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In modern precision machining, optimization of the grinding process is vital to
improve product quality, surface integrity, and machining efficiency. This
research puts forward a data-driven solution that uses a combination of
machine learning and Particle Swarm Optimization (PSO) to predict and
minimize grinding forces in external cylindrical grinding processes.
Experiments were conducted on EN31 steel with varying machining
parameters depth of cut (DOC), feed rate (FR), work speed (WRS), wheel
speed (WHS) and four coolant conditions: dry, flooded, MQL with HP
KOOLKUT40, and MQL with HP SYNTHCOOL100. Three machine learning
algorithms XGBoost, Multilayer Perceptron (MLP), and Support Vector
Regression (SVR) were trained on a dataset of 115 experiments and validated
with Mean Squared Error (MSE) and R? XGBoost worked best among the rest,
particularly for shoulder force prediction, with an MSE of 0.0373 and an R? of
0.9324. This better model was combined with PSO to determine the best grinding
parameters that had minimum total force. The PSO gave a minimum predicted
force of 4.22 N with XGBoost, affirming its stability. Further, cooling condition
analysis showed that MQL with HP SYNTHCOOL100 provided the most effective
force reduction. In general, the investigation proves effective in demonstrating
the suitability of integrating metaheuristic optimization and predictive modeling
for intelligent process control in grinding.

KEYWORDS

grinding forces, machine learning, XGBoost, PSO, cooling conditions, smart
manufacturing, optimization

1 Introduction

Maintaining high-quality standards of mechanical products is an essential requirement
of current manufacturing due to its pivotal impact on product performance, operating
reliability, and lifespan durability (Prakash et al., 2025). Therefore, precise prediction of
critical quality characteristics has become important in sustaining competitiveness and
conforming to strict industry norms. Production systems are generally classified into
intermittent and continuous types, with mass production under continuous systems
allowing automation and uniform machine settings for high-volume production, and
job shop production under intermittent systems providing customized, small-batch
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FIGURE 1
Manufacturing process and quality control.

manufacturing involving frequent setup changes. The cycle of
product development encompasses activities including design,
taking
sophisticated tools such as Design of Experiments (DOE), Finite
Element Analysis (FEA), Design for Manufacturing (DFM), and
Design for Assembly (DFA) and is supported increasingly by IT-

simulation, and process planning, advantage of

based technologies such as Product Data Management (PDM) and
Product Lifecycle Management (PLM) in compliance with Industry
4.0 guidelines (Rubi et al, 2024). Among different machining
operations, grinding is a very accurate abrasive process,
commonly employed in finishing manufacturing operations for
creating smooth and precise surfaces. Grinding is especially ideal
for machining hardened materials, with high precision and
efficiency, but its optimization is difficult because of the
nonlinear and complex nature of parameters like material
removal rate, feed rate, wheel speed, and depth of cut (Kim
et al., 2024). Grinding is also important in high-precision sectors
such as aerospace, automotive, and defense, and is used on hard-to-
machine materials such as glass ceramics. Surface roughness, an
important quality characteristic influencing fatigue resistance,
corrosion, and aesthetics, is determined by process parameters as
well as external influences such as material properties, cooling
conditions, and tool wear (Charde et al., 2025). To meet this,

researchers have proposed predictive models and investigated
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sustainable grinding techniques, such as cryogenics, hybrid
lubrication, and force-based data-driven roughness prediction
(Charde et al, 2020). Further, surface integrity, dimensional
accuracy, and tool life in subtractive manufacturing require
greater understanding of cutting mechanics. The Finite Element
Method (FEM) has turned out to be an advanced simulation tool in
this area, supporting research into tool wear, residual stresses, and
chip formation dynamics using different mesh-based methods.
Though valuable for research, FEM’s application in real-time use
within manufacturing environments is restricted due to
computationally intensive
although

alternatives (Reeber et al, 2024). To counter the intricacies

requirements, particularly in 3D

simulations, simplified 2D models offer some

involved in optimizing such complex machining operations,

current studies have increasingly relied on advanced
computational methods. Specifically, the blend of machine
learning and data-driven modeling has proven to be an exciting
path for improving grinding efficiency and predictive performance.
Figure 1 depicts a cyclical model that captures the major elements of
manufacturing process and quality control. The cycle starts with the
determination of quality standards and moves on to categorizing
production systems, utilizing product development tools, and the
adoption of IT-based technologies. It goes on to refine grinding

processes, study surface roughness, FEM simulation of processes,
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and finally incorporates machine learning for increased efficiency
and accuracy. This feedback mechanism focuses on continuous
manufacturing  improvement  through  data-driven  and
technology-infused strategies. Table 1 describes the methodology
adopted by different authors and their outcomes.

Grinding is one of the most essential manufacturing processes in
today’s industry, appreciated for its potential to generate high-
precision surfaces as well as increase productivity. Nevertheless,
optimizing grinding parameters is a challenging task because
nonlinear dynamics are involved. To solve this, an ML-based data-
driven system coupled with metaheuristic optimization algorithms
was suggested for internal cylindrical grinding performance
enhancement. This framework combines a fault detection model
and a Gaussian process-based cycle time estimator, resulting in
considerable fault rate and cycle time reductions by 77.83% and
17.64%,

experiments and expert opinions (Charde et al., 2020). Likewise,

respectively tested and validated wusing real-world
machine learning models like LightGBM, Random Forest, and
Gradient Boosting have been used for surface roughness prediction
based on critical parameters such as depth of cut, feed rate, work
speed, and wheel speed. LightGBM performed best, with small error
values, which proves the importance of predictive modeling in
enhancing surface finish quality (Recber et al., 2024).

Beyond grinding, there have been various studies investigating
ML applications in various machining conditions. In orthogonal
cutting of AZ91 magnesium alloy using MQL assistance, for instance,
there have been machine learning models such as XGBoost, Decision
Tree, and Random Forest applied to predict machinability. XGBoost
proved to be the highest accuracy, performing better than other
models in reducing MSE and MAE (Bukhari et al., 2025). In a
different study, physics-informed ensemble learning strategy
combining finite element simulations and machine learning
models such as AdaBoost and SVR was employed for cutting
temperature and  force  prediction  during machining
IN625 superalloy. AdaBoost and SVR attained the maximum
accuracy for predicting temperatures and forces, respectively, with
negligible validation errors (Karthik and Rao, 2025). Similarly,
XGBoost also emerged as the best model in predicting mechanical
characteristics of ultrathin niobium strips as compared to RF, MLP,
and GBDT models at large in generalization performance (Wang
et al,, 2024). Regarding green manufacturing, XGBoost has also
been utilized to predict and reduce carbon footprints in a three-
axis mill machine with backup from SHAP analysis that reflected
spindle speed to be the determining factor (Mishra et al., 2024).
Finally, for cutting force prediction in thin-walled milling, a new
framework integrating time-series analysis, the Imperialist
Competitive Algorithm, and Multi-View Embedding was
proposed, which showed high predictive accuracy with errors
less than 17% even under unstable cutting conditions (Pour and
Fallah, 2024). A recent large scale bibliometric analysis,
highlighting the effect of artificial intelligence in advanced
manufacturing through Al-enabled predictive maintenance
and monitoring; 20% reductions in energy use and accuracy/
stability improvements in machining (Kaur et al., 2025). In
welding, while traditional evolution algorithms have typical
been the go-to optimizations, with the introduction of
reinforcement learning based optimization frameworks, faster
bead geometries have been obtained resulting in significantly
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fewer experiments, total cost, waste and emissions when
optimizing welds (Ma et al., 2024).

By employing ensemble machine learning models with
techniques of statistical method and interpretability in the CNC
machining of marble produces extremely accurate predictions (R* >
0.98), while identifying the primary components to energy efficient
machining; that is; removal rate of material and machining strategy
(Sariisik and Ogiitlii, 2025). The hard turning of tool steels
demonstrated substantial heat treatment impacting performance
on machinability, generating significant improvements in surface
qualities, tool life, and power consumptions in addition to displaying
high potential applicability to industrial needs (Tlija et al., 2025).

These studies often focus on a single parameter at a time when
modelling their predictive power, such as determining surface finish
based solely on surface roughing parameters or measuring tool wear
based solely on data related to tool-wear measurements. In addition,
many existing models use a conventional machine learning
approach and do not support a single framework that can
manage the dynamic non-linearities of grinding systems in real-
time. In contrast, the proposed architecture uses both hybrid
learning and metaheuristic techniques in order to be adaptable
for high-precision automated control on the production floor.
Existing limitations in these existing approaches highlight the
importance of a more complete, robust and production-ready
optimisation framework.

The rest of the paper is organized as in Section II there is a
discussion about the material used and the setting up of the
experimental setup, Section III discusses about the methodology
where process from data collection and description to the
optimization process is discussed in detail. Moving further in the
paper Section IV discusses about the Results obtained from the
methodology and Section V is the conclusion of the paper.

2 Material and experimental setup
2.1 Workpiece material and specifications

The base materials for testing were made of the material known
as EN 31 steel with 50 HRC hardness. The chemical make-up of EN
31 steel is 1% Carbon, 0.50% Manganese, 1.40% Chromium, 0.3%
Sulphur, 0.20% Silicon, and 0.025% Phosphorus. The size of the
workpiece is 60 mm in length with a major diameter of 80 mm and
minor diameter of 60 mm. Different machining operations, such as
facing, turning, and step turning, are performed on the workpiece
prior to hardening through a hot oil deep hardening process.
Thermocouples are also inserted in the workpiece through
(EDM) for
measurement during the grinding processes.

Electrical ~Discharge Machining temperature

2.2 Grinding conditions and process
parameters

2.2.1 Control parameters

The four major parameters of the machining process determined
to be in focus for this study were subsequently investigated to
understand their effect on cylindrical grinding performance. The
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TABLE 1 Data-driven and machine learning approaches in machining process optimization and prediction.
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Material Model/ Machining Performance Input Key
used Algorithm process metrics parameters findings
used
Kim Internal Grind ML + Gaussian Internal Fault Rate Reduction, DOC, FR, Proposed a data- Fault rate | by 77.83%,
et al. Process + Cylindrical Cycle Time Reduction = WRS, WHS driven system Cycle time | by 17.64%
(2024) Metaheuristic Grinding integrating ML
Optimization for fault detection
and optimization
using real-world
data
Reeber - Random Forest, Grinding MSE, MAE, RMSE, R* = DOC, FR, LightGBM LightGBM: MSE 0.0047,
et al. Gradient Boosting, WRS, WHS performed best in | MAE 0.064, RMSE 0.09,
(2024) LightGBM surface roughness = R* = —0.02
prediction;
Gradient
Boosting had the
highest error
Bukhari | AZ91 magnesium Decision Tree, Orthogonal MSE, MAE, R Feed, Cutting XGBoost showed = XGBoost: MSE | 34.1%,
et al. alloy Bayesian Opt., RF, = Cutting (MQL) Speed, MQL Flow  superior MAE | 17.1% vs.
(2025) XGBoost Rate predictive Decision Tree; MSE |
accuracy; rare 19.8% vs. RF
literature in
AZ91 under MQL
Karthik IN625 superalloy AdaBoost, SVR,RF, | Milling/Turning Accuracy (%), FE Simulations, AdaBoost best for = AdaBoost: 99.89% acc.
and Rao GPR, FEM-based (General) Error (%) Cutting Parameters = temperature; SVR | temp.; SVR: 100% acc.
(2025) Data Augmentation best for cutting force; Validation error:
force; ML models = 4% temp., 7% force
validated with
experimental data
Wang Ultrathin Niobium XGBoost, RF, MLP, | Rolling R?, MAE, RMSE, Strip Thickness, XGBoost R? 0.944 (TS), 0.964
et al. Strips GBDT MAPE Microstructure achieved highest (YS); Lowest MAE,
(2024) Features R? and lowest RMSE, MAPE across
error; effective for | models
predicting
mechanical
properties
Mishra - (Carbon analysis) | XGBoost, SHAP 3-Axis Milling RMSE, MAE, R? Cutting Params, XGBoost best for = RMSE: 0.0007129, MAE:
et al. Flowmeter Rate emission 0.0004476, R% 1
(2024) prediction; SHAP
identified spindle
speed as
dominant factor
Pourand | Flexible Thin- Imperialist Milling (Force Peak-to-Peak Cutting Rapid cutting Force prediction error:
Fallah Walled Workpiece Competitive Prediction) Error (%) Parameters, Modal | force prediction <8% (stable), <17%
(2024) Algorithm + MVE Characteristics using dynamic (unstable)
state-space and
time series
analysis
Kaur Various machining = AI, ML, DL; Machining Efficiency, accuracy, Keywords-derived AI/ML/DL Identified 8 thematic
et al. materials clustering using processes; sustainability; energy | clusters: sensing, significantly clusters; major gaps
(2025) (182 studies across VOSviewer; predictive consumption; tool prognostics, enhance include data quality,
machining, algorithms include | maintenance; wear prediction; sustainability, predictive adaptability, and system
manufacturing, and | predictive models, | monitoring; process stability optimization, maintenance, integration; roadmap
prognostics) neural networks, digital twins; neural networks, real-time proposed for scalable
optimization sustainable tool wear, CNC, monitoring, intelligent machining
algorithms manufacturing digital twins energy
optimization (up
to 20% energy
reduction);
improve tool wear
prediction and
machining
accuracy

(Continued on following page)
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TABLE 1 (Continued) Data-driven and machine learning approaches in machining process optimization and prediction.

Material Model/ Machining Performance
used Algorithm process metrics
used
Ma et al. | Welding samples Machine Learning | Welding Penetration depth,
(2024) (material not model for bead optimization; bead area, material
specified; welding geometry WPS deposition,
bead geometry prediction; development computational time,
studied) Reinforcement prediction error
Learning - SPO
(Stochastic Policy
Optimization);
Genetic Algorithm
(GA) for
benchmarking
Sariisik Marble CatBoost, CNC machining Specific Energy (Se),
and LightGBM, of marble under | Material Removal
Ogitlia XGBoost, K-means | different toolpath | Rate (MRR), R*
(2025) clustering, Gradient | strategies scores, AUC,
Boosting (external, linear, classification
(classification); spiral) accuracy, feature
ANOVA statistical importance
analysis
Tlija DC53 tool steel Artificial Neural Hard part turning | Tool life, surface
et al. (compared with Networks (ANNs); roughness, MRR,
(2025) AISI D2) using Xcel = NSGA-II (Non- power consumption,
CBN tool Sorting Genetic temperature; R
Algorithm) for optimized trade-offs
multi-objective
optimization

Input

parameters

Process parameters
affecting bead
geometry;
constraints for two
optimization tasks
(setpoint-based and
setpoint-free)

Cutting depth, feed
rate, toolpath type,
cutting force,
energy metrics

Workpiece
hardness (heat
treatment), cutting
speed, feed rate,
depth of cut

Key
findings

ML model
correlates
parameters to
bead geometry;
SPO RL
algorithm
outperforms GA
in accuracy and
computational
efficiency; reduces
number of
physical welding
experiments

Significant effects
of depth, feed
rate, toolpath on
Se; MRR strongly
reduces Se; MRR
most important
feature (96.05%
importance by
XGBoost);
Ensemble ML
models achieved
R* > 0.98; SHAP
validated
interpretability

Heat treatment is
the dominant
factor (e.g.,
74.63% effect on
tool life); ANN
models accurately
predict
machinability

(R* > 0.97);
NSGA-II
identifies optimal
compromises

Setpoint optimization:
solved in 8 min, MPAE =
2.48% (vs. GA: 42 min,
3.42%). No-setpoint
optimization: 30 s vs.
GA’s 6 min; RL reward
5.8 vs. 3.6; Reduced cost,
waste, and emissions

CatBoost best predictor
(R*=0.983). Toolpath
accuracy ranking:
external > linear > spiral.
Gradient boosting:
accuracy = 0.75, highest
AUC. Strong
correlations (R*=0.70)
for Se with depth/feed;
weak with MRR
(R*=0.16)

Optimized results:
+92.05% tool life,
+91.83% material
removed, —33.33%
roughness, —26.73%
power

consumption, —9.61%
temperature; strong
prediction and
optimization framework

selected parameters varied from 0.025 mm to 0.04 mm for the depth
of cut and were directly proportional to the amount of material
removed per pass; the rate of feed that was taken into account,
especially concerning the material removal rate and surface finish; the
work speed, whose variations were 100-250 rpm, and it was said to be
in favour of keeping the right balance of heat generation and wear
rate of the grinding wheel; similarly, the wheel speed was maintained
between 948 rpm and 1186 rpm and exerted a great influence on the
size of abrasive chips and the subsequent thermal effect on the
workpiece. The ranges of the parameters included in this study
were determined by the machining capabilities of EN31 steel and
the operational limits of the AHG-60 x 300 CNC grinding machine.
The allowable combinations for the experiment were selected such
that they all met the safe and industrially valid parameters. The
ranges of the parameter values used are also representative of those
used in previous grinding research, and this allows for comparison to
published results. To accomplish this, the 29-lateral Taguchi
L29 orthogonal array was selected, as it allows four factors to be
assessed simultaneously at various levels and, due to the L29’s
architecture, constrains the number of required experimental tests
from hundreds to 29. By having 29 test configurations, the evaluation

Frontiers in Mechanical Engineering

of parameter interactions will be statistically meaningful, and the
workload will be manageable because, as indicated by the previous
use of the L29 array, simultaneous measurement of force,
temperature and cooling conditions produces a large volume of
data in addition to the amount of time involved. In an ordered
approach, the investigation established a systematic method of
analysis of these parameters through the Taguchi L29 orthogonal
array as the experimental design for an effective investigation of
combinations of parameters by conducting 29 designed experiments.
The optimization approach was based on the Smaller-the-better
quality objective, aiming toward minimizing the critical output
responses like temperature and surface roughness to render the
grinding process much more upgraded in terms of its quality
and integrity.

2.3 Experimental setup and measurement
techniques
Face and shoulder grinding operations are carried out with the

aid of the AHG-60 x 300 CNC grinding machine that can hold
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TABLE 2 Specifications of face and shoulder grinding machine used.

Machine type

10.3389/fmech.2025.1754007

AHG- 60 x 300 CNC

Maximum width of the work piece to be grind=60 mm
Maximum distance between centers = 300 mm

Manufactures Name

Capacities

Parishudh Machines Pvt. Ltd

Centre Height: 130 mm

Distance between centers: 300 mm

External Wheel Head

Grinding Wheel (OD x ID) = ¢500 mm X ¢ 254 mm

Maximum Width: 60 mm

Work Head (Dead)

Spindle Motor (AC induction Motor): 7.5 Kw

Grinding Speed: 45 m/s
Spindle Speed (infinitely variable):50-650 rpm
Spindle motor (AC Servo Motor): 6NM

Infeed Slide (X-Axis)

Total stroke: 200 mm

Rapid Feed rate: 10 m/min
Feed A. C. Servo Motor: 6NM
Input Resolution: 0.0001 mm

Table (Z-Axis)

Total Stroke: 400 mm

Rapid feed rate: 10 m/min
Feed A. C. Servo motor: 6NM
Input Resolution: 0.001 mm

Tail Stock Assembly

General

Travel: 40 mm
Centre: MT 4

Coolant Pump Motor: 1.5 KW

Total power requirement: 25 Kw
Total Weight of the machine: 4000 kg

several features such as a 60 mm maximum workpiece width and
45 m/s grinding wheel speed as per the Table 2. Experimental testing
incorporates the utilization of slip rings, thermocouples, and a brush
assembly to capture and store temperature readings during grinding.
These elements collaborate to allow precise monitoring and
measurement of temperatures during the grinding processes of
the face and shoulders.

In this experiment, we used an array of strain gauges in an
assembly that was mounted between the support of the work piece
and the support of the machine as shown in Figure 2 to measure the
grinding force at the shoulder and the end face of a cylinder. This
created the ability to obtain data in real-time during the cylinder
grinding process on both radial and axial directional forces of the
grinding wheel.

2.4 Grinding under various cooling
conditions

In the dry condition, there is grinding in the absence of any
coolant, and consequently, there is high temperature generation.
High temperatures are liable to cause thermal damage to the
workpiece in the form of tensile residual stresses and crack
formation. Contrarily, in the flooded coolant condition, there is
grinding through an oil-in-water emulsion or neat oil, and it is
supplied to the grinding zone at low pressure. This cooling method
is particularly beneficial for low-speed grinding, and it controls heat
more effectively. Furthermore, in the Minimum Quantity
Lubrication (MQL) condition, a small amount of lubricant,
typically 100 mL/h or lower, is delivered directly to the cutting

Frontiers in Mechanical Engineering

zone by an air-oil stream. This reduces the overall coolant usage but
provides an acceptable surface finish with lower thermal damage.
The lubricants used in this operation are HP KOOLKUT 40 and HP
SYNTHCOOL 100 whose properties are described in Tables 3, 4.

2.5 Force measurement during grinding at
face and shoulder

The forces generated in grinding are measured by a force
measuring system that has been specifically designed using strain
gauges, an octagonal ring, and a digital display. The system is
capable of measuring both the radial and axial forces generated
during grinding. The forces are detected at the workpiece extension
end where strain gauges are mounted on the ring. These measured
forces are subsequently digitally presented, with real-time data
available for examination. The force measurement system is
designed to be integrated into the grinding process in such a way
as not to close the process while continuously monitoring face and
shoulder grinding forces.

3 Methodology
3.1 Dataset description

The information for this study was collected from a series of
experimental grinding tests conducted with four various cooling

conditions: dry, flooded coolant, MQL with HP KOOLKUT, and
MQL with HP SYNTHCOOL. There are a few input parameters in
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FIGURE 2

Experimental Setup for Measuring Forces in Face and shoulder Grinding Operation.

TABLE 3 Physio-chemical properties of HP KOOLKUT 40.

S. No. Properties HP
KOOLCUT 40

1 Colour After Emulsification Milky White

2 Kinematic Viscosity at 40 °C, Min, CST 20

3 Flash Point, COC °C, Min 150

4 Copper Corrosion at100 °C, Min 1

5 Cast Iron Corrosion Test, 20:1 Emulsion with | 0/1-1

400 PPM Hard Water Max

each record, including the depth of cut (DOC), feed rate (FR), work
speed (WRS), wheel speed (WHS), and the cooling condition, which
is defined as a categorical variable. The measured outputs are surface
roughness, temperature, and force, all of which were measured at the
shoulder and face of the workpiece during grinding. The data set
consists of 115 experiments each representing a unique combination
of the input parameters. These combinations were grouped based on
an L29 orthogonal array such that various settings of the parameters
were well covered in the data set.

3.2 Data pre-processing

Data pre-processing followed a few steps to clean the dataset
before analysis. The categorical feature, cooling condition, was
one-hot encoded to transform it into numerical form that can be
utilized well in machine learning models. The input features were
normalized with standard scaling so that all variables are on the
same scale, thus avoiding any feature from controlling the model
based on magnitude differences. Missing values in the data were
deleted, and any column formatting inconsistencies were resolved
to preserve the integrity of the data. New features were also
introduced for optimization purposes, like the calculation of
the total force, i.e., the addition of forces at the face and
shoulder. This total force feature was most beneficial in the
following optimization models, where total grinding force
reduction was one of the main goals.

Frontiers in Mechanical Engineering

TABLE 4 Physio-chemical properties of HP SYNTHCOOL 100.

Properties HP
SYNTHCOOL 100
1 Appearance Fluorescent yellow
2 Copper Strip Corrosion 3Hr 1 at 1
100 °C, Max
3 1:40 in Distilled Water 0/1-1
4 1:40 in Hard Water-200 PPM 0/1-1

3.3 Predictive modeling of grinding forces

Machine learning was a very important part of the methodology
aimed at building robust predictive models that could accurately
forecast the grinding forces at the workpiece face and shoulder. The
three algorithms to be used were chosen because they had
demonstrated ability in regression applications and their potential
to accommodate non-linear interactions among variables: Extreme
Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), and
Support Vector Regression (SVR). XGBoost, a high-performance
gradient-boosted decision tree implementation, was used because of
its ability, scalability, and regularization, which assist in overcoming
overfitting and generalization.

3.3.1 XGBoost (extreme Gradient Boosting)
XGBoost is an ensemble learning algorithm that constructs
additive regression trees sequentially. To help control model
complexity, the target functions have both loss terms and
regularization constants. The objective function, regularization

function and prediction step for XGBoost algorithm is
represented by Equations 1-3.
Overall Objective Function:
n t
L= 1y-59)+> Q(f) 1)
i=1 k=1
Here,
L: total loss
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1(y; - 9,"): training loss (e.g, Mean Squared Error)
fk: individual regression tree at iteration k

$,: predicted value after ¢ trees

Regularization Term:

T
Q(fk):yT+%)Lij2 )
j=1

Here,

T: number of leaves in the tree
wj: weight of the jth leaf

y,A: regularization parameters
Prediction:

t

7.9=3 fu(x) 3)

k=1

3.3.2 Multilayer Perceptron (MLP)

Multilayer Perceptron’s in artificial neural networks represent a
series of feedforward neural network that includes the input layer,
hidden layer, as well as the output layer, and is capable of learning
increasingly complex nonlinear relationships by weighted sums and
activation functions on various-layer transformations. The hidden
layer computation is shown by Equation 4 with output layer and loss
function represented by Equations 5, 6 respectively.

Hidden Layer Computation:

h = f(Z w;;Vx; + bjm) (4)
i=1
Output Layer:

j=1

Here,

x;: input features (DOC, FR, WRS, WHS)

hj: output of hidden node j

w;;V,w;@: weights of input-to-hidden and hidden-to-
output layers

bj(l),bm: biases

£ (+): activation function (e.g., ReLU or sigmoid)

g (+): linear activation for regression output

Loss Function (Mean Squared Error):

1 n
Lyse = E Z(}’i _JA’i)Z (6)
i=1

3.3.3 Support Vector Regression (SVR)

Support Vector Regression (SVR) is effective in coping with
highly dimensional data, model complexity as against prediction
accuracy. In this way, the target values are estimated within a margin
(¢) using kernel functions while ensuring the flatness of the model.
SVR Optimization equation represented by Equations 7-9.

Optimization Objective:

. 1 n .
w65, 5 1 T CXE+E) 7)
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Subject to:
yi— (W'D (x)+b)<e+§; (8)
(wTQ(xi)+b)—y,-££+fi*; Ei_gi*zo 9

3.4 Model training and evaluation

All the models trained and tested on a stratified 80/20 train-test
split were such that the data distribution in the underlying data was
maintained in both training and test sets. This method, therefore,
helped in realistic testing of models under reduced possibilities of
bias. Prior to training, the input features were normalized to ensure
that all features made equal contributions to the learning process, a
process critical for algorithms like MLP and SVR that are sensitive to
feature scaling. One-hot encoding was also applied to transform the
categorical cooling condition variable to one appropriate for
numerical computation.

Model performance was assessed using two common
(MSE), which
measures the average squared difference between real and

regression metrics Mean Squared Error
estimated force values, and the coefficient of determination
(R* score), which measures the percentage of variance in the
dependent variable that can be explained by the independent
variables. These were chosen to adequately reflect both the
ability of the models. The
comparative performance of the models not only gave us an

accuracy and explanatory
understanding of their predictive capabilities but also set the
stage for identifying the best model to be used for subsequent
optimization. The best-performing model’s output was then
incorporated in a metaheuristic optimization framework to
optimize the total grinding force, thus connecting predictive
modeling with process improvement in an end-to-end
intelligent manufacturing approach.

In order to ensure that model assessments are robust and to
compensate for the drawbacks associated with only using MSE
and R? as measures of performance; we also included other
performance metrics in our evaluation. The MAE represents
the average size of your prediction errors across all predictions
and is not dependent on the presence of large outlier predictions,
thus it provides a better estimate of prediction accuracy overall, on
average. In addition, we have performed 5-fold cross validation to
evaluate the generalization of each model to different training/test
partitioning versus 1 train/test partition; therefore, allowing for
greater confidence in the stability and predictive reliability of

the models.

3.5 Optimization of grinding parameters
through Particle Swarm optimization
methodology

Particle swarm optimization (PSO) was deployed as a global
optimization algorithm with high robustness and efficiency to
reduce the overall machining grinding force. PSO derives its
concept from the collective behavior in nature, especially from
the behavior of bird flocks and fish schools. It works by
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initializing a set of possible solutions, known as particles, which
iteratively search the solution space according to both individual and
social experience. In this case, however, the PSO protocol was hence
used to determine the best combination of grinding process
parameters such as depth of cut (DOC), feed rate (FR), work
speed (WRS), and wheel speed (WHS), which would give rise to
least possible total force defined as the sum of the forces exerted on
face and shoulder sides of the workpiece.

The process of optimization was organized over some search
space characterized by machining experience with experimentally
achievable limits about the minimum cut depth of 0.02-0.06 mmy;
a feed rate of 0.5-2.0 mm/s, a workpiece rotation speed of
50-300 rpm, and a wheel speed of 900-1,500 rpm. A
population size of 20 particles was initialized, and 50 iterations
were performed to ensure an adequate exploration over the
multidimensional parameter space. Each particle represents a
candidate solution expressed as a set of the four grinding
parameters, and its fitness is evaluated by a trained machine
learning model that predicts the total grinding force for that
combination. The machine learning model is used in the fitness
function, which was already selected in the previous predictive
modeling iterations as it had a better prediction performance of
force values with high accuracy.

The fitness function was used as a surrogate model, to enable
quick evaluation on a number of parameters sets without having to
do additional physical experimentation. In each step, particles
updated their positions in the search space according to their
own best-known position and the global best-known position
found by the
improvement towards the global optimum. This PSO-driven
optimization platform delivered a viable mechanism for coupling

swarm, resulting in successive solution

data-driven modeling and intelligent search mechanisms to enable
the creation of a smart manufacturing policy for process
improvement in grinding operations. The method not only
enabled the minimization of grinding forces but also presented a
scalable process that could be tailored for optimization of other
performance indicators like temperature or surface finish in
future work.

The parameter setting for the Particle Swarm Optimization
(PSO) method will be used throughout this study to provide us
with a stable, reproducible basis for our work, as this is an
important aspect of the overall methodology and one that is
generally accepted and used in the area of machining
technology. The inertia weight (w = 0.7) was selected to
provide a good balance between exploration (randomness) and
exploitation (use of current knowledge). It is important to note
that the cognitive and social learning coefficients were selected
based on previous research to also assist the particles to learn from
their own best experiences as well as from the global best solution,
and set equal values (c1 = 1.5 and ¢2 = 1.5). The other two
parameters, particle velocity, and position limits, were set in order
to prevent any oscillatory behavior during the update process.
Finally, the convergence of PSO was determined based on the
following two criteria: either the improvement of the global best
fitness was less than 10-6 for the last ten iterations, or the
algorithm reached the maximum limit (50 iterations) and it
had made no further improvements in the global best fitness
since the last iteration. Using these parameters allowed for the
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development of a consistent, reliable method to analyse the
nonlinear parameters in the grinding process.

Figure 3 depicts a robust workflow for grinding force
optimization with machine learning and Particle Swarm
Optimization (PSO) and model is named as MSX_PS. It starts
with experimental setup and data collection, which includes
measurement of forces on EN31 steel under various cooling
conditions. Having pre-processed the data, machine learning
models (XGBoost, MLP, SVR) are trained and tested using Mean
Squared Error (MSE) and R’. The model with the highest
performance is utilized in PSO to find the best grinding
parameters (DOC, FR, WRS, WHS) which reduce the total force
and improve process efficiency.

4 Result and discussion

This section brings in the results for the evaluation performance
of machine learning models on the Particle Swarm Optimization
(PSO) process parameter tuning and a comparative view regarding
different visualizations to understand the trends and efficiency of the
presented methods.

4.1 Machine learning model evaluation

An evaluation was made of three machine learning algorithms-
XGBoost, Multilayer Perceptron (Neural Network), and Support
Vector Regression (SVM), to forecast grinding forces for shoulder
and face operations. The models were trained and tested on an 80:
20 ratio, and performance measurement was by means of Mean
Squared Error (MSE) and R*> metrics.

Table 5 presents a comparison of the performance of XGBoost,
Neural Networks, and SVM models in predicting grinding forces
using various statistical error metrics. The predictive performance
of XGBoost was significantly greater than that of both the Neural
Network and SVM models. For example, the lowest MSE
(0.02641), RMSE (0.1625), and MAPE (0.0698) were achieved
using XGBoost, which had the highest coefficient of
determination (R2 = 0.6640) among the three models. The
Neural Networks and SVMs had higher values for each of
these metrics, indicating a lower level of predictive accuracy
and a lower level of explanatory power. These results suggest
that tree-based ensemble learning provides the best modelling of
grinding force behaviour.

A comparison of the performance (in terms of MSE, RMSE,
MAE, MAPE, and R?) of XGBoost, NeuralNet, and SVM in
predicting the face grinding force can be seen in Figure 4.
Overall, XGBoost performed the best and produced the lowest
MSE (0.02641), RMSE (0.1625), MAE (0.1286), and MAPE
(0.0698) wvalues for predicting the face grinding force.
XGBoost also produced the highest R* value of 0.6640 which
shows that it has better predictive capabilities compared to both
NeuralNet and SVM whose R* values are 0.6250 and 0.6395,
respectively. Furthermore, the visual representations of the
predictive models in Figure 4 show that the XGBoost
predictive model has a much better generalization ability than
both NeuralNet and SVM.
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Optimization Using Particle
Swarm Optimization (PSO)

Framework for predictive modeling and optimization of grinding forces using MSX_PS model.

Table 6 provides a comparison of XGBoost, Neural Network and
SVM models based on predictive performance for grinding force
prediction, measured using common performance metrics. In
Table 6, XGBoost produced the best prediction accuracy, having
the lowest Mean Squared Error (MSE = 0.03730), Root Mean
Squared Error (RMSE = 0.1931) and Mean Absolute Percentage
Error (MAPE = 0.0462). The R-squared (R®) value of XGBoost

Frontiers in Mechanical Engineering

(0.9324) is much higher than the R* value of the other two models
(Neural Network and SVM), which indicates lower predictive
power. As a result, this study demonstrates the efficacy of
ensemble methods for predicting grinding force in the shoulder.
In modeling the shoulder force prediction, there were
significant differences in performance when comparing the
results between three different predictive models. Figure 5
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TABLE 5 Comparative performance of machine learning models for
grinding force prediction at face.

MAE MAPE R?
XGBoost 0.02641  0.1625 0.1286 0.0698 0.6640
NeuralNet 0.02948 0.1717 ‘ 0.1383 0.0768 ‘ 0.6250
SVM 0.02834 0.1683 0.1348 0.0769 ‘ 0.6395

Note: Highlighted values represent the best performance parameters.

shows the XGBoost model again demonstrated its superiority
over the other two models in terms of accuracy and the received
mean square error (MSE) at 0.03730, root mean square error
(RMSE) at 0.1931, mean absolute error (MAE) at 0.1192, mean
absolute percentage error (MAPE) at 0.0462, and strong
correlation coefficient (R* = 0.9324). In comparison to the
high R* value of XGBoost, the Neural Network and SVM
models had respectively lower R*> values of 0.6361 and
0.6325 that corresponded to their respective RMSE values of
approximately between 0.448 and 0.450, and MAE values of
approximately between 0.346 and 0.359 for both Neural
Network and SVM models. The results from this study
demonstrate that XGBoost provides a more stable and
stronger predictive performance than either Neural Network
or SVM for modeling complex behaviors of shoulder force.
The present investigation is specifically dedicated to the
prediction and optimization of grinding forces (face and
shoulder components) using the experimentally established
ranges of depth of cut, feed rate, work speed, wheel speed, and
coolant condition. In contrast, most contemporary machine-
learning studies in grinding including the work of Charde
et al. (2020) are designed around different output variables
such as grinding temperature, surface roughness, tool-wear
progression, or thermo-mechanical responses, each governed
by its own physical behavior and parameter sensitivity. Because
our experimental work incorporates a distinct response type and
parameter configuration focused entirely on force generation, the
numerical indicators reported in temperature- or roughness-
based studies do not correspond directly to the predictive
outcomes obtained in the present XGBoost-PSO framework.

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 —
MSE RMSE

MAE
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4.2 PSO-based process parameter
optimization

With the predictive models, Particle Swarm Optimization
(PSO) was used to optimize the total grinding force to the
minimum. The objective function was set as the predicted
total force, integrating face and shoulder forces. Input
parameters like depth of cut (DOC), feed rate (FR), work
speed (WRS), and wheel speed (WHS) were optimized within
practical ranges in industry.

Particle Swarm Optimization (PSO), a population-based
global optimization method that draws inspiration from the
social behaviour of bird flocks and fish schools, was utilized to
determine optimal machining parameters that reduce the total
grinding force. The optimization problem was framed within a
specified search space with four key input variables: depth of cut
(DOC), feed rate (FR), work speed (WRS), and wheel speed
(WHS). Each variable was limited in experimentally certified
machining limits DOC between 0.02 and 0.06 mm, FR from
0.5 to 2.0 mm/s, WRS between 50 and 300 rpm, and WHS
between 900 and 1500 rpm. The PSO algorithm processed with
a population of 20 particles for 50 iterations to meet global
convergence. The optimization process was guided by the
fitness function that was defined as the total grinding force
predicted, computed as the sum of face and shoulder forces, as
estimated by the machine learning model. This setup provided a
well-balanced exploration of the input space and facilitated robust
convergence to optimal process settings.

Optimization using Neural Network resulted in an exceptionally
high predicted force because of issues with convergence and thus
became unusable for optimization. Out of all models, XGBoost
provided the most applicable and efficient parameter set with the
least predicted force, reiterating its effectiveness in parameter
optimization.

Figure 6 shows the minimum predicted overall grinding force
obtained by Particle Swarm Optimization (PSO) by three machine
learning models: XGBoost, Neural Network, and SVM. XGBoost
yielded the smallest predicted force of 4.22 N, closely followed by
SVM with 4.69 N, suggesting good convergence and trustworthy
modeling. As a comparison, the Neural Network model produced an

MAPE R?

® XGBoost ™ NeuralNet = SVM

FIGURE 4

Comparative performance of machine learning models for face force prediction.
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TABLE 6 Comparative performance of machine learning models for
grinding force prediction at shoulder.

Model MSE RMSE MAE MAPE R?

XGBoost 0.03730 | 0.1931 0.1192 0.0462 0.9324
NeuralNet 0.20079 0.4481 0.3457 0.1313 0.6361
SVM 0.20280 0.4503 03591 0.1421 0.6325

Note: Highlighted values represent the best performance parameters.

excessively high predicted force of 532.84 N, indicating instability
and optimization problems. The optimized input values (DOC, FR,
WRS, WHS) utilized by each model serve to further indicate the
parameter sensitivity of the outcomes. By and large, the Table 7
conclusively identifies XGBoost as the most stable and precise model
for force minimization in grinding operations.

Figure 7 shows a pair plot that illustrates the pairwise
relationships between important machining parameters Depth of
Cut, Feed Rate, Work Speed, Wheel Speed and the resulting
grinding forces at the face and shoulder. The diagonal plots
indicate the distribution of each variable, and the scatter plots
below indicate correlations between pairs of variables. A visible
linear correlation is evident between force at the shoulder and force
at the face, indicating a high dependency. Other input factors such as
feed rate and depth of cut also exhibit patterns affecting the output
forces. Visualization helps in finding trends, clusters, and outliers, if
any, and serves as a baseline tool for feature selection in
predictive modeling.

10.3389/fmech.2025.1754007

4.3 Comparative analysis

The visual analysis offered extensive support for the model
optimization and evaluation conclusions. Bar charts illustrating
comparisons of Mean Squared Error (MSE) and R* scores Figure 6
showed that XGBoost performed better than the Neural Network and
Support Vector Machine (SVM) models consistently, especially in
shoulder force prediction, where it had the highest R* and lowest MSE.
Such improved predictive power justified the validity of using XGBoost
for process optimization applications. Moreover, the output of the
Particle Swarm Optimization (PSO) was plotted in Figure 7, wherein
XGBoost again demonstrated a significant lead by having the lowest
predicted total grinding force among other models, once again proving
its strength and credibility in reducing machining forces.

Figure 8 shows the distribution of grinding forces at the shoulder
and face. The face force has a more concentrated distribution
around 1.8-2.2 N, while the shoulder force has a broader range
with a peak around 3.5 N, reflecting greater variability in shoulder
force during grinding.

Figure 9 compares Mean Squared Error (MSE) for XGBoost,
NeuralNet, and SVM over face and shoulder force predictions.
XGBoost strongly indicates the lowest MSE for both face and
shoulder forces, whereas NeuralNet and SVM have much higher
shoulder MSEs (~0.2), demonstrating their poorer predictive
accuracy for this output.

Figure 10 shows R* values for the same models and targets.
XGBoost is on top with the highest R* of ~0.93 for shoulder force
and ~0.66 for face force, which suggests high correlation and

TABLE 7 PSO-based optimization results for minimum predicted total grinding force.

Model Optimized input [DOC, FR, WRS, WHS] Predicted min force (N)
XGBoost [0.0283, 0.6829, 131.01, 1119.64] 422
NeuralNet [0.0214, 1.6216, 292.69, 900.11] 532.84
SVM [0.0296, 0.7825, 284.46, 925.95] 469
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
o _AN ]
0 [ . ||
MSE RMSE MAE MAPE R?
B XGBoost ®NeuralNet = SVM
FIGURE 5

Comparative performance of machine learning models for shoulder force prediction.
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FIGURE 6
PSO-minimum predicted total force using different machine learning models.
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Pairwise relationships between machining parameters and grinding forces.
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Distribution of force at face and shoulder.
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FIGURE 10
R? score comparison across models.
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FIGURE 11
Total grinding force by cooling condition.

reliability. NeuralNet and SVM both report moderate R* values
(~0.62-0.64), which indicate lower performance in explaining
variance in the data. Overall, these graphs affirm that XGBoost is
the most accurate and reliable model for grinding forces prediction.

Frontiers in Mechanical Engineering

Furthermore, how cooling conditions influenced grinding

performance became apparent from boxplot analysis Figure 11.
Dry grinding condition produced maximum force levels and
variability, but MQL (Minimum Quantity Lubrication) and
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Correlation matrix including encoded cooling conditions.
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flooded coolant approaches suppressed overall force drastically while
providing better-stable performance. These observations speak
volumes for the importance of coolant strategies for raising
process efficiency and stability. Supporting this, the correlation
heatmap Figure 12 showed strong positive correlations among
force, temperature, and surface roughness suggesting that these
output parameters are closely interconnected. This emphasizes the
need for a comprehensive optimization strategy, where simultaneous
consideration of thermal, mechanical, and surface quality parameters
is crucial to realize optimal grinding performance.

Figure 11 shows a boxplot of the total grinding force for different
cooling conditions. Among them, the MQL condition with HP
SYNTHCOOL100 has the lowest and most stable force values, with a
median slightly above 4 N and little variation. Dry and flooded
conditions have larger variability and higher medians (~5.1-5.2 N),
whereas MQL with HP KOOLKUT40 has a little larger range. This
means that MQL with HP SYNTHCOOL100 provides better
efficiency in minimizing grinding forces.

Figure 12 presents a heatmap of the correlation matrix,
indicating relationships between machining parameters, surface
features, temperatures, forces, and coded cooling conditions.
There is a high correlation (r = 0.98) between temperature at
shoulder and face, and between force at shoulder and face (r =
0.77). The matrix also indicates that MQL SYNTHCOOLI100 is
negatively correlated with both force outputs (r = -0.79 and -0.71),
confirming its efficiency in reducing grinding forces. This matrix
helps to determine key relationships for predictive modeling and
parameter optimization.
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5 Conclusion

This research is focused on meeting the demand for
advanced data-driven intelligent optimization for the current
state of modern manufacturing focusing specifically on
precision grinding operations where the elements of high
productivity, consistent quality and process stability are
critically interdependent. The research is situated within the
area of Smart Machining and the fourth industrial revolution
(Industry 4.0) and is intended to advance the integration of
machine learning based predictive models with metaheuristic
optimization methods. Current methods of optimizing grinding
processes are limited due to the empirical basis for selecting
parameters, their reliance upon overly simplistic analytical
assumptions, and their very limited capabilities for adapting
to the nonlinear nature of grinding processes making it
impossible to consider simultaneous optimization of force,
temperature, surface finish and cooling. The primary goal of
this work and research is to create and validate a machine
learning-assisted framework for optimization that accurately
predicts grinding forces and enables end users to optimise
their grinding processes while reducing fault rates and
production cycle times.

The XGBoost-PSO (Particle
Optimization) framework was developed and tested to
achieve the objective of accurately predicting the grinding

Integrated Swarm

forces throughout the shoulder and face, and to minimize the
total grinding force via a combination of methods. It highlighted
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advantages in predictive accuracy and computational efficiency,
time-to-solution, scalability, and applicability to Industry
4.0 concepts. It supports near real-time optimization and
integration with Computer Numerical Control (CNC) and
Digital Twin systems, as demonstrated by the combination of
XGBoost with PSO. However, the framework has limitations in
that it is based on a small experimental dataset and has a single-
objective optimization focus. Subsequent research will
concentrate on enhancing the framework and methods using
larger and more diverse datasets, and creating a multi-objective
optimization method, simultaneously considering the four
factors associated with intelligent grinding/tool application
(grinding force, temperature, surface integrity and tool wear),
thus developing
application capability.

an enhanced intelligent grinding/tool
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