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In modern precision machining, optimization of the grinding process is vital to 
improve product quality, surface integrity, and machining efficiency. This 
research puts forward a data-driven solution that uses a combination of 
machine learning and Particle Swarm Optimization (PSO) to predict and 
minimize grinding forces in external cylindrical grinding processes. 
Experiments were conducted on EN31 steel with varying machining 
parameters depth of cut (DOC), feed rate (FR), work speed (WRS), wheel 
speed (WHS) and four coolant conditions: dry, flooded, MQL with HP 
KOOLKUT40, and MQL with HP SYNTHCOOL100. Three machine learning 
algorithms XGBoost, Multilayer Perceptron (MLP), and Support Vector 
Regression (SVR) were trained on a dataset of 115 experiments and validated 
with Mean Squared Error (MSE) and R2. XGBoost worked best among the rest, 
particularly for shoulder force prediction, with an MSE of 0.0373 and an R2 of 
0.9324. This better model was combined with PSO to determine the best grinding 
parameters that had minimum total force. The PSO gave a minimum predicted 
force of 4.22 N with XGBoost, affirming its stability. Further, cooling condition 
analysis showed that MQL with HP SYNTHCOOL100 provided the most effective 
force reduction. In general, the investigation proves effective in demonstrating 
the suitability of integrating metaheuristic optimization and predictive modeling 
for intelligent process control in grinding.

KEYWORDS

grinding forces, machine learning, XGBoost, PSO, cooling conditions, smart 
manufacturing, optimization

1 Introduction

Maintaining high-quality standards of mechanical products is an essential requirement 
of current manufacturing due to its pivotal impact on product performance, operating 
reliability, and lifespan durability (Prakash et al., 2025). Therefore, precise prediction of 
critical quality characteristics has become important in sustaining competitiveness and 
conforming to strict industry norms. Production systems are generally classified into 
intermittent and continuous types, with mass production under continuous systems 
allowing automation and uniform machine settings for high-volume production, and 
job shop production under intermittent systems providing customized, small-batch 
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manufacturing involving frequent setup changes. The cycle of 
product development encompasses activities including design, 
simulation, and process planning, taking advantage of 
sophisticated tools such as Design of Experiments (DOE), Finite 
Element Analysis (FEA), Design for Manufacturing (DFM), and 
Design for Assembly (DFA) and is supported increasingly by IT- 
based technologies such as Product Data Management (PDM) and 
Product Lifecycle Management (PLM) in compliance with Industry 
4.0 guidelines (Rubi et al., 2024). Among different machining 
operations, grinding is a very accurate abrasive process, 
commonly employed in finishing manufacturing operations for 
creating smooth and precise surfaces. Grinding is especially ideal 
for machining hardened materials, with high precision and 
efficiency, but its optimization is difficult because of the 
nonlinear and complex nature of parameters like material 
removal rate, feed rate, wheel speed, and depth of cut (Kim 
et al., 2024). Grinding is also important in high-precision sectors 
such as aerospace, automotive, and defense, and is used on hard-to- 
machine materials such as glass ceramics. Surface roughness, an 
important quality characteristic influencing fatigue resistance, 
corrosion, and aesthetics, is determined by process parameters as 
well as external influences such as material properties, cooling 
conditions, and tool wear (Charde et al., 2025). To meet this, 
researchers have proposed predictive models and investigated 

sustainable grinding techniques, such as cryogenics, hybrid 
lubrication, and force-based data-driven roughness prediction 
(Charde et al., 2020). Further, surface integrity, dimensional 
accuracy, and tool life in subtractive manufacturing require 
greater understanding of cutting mechanics. The Finite Element 
Method (FEM) has turned out to be an advanced simulation tool in 
this area, supporting research into tool wear, residual stresses, and 
chip formation dynamics using different mesh-based methods. 
Though valuable for research, FEM’s application in real-time use 
within manufacturing environments is restricted due to 
computationally intensive requirements, particularly in 3D 
simulations, although simplified 2D models offer some 
alternatives (Reeber et al., 2024). To counter the intricacies 
involved in optimizing such complex machining operations, 
current studies have increasingly relied on advanced 
computational methods. Specifically, the blend of machine 
learning and data-driven modeling has proven to be an exciting 
path for improving grinding efficiency and predictive performance. 
Figure 1 depicts a cyclical model that captures the major elements of 
manufacturing process and quality control. The cycle starts with the 
determination of quality standards and moves on to categorizing 
production systems, utilizing product development tools, and the 
adoption of IT-based technologies. It goes on to refine grinding 
processes, study surface roughness, FEM simulation of processes, 

FIGURE 1 
Manufacturing process and quality control.
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and finally incorporates machine learning for increased efficiency 
and accuracy. This feedback mechanism focuses on continuous 
manufacturing improvement through data-driven and 
technology-infused strategies. Table 1 describes the methodology 
adopted by different authors and their outcomes.

Grinding is one of the most essential manufacturing processes in 
today’s industry, appreciated for its potential to generate high- 
precision surfaces as well as increase productivity. Nevertheless, 
optimizing grinding parameters is a challenging task because 
nonlinear dynamics are involved. To solve this, an ML-based data- 
driven system coupled with metaheuristic optimization algorithms 
was suggested for internal cylindrical grinding performance 
enhancement. This framework combines a fault detection model 
and a Gaussian process-based cycle time estimator, resulting in 
considerable fault rate and cycle time reductions by 77.83% and 
17.64%, respectively tested and validated using real-world 
experiments and expert opinions (Charde et al., 2020). Likewise, 
machine learning models like LightGBM, Random Forest, and 
Gradient Boosting have been used for surface roughness prediction 
based on critical parameters such as depth of cut, feed rate, work 
speed, and wheel speed. LightGBM performed best, with small error 
values, which proves the importance of predictive modeling in 
enhancing surface finish quality (Reeber et al., 2024).

Beyond grinding, there have been various studies investigating 
ML applications in various machining conditions. In orthogonal 
cutting of AZ91 magnesium alloy using MQL assistance, for instance, 
there have been machine learning models such as XGBoost, Decision 
Tree, and Random Forest applied to predict machinability. XGBoost 
proved to be the highest accuracy, performing better than other 
models in reducing MSE and MAE (Bukhari et al., 2025). In a 
different study, physics-informed ensemble learning strategy 
combining finite element simulations and machine learning 
models such as AdaBoost and SVR was employed for cutting 
temperature and force prediction during machining 
IN625 superalloy. AdaBoost and SVR attained the maximum 
accuracy for predicting temperatures and forces, respectively, with 
negligible validation errors (Karthik and Rao, 2025). Similarly, 
XGBoost also emerged as the best model in predicting mechanical 
characteristics of ultrathin niobium strips as compared to RF, MLP, 
and GBDT models at large in generalization performance (Wang 
et al., 2024). Regarding green manufacturing, XGBoost has also 
been utilized to predict and reduce carbon footprints in a three- 
axis mill machine with backup from SHAP analysis that reflected 
spindle speed to be the determining factor (Mishra et al., 2024). 
Finally, for cutting force prediction in thin-walled milling, a new 
framework integrating time-series analysis, the Imperialist 
Competitive Algorithm, and Multi-View Embedding was 
proposed, which showed high predictive accuracy with errors 
less than 17% even under unstable cutting conditions (Pour and 
Fallah, 2024). A recent large scale bibliometric analysis, 
highlighting the effect of artificial intelligence in advanced 
manufacturing through AI-enabled predictive maintenance 
and monitoring; 20% reductions in energy use and accuracy/ 
stability improvements in machining (Kaur et al., 2025). In 
welding, while traditional evolution algorithms have typical 
been the go-to optimizations, with the introduction of 
reinforcement learning based optimization frameworks, faster 
bead geometries have been obtained resulting in significantly 

fewer experiments, total cost, waste and emissions when 
optimizing welds (Ma et al., 2024).

By employing ensemble machine learning models with 
techniques of statistical method and interpretability in the CNC 
machining of marble produces extremely accurate predictions (R2 > 
0.98), while identifying the primary components to energy efficient 
machining; that is; removal rate of material and machining strategy 
(Sariişik and Öğütlü, 2025). The hard turning of tool steels 
demonstrated substantial heat treatment impacting performance 
on machinability, generating significant improvements in surface 
qualities, tool life, and power consumptions in addition to displaying 
high potential applicability to industrial needs (Tlija et al., 2025).

These studies often focus on a single parameter at a time when 
modelling their predictive power, such as determining surface finish 
based solely on surface roughing parameters or measuring tool wear 
based solely on data related to tool-wear measurements. In addition, 
many existing models use a conventional machine learning 
approach and do not support a single framework that can 
manage the dynamic non-linearities of grinding systems in real- 
time. In contrast, the proposed architecture uses both hybrid 
learning and metaheuristic techniques in order to be adaptable 
for high-precision automated control on the production floor. 
Existing limitations in these existing approaches highlight the 
importance of a more complete, robust and production-ready 
optimisation framework.

The rest of the paper is organized as in Section II there is a 
discussion about the material used and the setting up of the 
experimental setup, Section III discusses about the methodology 
where process from data collection and description to the 
optimization process is discussed in detail. Moving further in the 
paper Section IV discusses about the Results obtained from the 
methodology and Section V is the conclusion of the paper.

2 Material and experimental setup

2.1 Workpiece material and specifications

The base materials for testing were made of the material known 
as EN 31 steel with 50 HRC hardness. The chemical make-up of EN 
31 steel is 1% Carbon, 0.50% Manganese, 1.40% Chromium, 0.3% 
Sulphur, 0.20% Silicon, and 0.025% Phosphorus. The size of the 
workpiece is 60 mm in length with a major diameter of 80 mm and 
minor diameter of 60 mm. Different machining operations, such as 
facing, turning, and step turning, are performed on the workpiece 
prior to hardening through a hot oil deep hardening process. 
Thermocouples are also inserted in the workpiece through 
Electrical Discharge Machining (EDM) for temperature 
measurement during the grinding processes.

2.2 Grinding conditions and process 
parameters

2.2.1 Control parameters
The four major parameters of the machining process determined 

to be in focus for this study were subsequently investigated to 
understand their effect on cylindrical grinding performance. The 
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TABLE 1 Data-driven and machine learning approaches in machining process optimization and prediction.

Ref. 
No.

Material 
used

Model/ 
Algorithm 
used

Machining 
process

Performance 
metrics

Input 
parameters

Key 
findings

Results

Kim 
et al. 
(2024)

Internal Grind ML + Gaussian 
Process + 
Metaheuristic 
Optimization

Internal 
Cylindrical 
Grinding

Fault Rate Reduction, 
Cycle Time Reduction

DOC, FR, 
WRS, WHS

Proposed a data- 
driven system 
integrating ML 
for fault detection 
and optimization 
using real-world 
data

Fault rate ↓ by 77.83%, 
Cycle time ↓ by 17.64%

Reeber 
et al. 
(2024)

- Random Forest, 
Gradient Boosting, 
LightGBM

Grinding MSE, MAE, RMSE, R2 DOC, FR, 
WRS, WHS

LightGBM 
performed best in 
surface roughness 
prediction; 
Gradient 
Boosting had the 
highest error

LightGBM: MSE 0.0047, 
MAE 0.064, RMSE 0.09, 
R2 ≈ −0.02

Bukhari 
et al. 
(2025)

AZ91 magnesium 
alloy

Decision Tree, 
Bayesian Opt., RF, 
XGBoost

Orthogonal 
Cutting (MQL)

MSE, MAE, R2 Feed, Cutting 
Speed, MQL Flow 
Rate

XGBoost showed 
superior 
predictive 
accuracy; rare 
literature in 
AZ91 under MQL

XGBoost: MSE ↓ 34.1%, 
MAE ↓ 17.1% vs. 
Decision Tree; MSE ↓ 
19.8% vs. RF

Karthik 
and Rao 
(2025)

IN625 superalloy AdaBoost, SVR, RF, 
GPR, FEM-based 
Data Augmentation

Milling/Turning 
(General)

Accuracy (%), 
Error (%)

FE Simulations, 
Cutting Parameters

AdaBoost best for 
temperature; SVR 
best for cutting 
force; ML models 
validated with 
experimental data

AdaBoost: 99.89% acc. 
temp.; SVR: 100% acc. 
force; Validation error: 
4% temp., 7% force

Wang 
et al. 
(2024)

Ultrathin Niobium 
Strips

XGBoost, RF, MLP, 
GBDT

Rolling R2, MAE, RMSE, 
MAPE

Strip Thickness, 
Microstructure 
Features

XGBoost 
achieved highest 
R2 and lowest 
error; effective for 
predicting 
mechanical 
properties

R2: 0.944 (TS), 0.964 
(YS); Lowest MAE, 
RMSE, MAPE across 
models

Mishra 
et al. 
(2024)

- (Carbon analysis) XGBoost, SHAP 3-Axis Milling RMSE, MAE, R2 Cutting Params, 
Flowmeter Rate

XGBoost best for 
emission 
prediction; SHAP 
identified spindle 
speed as 
dominant factor

RMSE: 0.0007129, MAE: 
0.0004476, R2: 1

Pour and 
Fallah 
(2024)

Flexible Thin- 
Walled Workpiece

Imperialist 
Competitive 
Algorithm + MVE

Milling (Force 
Prediction)

Peak-to-Peak 
Error (%)

Cutting 
Parameters, Modal 
Characteristics

Rapid cutting 
force prediction 
using dynamic 
state-space and 
time series 
analysis

Force prediction error: 
<8% (stable), <17% 
(unstable)

Kaur 
et al. 
(2025)

Various machining 
materials 
(182 studies across 
machining, 
manufacturing, and 
prognostics)

AI, ML, DL; 
clustering using 
VOSviewer; 
algorithms include 
predictive models, 
neural networks, 
optimization 
algorithms

Machining 
processes; 
predictive 
maintenance; 
monitoring; 
digital twins; 
sustainable 
manufacturing

Efficiency, accuracy, 
sustainability; energy 
consumption; tool 
wear prediction; 
process stability

Keywords-derived 
clusters: sensing, 
prognostics, 
sustainability, 
optimization, 
neural networks, 
tool wear, CNC, 
digital twins

AI/ML/DL 
significantly 
enhance 
predictive 
maintenance, 
real-time 
monitoring, 
energy 
optimization (up 
to 20% energy 
reduction); 
improve tool wear 
prediction and 
machining 
accuracy

Identified 8 thematic 
clusters; major gaps 
include data quality, 
adaptability, and system 
integration; roadmap 
proposed for scalable 
intelligent machining

(Continued on following page)
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selected parameters varied from 0.025 mm to 0.04 mm for the depth 
of cut and were directly proportional to the amount of material 
removed per pass; the rate of feed that was taken into account, 
especially concerning the material removal rate and surface finish; the 
work speed, whose variations were 100–250 rpm, and it was said to be 
in favour of keeping the right balance of heat generation and wear 
rate of the grinding wheel; similarly, the wheel speed was maintained 
between 948 rpm and 1186 rpm and exerted a great influence on the 
size of abrasive chips and the subsequent thermal effect on the 
workpiece. The ranges of the parameters included in this study 
were determined by the machining capabilities of EN31 steel and 
the operational limits of the AHG-60 × 300 CNC grinding machine. 
The allowable combinations for the experiment were selected such 
that they all met the safe and industrially valid parameters. The 
ranges of the parameter values used are also representative of those 
used in previous grinding research, and this allows for comparison to 
published results. To accomplish this, the 29-lateral Taguchi 
L29 orthogonal array was selected, as it allows four factors to be 
assessed simultaneously at various levels and, due to the L29’s 
architecture, constrains the number of required experimental tests 
from hundreds to 29. By having 29 test configurations, the evaluation 

of parameter interactions will be statistically meaningful, and the 
workload will be manageable because, as indicated by the previous 
use of the L29 array, simultaneous measurement of force, 
temperature and cooling conditions produces a large volume of 
data in addition to the amount of time involved. In an ordered 
approach, the investigation established a systematic method of 
analysis of these parameters through the Taguchi L29 orthogonal 
array as the experimental design for an effective investigation of 
combinations of parameters by conducting 29 designed experiments. 
The optimization approach was based on the Smaller-the-better 
quality objective, aiming toward minimizing the critical output 
responses like temperature and surface roughness to render the 
grinding process much more upgraded in terms of its quality 
and integrity.

2.3 Experimental setup and measurement 
techniques

Face and shoulder grinding operations are carried out with the 
aid of the AHG-60 × 300 CNC grinding machine that can hold 

TABLE 1 (Continued) Data-driven and machine learning approaches in machining process optimization and prediction.

Ref. 
No.

Material 
used

Model/ 
Algorithm 
used

Machining 
process

Performance 
metrics

Input 
parameters

Key 
findings

Results

Ma et al. 
(2024)

Welding samples 
(material not 
specified; welding 
bead geometry 
studied)

Machine Learning 
model for bead 
geometry 
prediction; 
Reinforcement 
Learning – SPO 
(Stochastic Policy 
Optimization); 
Genetic Algorithm 
(GA) for 
benchmarking

Welding 
optimization; 
WPS 
development

Penetration depth, 
bead area, material 
deposition, 
computational time, 
prediction error

Process parameters 
affecting bead 
geometry; 
constraints for two 
optimization tasks 
(setpoint-based and 
setpoint-free)

ML model 
correlates 
parameters to 
bead geometry; 
SPO RL 
algorithm 
outperforms GA 
in accuracy and 
computational 
efficiency; reduces 
number of 
physical welding 
experiments

Setpoint optimization: 
solved in 8 min, MPAE = 
2.48% (vs. GA: 42 min, 
3.42%). No-setpoint 
optimization: 30 s vs. 
GA’s 6 min; RL reward 
5.8 vs. 3.6; Reduced cost, 
waste, and emissions

Sariişik 
and 
Öğütlü 
(2025)

Marble CatBoost, 
LightGBM, 
XGBoost, K-means 
clustering, Gradient 
Boosting 
(classification); 
ANOVA statistical 
analysis

CNC machining 
of marble under 
different toolpath 
strategies 
(external, linear, 
spiral)

Specific Energy (Se), 
Material Removal 
Rate (MRR), R2 

scores, AUC, 
classification 
accuracy, feature 
importance

Cutting depth, feed 
rate, toolpath type, 
cutting force, 
energy metrics

Significant effects 
of depth, feed 
rate, toolpath on 
Se; MRR strongly 
reduces Se; MRR 
most important 
feature (96.05% 
importance by 
XGBoost); 
Ensemble ML 
models achieved 
R2 > 0.98; SHAP 
validated 
interpretability

CatBoost best predictor 
(R2=0.983). Toolpath 
accuracy ranking: 
external > linear > spiral. 
Gradient boosting: 
accuracy = 0.75, highest 
AUC. Strong 
correlations (R2=0.70) 
for Se with depth/feed; 
weak with MRR 
(R2=0.16)

Tlija 
et al. 
(2025)

DC53 tool steel 
(compared with 
AISI D2) using Xcel 
CBN tool

Artificial Neural 
Networks (ANNs); 
NSGA-II (Non- 
Sorting Genetic 
Algorithm) for 
multi-objective 
optimization

Hard part turning Tool life, surface 
roughness, MRR, 
power consumption, 
temperature; R2; 
optimized trade-offs

Workpiece 
hardness (heat 
treatment), cutting 
speed, feed rate, 
depth of cut

Heat treatment is 
the dominant 
factor (e.g., 
74.63% effect on 
tool life); ANN 
models accurately 
predict 
machinability 
(R2 > 0.97); 
NSGA-II 
identifies optimal 
compromises

Optimized results: 
+92.05% tool life, 
+91.83% material 
removed, −33.33% 
roughness, −26.73% 
power 
consumption, −9.61% 
temperature; strong 
prediction and 
optimization framework

Frontiers in Mechanical Engineering frontiersin.org05

Charde et al. 10.3389/fmech.2025.1754007

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1754007


several features such as a 60 mm maximum workpiece width and 
45 m/s grinding wheel speed as per the Table 2. Experimental testing 
incorporates the utilization of slip rings, thermocouples, and a brush 
assembly to capture and store temperature readings during grinding. 
These elements collaborate to allow precise monitoring and 
measurement of temperatures during the grinding processes of 
the face and shoulders.

In this experiment, we used an array of strain gauges in an 
assembly that was mounted between the support of the work piece 
and the support of the machine as shown in Figure 2 to measure the 
grinding force at the shoulder and the end face of a cylinder. This 
created the ability to obtain data in real-time during the cylinder 
grinding process on both radial and axial directional forces of the 
grinding wheel.

2.4 Grinding under various cooling 
conditions

In the dry condition, there is grinding in the absence of any 
coolant, and consequently, there is high temperature generation. 
High temperatures are liable to cause thermal damage to the 
workpiece in the form of tensile residual stresses and crack 
formation. Contrarily, in the flooded coolant condition, there is 
grinding through an oil-in-water emulsion or neat oil, and it is 
supplied to the grinding zone at low pressure. This cooling method 
is particularly beneficial for low-speed grinding, and it controls heat 
more effectively. Furthermore, in the Minimum Quantity 
Lubrication (MQL) condition, a small amount of lubricant, 
typically 100 mL/h or lower, is delivered directly to the cutting 

zone by an air-oil stream. This reduces the overall coolant usage but 
provides an acceptable surface finish with lower thermal damage. 
The lubricants used in this operation are HP KOOLKUT 40 and HP 
SYNTHCOOL 100 whose properties are described in Tables 3, 4.

2.5 Force measurement during grinding at 
face and shoulder

The forces generated in grinding are measured by a force 
measuring system that has been specifically designed using strain 
gauges, an octagonal ring, and a digital display. The system is 
capable of measuring both the radial and axial forces generated 
during grinding. The forces are detected at the workpiece extension 
end where strain gauges are mounted on the ring. These measured 
forces are subsequently digitally presented, with real-time data 
available for examination. The force measurement system is 
designed to be integrated into the grinding process in such a way 
as not to close the process while continuously monitoring face and 
shoulder grinding forces.

3 Methodology

3.1 Dataset description

The information for this study was collected from a series of 
experimental grinding tests conducted with four various cooling 
conditions: dry, flooded coolant, MQL with HP KOOLKUT, and 
MQL with HP SYNTHCOOL. There are a few input parameters in 

TABLE 2 Specifications of face and shoulder grinding machine used.

Machine type AHG- 60 × 300 CNC 
Maximum width of the work piece to be grind=60 mm 
Maximum distance between centers = 300 mm

Manufactures Name Parishudh Machines Pvt. Ltd

Capacities Centre Height: 130 mm 
Distance between centers: 300 mm

External Wheel Head Grinding Wheel (OD x ID) = ϕ500 mm X ϕ 254 mm 
Maximum Width: 60 mm

Work Head (Dead) Spindle Motor (AC induction Motor): 7.5 Kw 
Grinding Speed: 45 m/s 
Spindle Speed (infinitely variable):50–650 rpm 
Spindle motor (AC Servo Motor): 6NM

Infeed Slide (X-Axis) Total stroke: 200 mm 
Rapid Feed rate: 10 m/min 
Feed A. C. Servo Motor: 6NM 
Input Resolution: 0.0001 mm

Table (Z-Axis) Total Stroke: 400 mm 
Rapid feed rate: 10 m/min 
Feed A. C. Servo motor: 6NM 
Input Resolution: 0.001 mm

Tail Stock Assembly Travel: 40 mm 
Centre: MT 4

General Coolant Pump Motor: 1.5 KW 
Total power requirement: 25 Kw 
Total Weight of the machine: 4000 kg
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each record, including the depth of cut (DOC), feed rate (FR), work 
speed (WRS), wheel speed (WHS), and the cooling condition, which 
is defined as a categorical variable. The measured outputs are surface 
roughness, temperature, and force, all of which were measured at the 
shoulder and face of the workpiece during grinding. The data set 
consists of 115 experiments each representing a unique combination 
of the input parameters. These combinations were grouped based on 
an L29 orthogonal array such that various settings of the parameters 
were well covered in the data set.

3.2 Data pre-processing

Data pre-processing followed a few steps to clean the dataset 
before analysis. The categorical feature, cooling condition, was 
one-hot encoded to transform it into numerical form that can be 
utilized well in machine learning models. The input features were 
normalized with standard scaling so that all variables are on the 
same scale, thus avoiding any feature from controlling the model 
based on magnitude differences. Missing values in the data were 
deleted, and any column formatting inconsistencies were resolved 
to preserve the integrity of the data. New features were also 
introduced for optimization purposes, like the calculation of 
the total force, i.e., the addition of forces at the face and 
shoulder. This total force feature was most beneficial in the 
following optimization models, where total grinding force 
reduction was one of the main goals.

3.3 Predictive modeling of grinding forces

Machine learning was a very important part of the methodology 
aimed at building robust predictive models that could accurately 
forecast the grinding forces at the workpiece face and shoulder. The 
three algorithms to be used were chosen because they had 
demonstrated ability in regression applications and their potential 
to accommodate non-linear interactions among variables: Extreme 
Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), and 
Support Vector Regression (SVR). XGBoost, a high-performance 
gradient-boosted decision tree implementation, was used because of 
its ability, scalability, and regularization, which assist in overcoming 
overfitting and generalization.

3.3.1 XGBoost (extreme Gradient Boosting)
XGBoost is an ensemble learning algorithm that constructs 

additive regression trees sequentially. To help control model 
complexity, the target functions have both loss terms and 
regularization constants. The objective function, regularization 
function and prediction step for XGBoost algorithm is 
represented by Equations 1-3.

Overall Objective Function: 

L �􏽘

n

i�1
l yi − ŷi

t( )􏼐 􏼑 +􏽘

t

k�1
Ω fk( 􏼁 (1)

Here,
L: total loss

FIGURE 2 
Experimental Setup for Measuring Forces in Face and shoulder Grinding Operation.

TABLE 3 Physio-chemical properties of HP KOOLKUT 40.

S. No. Properties HP 
KOOLCUT 40

1 Colour After Emulsification Milky White

2 Kinematic Viscosity at 40 °C, Min, CST 20

3 Flash Point, COC °C, Min 150

4 Copper Corrosion at100 °C, Min 1

5 Cast Iron Corrosion Test, 20:1 Emulsion with 
400 PPM Hard Water Max

0/1–1

TABLE 4 Physio-chemical properties of HP SYNTHCOOL 100.

S. No. Properties HP 
SYNTHCOOL 100

1 Appearance Fluorescent yellow

2 Copper Strip Corrosion 3Hr 1 at 
100 °C, Max

1

3 1:40 in Distilled Water 0/1–1

4 1:40 in Hard Water-200 PPM 0/1–1
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l(yi − ŷi
(t)): training loss (e.g., Mean Squared Error)

fk: individual regression tree at iteration k
ŷi
(t): predicted value after t trees

Regularization Term: 

Ω fk( 􏼁 � γT +
1
2

λ􏽘
T

j�1
wj

2 (2)

Here,
T: number of leaves in the tree
wj: weight of the jth leaf
γ, λ: regularization parameters
Prediction: 

ŷi
t( ) �􏽘

t

k�1
fk xi( ) (3)

3.3.2 Multilayer Perceptron (MLP)
Multilayer Perceptron’s in artificial neural networks represent a 

series of feedforward neural network that includes the input layer, 
hidden layer, as well as the output layer, and is capable of learning 
increasingly complex nonlinear relationships by weighted sums and 
activation functions on various-layer transformations. The hidden 
layer computation is shown by Equation 4 with output layer and loss 
function represented by Equations 5, 6 respectively.

Hidden Layer Computation: 

hj � f 􏽘
n

i�1
wij

1( )xi + bj
1( )⎛⎝ ⎞⎠ (4)

Output Layer: 

ŷ � g 􏽘
m

j�1
wj

2( )hj + b
2( )⎛⎝ ⎞⎠ (5)

Here,
xi: input features (DOC, FR, WRS, WHS)
hj: output of hidden node j
wij
(1), wj

(2): weights of input-to-hidden and hidden-to- 
output layers

bj
(1), b(2): biases

f(·): activation function (e.g., ReLU or sigmoid)
g (·): linear activation for regression output
Loss Function (Mean Squared Error): 

LMSE �
1
n
􏽘

n

i�1
yi − ŷi( 􏼁

2 (6)

3.3.3 Support Vector Regression (SVR)
Support Vector Regression (SVR) is effective in coping with 

highly dimensional data, model complexity as against prediction 
accuracy. In this way, the target values are estimated within a margin 
(ε) using kernel functions while ensuring the flatness of the model. 
SVR Optimization equation represented by Equations 7-9.

Optimization Objective: 

min

w, b, ξ, ξ*
1
n
w‖ ‖2 + C􏽘

n

i�1
ξi + ξi*( 􏼁 (7)

Subject to: 

yi − wT∅ xi( ) + b( 􏼁≤ ε + ξi (8)

wT∅ xi( ) + b( 􏼁−yi ≤ ε + ξi*; ξi − ξi* ≥ 0 (9)

3.4 Model training and evaluation

All the models trained and tested on a stratified 80/20 train-test 
split were such that the data distribution in the underlying data was 
maintained in both training and test sets. This method, therefore, 
helped in realistic testing of models under reduced possibilities of 
bias. Prior to training, the input features were normalized to ensure 
that all features made equal contributions to the learning process, a 
process critical for algorithms like MLP and SVR that are sensitive to 
feature scaling. One-hot encoding was also applied to transform the 
categorical cooling condition variable to one appropriate for 
numerical computation.

Model performance was assessed using two common 
regression metrics Mean Squared Error (MSE), which 
measures the average squared difference between real and 
estimated force values, and the coefficient of determination 
(R2 score), which measures the percentage of variance in the 
dependent variable that can be explained by the independent 
variables. These were chosen to adequately reflect both the 
accuracy and explanatory ability of the models. The 
comparative performance of the models not only gave us an 
understanding of their predictive capabilities but also set the 
stage for identifying the best model to be used for subsequent 
optimization. The best-performing model’s output was then 
incorporated in a metaheuristic optimization framework to 
optimize the total grinding force, thus connecting predictive 
modeling with process improvement in an end-to-end 
intelligent manufacturing approach.

In order to ensure that model assessments are robust and to 
compensate for the drawbacks associated with only using MSE 
and R2 as measures of performance; we also included other 
performance metrics in our evaluation. The MAE represents 
the average size of your prediction errors across all predictions 
and is not dependent on the presence of large outlier predictions, 
thus it provides a better estimate of prediction accuracy overall, on 
average. In addition, we have performed 5-fold cross validation to 
evaluate the generalization of each model to different training/test 
partitioning versus 1 train/test partition; therefore, allowing for 
greater confidence in the stability and predictive reliability of 
the models.

3.5 Optimization of grinding parameters 
through Particle Swarm optimization 
methodology

Particle swarm optimization (PSO) was deployed as a global 
optimization algorithm with high robustness and efficiency to 
reduce the overall machining grinding force. PSO derives its 
concept from the collective behavior in nature, especially from 
the behavior of bird flocks and fish schools. It works by 

Frontiers in Mechanical Engineering frontiersin.org08

Charde et al. 10.3389/fmech.2025.1754007

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1754007


initializing a set of possible solutions, known as particles, which 
iteratively search the solution space according to both individual and 
social experience. In this case, however, the PSO protocol was hence 
used to determine the best combination of grinding process 
parameters such as depth of cut (DOC), feed rate (FR), work 
speed (WRS), and wheel speed (WHS), which would give rise to 
least possible total force defined as the sum of the forces exerted on 
face and shoulder sides of the workpiece.

The process of optimization was organized over some search 
space characterized by machining experience with experimentally 
achievable limits about the minimum cut depth of 0.02–0.06 mm; 
a feed rate of 0.5–2.0 mm/s, a workpiece rotation speed of 
50–300 rpm, and a wheel speed of 900–1,500 rpm. A 
population size of 20 particles was initialized, and 50 iterations 
were performed to ensure an adequate exploration over the 
multidimensional parameter space. Each particle represents a 
candidate solution expressed as a set of the four grinding 
parameters, and its fitness is evaluated by a trained machine 
learning model that predicts the total grinding force for that 
combination. The machine learning model is used in the fitness 
function, which was already selected in the previous predictive 
modeling iterations as it had a better prediction performance of 
force values with high accuracy.

The fitness function was used as a surrogate model, to enable 
quick evaluation on a number of parameters sets without having to 
do additional physical experimentation. In each step, particles 
updated their positions in the search space according to their 
own best-known position and the global best-known position 
found by the swarm, resulting in successive solution 
improvement towards the global optimum. This PSO-driven 
optimization platform delivered a viable mechanism for coupling 
data-driven modeling and intelligent search mechanisms to enable 
the creation of a smart manufacturing policy for process 
improvement in grinding operations. The method not only 
enabled the minimization of grinding forces but also presented a 
scalable process that could be tailored for optimization of other 
performance indicators like temperature or surface finish in 
future work.

The parameter setting for the Particle Swarm Optimization 
(PSO) method will be used throughout this study to provide us 
with a stable, reproducible basis for our work, as this is an 
important aspect of the overall methodology and one that is 
generally accepted and used in the area of machining 
technology. The inertia weight (w = 0.7) was selected to 
provide a good balance between exploration (randomness) and 
exploitation (use of current knowledge). It is important to note 
that the cognitive and social learning coefficients were selected 
based on previous research to also assist the particles to learn from 
their own best experiences as well as from the global best solution, 
and set equal values (c1 = 1.5 and c2 = 1.5). The other two 
parameters, particle velocity, and position limits, were set in order 
to prevent any oscillatory behavior during the update process. 
Finally, the convergence of PSO was determined based on the 
following two criteria: either the improvement of the global best 
fitness was less than 10–6 for the last ten iterations, or the 
algorithm reached the maximum limit (50 iterations) and it 
had made no further improvements in the global best fitness 
since the last iteration. Using these parameters allowed for the 

development of a consistent, reliable method to analyse the 
nonlinear parameters in the grinding process.

Figure 3 depicts a robust workflow for grinding force 
optimization with machine learning and Particle Swarm 
Optimization (PSO) and model is named as MSX_PS. It starts 
with experimental setup and data collection, which includes 
measurement of forces on EN31 steel under various cooling 
conditions. Having pre-processed the data, machine learning 
models (XGBoost, MLP, SVR) are trained and tested using Mean 
Squared Error (MSE) and R2. The model with the highest 
performance is utilized in PSO to find the best grinding 
parameters (DOC, FR, WRS, WHS) which reduce the total force 
and improve process efficiency.

4 Result and discussion

This section brings in the results for the evaluation performance 
of machine learning models on the Particle Swarm Optimization 
(PSO) process parameter tuning and a comparative view regarding 
different visualizations to understand the trends and efficiency of the 
presented methods.

4.1 Machine learning model evaluation

An evaluation was made of three machine learning algorithms- 
XGBoost, Multilayer Perceptron (Neural Network), and Support 
Vector Regression (SVM), to forecast grinding forces for shoulder 
and face operations. The models were trained and tested on an 80: 
20 ratio, and performance measurement was by means of Mean 
Squared Error (MSE) and R2 metrics.

Table 5 presents a comparison of the performance of XGBoost, 
Neural Networks, and SVM models in predicting grinding forces 
using various statistical error metrics. The predictive performance 
of XGBoost was significantly greater than that of both the Neural 
Network and SVM models. For example, the lowest MSE 
(0.02641), RMSE (0.1625), and MAPE (0.0698) were achieved 
using XGBoost, which had the highest coefficient of 
determination (R2 = 0.6640) among the three models. The 
Neural Networks and SVMs had higher values for each of 
these metrics, indicating a lower level of predictive accuracy 
and a lower level of explanatory power. These results suggest 
that tree-based ensemble learning provides the best modelling of 
grinding force behaviour.

A comparison of the performance (in terms of MSE, RMSE, 
MAE, MAPE, and R2) of XGBoost, NeuralNet, and SVM in 
predicting the face grinding force can be seen in Figure 4. 
Overall, XGBoost performed the best and produced the lowest 
MSE (0.02641), RMSE (0.1625), MAE (0.1286), and MAPE 
(0.0698) values for predicting the face grinding force. 
XGBoost also produced the highest R2 value of 0.6640 which 
shows that it has better predictive capabilities compared to both 
NeuralNet and SVM whose R2 values are 0.6250 and 0.6395, 
respectively. Furthermore, the visual representations of the 
predictive models in Figure 4 show that the XGBoost 
predictive model has a much better generalization ability than 
both NeuralNet and SVM.
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Table 6 provides a comparison of XGBoost, Neural Network and 
SVM models based on predictive performance for grinding force 
prediction, measured using common performance metrics. In 
Table 6, XGBoost produced the best prediction accuracy, having 
the lowest Mean Squared Error (MSE = 0.03730), Root Mean 
Squared Error (RMSE = 0.1931) and Mean Absolute Percentage 
Error (MAPE = 0.0462). The R-squared (R2) value of XGBoost 

(0.9324) is much higher than the R2 value of the other two models 
(Neural Network and SVM), which indicates lower predictive 
power. As a result, this study demonstrates the efficacy of 
ensemble methods for predicting grinding force in the shoulder.

In modeling the shoulder force prediction, there were 
significant differences in performance when comparing the 
results between three different predictive models. Figure 5

FIGURE 3 
Framework for predictive modeling and optimization of grinding forces using MSX_PS model.
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shows the XGBoost model again demonstrated its superiority 
over the other two models in terms of accuracy and the received 
mean square error (MSE) at 0.03730, root mean square error 
(RMSE) at 0.1931, mean absolute error (MAE) at 0.1192, mean 
absolute percentage error (MAPE) at 0.0462, and strong 
correlation coefficient (R2 = 0.9324). In comparison to the 
high R2 value of XGBoost, the Neural Network and SVM 
models had respectively lower R2 values of 0.6361 and 
0.6325 that corresponded to their respective RMSE values of 
approximately between 0.448 and 0.450, and MAE values of 
approximately between 0.346 and 0.359 for both Neural 
Network and SVM models. The results from this study 
demonstrate that XGBoost provides a more stable and 
stronger predictive performance than either Neural Network 
or SVM for modeling complex behaviors of shoulder force.

The present investigation is specifically dedicated to the 
prediction and optimization of grinding forces (face and 
shoulder components) using the experimentally established 
ranges of depth of cut, feed rate, work speed, wheel speed, and 
coolant condition. In contrast, most contemporary machine- 
learning studies in grinding including the work of Charde 
et al. (2020) are designed around different output variables 
such as grinding temperature, surface roughness, tool-wear 
progression, or thermo-mechanical responses, each governed 
by its own physical behavior and parameter sensitivity. Because 
our experimental work incorporates a distinct response type and 
parameter configuration focused entirely on force generation, the 
numerical indicators reported in temperature- or roughness- 
based studies do not correspond directly to the predictive 
outcomes obtained in the present XGBoost–PSO framework.

4.2 PSO-based process parameter 
optimization

With the predictive models, Particle Swarm Optimization 
(PSO) was used to optimize the total grinding force to the 
minimum. The objective function was set as the predicted 
total force, integrating face and shoulder forces. Input 
parameters like depth of cut (DOC), feed rate (FR), work 
speed (WRS), and wheel speed (WHS) were optimized within 
practical ranges in industry.

Particle Swarm Optimization (PSO), a population-based 
global optimization method that draws inspiration from the 
social behaviour of bird flocks and fish schools, was utilized to 
determine optimal machining parameters that reduce the total 
grinding force. The optimization problem was framed within a 
specified search space with four key input variables: depth of cut 
(DOC), feed rate (FR), work speed (WRS), and wheel speed 
(WHS). Each variable was limited in experimentally certified 
machining limits DOC between 0.02 and 0.06 mm, FR from 
0.5 to 2.0 mm/s, WRS between 50 and 300 rpm, and WHS 
between 900 and 1500 rpm. The PSO algorithm processed with 
a population of 20 particles for 50 iterations to meet global 
convergence. The optimization process was guided by the 
fitness function that was defined as the total grinding force 
predicted, computed as the sum of face and shoulder forces, as 
estimated by the machine learning model. This setup provided a 
well-balanced exploration of the input space and facilitated robust 
convergence to optimal process settings.

Optimization using Neural Network resulted in an exceptionally 
high predicted force because of issues with convergence and thus 
became unusable for optimization. Out of all models, XGBoost 
provided the most applicable and efficient parameter set with the 
least predicted force, reiterating its effectiveness in parameter 
optimization.

Figure 6 shows the minimum predicted overall grinding force 
obtained by Particle Swarm Optimization (PSO) by three machine 
learning models: XGBoost, Neural Network, and SVM. XGBoost 
yielded the smallest predicted force of 4.22 N, closely followed by 
SVM with 4.69 N, suggesting good convergence and trustworthy 
modeling. As a comparison, the Neural Network model produced an 

TABLE 5 Comparative performance of machine learning models for 
grinding force prediction at face.

Model MSE RMSE MAE MAPE R2

XGBoost 0.02641 0.1625 0.1286 0.0698 0.6640

NeuralNet 0.02948 0.1717 0.1383 0.0768 0.6250

SVM 0.02834 0.1683 0.1348 0.0769 0.6395

Note: Highlighted values represent the best performance parameters.

FIGURE 4 
Comparative performance of machine learning models for face force prediction.
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excessively high predicted force of 532.84 N, indicating instability 
and optimization problems. The optimized input values (DOC, FR, 
WRS, WHS) utilized by each model serve to further indicate the 
parameter sensitivity of the outcomes. By and large, the Table 7
conclusively identifies XGBoost as the most stable and precise model 
for force minimization in grinding operations.

Figure 7 shows a pair plot that illustrates the pairwise 
relationships between important machining parameters Depth of 
Cut, Feed Rate, Work Speed, Wheel Speed and the resulting 
grinding forces at the face and shoulder. The diagonal plots 
indicate the distribution of each variable, and the scatter plots 
below indicate correlations between pairs of variables. A visible 
linear correlation is evident between force at the shoulder and force 
at the face, indicating a high dependency. Other input factors such as 
feed rate and depth of cut also exhibit patterns affecting the output 
forces. Visualization helps in finding trends, clusters, and outliers, if 
any, and serves as a baseline tool for feature selection in 
predictive modeling.

4.3 Comparative analysis

The visual analysis offered extensive support for the model 
optimization and evaluation conclusions. Bar charts illustrating 
comparisons of Mean Squared Error (MSE) and R2 scores Figure 6
showed that XGBoost performed better than the Neural Network and 
Support Vector Machine (SVM) models consistently, especially in 
shoulder force prediction, where it had the highest R2 and lowest MSE. 
Such improved predictive power justified the validity of using XGBoost 
for process optimization applications. Moreover, the output of the 
Particle Swarm Optimization (PSO) was plotted in Figure 7, wherein 
XGBoost again demonstrated a significant lead by having the lowest 
predicted total grinding force among other models, once again proving 
its strength and credibility in reducing machining forces.

Figure 8 shows the distribution of grinding forces at the shoulder 
and face. The face force has a more concentrated distribution 
around 1.8–2.2 N, while the shoulder force has a broader range 
with a peak around 3.5 N, reflecting greater variability in shoulder 
force during grinding.

Figure 9 compares Mean Squared Error (MSE) for XGBoost, 
NeuralNet, and SVM over face and shoulder force predictions. 
XGBoost strongly indicates the lowest MSE for both face and 
shoulder forces, whereas NeuralNet and SVM have much higher 
shoulder MSEs (~0.2), demonstrating their poorer predictive 
accuracy for this output.

Figure 10 shows R2 values for the same models and targets. 
XGBoost is on top with the highest R2 of ~0.93 for shoulder force 
and ~0.66 for face force, which suggests high correlation and 

FIGURE 5 
Comparative performance of machine learning models for shoulder force prediction.

TABLE 6 Comparative performance of machine learning models for 
grinding force prediction at shoulder.

Model MSE RMSE MAE MAPE R2

XGBoost 0.03730 0.1931 0.1192 0.0462 0.9324

NeuralNet 0.20079 0.4481 0.3457 0.1313 0.6361

SVM 0.20280 0.4503 0.3591 0.1421 0.6325

Note: Highlighted values represent the best performance parameters.

TABLE 7 PSO-based optimization results for minimum predicted total grinding force.

Model Optimized input [DOC, FR, WRS, WHS] Predicted min force (N)

XGBoost [0.0283, 0.6829, 131.01, 1119.64] 4.22

NeuralNet [0.0214, 1.6216, 292.69, 900.11] 532.84

SVM [0.0296, 0.7825, 284.46, 925.95] 4.69
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FIGURE 6 
PSO–minimum predicted total force using different machine learning models.

FIGURE 7 
Pairwise relationships between machining parameters and grinding forces.
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FIGURE 8 
Distribution of force at face and shoulder.

FIGURE 9 
MSE comparison across models.
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reliability. NeuralNet and SVM both report moderate R2 values 
(~0.62–0.64), which indicate lower performance in explaining 
variance in the data. Overall, these graphs affirm that XGBoost is 
the most accurate and reliable model for grinding forces prediction.

Furthermore, how cooling conditions influenced grinding 
performance became apparent from boxplot analysis Figure 11. 
Dry grinding condition produced maximum force levels and 
variability, but MQL (Minimum Quantity Lubrication) and 

FIGURE 10 
R2 score comparison across models.

FIGURE 11 
Total grinding force by cooling condition.
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flooded coolant approaches suppressed overall force drastically while 
providing better-stable performance. These observations speak 
volumes for the importance of coolant strategies for raising 
process efficiency and stability. Supporting this, the correlation 
heatmap Figure 12 showed strong positive correlations among 
force, temperature, and surface roughness suggesting that these 
output parameters are closely interconnected. This emphasizes the 
need for a comprehensive optimization strategy, where simultaneous 
consideration of thermal, mechanical, and surface quality parameters 
is crucial to realize optimal grinding performance.

Figure 11 shows a boxplot of the total grinding force for different 
cooling conditions. Among them, the MQL condition with HP 
SYNTHCOOL100 has the lowest and most stable force values, with a 
median slightly above 4 N and little variation. Dry and flooded 
conditions have larger variability and higher medians (~5.1–5.2 N), 
whereas MQL with HP KOOLKUT40 has a little larger range. This 
means that MQL with HP SYNTHCOOL100 provides better 
efficiency in minimizing grinding forces.

Figure 12 presents a heatmap of the correlation matrix, 
indicating relationships between machining parameters, surface 
features, temperatures, forces, and coded cooling conditions. 
There is a high correlation (r ≈ 0.98) between temperature at 
shoulder and face, and between force at shoulder and face (r ≈ 
0.77). The matrix also indicates that MQL SYNTHCOOL100 is 
negatively correlated with both force outputs (r = −0.79 and −0.71), 
confirming its efficiency in reducing grinding forces. This matrix 
helps to determine key relationships for predictive modeling and 
parameter optimization.

5 Conclusion

This research is focused on meeting the demand for 
advanced data-driven intelligent optimization for the current 
state of modern manufacturing focusing specifically on 
precision grinding operations where the elements of high 
productivity, consistent quality and process stability are 
critically interdependent. The research is situated within the 
area of Smart Machining and the fourth industrial revolution 
(Industry 4.0) and is intended to advance the integration of 
machine learning based predictive models with metaheuristic 
optimization methods. Current methods of optimizing grinding 
processes are limited due to the empirical basis for selecting 
parameters, their reliance upon overly simplistic analytical 
assumptions, and their very limited capabilities for adapting 
to the nonlinear nature of grinding processes making it 
impossible to consider simultaneous optimization of force, 
temperature, surface finish and cooling. The primary goal of 
this work and research is to create and validate a machine 
learning-assisted framework for optimization that accurately 
predicts grinding forces and enables end users to optimise 
their grinding processes while reducing fault rates and 
production cycle times.

The Integrated XGBoost–PSO (Particle Swarm 
Optimization) framework was developed and tested to 
achieve the objective of accurately predicting the grinding 
forces throughout the shoulder and face, and to minimize the 
total grinding force via a combination of methods. It highlighted 

FIGURE 12 
Correlation matrix including encoded cooling conditions.
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advantages in predictive accuracy and computational efficiency, 
time-to-solution, scalability, and applicability to Industry 
4.0 concepts. It supports near real-time optimization and 
integration with Computer Numerical Control (CNC) and 
Digital Twin systems, as demonstrated by the combination of 
XGBoost with PSO. However, the framework has limitations in 
that it is based on a small experimental dataset and has a single- 
objective optimization focus. Subsequent research will 
concentrate on enhancing the framework and methods using 
larger and more diverse datasets, and creating a multi-objective 
optimization method, simultaneously considering the four 
factors associated with intelligent grinding/tool application 
(grinding force, temperature, surface integrity and tool wear), 
thus developing an enhanced intelligent grinding/tool 
application capability.
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