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Introduction: In the electromechanical system, the performance of a direct
current brushless motor is determined by its rolling bearings, which play a
decisive role in ensuring the safe and smooth operation of the entire system.
Thus, fault diagnosis of these bearings is of paramount importance. However,
existing methods for diagnosing faults often suffer from low accuracy, particularly
under complex noise conditions.

Methods: This study proposes an innovative approach to fault diagnosis that
enhances the accuracy and robustness of detecting faults in brushless direct
current motor rolling bearings. To achieve this goal, this study first employs
wavelet threshold denoising to suppress noise in motor current signals and
performs multiscale feature fusion. Additionally, a fault diagnosis method is
developed by integrating a convolutional attention mechanism.

Results: The outcomes indicated that the proposed diagnostic method achieved
a recall rate of 90.89% and a precision rate of 98.69%, both higher than those of
the comparative methods. The suggested approach outperformed the
comparison methods in all four fault categories, with diagnostic accuracy
rates of 99.4%, 98.9%, 98.8%, and 99.3%.

Discussion: The findings of the experiments reveal that the proposed diagnostic
method can effectively identify faults in rolling bearings of brushless direct
current motors, providing a theoretical foundation for research in the field of
electromechanical system fault diagnosis. The contributions of this research are
in three aspects. First, the BLDCM rolling bearing current signal is reconstructed
using a multiscale feature and wavelet threshold denoising. This significantly
improves the signal quality and ability to extract fault features. Second, CBAM,
residual network and Swin Transformer encoder are integrated into the fault
diagnosis model. Compared with the existing methods, higher accuracy and
precision are achieved. This study finally provides a solid theoretical foundation
for further research in the field of electromechanical system fault diagnosis,
particularly for BLDCM rolling bearing fault diagnosis under complex noise
conditions.

brushless direct current motors, convolutional attention, electromechanical systems,
multiscale features, noise suppression, rolling bearings, wavelet threshold denoising
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1 Background

Mechatronics is a technology system that integrates multiple
disciplines such as mechanics and electronics (Shang et al., 2025;
Zheng et al., 2025). The rolling bearings of brushless direct current
motor (BLDCM) play a decisive role in the safe and smooth
operation of electromechanical systems (EMSs), and its fault
diagnosis (FD) is extremely important. Many scholars have
conducted relevant research. For example, Lu used a
combination of literature analysis and case studies to conduct
analysis in an effort to solve the problem of low efficiency in
fault location of EMSs (Lu, 2024). Zhao et al. developed a
current assisted vibration fusion network to address the issues of
low accuracy and low precision in current diagnosis methods for
electromechanical drive systems (Zhao et al., 2024). Zhang et al.
proposed a FD framework based on ensemble learning in their study
on the low accuracy of actuator fault methods in aviation EMSs
(Zhang et al., 2024). Zhang et al. combined principal component
analysis and belief rule library to establish a FD model for EMSs,
which was difficult to extract features caused by excessive noise and
leads to poor accuracy in FD (Zhang et al., 2025). Zhao proposed a
fault detection model that combined wavelet energy packet and
improved support vector machine in his research on the difficulty of
detecting faults in EMSs (Zhao, 2023).

The accurate diagnosis of BLDCM rolling bearing faults
determines whether the electromechanical drive system operates
safely and smoothly. Wavelet threshold denoising (WTD) is a signal
processing technique that has the advantages of multiscale analysis
capability and noise whitening. It has been extensively utilized in the
domains of EMS monitoring and audio processing (Das and Sahana,
2025). Convolutional block attention module (CBAM) is a deep
learning technique that has advantages such as cross modal
adaptation and strong flexibility, and has been widely used in
fields such as feature extraction (Xu et al, 2023). Multiple
experts have conducted relevant research. For example, Wang
et al. constructed a compressed sensing reconstruction
framework based on wavelet domain consistency constraints to
address the issue of difficult noise removal (Wang et al., 2024a).
To solve the problem of low accuracy brought on by noise in the
existing stock price prediction systems, Singh et al. developed a
technique based on discrete wavelet denoising (Singh et al., 2025).
Sahoo et al. introduced a general wavelet selection method based on
the sparsity of detail components in the wavelet domain (Sahoo
et al,, 2024). Bhuyan et al. combined residual networks with CBAM
The model
outperformed the comparison model, according to the

comparative experimental data (Bhuyan et al, 2024). To solve

to construct a tea disease identification model.

the problem of low detection effectiveness in ground penetrating
radar, Wang et al. built a radar detection system by combining
CBAM with YOLOV8. The findings showed that the suggested
system had higher detection efficiency compared to the original
system (Wang et al., 2024b).

The above research results indicate that there are few methods
for FD of BLDCM rolling bearings in EMSs under complex noise
conditions, and there is a problem of low accuracy. Therefore,
initially, wavelet denoising techniques were used to reconstruct
multiscale feature parameters (WP) from the biphasic current
(BC) signals of BLDCM RB, in order to reduce noise and
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improve fault feature extraction capability. Afterwards, the
CBAM, residual network, and Swin Transformer (ST) encoder
were integrated together to create an FD model for EMS. To
improve the accuracy of RB FD in EMSs using BLDCMs, this
model utilizes multiscale feature fusion with signal and noise
suppression. This study is innovative as it uses WTD for
multiscale feature algebraic reconstruction of BC signals from
BLDCM RB, while combining CBAM, residual network, and ST
encoder. The purpose of this method is to provide theoretical basis
for EMS FD research.

2 Methods and materials

2.1 Wavelet-based current signal noise
suppression and multiscale feature fusion

Because of their high automation efficiency and precision
control, EMSs have been widely used in automotive and
aerospace applications in recent years. FD for BLDCM RBs is
especially important as a key component powering these systems.
However, current diagnostic methods suffer from low accuracy due
to noise interference. To suppress noise and improve fault feature
extraction capabilities, this study uses a WTD method to recover
multiscale feature parameters from BC waveforms. Before applying
WTD to suppress noise in BLDCM RB current signals, it is essential
to understand BC and its vector and algebraic reconstruction
processes. The process is illustrated in Figure 1 (Sulistyo et al,
2025; Zangana and Mustafa, 2024).

In Figure 1a, the BC is supplied by two independent alternating
current (AC) power sources, namely, Phase 1 and Phase 2. Phase
1 and 2 share the same frequency but have a phase difference (PD) of
90°, causing their peaks to alternate in time and thus forming a BC.
Equation 1 can be used to express the BC.

I=u+Av (1)

In Equation 1, I represents the magnitude of the BC in complex
form. u denotes the magnitude of BC 1, with a phase angle of 0°. v
denotes the magnitude of BC 2, with a phase angle of 90°. A denotes
the imaginary unit. To simplify the analysis and calculation of AC
circuits, the magnitude and phase of BCs are typically represented by
vectors in the complex plane, as shown in Equation 2.

Vector = Vu? + v + (arctan (u/v))A 2)

In Equation 2, Vu? +12 represents the vector magnitude.
(arctan(u/v) denotes the phase angle. Vector indicates the
vector representation. Combining Figure la with Equation 2
reveals that under normal conditions, the PD between the two
AC currents is 90°. If a circuit fault occurs, both the PD and current
magnitude will change. Therefore, by reconstructing the current
signal parameters, the fault characteristics of the data can be
highlighted. Current signal parameter reconstruction not only
involves changes in the magnitude of current 1 and current
2 through addition, subtraction, and multiplication operations,
but also includes calculating the phase angle changes of current
1 and current 2 to diagnose faults in RBs. Figure 1b provides an
illustration of the procedure. First, the BC is vectorized, and its
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The BC and its vector and algebraic reconstruction process. (a) Two phase current. (b) Algebraic reconstruction and vector calculation process of
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Process of WTD method.

amplitude and phase angle are calculated. Subsequently, vector
representation and algebraic reconstruction are performed.
Finally, prominent features are obtained to diagnose faults
through algorithms. To enhance the quality of algebraic
reconstruction, this study combines relevant literature and
employs a WTD method for algebraic reconstruction of the BC
signal from BLDCM RBs. The WTD method is a signal processing

technique based on wavelet transform (WT). It is extensively used in

Frontiers in Mechanical Engineering

— W)

Multiscale wavelet
transform

¢
Q [ .71

Threshold processing

03

Y,

Select the
wavelet function

Decompose the
number of layers

U™\

Wavelet reconstruction Denoising signal

domains like audio processing and EMS monitoring, where it uses
threshold processing to isolate noise from the actual signal. Figure 1
depicts the WTD procedure.

In Figure 2, the WTD process begins by inputting the original
noisy signal and performing WTs at multiple scales. During the
multiscale WT, an appropriate wavelet basis function (WBF) pair is
adopted to decompose the noisy original signal (OS), yielding the
quantity of decomposition levels (DLs). Next, the threshold and
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Preprocessing of current signals and multiscale feature fusion. (a) Current signal preprocessing. (b) Multi-scale feature fusion process.

function for wavelet threshold processing are chosen and
determined. Subsequently, reconstruction is performed via the
inverse WT. Finally, the denoised current signal is obtained. The
WT process can be expressed by Equation 3.

2j-1

] N-1
y(©) =) Y dixg (D + ) Wy (1)
k k=1

j=1

(3)

In Equation 3, j denotes the scale, k denotes the frequency. d ik
represents the wavelet coefficient with scale j and frequency k.
¢y (t) denotes the WBE. y(f) represents the OS. wy denotes the
high-frequency noise coefficient. J is the quantity of scales in the
wavelet decomposition. N is the quantity of samples in the high-
frequency component obtained from the WT. Threshold processing
d;»,;is shown in Equation 4.

’ d-’k,d-,k >a;
“ {of|dj',k|’ 5 @

In Equation 4, a; represents the threshold. To ensure effective
noise suppression, the study combines relevant literature and
multiple experiments to ultimately determine the WBF as
Db8 and the DL as 4. Therefore, the study employs the WID
method to suppress noise and fuse multiscale features in the BC
signal of the BLDCM RB. The preprocessing and multiscale feature
fusion of the current signal are illustrated in Figure 3.

Figure 3a illustrates the preprocessing steps for the current
signal. First, noise suppression is achieved using a four-level
wavelet decomposition with a WTD method to extract the
signal’s approximate information curve. Subsequently, algebraic
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operations are performed on the signal to obtain four types of
current signal features. Finally, the signal undergoes normalization
using the maximum-minimum normalization method to yield the
final current signal vector representation. This method is expressed

-

by Equation 5.

er: ; 2%-X i

- ®

In Equation 5, Xy and Xp., represent the lowest and highest
values, respectively. x,, denotes the normalized value. x is the
original data value. Thus, after normalization via the WTD method,
the current signal undergoes multiscale feature fusion. Figure 3b
illustrates the multiscale feature fusion process for the current signal.
First, the current signal is converted into a vector representation,
and its magnitude is extracted. Next, wavelet denoising is applied to
reduce noise interference. Specifically, algebraic reconstruction
methods, including addition, subtraction, multiplication, and
angle calculations, are employed to extract and fuse current
signal features across four scales. Ultimately, a neural network
these additional
examination and diagnosis.

receives processed  feature vectors for

2.2 FD method based on CBAM, noise
suppression, and multiscale feature fusion

After performing multiscale feature fusion on the current signals
of RBs in EMSs using BLDCM through WTD, a hybrid FD method
combining CBAM, residual networks, and ST encoders is studied
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Network model architecture after CBAM and residual neural network integration.

and designed. The channel attention module (CAM) and the spatial
attention module (SAM) make up the lightweight attention
mechanism (AM) module known as CBAM. Global average
pooling (GAP) and global max pooling (GMP) are used by the
CAM to obtain global information for every channel. A multilayer
perceptron (MLP) is then used to create CA weights. The CAM is
expressed by Equation 6.

Mc(F) = 8{MLP[Avgpool (F) + MLP[Maxpool (F)]}  (6)

In Equation 6, F means the input feature map. Avgpool (F) and
Max pool (F) mean GAP and max pooling. MLP displays the MLP.
& denotes the Sigmoid activation function (AF). Mc (F) denotes the
output processed by the CAM. The SAM first obtains weights for
each channel through the output of the CAM. Equation 7 illustrates
how these weights are subsequently transformed into SA weights by
using GAP and GMP.

Ms(F) = 8{f7"7 [ Avgpool (F); Max pool (F)]} (7)

In Equation 7, Ms(F) means the output processed by the SAM.
The study incorporates the CBAM module into a residual neural
network to take advantage of the AM’s benefits and its strong feature
learning power in an attempt to further enhance the model’s feature
representation capability and DA. Figure 4 displays the network
architecture following the integration of the residual neural
network and CBAM.

In Figure 4, BN denotes batch normalization, Conv represents
the convolutional layer (CL), and FC signifies the fully connected
layer (FCL). The notation 1@40 x 64 indicates that the number
1 before the @ denotes the number of input channels, while the
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number after the @ represents the input dimensions. In Module 1,
the CL, the BN layer, and the first execution of AF PReLU all yield
an output dimension of 38 x 62, with the CL employing
8 convolutional kernels (CKs). The output dimensions for the
second execution are both 36 x 60, with 16 CKs in the CL. Both the
CA and SA layers have an output size of 36 x 60, with kernel sizes
of 1 x 1 and 7 x 7 respectively, and 16 and 1 kernels respectively.
The max pooling layer and residual blocks both have an output
size of 18 x 30, with kernel sizes of 2 x 2 and 3 x 3 respectively, and
16 kernels each. In Module 2, the initial execution sets the output
dimensions of the CL, BN layer, and PReLU output layer to 16 x
28, with 24 CKs in the CL. The subsequent execution sets all
output dimensions to 14 x 26, with 32 CKs in the CL. Both the CA
and SA outputs maintain a dimension of 14 x 26, with unchanged
kernel size, employing 32 and 1 CKs respectively. The maximum
pooling layer and residual blocks both employ 32 CKs, with an
output size of 7 x 13. The FCL in Module 3 has an output size of
800. This architecture extracts input features by utilizing Conv
and BN, PReLU, pooling layers, and residual blocks. CBAM is
employed to enhance feature channels and SA. After multi-layer
processing, classification is performed via FC layers to output the
final results. Due to the multiscale nature of fault features, the DA
of models incorporating CBAM still falls short of requirements. In
light of this, the study introduces the encoder module of the ST to
improve DA. Figure 5 illustrates an illustration of the ST model’s
encoder module.

Figure 5 illustrates the processing flow of the ST model’s encoder
module. First, the input data is segmented into 160 blocks, each
containing a specific number of features. Next, the processed blocks
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Encoder module of ST model.

are embedded into the model. This includes positional embeddings
and fault type embeddings. Positional embeddings represent the
sequential relationships among each block. Fault type embeddings
capture the structure and categories of different fault data.
Subsequently, the data enters the encoder. The
normalizes the input data through layer normalization to
stabilize and accelerate the training process. It utilizes multi-head
attention (MHA) to capture different features within the input data.
Simultaneously, it employs a multi-layer perceptron for further data

encoder

processing, adding residual connections between each sub-layer to
prevent gradient explosion. Subsequently, it outputs the fault
features and categories learned from the data. Finally, the
features and AF A are classified through a FCL to output the
fault category. Among these, MHA serves as a crucial component
of the ST model's encoder module. MHA excels at capturing
complex dependencies between different positions, enabling the
ST model to perform exceptionally well when processing long
sequence data. The operation of MHA proceeds as follows: First,
the input matrix X € R™ is transformed. Among them, d denotes
the input feature dimension, and n represents the sequence length.
Through linear transformation (LT), the query Q, key K, and V are
obtained, as shown in Equation 8.

Q; = XW¥®
K; = XWK (8)
V= XV/

In Equation 8, W2, WK, and VY represent the weight matrices
for the i th head. Next, the attention score Attention; (Q;, K;, V;) for
the i th head is computed as shown in Equation 9.
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Attention; (Q; K;, Vi) = Sofmax<QiKiT >V- ©)
1 iy AN Vi \/d_k i

In Equation 9, di is the scaling factor. Then, all heads are
concatenated as shown in Equation 10.

Concat (Attention,, Attention,, ..., Attentiony,)

= [Attention,, Attention,, ..., Attentiony) (10)

In Equation 10, h means the number of heads. Finally, a LT
yields the final MHA output MultiHead (Q, K, V), as expressed in
Equation 11.

., Attention;,)W?°

(11)

MultiHead (Q, K, V') = Concat (Attention,, Attention,, ..

In Equation 11, W represents the weight matrix. Furthermore,
the study uses a cross-loss entropy function, as indicated by
Equation 12, to improve the accuracy of the model.

1
CELc = . ~[yy*log(py) + (1= y)*log(1- p;)]
] (12)
1 M
CELy == 3> yielog (pie)

j c=1

In Equation 12, CEL, and CEL, represent the cross-entropy
losses for input feature x and output feature y. N means the total
quantity of samples. M means the total quantity of classes. p; means
the probability that a sample is positive. y; means the true label (TL)
of the ¢ th class in the j th sample. p;c means the probability that the
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BLDCM bearing FD method based on multiscale features and noise suppression.

j th sample belongs to the c th category. y; represents the TL of the j
th sample. Ultimately, based on the above, this study constructs a
BLDCM bearing FD method incorporating multiscale features and
noise suppression. This method is illustrated in Figure 6.

Figure 6 illustrates the process of this method. First, the BC
signal is reconstructed to obtain comprehensive signal features.
Next, preprocessing is performed using WTD, followed by
further extraction of multiscale features through algebraic
reconstruction methods such as addition, multiplication,
subtraction, and phase angle. These multiscale features undergo
feature fusion via the CBAM and residual network modules, as well
as the encoder of the ST model. Finally, the fused features undergo
merging and concatenation before being processed through a FCL to

output the BLDCM bearing FD results for the EMS.

3 Results and analysis

3.1 Performance analysis of RB FD methods
for BLDCM EMSs

After establishing the BLDCM RB FD method for EMSs based
on noise suppression and multiscale analysis, a comparative analysis
of its performance is conducted. The comparison algorithms are
convolutional neural network-long short-term memory (CNN-
LSTM),
support vector machine (VMD-GA-SVM), and variational mode
decomposition-continuous WT-convolutional neural network
(VMD-CWT-CNN). Model parameter settings employs stochastic
gradient descent as the optimizer with a learning rate of 0.001 and

variational mode decomposition-genetic algorithm-

momentum of 0.9. The ST features 4 attention heads, a window size
of 5, 5 classification heads, 5 input channels, and an input feature
dimension of 160. The cross-entropy loss function is utilized. The
parameter settings for CBAM and the residual module follow
consistent methodologies. Data is sourced from the PU dataset at
the University of Paderborn, Germany. The current signal in the PU

Frontiers in Mechanical Engineering 07

TABLE 1 Experimental environment configuration.

Parameter names Parameter

Data analysis software Spss24.0

Operating system Windows 10 64

Matlab version Matlab 2022a

Hard disk capacity 500 GB
Internal memory 32 GB
Main frequency 5.8 GHz

Processor Intel core i9-13900K

dataset is a BC, a type of AC consisting of two sinusoidal currents
that are 90° out of phase with each other. This is consistent with the
BC signal of the rolling bearing proposed in the research. A total of
3,478 data points are selected, with current signals acquired over 4 s
at a sampling frequency of 64 kHz. With 300 training iterations, the
dataset consists of an 80% training set and a 20% test set. Accuracy,
recall, and F1 score are evaluation metrics. Table 1 provides specifics
on the experimental setup.

The study initially compares the accuracy and recall rates (RRs)
of each approach in the previously specified context. The
experimental results are displayed in Figure 7.

In Figure 7a, the suggested FD method achieves the highest
accuracy of 98.97%. The accuracy of CNN-LSTM is 90.89%, VMD-
GA-SVM is 88.26%, and VMD-CWT-CNN is 85.23%. In Figure 7b,
the RRs of the proposed FD method, CNN-LSTM, VMD-GA-SVM,
and VMD-CWT-CNN are 98.69%, 93.12%, 89.34%, and 89.15%. The
suggested FD approach outperforms the others in terms of RR. The
results presented above indicate that the recommended FD technique
has the best accuracy and recall. The comparison of loss values and
running times (RTs) among the methods is shown in Figure 8.

In Figure 8a, the suggested FD method achieves the earliest
convergence in the loss curve, with a loss value of 0.74,
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significantly lower than the 4.76 of CNN-LSTM, 8.27 of VMD-
GA-SVM, and 10.62 of VMD-CWT-CNN. In Figure 8b, the
average RTs for the proposed FD method, CNN-LSTM, VMD-
GA-SVM, and VMD-CWT-CNN are 2.38s, 3.16s, 3.98s, and 4.48s,
respectively. Among these, the proposed method exhibits the
shortest average RT. In summary, from the perspectives of loss
values and average RT, the proposed FD method outperforms the
comparison methods. Figure 9 displays each method’s mean
square error (MSE) and
(RMSE) outcomes.

In Figure 9a, the average MSE values for the proposed FD
method, CNN-LSTM, VMD-GA-SVM, and VMD-CWT-CNN are
1.18, 2.46, 3.74, and 4.02, respectively. Among these, the proposed
FD method exhibits the lowest average MSE. In Figure 9b, the
proposed FD method reaches an average RMSE of 0.31, significantly

root mean square error
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lower than the 0.46 for CNN-LSTM, 0.63 for VMD-GA-SVM, and
0.87 for VMD-CWT-CNN. Among these, the proposed method
exhibits the lowest average RMSE. In summary, in terms of both
RMSE and MSE values, the recommended FD technique
outperforms the reference approaches. To verify which module
made the highest contribution to the model, the study conducts
an ablation experiment on it. The experimental results are shown
in Table 2.

In Table 2, with the removal of the model module, its F1 score
and AUC value decrease rapidly. When the CBAM and ST modules
are removed, the F1 score drops from 98.62% to 82.14%, and the
AUC value drops from 0.986 to 0.836. Among them, when the ST
module is removed, the decrease intervals of F1 score and AUC
value are the largest. The above results indicate that the ST module
plays a key role in the model.
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TABLE 2 Results of ablation experiment.

Model variant F1 score AUC value
Complete model 98.62% 0.986
No CBAM 97.03% 0.976
No residual network 96.84% 0.967
No swin transformer 90.13% 0.912
No CBAM and residual network 89.26% 0.884
No CBAM and swin transformer 82.14% 0.836

3.2 Diagnostic effect analysis

After verifying the performance of the suggested FD method, a
comparative analysis of its diagnostic effectiveness is carried out. A
BLDCM RB from an automotive EMS is selected for FD. The data
sources are divided into two parts. Some of the signal information
comes from the actual collected signals stored when the BLDCM
rolling bearing malfunctions and is repaired. These signals provide
the original data under the fault state for the research. To further
supplement the signal characteristics in the fault state. Another part
of the data comes from the BLDCM that is under repair. During the
signal acquisition process, current sensors are used to take
measurements, and a low-pass filter is employed to remove high-
frequency noise from the current signal while retaining useful
information related to FD. Finally, the filtered signal is converted
into a digital signal with a frequency of 64 kHz. Diagnosis is
performed for four fault categories: normal state (A), inner ring
fault (IRF) (B), outer ring fault (ORF) (C), and combined inner and
outer ring faults (CIORF) (D). The diagnostic results for each
method are shown in Figure 10.

In Figure 10a, the proposed FD method achieves DA rates of
99.4%, 98.9%, 98.8%, and 99.3% for normal state, IRF, ORF, and
CIOREF, respectively. These values surpass the 86.4%, 88.3%, 85.2%,
and 90.4% achieved by the CNN-LSTM approach in Figure 10b.
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Moreover, it outperforms the VMD-GA-SVM method in Figure 10c
(84.8%, 86.2%, 83.8%, 82.7%) and the VMD-CWT-CNN method in
Figure 10d (85.7%, 83.7%, 83.6%, 89.7%). In conclusion, the
suggested FD approach performs better on each of the four FD
accuracy metrics. The comparison results for precision, area under
the curve (AUC) values, and central processing unit (CPU)
utilization among the various methods are presented in Table 3.
As shown in Table 3, the proposed diagnostic method achieves a
precision rate of 99.68% and an AUC value of 0.986. These results are
significantly higher than those of CNN-LSTM (90.08% and 0.874),
VMD-GA-SVM (86.78% and 0.882), and VMD-CWT-CNN (89.23%
and 0.903). The proposed diagnostic method exhibits the lowest CPU
utilization at 42.14% among all approaches. These findings reveal that
the suggested FD approach performs best in terms of CPU usage,
accuracy, and AUC value. The Transformer + ResNet hybrid model
proposed in the research shows better convergence speed and CPU
occupancy rate compared with the more lightweight CNN-LSTM
model. The causes of this phenomenon can be attributed to several
key factors. First, this model adopts an efficient self-attention
residual The
mechanism allows the model to swiftly identify long-distance

mechanism  and connection. self-attention
dependencies in the data, which is essential for comprehending
intricate data patterns. Residual connections help alleviate the
vanishing gradient problem, which is a common challenge in deep
learning models, especially when dealing with deep networks. These
architectural advantages jointly promote the improvement of the
model’s efficiency during the training process. Second, an adaptive
learning rate and a mixed-precision training strategy were adopted in
the model training. The adaptive learning rate can be dynamically
adjusted according to the training progress of the model, thus
converging rapidly in the early stage of training and fine-tuning in
the later stage of training to improve accuracy. Mixed-precision
training combines single- and half-precision computations to
reduce memory usage and computational requirements while
maintaining model accuracy. This further accelerates convergence
and optimizes CPU usage. In addition, the dataset has undergone

excellent preprocessing to ensure the quality and diversity of the data.
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FIGURE 10

Results of diagnostic effects. (a) Research. (b) CNN-LSTM. (c) VMD-GA-SVM. (d) VMD-CWT-CNN.

TABLE 3 Comparison results.

Method Precision AUC CPU occupancy rate
Research 99.68% 0.986 42.14%
CNN-LSTM 90.08% 0.874 58.78%
VMD-GA-SVM 86.78% 0.882 60.14%
VMD-CWT-CNN 89.23% 0.903 76.34%

Good data preprocessing includes not only cleaning and
normalization, but also feature selection and enhancement. This
helps the model learn effective feature representations more
quickly. High-quality data input is another key factor for the
model to converge rapidly. These factors work together to make
the model perform well in handling complex tasks.

4 Discussion and interpretation

This study compared the performance and diagnostic
effectiveness of the suggested FD method. In the accuracy
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comparison analysis, the proposed FD method, CNN-LSTM,
VMD-GA-SVM, and VMD-CWT-CNN had accuracy of
98.97%, 90.89%, 88.26%, and 85.23%, respectively. The
suggested FD method outperforms other methods in terms of
accuracy. These results were comparable to those published in
relevant studies by Sahu and Rai. (2023). In RT comparative
analysis, the recommended diagnostic methods CNN-LSTM,
VMD-GA-SVM, and VMD-CWT-CNN had average RT values
of 2.38 s, 3.16 s, 3.98 s, and 4.48 s, respectively. This result was
consistent with the research findings of Zhu and Liu. (2023). In
addition, the proposed FD method achieved 98.69% RR, 0.74 loss
value, 1.18 average MSE, and 0.31 average RMSE, which all
outperformed the comparing techniques. This result was align
with the research findings of Guo et al. (2024). In the analysis of
application effectiveness, the recommended FD method
outperformed the comparative method in every situation. This
result was similar to the findings of Zhang and Wang in their
study in 2024 (Zhang and Wang, 2024). This study is constrained
by the fact that EMS operates in more complex real-world
environments, where other factors may influence BLDCM RB
failures. Future research may move forward in a positive path if
FD incorporates a more complete range of affecting factors.
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5 Summary

In response to the problem of low accuracy caused by noise in
the FD method of BLDCM rolling bearings in EMSs, this study
introduced WTD method to suppress noise and fuse multiscale
features of BLDCM rolling bearing current signals. At the same
time, CBAM and ST encoders were used to create a problem
detection technique for BLDCM rolling bearings based on noise
reduction and multi-scale feature fusion. The effectiveness of the
suggested diagnostic techniques was examined and contrasted.
the the
outperformed the comparative strategies in terms of RT,

According to results, recommended  strategy
accuracy, recall, and loss value. It was indicated that in
addition to correctly identifying four distinct defect categories,
the proposed diagnostic approach outperformed the comparative
alternatives in terms of accuracy, CPU usage, and AUC value. The
aforementioned findings demonstrate the efficacy of the FD
approach suggested in the study in locating defects in the

EMS’s BLDCM rolling bearings.
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