstructured field environments, as described in the
background section, field images of peach trees exhibiting typical
occlusions, uneven lighting, and foliage interference are selected for
testing. The target localization performance of different methods is
visually compared, with results shown in Figure 8.

In Figure 8, YOLOV5T’s feature extraction capability is
constrained by the simple fusion of traditional image processing
with YOLOVS5, resulting in the detection of only 17 fruits (recall rate
of 77.3%). This highlights the limitations of local modeling
mechanisms in complex environments. MMRC detects 18 fruits
(81.8%) by relying on multi-source image registration strategies, but
its geometric reconstruction process suffers from cumulative errors.
Although YOLOV3MR receives 19 detections (86.4%) through dual
network integration with YOLOv3 and Mask R-CNN, it fails to
resolve issues of insufficient feature alignment and sensitivity to
occlusion. Additionally, YOLOvV8-B* significantly enhances spatial
perception of partially occluded fruits through ST’s W-MSA/SW-
MSA, achieving 21 detections (95.5%) to lead the evaluation. The
W-MSA/SW-MSA mechanism allows the model to infer and fill in
visual details in areas blocked by foliage. This is done by creating
connections between non-local windows. This allows the model to
use contextual information from unobscured parts of the fruit. This
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directly validates its effective handling of unstructured challenges,
such as “branch occlusion” and “scale variation,” as defined in the
background. It demonstrates that the introduced global attention
mechanism significantly improves robustness of visual perception in
complex, real-world environments. Subsequently, to quantitatively
assess model accuracy and robustness, the study compares RA and
recall under occlusion (RO) across different methods. The former
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represents the proportion of correctly identified fruits compared to
the total number of fruits. The latter indicates the proportion of
successfully detected fruits among all obscured fruits under
occlusion conditions. The results are shown in Figure 9.

In Figure 9a, YOLOv8-B* achieves a significantly higher RA
range of 93.0%-96.5% compared to the baseline model (p < 0.001).
By incorporating the ST module to enhance MSFF and global
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context modeling, it effectively improves fruit RA detection under
complex occlusions. This improvement stems from the Swin
ability to surpass the local receptive field
limitations of traditional CNNs by incorporating discriminative

Transformer’s

features throughout the entire image. This makes it more robust
against inter-class confusion caused by uneven lighting or similar
colors. YOLOVST, relying on traditional image processing and
simple YOLOVS5 fusion, is limited in feature extraction capability,
achieving an RA range of only 85.2%-89.8%. MMRC partially
improves perception through its multi-source image fusion
strategy, attaining an RA of 88.8%-92.4%. In Figure Ob,
YOLOV8-B* also demonstrates a significant lead in RO ranges of
85.1%-89.7% under occlusion scenarios (p < 0.001). This advantage
stems from the ST’s sliding window mechanism, which enhances
feature retention and spatial reasoning capabilities for partially
occluded objects. Specifically, SW-MSA enables cross-window
information exchange through window shifting, allowing the
model to “borrow” features from adjacent visible regions to
enhance the representation of the occluded fruit body. Although
YOLOV3MR achieves relatively high recall rates (80.2%-85.9%) by
integrating YOLOv3 and Mask R-CNN, it does not fundamentally
resolve the issue of feature loss caused by occlusion. MMRC relies on
multi-source registration and geometric reconstruction, yielding RO
values of 75.3%-82.7%. The localization error (LE) of the different
methods is then compared to evaluate the positioning accuracy of
the models. LE is defined as the Euclidean distance between the
predicted fruit center and the ground-truth center, as shown
in Figure 10.

In Figures 10ab, YOLOv8-B* exhibits an average LE of
12.33 mm with the lowest standard deviation (1.70 mm),
demonstrating significantly superior performance compared to
YOLOVST (23.21 mm, p < 0.001), MMRC (19.18 mm, p < 0.01),
and YOLOV3MR (15.70 mm, p < 0.05). The main source of this
benefit is the W-MSA and SW-MSA processes of the ST, which
improve its capacity to represent global spatial relationships. This
mechanism enables BOB regression to anchor more precisely to the
visible portion of the fruit and its geometric center, reducing drift
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errors caused by misleading local features. In typical scenarios,
YOLOV8-B* achieves an optimal value of 9.8 mm in Scenario 6,
where its sliding window attention effectively captures the geometric
features of occluded fruits. The model can more accurately infer the
complete contours and center positions of partially obscured fruits
thereby
positioning accuracy. YOLOv3MR achieves 13.5 mm in Scenario

through global context, achieving millimeter-level
1 but overlaps with YOLOv8-B*’s 12.9 mm performance in Scenario
10, revealing limitations in feature alignment during dual-network
integration. MMRC’s minimum value of 15.5 mm in Scenario
28 remains higher than YOLOvV8-B* in most scenarios, indicating
that multi-source image registration fails to resolve cumulative error
issues. YOLOVS5T exhibits a maximum error of 28.2 mm in Scenario
10, highlighting the instability of traditional frameworks under
dynamic lighting conditions. To evaluate the model’s object
localization efficiency and real-time performance, this study
compares the processing frame rate (PFR) and inference time
(IT) across different methods, as displayed in Table 1.

In Table 1, YOLOV8-B* achieves the optimal performance-
speed balance with a frame rate of 32.7 fps and a latency of 32.6 ms.
Its IT is significantly lower than MMRC (55.1 ms, p < 0.001) and
YOLOvV3MR (35.0 ms, p < 0.01), attributed to YOLOv8’s C2F
module and decoupled detection head effectively mitigating the
computational overhead of ST. Although Swin Transformer
introduces global computations, its windowed attention design
effectively complements YOLOVS8’s efficient feature extraction
pipeline and keeps computational complexity within acceptable
limits. Although YOLOV5T achieves the highest frame rate of
46.1 fps in Scenario 20, this comes at the expense of localization
accuracy. MMRC exhibits a worst latency of 59.1 m in Scenario 30,
revealing inherent bottlenecks in multi-source fusion.
YOLOvV3MR achieves the best IT of 31.7 ms in Scenario 25,
overlapping with YOLOvV8-B* performance, yet its average
rate of 27.1 fps YOLOv8-B*
simultaneously achieves 34.9 fps and 283 ms latency in

frame remains insufficient.

Scenario 20, validating the synergistic advantages of global
modeling and lightweight design.
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TABLE 1 Validation of the model's object localization efficiency and real-time performance.

Task scenarios PFR (fps) IT (ms)
YOLOV5T MMRC YOLOv3MR YOLOv8-B* YOLOvS5T MMRC YOLOv3MR YOLOv8-B*

10 437 224 28.1 313 208 57.6 393 349

15 45.1 154 26.9 311 243 46.1 38.8 343

20 46.1 19.3 25.4 349 209 529 338 283

25 44.0 20.0 269 357 193 524 317 344

30 403 185 253 310 2.1 59.1 308 316

Means 443 19.7 27.1 327 22.1 55.1 35.0 326
Standard deviation 2.0 2.4 1.6 1.9 2.1 53 3.2 2.3

FIGURE 11
Efficiency verification of harvesting path planning. (a) Yv8-B* (b) HDRRT (c) HOPP (d) AVVP.

3.2 Obstacle avoidance performance generated by each method, their planning efficiency is intuitively
verification of robotic arms evaluated, as shown in Figure 11.
In Figure 11a, the YOLOvV8-B* algorithm effectively avoids
For RAOA performance validation, the study constructs a  obstacles and generates a globally optimal path through its
multi-scenario integrated testing environment within the Gazebo  improved heuristic search structure and dynamic weight
simulation platform, featuring dense orchards, crop row aisles,  adjustment mechanism, achieving a minimum distance of
and mobile obstacles. Robot control and algorithm deployment  2.27 m, significantly outperforming the comparison model. The
are implemented via ROS. Continuous multi-source data streams ~ BiLSTM’s dynamic obstacle prediction prior enables the BIT*
are captured at high precision: point cloud from depth cameras  algorithm to proactively avoid areas where obstacles may appear
(30Hz), LiDAR scans (40Hz), and robotic arm joint torques (1kHz  in the future during heuristic pruning. This directs the search
sampling). These streams encompasses typical stress events  toward safer, more direct pathways and prevents path detours
marked by dynamic foliage interference, sudden obstacle caused by temporary obstacle avoidance. In Figure 11b, HDRRT
intrusions, and multi-target harvesting path conflicts. The (2.39 m) enhances exploration efficiency through random tree
robot and algorithm implementation architecture aligns with  expansion but remains inferior to YOLOvV8-B*’s structured search
the target positioning performance testing. Furthermore, the  strategy. This fully demonstrates the core influence of algorithmic
study compares YOLOvV8-B* with methods from (Zhang et al.,  architecture on path planning performance in complex
2024; Liu, 2022; Yietal,, 2024): HDRRT, HOPP, and active vision-  environments. In Figure 1lc, HOPP (2.46 m) relies on a
based view planner (AVVP). These advanced methods from  traditional rule base, resulting in numerous sharp angles in the
2022-2024 encompass dynamic sampling path planning, path and generating redundant acceleration/deceleration phases
hierarchical = optimization  decision-making, and active  during RA motion. In Figure 11d, AVVP (3.06 m) integrates
perception planning, comprehensively validating YOLOv8-B*’s  visual perception but fails to prioritize targets, resulting in the
RAOA capabilities. The study first selects four ripe fruits as targets ~ longest planned path. The YOLOv8-B* model has shorter global
within a 1.5 m® space. Different methods are employed to control ~ paths, which directly reduces the overall exposure risk and
the robotic arms for fruit picking. By comparing the picking paths ~ cumulative collision probability for robotic arms navigating
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FIGURE 12

Validation of the model's comprehensive efficiency in obstacle avoidance planning. (a) PL difference (b) SPT difference.

through dense obstacles. This extends the fault-free operation
time of robotic arms in unstructured environments with tangled
branches, thereby enhancing picking efficiency. Subsequently, the
study compares the single obstacle avoidance PL and single
planning time (SPT) across different methods to evaluate the
overall efficiency of obstacle avoidance planning, as shown
in Figure 12.

In Figure 12a, the PL range of YOLOv8-B* (9.8 cm™ to 15.0 cm™)
significantly exceeds that of HDRRT (18.5 cm™ to 24.3 cm’, p <
0.001) and HOPP’s 152 cm-20.4 cm (p < 0.01), and AVVP’s
130 cm-187 cm (p < 0.05).
compact paths through heuristic pruning and BiLSTM dynamic

Its BIT* algorithm generates

obstacle prediction. The prediction error of BiLSTM primarily
the
predictions enable BIT* to prune future safe regions more

influences conservatism of pruning: high-confidence
aggressively, directly planning shorter paths. Whereas with low
confidence, the algorithm retains a wider safety margin, slightly
increasing PL to ensure robustness. AVVP achieves an optimal
single point of 13.0 cm, but increases to 18.4 cm in Scenario 30,
indicating instability in its view iteration mechanism. HDRRT’s
random sampling results in the highest path redundancy, reaching
23.4 cm in Scenario 0. In environments with dense obstacles, the
more compact path of YOLOv8-B* enables the robotic arm’s end-
effector to navigate narrow spaces with smaller movements and
closer adherence to the intended trajectory. This significantly reduces
unexpected scrapes or collisions caused by path redundancy. In
Figure  12b, YOLOv8-B*
competitors (p < 0.001) with an SPT range of 1.45 s-2.86 s,

where its BILSTM-augmented architecture compresses the search

also  significantly  outperforms

space through spatio-temporal modeling. By preemptively excluding
a large number of invalid sampling regions containing future
collision risks, BiLSTM’s predictions reduce the number of
vertices and edges that BIT* needs to evaluate. This substantially
lowers the computational overhead per iteration. Although HOPP

Frontiers in Mechanical Engineering

achieves 2.42 s in Scenario 0, its peak value of 3.87 s overlaps with
YOLOV8-B*, revealing the computational burden of hierarchical
optimization. HDRRT is the least efficient in random sampling,
taking 3.04 s-5.25 s YOLOV8-B*’s extremely short planning time
enables the system to perform high-frequency replanning. The
robotic arm can adjust its trajectory nearly in real time when
encountering sudden dynamic obstacles, such as swaying
branches, or target position updates. This ability is a prerequisite
for achieving reliable dynamic obstacle avoidance. The study also
compares the energy consumption of manipulator (ECM) across
different methods to evaluate model efficiency, as shown in Figure 13.

In Figures 13a,b, the average ECM of YOLOV8-B* is 124.58 J,
significantly lower than that of HDRRT (228.35 ], p < 0.001), HOPP
(186.68 ], p < 0.01), and AVVP (158.52 ], p < 0.05). This advantage
stems from the BIT* algorithm generating optimal paths to
minimize redundant motion, combined with BiLSTM dynamic
prediction to avoid abrupt stops and re-planning. BiLSTM’s
precise predictions enable the robotic arm to smoothly navigate
around dynamic obstacles in advance, avoiding the abrupt braking
and re-acceleration processes common in traditional reactive
obstacle avoidance. This represents one of the key mechanisms
for reducing energy consumption. YOLOV8-B* achieves the lowest
energy consumption of 95 J in Scenario 1, where its heuristic
pruning and spatio-temporal prediction effectively optimize
trajectories. The shorter PL combined with forward-looking
speed planning enables the joint motor to operate within its
This reduces the
additional torque required to overcome inertia and minimizes
energy loss. Although AVVP achieves 128 ] in Scenario 20,

overlapping with YOLOvV8-B*’s 142 J performance in Scenario 1,

high-efficiency range most of the time.

its view iteration mechanism causes additional kinetic energy
consumption to rise to 143 J in Scenario 8. HOPP achieves low
energy consumption of 153 J in Scenario 23, but does not consider
joint torque continuity, resulting in energy consumption as high as
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TABLE 2 Validation of the model’s potential for promotion and application.

Task scenarios CL (GFlops) MC (MB)
HDRRT HOPP AVVP YOLOvS8-B* HDRRT HOPP AVVP YOLOv8-B*
10 235 239 494 21.3 160 224 221 205
15 25.1 328 545 219 167 245 253 207
20 24.4 23.6 64.4 24.5 160 247 186 171
25 232 282 70.1 242 126 232 231 190
30 199 24 72.6 213 167 230 259 160
Means 27 26.1 63.9 27 159 249 227 187
Standard deviation 2.0 35 9.0 1.3 15 31 25 17

223 J in Scenarios 11 and 12. HDRRT’s random sampling leads to
path redundancy, causing the highest energy consumption of 283 J
in cenario 30. YOLOv8-B* has a lower kinetic energy consumption
that directly reflects the smoothness and efficiency of the robotic
arm’s trajectory. This avoids abrupt acceleration and deceleration
caused by emergency obstacle avoidance or suboptimal path
planning. This stable motion further reduces the risk of contact
collisions between the end-effector and fruits or branches due to
vibration or inertia. Subsequent studies compares the single-task
computational load (CL) and memory consumption (MC) of
different methods to evaluate the models’ potential for broader
application, as displayed in Table 2.

Table 2 shows that YOLOV8-B* achieves optimal resource
efficiency with a CL of 22.7 GFlops and MC of 187 MB. Its CL
is significantly lower than AVVP’s 63.9 GFlops (p < 0.001). Its MC is
significantly lower than HOPP’s 249 MB (p < 0.01). This advantage
stems from the synergistic optimization of BIT* heuristic search and
BiLSTM prediction, which reduces computational iterations, while
the ST window attention mechanism minimizes memory usage
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through parameter sharing. As a lightweight temporal module,
BiLSTM  replaces the dynamic modeling
traditionally achieved through extensive sampling and collision
detection, fundamentally reducing the computational complexity
of the planner. Among these, YOLOv8-B* achieves the lowest CL of
21.3 GFlops in Scenarios 10 and 30. While HDRRT reaches
19.9 GFlops in Scenario 30, overlapping with YOLOV8-B*’s
performance, this comes at the cost of reduced path quality.
AVVP, benefiting from multi-source perception and view

environment

iteration optimization, achieves peak loads of 72.2 GFlops and
72.6 GFlops in Scenarios 5 and 30, respectively. HOPP’s
hierarchical requires  pre-storing global  path
information, leading to MC of 315 MB in Scenario 5,

structure

significantly exceeding YOLOvV8-B*’s 187 MB performance in the
same scenario. The reduced computational and memory demands of
YOLOV8-B* ensure stable operation of the algorithm on onboard
computing units. This frees ample resources for processing high-
frequency visual feedback and continuous obstacle avoidance

planning. This safeguards the real-time performance and
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TABLE 3 Verification of absorption/replacement for basic modules.

10.3389/fmech.2026.1741396

Settings YOLOvV8 Swin transformer BIT* BiLSTM RA (%) PL (cm) CL (GFlops)
Full (Yv8-B¥) v v v v 96.5 124 227
Al (w/o Swin Transformer) v X v v 90.1 13.1 18.4
A2 (w/o BiLSTM) v v v X 95.8 18.7 21.8
A3 (w/o SwinT and BiLSTM) v X v x 89.6 19.2 17.2
YOLOvV5 — v v v 93 13.8 24.5
YOLOvV10 — v v v 95.3 12.9 25.7
ECA v — v v 92.7 14.5 19.3
SE attention v — v v 93.4 14.2 19.5
MobileViT v — 4 v 94.6 13.6 20.3
ConvFormer v — v v 95 13.3 23
RRT* v v — v 96 159 19.7
RRTX v v — v 96.1 16.4 26.4
LSTM v 4 4 — 95.9 13.8 22
TCN v v v — 95.8 14.1 23.4

reliability of the entire perception-planning loop in complex

scenarios, forming the foundational system for achieving

sustained safe obstacle avoidance. The deep collaboration
between modules significantly reduces the system’s overall
resource consumption compared to the simple sum of individual
modules, demonstrating the superiority of the architectural design.

To validate the necessity of the base module design, the study
performs ablation tests on the base module. Visual backbones are
replaced with YOLOvV5, YOLOVIO0, efficient channel attention
(ECA), squeeze-and-excitation (SE) attention, mobile vision
Transformer (MobileViT), and convolution-enhanced
Transformer (ConvFormer). Planners are replaced with rapidly-
exploring random tree star (RRT*) and RRT with eXact anytime
optimization (RRTX). LSTM and temporal convolutional network
(TCN) are used to replace the temporal predictor (BiLSTM). The
results are shown in Table 3.

As shown in Table 3, the complete model (Yv8-B*) achieves
optimal overall performance in terms of RA (96.5%), PL
(12.4 c¢cm), and CL (22.7 GFlops). Ablation experiments reveal
that removing Swin Transformer (A1) significantly degrades RA
(p < 0.001) and increases PL. This demonstrates its critical role in
enhancing RA and generating compact paths through global
modeling. Removing BiLSTM (A2) substantially increases PL
to 18.7 cm (p < 0.001), validating dynamic prediction’s core
contribution to path planning efficiency. In module
replacements, MobileViT and ConvFormer both yields lower
RA (94.6%, 95.0%) than the full model with longer paths. ECA
and SE demonstrates weaker accuracy and path performance.
Replacing BIT with RRT and RRTX increases PL to 15.9 cm and
16.4 cm respectively (p < 0.01), with RRTX achieving higher CL.
Substituting BiLSTM with LSTM and TCN also results in longer
PLs. Experiments quantitatively confirm that the selected Swin
Transformer and BiLSTM modules achieve the optimal balance

among RA, path planning efficiency, and CL.
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4 Discussion and conclusion

To address the challenges of inaccurate fruit localization and
inefficient dynamic obstacle avoidance in complex agricultural
environments, this study proposed the YOLOv8-B* fusion
algorithm based on an enhanced YOLOvV8 and BIT*. By
incorporating the ST module to enhance MSFF and global
context modeling, and integrating a BiLSTM network to endow
the BIT* algorithm with dynamic obstacle prediction capabilities, an
integrated perception-decision-control harvesting robot system was
constructed. Experiments demonstrated that YOLOv8-B* achieved
RA of 93.0%-96.5%, RO of 85.1%-89.7%, and a mean LE of
12.33 mm in the target localization dimension. Compared to the
optimal reference model, it improved accuracy by 3.5% and reduced
LE by 21.5%. Moreover, in the obstacle avoidance planning
dimension, it achieved a PL of 9.8 cm-5.0 cm and a planning
time of 1.45 s-2.86 s, reducing PL by 17.8% and improving planning
efficiency by 38.2% compared to the optimal comparison model. In
actual deployment, the ECM is reduced to 124.58 J, with single-task
CL and MC at 22.7 GFlops and 187 MB respectively. Compared to
mainstream methods, resource consumption is reduced by an
and 24.9%, the
advantages efficiency,

average of 42.3% validating algorithm’s

comprehensive in accuracy, energy
consumption, and resource economy.

The architectural innovation of YOLOV8-B* lies in its dual-
module coordination mechanism: The visual perception module
based on ST overcomes the local perception limitations of
CNNs

mechanism, significantly enhancing the representation capability

traditional through a sliding window attention
of occluded object features. The BIT*-enhanced planning module
addresses the response lag issue for dynamic obstacles by combining
spatio-temporal context prediction with heuristic search. The two
components form a closed-loop system through hand-eye

calibration, enabling seamless transition from fruit recognition to
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path planning. This research has achieved a significant reduction in
the CL and memory footprint of single-task operations, compared
to the typical computing power and memory capacity of
mainstream embedded AI computing platforms like Jetson
Orin NX. This indicates that the Yv8-B* algorithm architecture
possesses the potential for direct porting to such platforms and
achieving real-time operation. However, the research has several
limitations. First, the ST module has high computational
demands, so it needs to be optimized and validated further for
deployment on embedded devices. BILSTM’s dynamic prediction
relies on historical data quality, potentially leading to error
accumulation under extreme occlusion scenarios. Future work
will address these challenges through the design of a lightweight

hybrid attention mechanism that balances computational
efficiency and model performance. Additionally, the
development of model lightweighting and operator

optimization deployment strategies tailored for edge computing
platforms like Jetson will ensure the stable, real-time operation of
the algorithm in actual onboard robot systems. Additionally, a
multi-sensor fusion dynamic obstacle trajectory compensation
algorithm will be developed to enhance system robustness in
adverse environments.
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