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Introduction: In the electromechanical system, the performance of a direct 
current brushless motor is determined by its rolling bearings, which play a 
decisive role in ensuring the safe and smooth operation of the entire system. 
Thus, fault diagnosis of these bearings is of paramount importance. However, 
existing methods for diagnosing faults often suffer from low accuracy, particularly 
under complex noise conditions.
Methods: This study proposes an innovative approach to fault diagnosis that 
enhances the accuracy and robustness of detecting faults in brushless direct 
current motor rolling bearings. To achieve this goal, this study first employs 
wavelet threshold denoising to suppress noise in motor current signals and 
performs multiscale feature fusion. Additionally, a fault diagnosis method is 
developed by integrating a convolutional attention mechanism.
Results: The outcomes indicated that the proposed diagnostic method achieved 
a recall rate of 90.89% and a precision rate of 98.69%, both higher than those of 
the comparative methods. The suggested approach outperformed the 
comparison methods in all four fault categories, with diagnostic accuracy 
rates of 99.4%, 98.9%, 98.8%, and 99.3%.
Discussion: The findings of the experiments reveal that the proposed diagnostic 
method can effectively identify faults in rolling bearings of brushless direct 
current motors, providing a theoretical foundation for research in the field of 
electromechanical system fault diagnosis. The contributions of this research are 
in three aspects. First, the BLDCM rolling bearing current signal is reconstructed 
using a multiscale feature and wavelet threshold denoising. This significantly 
improves the signal quality and ability to extract fault features. Second, CBAM, 
residual network and Swin Transformer encoder are integrated into the fault 
diagnosis model. Compared with the existing methods, higher accuracy and 
precision are achieved. This study finally provides a solid theoretical foundation 
for further research in the field of electromechanical system fault diagnosis, 
particularly for BLDCM rolling bearing fault diagnosis under complex noise 
conditions.
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1 Background

Mechatronics is a technology system that integrates multiple 
disciplines such as mechanics and electronics (Shang et al., 2025; 
Zheng et al., 2025). The rolling bearings of brushless direct current 
motor (BLDCM) play a decisive role in the safe and smooth 
operation of electromechanical systems (EMSs), and its fault 
diagnosis (FD) is extremely important. Many scholars have 
conducted relevant research. For example, Lu used a 
combination of literature analysis and case studies to conduct 
analysis in an effort to solve the problem of low efficiency in 
fault location of EMSs (Lu, 2024). Zhao et al. developed a 
current assisted vibration fusion network to address the issues of 
low accuracy and low precision in current diagnosis methods for 
electromechanical drive systems (Zhao et al., 2024). Zhang et al. 
proposed a FD framework based on ensemble learning in their study 
on the low accuracy of actuator fault methods in aviation EMSs 
(Zhang et al., 2024). Zhang et al. combined principal component 
analysis and belief rule library to establish a FD model for EMSs, 
which was difficult to extract features caused by excessive noise and 
leads to poor accuracy in FD (Zhang et al., 2025). Zhao proposed a 
fault detection model that combined wavelet energy packet and 
improved support vector machine in his research on the difficulty of 
detecting faults in EMSs (Zhao, 2023).

The accurate diagnosis of BLDCM rolling bearing faults 
determines whether the electromechanical drive system operates 
safely and smoothly. Wavelet threshold denoising (WTD) is a signal 
processing technique that has the advantages of multiscale analysis 
capability and noise whitening. It has been extensively utilized in the 
domains of EMS monitoring and audio processing (Das and Sahana, 
2025). Convolutional block attention module (CBAM) is a deep 
learning technique that has advantages such as cross modal 
adaptation and strong flexibility, and has been widely used in 
fields such as feature extraction (Xu et al., 2023). Multiple 
experts have conducted relevant research. For example, Wang 
et al. constructed a compressed sensing reconstruction 
framework based on wavelet domain consistency constraints to 
address the issue of difficult noise removal (Wang et al., 2024a). 
To solve the problem of low accuracy brought on by noise in the 
existing stock price prediction systems, Singh et al. developed a 
technique based on discrete wavelet denoising (Singh et al., 2025). 
Sahoo et al. introduced a general wavelet selection method based on 
the sparsity of detail components in the wavelet domain (Sahoo 
et al., 2024). Bhuyan et al. combined residual networks with CBAM 
to construct a tea disease identification model. The model 
outperformed the comparison model, according to the 
comparative experimental data (Bhuyan et al., 2024). To solve 
the problem of low detection effectiveness in ground penetrating 
radar, Wang et al. built a radar detection system by combining 
CBAM with YOLOv8. The findings showed that the suggested 
system had higher detection efficiency compared to the original 
system (Wang et al., 2024b).

The above research results indicate that there are few methods 
for FD of BLDCM rolling bearings in EMSs under complex noise 
conditions, and there is a problem of low accuracy. Therefore, 
initially, wavelet denoising techniques were used to reconstruct 
multiscale feature parameters (WP) from the biphasic current 
(BC) signals of BLDCM RB, in order to reduce noise and 

improve fault feature extraction capability. Afterwards, the 
CBAM, residual network, and Swin Transformer (ST) encoder 
were integrated together to create an FD model for EMS. To 
improve the accuracy of RB FD in EMSs using BLDCMs, this 
model utilizes multiscale feature fusion with signal and noise 
suppression. This study is innovative as it uses WTD for 
multiscale feature algebraic reconstruction of BC signals from 
BLDCM RB, while combining CBAM, residual network, and ST 
encoder. The purpose of this method is to provide theoretical basis 
for EMS FD research.

2 Methods and materials

2.1 Wavelet-based current signal noise 
suppression and multiscale feature fusion

Because of their high automation efficiency and precision 
control, EMSs have been widely used in automotive and 
aerospace applications in recent years. FD for BLDCM RBs is 
especially important as a key component powering these systems. 
However, current diagnostic methods suffer from low accuracy due 
to noise interference. To suppress noise and improve fault feature 
extraction capabilities, this study uses a WTD method to recover 
multiscale feature parameters from BC waveforms. Before applying 
WTD to suppress noise in BLDCM RB current signals, it is essential 
to understand BC and its vector and algebraic reconstruction 
processes. The process is illustrated in Figure 1 (Sulistyo et al., 
2025; Zangana and Mustafa, 2024).

In Figure 1a, the BC is supplied by two independent alternating 
current (AC) power sources, namely, Phase 1 and Phase 2. Phase 
1 and 2 share the same frequency but have a phase difference (PD) of 
90°, causing their peaks to alternate in time and thus forming a BC. 
Equation 1 can be used to express the BC. 

I � u + λv (1)

In Equation 1, I represents the magnitude of the BC in complex 
form. u denotes the magnitude of BC 1, with a phase angle of 0°. v
denotes the magnitude of BC 2, with a phase angle of 90°. λ denotes 
the imaginary unit. To simplify the analysis and calculation of AC 
circuits, the magnitude and phase of BCs are typically represented by 
vectors in the complex plane, as shown in Equation 2. 

Vector �
������
u2 + v2
√

+ arctan u/v( )( )λ (2)

In Equation 2, 
������
u2 + v2
√

represents the vector magnitude. 
( arctan(u/v) denotes the phase angle. Vector indicates the 
vector representation. Combining Figure 1a with Equation 2
reveals that under normal conditions, the PD between the two 
AC currents is 90°. If a circuit fault occurs, both the PD and current 
magnitude will change. Therefore, by reconstructing the current 
signal parameters, the fault characteristics of the data can be 
highlighted. Current signal parameter reconstruction not only 
involves changes in the magnitude of current 1 and current 
2 through addition, subtraction, and multiplication operations, 
but also includes calculating the phase angle changes of current 
1 and current 2 to diagnose faults in RBs. Figure 1b provides an 
illustration of the procedure. First, the BC is vectorized, and its 
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amplitude and phase angle are calculated. Subsequently, vector 
representation and algebraic reconstruction are performed. 
Finally, prominent features are obtained to diagnose faults 
through algorithms. To enhance the quality of algebraic 
reconstruction, this study combines relevant literature and 
employs a WTD method for algebraic reconstruction of the BC 
signal from BLDCM RBs. The WTD method is a signal processing 
technique based on wavelet transform (WT). It is extensively used in 

domains like audio processing and EMS monitoring, where it uses 
threshold processing to isolate noise from the actual signal. Figure 1
depicts the WTD procedure.

In Figure 2, the WTD process begins by inputting the original 
noisy signal and performing WTs at multiple scales. During the 
multiscale WT, an appropriate wavelet basis function (WBF) pair is 
adopted to decompose the noisy original signal (OS), yielding the 
quantity of decomposition levels (DLs). Next, the threshold and 

FIGURE 1 
The BC and its vector and algebraic reconstruction process. (a) Two phase current. (b) Algebraic reconstruction and vector calculation process of 
current signal.

FIGURE 2 
Process of WTD method.
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function for wavelet threshold processing are chosen and 
determined. Subsequently, reconstruction is performed via the 
inverse WT. Finally, the denoised current signal is obtained. The 
WT process can be expressed by Equation 3. 

y t( ) �􏽘
J

j�1
􏽘

2j−1

k

dj,kφj,k t( ) + 􏽘
N−1

k�1
ωkφJ,k t( ) (3)

In Equation 3, j denotes the scale, k denotes the frequency. dj,k
represents the wavelet coefficient with scale j and frequency k. 
φJ,k(t) denotes the WBF. y(t) represents the OS. ωk denotes the 
high-frequency noise coefficient. J is the quantity of scales in the 
wavelet decomposition. N is the quantity of samples in the high- 
frequency component obtained from the WT. Threshold processing 
dj,k
′ is shown in Equation 4. 

dj,k
′ �

dj,k, dj,k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> aj
0, dj,k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ aj
􏼨 (4)

In Equation 4, aj represents the threshold. To ensure effective 
noise suppression, the study combines relevant literature and 
multiple experiments to ultimately determine the WBF as 
Db8 and the DL as 4. Therefore, the study employs the WTD 
method to suppress noise and fuse multiscale features in the BC 
signal of the BLDCM RB. The preprocessing and multiscale feature 
fusion of the current signal are illustrated in Figure 3.

Figure 3a illustrates the preprocessing steps for the current 
signal. First, noise suppression is achieved using a four-level 
wavelet decomposition with a WTD method to extract the 
signal’s approximate information curve. Subsequently, algebraic 

operations are performed on the signal to obtain four types of 
current signal features. Finally, the signal undergoes normalization 
using the maximum-minimum normalization method to yield the 
final current signal vector representation. This method is expressed 
by Equation 5. 

x
nor�

2*x−xmin
xmax− xmin( )

−1 (5)

In Equation 5, xmin and xmax represent the lowest and highest 
values, respectively. xnor denotes the normalized value. x is the 
original data value. Thus, after normalization via the WTD method, 
the current signal undergoes multiscale feature fusion. Figure 3b
illustrates the multiscale feature fusion process for the current signal. 
First, the current signal is converted into a vector representation, 
and its magnitude is extracted. Next, wavelet denoising is applied to 
reduce noise interference. Specifically, algebraic reconstruction 
methods, including addition, subtraction, multiplication, and 
angle calculations, are employed to extract and fuse current 
signal features across four scales. Ultimately, a neural network 
receives these processed feature vectors for additional 
examination and diagnosis.

2.2 FD method based on CBAM, noise 
suppression, and multiscale feature fusion

After performing multiscale feature fusion on the current signals 
of RBs in EMSs using BLDCM through WTD, a hybrid FD method 
combining CBAM, residual networks, and ST encoders is studied 

FIGURE 3 
Preprocessing of current signals and multiscale feature fusion. (a) Current signal preprocessing. (b) Multi-scale feature fusion process.
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and designed. The channel attention module (CAM) and the spatial 
attention module (SAM) make up the lightweight attention 
mechanism (AM) module known as CBAM. Global average 
pooling (GAP) and global max pooling (GMP) are used by the 
CAM to obtain global information for every channel. A multilayer 
perceptron (MLP) is then used to create CA weights. The CAM is 
expressed by Equation 6. 

Mc F( ) � δ MLP Avgpool F( ) +MLP􏼂Maxpool F( )􏼂 􏼃􏼈 􏼉 (6)

In Equation 6, F means the input feature map. Avgpool(F) and 
Maxpool(F)mean GAP and max pooling. MLP displays the MLP. 
δ denotes the Sigmoid activation function (AF). Mc(F) denotes the 
output processed by the CAM. The SAM first obtains weights for 
each channel through the output of the CAM. Equation 7 illustrates 
how these weights are subsequently transformed into SA weights by 
using GAP and GMP. 

Ms F( ) � δ f7*7 Avgpool F( ); Maxpool F( )􏼂 􏼃􏼈 􏼉 (7)

In Equation 7, Ms(F)means the output processed by the SAM. 
The study incorporates the CBAM module into a residual neural 
network to take advantage of the AM’s benefits and its strong feature 
learning power in an attempt to further enhance the model’s feature 
representation capability and DA. Figure 4 displays the network 
architecture following the integration of the residual neural 
network and CBAM.

In Figure 4, BN denotes batch normalization, Conv represents 
the convolutional layer (CL), and FC signifies the fully connected 
layer (FCL). The notation 1@40 × 64 indicates that the number 
1 before the @ denotes the number of input channels, while the 

number after the @ represents the input dimensions. In Module 1, 
the CL, the BN layer, and the first execution of AF PReLU all yield 
an output dimension of 38 × 62, with the CL employing 
8 convolutional kernels (CKs). The output dimensions for the 
second execution are both 36 × 60, with 16 CKs in the CL. Both the 
CA and SA layers have an output size of 36 × 60, with kernel sizes 
of 1 × 1 and 7 × 7 respectively, and 16 and 1 kernels respectively. 
The max pooling layer and residual blocks both have an output 
size of 18 × 30, with kernel sizes of 2 × 2 and 3 × 3 respectively, and 
16 kernels each. In Module 2, the initial execution sets the output 
dimensions of the CL, BN layer, and PReLU output layer to 16 × 
28, with 24 CKs in the CL. The subsequent execution sets all 
output dimensions to 14 × 26, with 32 CKs in the CL. Both the CA 
and SA outputs maintain a dimension of 14 × 26, with unchanged 
kernel size, employing 32 and 1 CKs respectively. The maximum 
pooling layer and residual blocks both employ 32 CKs, with an 
output size of 7 × 13. The FCL in Module 3 has an output size of 
800. This architecture extracts input features by utilizing Conv 
and BN, PReLU, pooling layers, and residual blocks. CBAM is 
employed to enhance feature channels and SA. After multi-layer 
processing, classification is performed via FC layers to output the 
final results. Due to the multiscale nature of fault features, the DA 
of models incorporating CBAM still falls short of requirements. In 
light of this, the study introduces the encoder module of the ST to 
improve DA. Figure 5 illustrates an illustration of the ST model’s 
encoder module.

Figure 5 illustrates the processing flow of the ST model’s encoder 
module. First, the input data is segmented into 160 blocks, each 
containing a specific number of features. Next, the processed blocks 

FIGURE 4 
Network model architecture after CBAM and residual neural network integration.
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are embedded into the model. This includes positional embeddings 
and fault type embeddings. Positional embeddings represent the 
sequential relationships among each block. Fault type embeddings 
capture the structure and categories of different fault data. 
Subsequently, the data enters the encoder. The encoder 
normalizes the input data through layer normalization to 
stabilize and accelerate the training process. It utilizes multi-head 
attention (MHA) to capture different features within the input data. 
Simultaneously, it employs a multi-layer perceptron for further data 
processing, adding residual connections between each sub-layer to 
prevent gradient explosion. Subsequently, it outputs the fault 
features and categories learned from the data. Finally, the 
features and AF A are classified through a FCL to output the 
fault category. Among these, MHA serves as a crucial component 
of the ST model’s encoder module. MHA excels at capturing 
complex dependencies between different positions, enabling the 
ST model to perform exceptionally well when processing long 
sequence data. The operation of MHA proceeds as follows: First, 
the input matrix X ∈ Rn×d is transformed. Among them, d denotes 
the input feature dimension, and n represents the sequence length. 
Through linear transformation (LT), the query Q, key K, and V are 
obtained, as shown in Equation 8. 

Qi � XW
Q
i

Ki � XW
K
i

Vi � XV
V
i

⎧⎪⎨

⎪⎩
(8)

In Equation 8, WQ
i , WK

i , and VVi represent the weight matrices 
for the i th head. Next, the attention score Attentioni(Qi, Ki, Vi) for 
the i th head is computed as shown in Equation 9. 

Attentioni Qi, Ki, Vi( ) � Sofmax
QiK

T
i��

dk
􏽰􏼠 􏼡Vi (9)

In Equation 9, dk is the scaling factor. Then, all heads are 
concatenated as shown in Equation 10. 

Concat Attention1, Attention2, . . . , Attentionh( )

� Attention1, Attention2, . . . , Attentionh[ ] (10)

In Equation 10, h means the number of heads. Finally, a LT 
yields the final MHA output MultiHead(Q,K, V), as expressed in 
Equation 11. 

MultiHead Q,K,V( ) � Concat Attention1, Attention2, . . . , Attentionh( )Wo

(11)

In Equation 11, Wo represents the weight matrix. Furthermore, 
the study uses a cross-loss entropy function, as indicated by 
Equation 12, to improve the accuracy of the model. 

CELx �
1
N
􏽘
j

− yj*log pj􏼐 􏼑 + 1 −y( 􏼁* log 1 −pj􏼐 􏼑􏽨 􏽩

CELy � −
1
N
􏽘
j

􏽘

M

c�1
yic log pic( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

In Equation 12, CELx and CELy represent the cross-entropy 
losses for input feature x and output feature y. N means the total 
quantity of samples. Mmeans the total quantity of classes. pj means 
the probability that a sample is positive. yic means the true label (TL) 
of the c th class in the j th sample. pic means the probability that the 

FIGURE 5 
Encoder module of ST model.
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j th sample belongs to the c th category. yj represents the TL of the j
th sample. Ultimately, based on the above, this study constructs a 
BLDCM bearing FD method incorporating multiscale features and 
noise suppression. This method is illustrated in Figure 6.

Figure 6 illustrates the process of this method. First, the BC 
signal is reconstructed to obtain comprehensive signal features. 
Next, preprocessing is performed using WTD, followed by 
further extraction of multiscale features through algebraic 
reconstruction methods such as addition, multiplication, 
subtraction, and phase angle. These multiscale features undergo 
feature fusion via the CBAM and residual network modules, as well 
as the encoder of the ST model. Finally, the fused features undergo 
merging and concatenation before being processed through a FCL to 
output the BLDCM bearing FD results for the EMS.

3 Results and analysis

3.1 Performance analysis of RB FD methods 
for BLDCM EMSs

After establishing the BLDCM RB FD method for EMSs based 
on noise suppression and multiscale analysis, a comparative analysis 
of its performance is conducted. The comparison algorithms are 
convolutional neural network-long short-term memory (CNN- 
LSTM), variational mode decomposition-genetic algorithm- 
support vector machine (VMD-GA-SVM), and variational mode 
decomposition-continuous WT-convolutional neural network 
(VMD-CWT-CNN). Model parameter settings employs stochastic 
gradient descent as the optimizer with a learning rate of 0.001 and 
momentum of 0.9. The ST features 4 attention heads, a window size 
of 5, 5 classification heads, 5 input channels, and an input feature 
dimension of 160. The cross-entropy loss function is utilized. The 
parameter settings for CBAM and the residual module follow 
consistent methodologies. Data is sourced from the PU dataset at 
the University of Paderborn, Germany. The current signal in the PU 

dataset is a BC, a type of AC consisting of two sinusoidal currents 
that are 90° out of phase with each other. This is consistent with the 
BC signal of the rolling bearing proposed in the research. A total of 
3,478 data points are selected, with current signals acquired over 4 s 
at a sampling frequency of 64 kHz. With 300 training iterations, the 
dataset consists of an 80% training set and a 20% test set. Accuracy, 
recall, and F1 score are evaluation metrics. Table 1 provides specifics 
on the experimental setup.

The study initially compares the accuracy and recall rates (RRs) 
of each approach in the previously specified context. The 
experimental results are displayed in Figure 7.

In Figure 7a, the suggested FD method achieves the highest 
accuracy of 98.97%. The accuracy of CNN-LSTM is 90.89%, VMD- 
GA-SVM is 88.26%, and VMD-CWT-CNN is 85.23%. In Figure 7b, 
the RRs of the proposed FD method, CNN-LSTM, VMD-GA-SVM, 
and VMD-CWT-CNN are 98.69%, 93.12%, 89.34%, and 89.15%. The 
suggested FD approach outperforms the others in terms of RR. The 
results presented above indicate that the recommended FD technique 
has the best accuracy and recall. The comparison of loss values and 
running times (RTs) among the methods is shown in Figure 8.

In Figure 8a, the suggested FD method achieves the earliest 
convergence in the loss curve, with a loss value of 0.74, 

FIGURE 6 
BLDCM bearing FD method based on multiscale features and noise suppression.

TABLE 1 Experimental environment configuration.

Parameter names Parameter

Data analysis software Spss24.0

Operating system Windows 10 64

Matlab version Matlab 2022a

Hard disk capacity 500 GB

Internal memory 32 GB

Main frequency 5.8 GHz

Processor Intel core i9-13900K
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significantly lower than the 4.76 of CNN-LSTM, 8.27 of VMD- 
GA-SVM, and 10.62 of VMD-CWT-CNN. In Figure 8b, the 
average RTs for the proposed FD method, CNN-LSTM, VMD- 
GA-SVM, and VMD-CWT-CNN are 2.38s, 3.16s, 3.98s, and 4.48s, 
respectively. Among these, the proposed method exhibits the 
shortest average RT. In summary, from the perspectives of loss 
values and average RT, the proposed FD method outperforms the 
comparison methods. Figure 9 displays each method’s mean 
square error (MSE) and root mean square error 
(RMSE) outcomes.

In Figure 9a, the average MSE values for the proposed FD 
method, CNN-LSTM, VMD-GA-SVM, and VMD-CWT-CNN are 
1.18, 2.46, 3.74, and 4.02, respectively. Among these, the proposed 
FD method exhibits the lowest average MSE. In Figure 9b, the 
proposed FD method reaches an average RMSE of 0.31, significantly 

lower than the 0.46 for CNN-LSTM, 0.63 for VMD-GA-SVM, and 
0.87 for VMD-CWT-CNN. Among these, the proposed method 
exhibits the lowest average RMSE. In summary, in terms of both 
RMSE and MSE values, the recommended FD technique 
outperforms the reference approaches. To verify which module 
made the highest contribution to the model, the study conducts 
an ablation experiment on it. The experimental results are shown 
in Table 2.

In Table 2, with the removal of the model module, its F1 score 
and AUC value decrease rapidly. When the CBAM and ST modules 
are removed, the F1 score drops from 98.62% to 82.14%, and the 
AUC value drops from 0.986 to 0.836. Among them, when the ST 
module is removed, the decrease intervals of F1 score and AUC 
value are the largest. The above results indicate that the ST module 
plays a key role in the model.

FIGURE 7 
Comparison of recall rate and accuracy rate. (a) Accuracy rate comparison results. (b) Recall rate comparison results.

FIGURE 8 
Comparison results of loss values and running time. (a) Loss value comparison results. (b) Recall rate comparison results.
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3.2 Diagnostic effect analysis

After verifying the performance of the suggested FD method, a 
comparative analysis of its diagnostic effectiveness is carried out. A 
BLDCM RB from an automotive EMS is selected for FD. The data 
sources are divided into two parts. Some of the signal information 
comes from the actual collected signals stored when the BLDCM 
rolling bearing malfunctions and is repaired. These signals provide 
the original data under the fault state for the research. To further 
supplement the signal characteristics in the fault state. Another part 
of the data comes from the BLDCM that is under repair. During the 
signal acquisition process, current sensors are used to take 
measurements, and a low-pass filter is employed to remove high- 
frequency noise from the current signal while retaining useful 
information related to FD. Finally, the filtered signal is converted 
into a digital signal with a frequency of 64 kHz. Diagnosis is 
performed for four fault categories: normal state (A), inner ring 
fault (IRF) (B), outer ring fault (ORF) (C), and combined inner and 
outer ring faults (CIORF) (D). The diagnostic results for each 
method are shown in Figure 10.

In Figure 10a, the proposed FD method achieves DA rates of 
99.4%, 98.9%, 98.8%, and 99.3% for normal state, IRF, ORF, and 
CIORF, respectively. These values surpass the 86.4%, 88.3%, 85.2%, 
and 90.4% achieved by the CNN-LSTM approach in Figure 10b. 

Moreover, it outperforms the VMD-GA-SVM method in Figure 10c
(84.8%, 86.2%, 83.8%, 82.7%) and the VMD-CWT-CNN method in 
Figure 10d (85.7%, 83.7%, 83.6%, 89.7%). In conclusion, the 
suggested FD approach performs better on each of the four FD 
accuracy metrics. The comparison results for precision, area under 
the curve (AUC) values, and central processing unit (CPU) 
utilization among the various methods are presented in Table 3.

As shown in Table 3, the proposed diagnostic method achieves a 
precision rate of 99.68% and an AUC value of 0.986. These results are 
significantly higher than those of CNN-LSTM (90.08% and 0.874), 
VMD-GA-SVM (86.78% and 0.882), and VMD-CWT-CNN (89.23% 
and 0.903). The proposed diagnostic method exhibits the lowest CPU 
utilization at 42.14% among all approaches. These findings reveal that 
the suggested FD approach performs best in terms of CPU usage, 
accuracy, and AUC value. The Transformer + ResNet hybrid model 
proposed in the research shows better convergence speed and CPU 
occupancy rate compared with the more lightweight CNN-LSTM 
model. The causes of this phenomenon can be attributed to several 
key factors. First, this model adopts an efficient self-attention 
mechanism and residual connection. The self-attention 
mechanism allows the model to swiftly identify long-distance 
dependencies in the data, which is essential for comprehending 
intricate data patterns. Residual connections help alleviate the 
vanishing gradient problem, which is a common challenge in deep 
learning models, especially when dealing with deep networks. These 
architectural advantages jointly promote the improvement of the 
model’s efficiency during the training process. Second, an adaptive 
learning rate and a mixed-precision training strategy were adopted in 
the model training. The adaptive learning rate can be dynamically 
adjusted according to the training progress of the model, thus 
converging rapidly in the early stage of training and fine-tuning in 
the later stage of training to improve accuracy. Mixed-precision 
training combines single- and half-precision computations to 
reduce memory usage and computational requirements while 
maintaining model accuracy. This further accelerates convergence 
and optimizes CPU usage. In addition, the dataset has undergone 
excellent preprocessing to ensure the quality and diversity of the data. 

FIGURE 9 
The MSE and RMSE comparison. (a) MSE comparison results. (b) RMSE comparison results.

TABLE 2 Results of ablation experiment.

Model variant F1 score AUC value

Complete model 98.62% 0.986

No CBAM 97.03% 0.976

No residual network 96.84% 0.967

No swin transformer 90.13% 0.912

No CBAM and residual network 89.26% 0.884

No CBAM and swin transformer 82.14% 0.836
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Good data preprocessing includes not only cleaning and 
normalization, but also feature selection and enhancement. This 
helps the model learn effective feature representations more 
quickly. High-quality data input is another key factor for the 
model to converge rapidly. These factors work together to make 
the model perform well in handling complex tasks.

4 Discussion and interpretation

This study compared the performance and diagnostic 
effectiveness of the suggested FD method. In the accuracy 

comparison analysis, the proposed FD method, CNN-LSTM, 
VMD-GA-SVM, and VMD-CWT-CNN had accuracy of 
98.97%, 90.89%, 88.26%, and 85.23%, respectively. The 
suggested FD method outperforms other methods in terms of 
accuracy. These results were comparable to those published in 
relevant studies by Sahu and Rai. (2023). In RT comparative 
analysis, the recommended diagnostic methods CNN-LSTM, 
VMD-GA-SVM, and VMD-CWT-CNN had average RT values 
of 2.38 s, 3.16 s, 3.98 s, and 4.48 s, respectively. This result was 
consistent with the research findings of Zhu and Liu. (2023). In 
addition, the proposed FD method achieved 98.69% RR, 0.74 loss 
value, 1.18 average MSE, and 0.31 average RMSE, which all 
outperformed the comparing techniques. This result was align 
with the research findings of Guo et al. (2024). In the analysis of 
application effectiveness, the recommended FD method 
outperformed the comparative method in every situation. This 
result was similar to the findings of Zhang and Wang in their 
study in 2024 (Zhang and Wang, 2024). This study is constrained 
by the fact that EMS operates in more complex real-world 
environments, where other factors may influence BLDCM RB 
failures. Future research may move forward in a positive path if 
FD incorporates a more complete range of affecting factors.

FIGURE 10 
Results of diagnostic effects. (a) Research. (b) CNN-LSTM. (c) VMD-GA-SVM. (d) VMD-CWT-CNN.

TABLE 3 Comparison results.

Method Precision AUC CPU occupancy rate

Research 99.68% 0.986 42.14%

CNN-LSTM 90.08% 0.874 58.78%

VMD-GA-SVM 86.78% 0.882 60.14%

VMD-CWT-CNN 89.23% 0.903 76.34%
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5 Summary

In response to the problem of low accuracy caused by noise in 
the FD method of BLDCM rolling bearings in EMSs, this study 
introduced WTD method to suppress noise and fuse multiscale 
features of BLDCM rolling bearing current signals. At the same 
time, CBAM and ST encoders were used to create a problem 
detection technique for BLDCM rolling bearings based on noise 
reduction and multi-scale feature fusion. The effectiveness of the 
suggested diagnostic techniques was examined and contrasted. 
According to the results, the recommended strategy 
outperformed the comparative strategies in terms of RT, 
accuracy, recall, and loss value. It was indicated that in 
addition to correctly identifying four distinct defect categories, 
the proposed diagnostic approach outperformed the comparative 
alternatives in terms of accuracy, CPU usage, and AUC value. The 
aforementioned findings demonstrate the efficacy of the FD 
approach suggested in the study in locating defects in the 
EMS’s BLDCM rolling bearings.
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