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A transfer learning approach
based tool wear detection in the
turning process using vibration
sighals

Sudhan Kasiviswanathan and Sakthivel Gnanasekaran*

School of Mechanical Engineering, Vellore Institute of Technology, Chennai, India

Continuous monitoring of the cutting tool insert's condition is essential to
enhance product quality and efficient machining process, by reducing the
machine downtime. But the available tool condition monitoring approaches
are often limited by coolant induced visibility loss in the cutting zone that
reduces the feature reliability. This study proposes a transfer learning based
deep learning method where the machining vibration signals are converted
into visual representations and classified using ResNet 18, MobileNet V2,
SqueezeNet, ShuffleNet, DenseNet 201, and EfficientNet BO pretrained
convolutional neural networks. This combination enables the model to learn
deep wear profiles from vibration data without the manual feature extraction.
Also, this method enhances signal strength, making it highly suitable for smart,
scalable, and real world manufacturing environments. The effects of the
proposed pretrained network hyperparameters, such as mini batch size, solver
type, learning rate, and filter size, were studied and EfficientNet BO was identified
as the best performing network with a classification accuracy of 89.23% for tool
condition monitoring tasks.

KEYWORDS

cutting tool insert wear detection, network parameters optimization, pretrained
neuralmodel, training data: testing data split ratio, transfer learning process

1 Introduction

The present smarter and effective production environments use the Industrial Internet
of Things (IIoT) to assist real time data generation, machine monitoring, and predictive
analytics, which enables intelligent and connected systems within the present environment.
In this framework, tool condition monitoring (TCM) has gained value as a main component
of predictive maintenance. As the future industrial revolution focuses on human centric
approaches, intelligent TCM systems will be the key to this competitiveness. This has
stimulated growing interest among researchers in the development of advanced TCMs, that
includes collecting, organizing, and analysing experimental data for real time applications
and increases the tool wear detection, also reduces downtime of the machine (Okada et al.,
2011; Jardine et al., 2006). For instance, Wilcox et al. framed a tool wear monitoring system
using self organizing maps (SOM) and adaptive resonance theory neural networks. This
system studied the sensor data from accelerometers, microphones, and strain gauges, and
combined the neural network output with taylor’s tool life model to rank tool wear. The
study showed that integrating neural networks with an expert system improves accuracy
and makes it a reliable real time monitoring solution (Silva et al., 2006). Kadim et al.
identified the tool wear during turning operations by measuring strain and vibration from
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the cutting tool using a piezoelectric strain sensor and an
accelerometer connected to a data acquisition card. As a result, a
sum of 24 feature indicators of tool wear was extracted from the
obtained raw signal, which includes time domain, frequency
domain, time series model coefficients, and wavelet packet
analysis features by a (2 x 3) SOM (Abid Al-Sahib and Bachaa,
2005). Sudhan Kasiviswanathan et al. reviewed the indirect TCM
methods for turning operations. The study showed the importance
of integrating IToT and ML into TCM systems for achieving higher
efficiency, enhancing performance, and to support sustainable
intelligent manufacturing (Kasiviswanathan et al., 2024). Alonso
et al. utilized a feedforward backpropagation network to assess
cutting tool’s flank wear, leveraging vibration signals and singular
spectrum analysis (Alonso and Salgado, 2008). Similarly, Dutta et al.
developed a real time TCM system that applies image texture
analysis like gray level cooccurrence matrix, Voronoi tessellation,
and discrete wavelet transforms, to extract features related to the
cutting tool’s flank wear state. A linear support vector machine
regression model was then used to predict tool flank wear and
achieved a lower prediction error (Dutta et al, 2016). The
advancement and demand for condition monitoring led to the
use of sophisticated methods like infrared thermography. On the
other hand, such methods are expensive and demand skilled
operators (Bagavathiappan et al, 2013). Earlier studies show that
vibration signals are widely used for monitoring machine tool
conditions. However, analysing them is difficult because of their
rapidly changing behaviour and intricate structure. Researchers
have used different methods, including histograms, statistical
measures, support vector machines and fuzzy logic, to track tool
conditions (Mohanraj et al., 2020). Additionally, feature selection
techniques like Filter methods, wrapper methods, embedded
methods, and decision trees have been employed. The selected
features are then classified using various types of ML algorithms,
namely, Navie Bayes, decision trees, Random Forest, and K nearest
neighbour’s families. While numerous studies have explored the use
of ML algorithms for TCM, the performance and efficiency of these
algorithms are greatly dependent on the standard of the extracted
and selected features. Since the present data led diagnostic methods
are based on Al principles, they become an essential tool for
handling these large datasets. Geoffrey Hinton introduced a deep
learning strategy known as a deep neural network (DNN), which
consists of numerous neural layers arranged hierarchically to extract
information from input data. This configuration is referred to as
“deep” because its intervention on raw data at different levels
progressively uncovers the structure of complex data sets and
independently identifies the most significant attributes (Ekundayo
and Ezugwu, 2025). This ability to learn the features, paired with
current nonlinear regression functions, has led DL models to gain
widespread popularity in areas like Natural Language Processing,
object detection, image classification, and pattern recognition
(Elhefnawy et al, 2022). The research conducted by Yang Fu
et al. used deep belief networks (DBN) to automatically construct
a feature space for cutting tool monitoring and utilized a greedy
layer wise strategy for pretraining and back propagation for fine
tuning. The performance of DBNs is compared with manually
defined features from both time and frequency domains. The
results demonstrate that DBN provide comparable feature
characterization with a significantly higher modelling accuracy
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(Fu et al, 2015). Verstraete et al. applied short time fourier
transform, wavelet transform, and hilbert huang transform to
identify the rolling element bearing faults by vibration signals
and achieved reliable accuracy with limited data (Verstraete
et al,, 2017). Luis Enrique Escajeda Ochoa et al. conducted TCM
for highspeed machining using the stacked sparse autoencoder
method and it showed reliable tool wear prediction (Ochoa et al.,
2019), while Pradeep Katta et al. study presents optimized DBN for
analysing induction motor performance by using stacked restricted
Boltzmann machines and trained with an Ant Colony algorithm
which is designed to extract features from sensor based vibration
signals and experimental results showed robust fault detection
accuracy (Katta et al., 2024). From these cases it is identified,
DNN were primarily used as classifiers without fully exploiting
their feature learning potential. However, since 2015, researchers
have begun using DNN for learning, selecting, and classifying
features for comprehensive solutions by eliminating the necessity
for explicit feature extraction and selection, DNN learn from
provided input images, with corresponding labels as output,
where this advanced stage of fault diagnosis was explored in
recent studies. The research conducted by Guo et al. (2016) to
monitor the condition of roller bearings by employing a deep CNN
with two ensembles, one method emphasizes feature extraction and
fault pattern recognition, while the other focuses on fault
classification. The complexity of vibration signals makes the task
of feature extraction a challenging one. To address these difficulties,
researchers are now concentrating on developing an automated
system that can classify data directly from raw signals, bypassing the
need for explicit feature extraction. Recently, DL has shown its
potential in tackling condition monitoring issues by automatically
learning features from images to achieve accurate classifications. In
DL methods, especially CNN, image features are learned
automatically, allowing classification without the need for
separate attribute extraction, selection, and labelling tools.
Although DL techniques are primarily designed for image
processing, capturing images while the tool is in operation is
challenging, hazardous, and costly. According to the literature,
the best method for gathering vibration signals from the
machining area is to place the sensor near the cutting
environment. For this research, several sensor placement trial
runs were conducted and positioning it on the tool holder, near
the cutting area, was identified as the optimal location for vibration
signal acquisition. CNNs can learn features from these graphs and
classify them based on predefined wear profile categories.

From the literature it is found that only few attempts were made
on utilizing DL based pretrained networks for industrial TCM
applications and no attempts were made for utilizing vibration
signatures as an input to the pretrained networks. These
networks are referred to as “pretrained” because they are
previously trained on a large scale dataset, enabling them to learn
rich features from the input data. This process of leveraging a
pretrained model is called transfer learning, and it significantly
reduces the time and computational resources needed for training
on new tasks, when the available data is limited. The proposed
research presents a novel approach to assess the tool’s condition
using vibration signatures by employing high performing pretrained
DL models, such as SqueezeNet, its lightweight architecture allows it
to process the raw data with minimal computation, which makes it
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suitable for the TCM application (Guo et al., 2016), ShuffleNet, its
group convolution and channel shuffling process allows it to achieve
high classification efficiency by capturing localized texture variations
in vibration signature images (X. Zhang et al., 2017), ResNet 18,
enables stable feature learning of wear profiles and training process
(Lietal., 2024), MobileNet V2, its inverted residual block structures
process the data with high accuracy and efficient for industrial
applications (Sandler et al., 2018), DenseNet 201, offers a dense
features which improves the structures flow (Salim et al., 2023) and
EfficientNet B0, uses compound scaling of input data resolution to
achieve accuracy (Ali et al., 2025).

Further, this study explored several conventional and current
TCM methods used in real time environment and observed that
effectiveness varies significantly. Traditional TCM approaches that
use statistical data, frequency domain analysis, and customize
features are effective, but their accuracy relies on the feature
design. These methods also often have challenges on recording
tool wear behaviour that changes over time. Image based
monitoring methods are compatible for CNN based deep
learning, but they have practical difficulties like coolant blocking
near the cutting area, limited accessibility for tool workpiece
interface, and decreased image resolution during rapid
machining, which makes it harder to get continuous images
while machining (Wang et al., 2021). Vibration signals based
methods on the other hand provided a non intrusive, cost
effective, and reliable way to monitor the tools condition (Y.
Zhang et al., 2023). Traditional vibration based methods require
high feature extraction, which may not possess in all wear
conditions (Wang et al, 2021; Li et al, 2024). Even though
vibration signals are commonly used to monitor tool wear, most
studies still use manual features with traditional machine learning
classifiers or train deep networks with small data sets (Wang et al.,
2021). These approaches often fail due to the requirement for
extensive preprocessing of signal data, and the application of
transfer learning with pretrained CNN models, as well as the
data conversion is limited. This survey shows that a hybrid deep
learning method that combines the reliability of vibration sensing
with the modern CNN is needed to transform one dimensional
vibration data into two dimensional images.

This research mitigates these constraints by enhancing,

« Avibration based tool wear monitoring framework transforms
one dimensional vibration signals into two dimensional GASF
images, facilitating CNN based feature learning without
necessitating manual feature engineering.

o A systematic transfer learning approach for tool wear

classification under consistent experimental conditions was

used to test the pretrained CNN architectures SqueezeNet,

ShuffleNet, ResNet 18, MobileNet V2, DenseNet 201, and

EfficientNet BO.

A strategy for dividing data into batches that reduces signal

similarity leakage and gives a reliable measure of the extent to
which a model generalizes.

o A thorough study of hyperparameter optimization that
observes how the size of the minibatch, the type of solver,
the learning rate, and the size of the filter affect the
classification of tool wear based on vibration images.
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« Validation of a computationally efficient and scalable solution
for real time monitoring of the condition of industrial tools
using a small amount of training data.

o The
representations and transforms them to work for wear

with

suggested method wuses existing visual feature

recognition by transfer

pretrained CNN.

combining learning

2 Methodology

The stated methodology comprises several sequential stages,
from signal acquisition to TCM prognostic model deployment, as
shown in Figure 1, and is based on analyzing vibration signals using
DL models.

o Tool insert selection: Based on microscopic and surface
observations, for this study, four pattern tools are selected,
namely, Good or No wear, Nose, Crater, and Flank wear.

Vibration Signal: During machining operations, these selected
tools are mounted to the tool holder one by one to obtain the
vibration data using the accelerometer sensors fixed on the
tool holder.

Signal amplification: At this phase, the generated vibration
signal will be filtered and amplified to enhance the signal to

noise ratio.
 Analogue to Digital signal conversion: Using the ADC, the
vibration signals are converted into digital signals for
computing and frequency time (FT) domain vibration plot
generation.
Dataset preparation: For effective analysis, the training and

testing datasets are split from the obtained 2D GASF image
data. The training datasets are used to train the model, and the
testing datasets are used to validate the model.

Training phase: Using the training datasets, the proposed
models were trained for their classification accuracy.

Validation phase: The pretrained model’s classification
accuracy, precision, recall, and overall reliability were
evaluated using the testing dataset.

Prediction of tool wear: The decisions made by each proposed
model on tool condition were monitored to present a reliable
and non intrusive solution for real time tool wear prediction.

2.1 Transforming a 1D vibration plot into a
2D GASF image

The GASF method was utilized to convert vibration signals into
images as it can record the time dependencies and encode global
signal correlations in a structured two dimensional form. GASF
captures the pairwise angular relationships between all time samples,
which retains long range temporal information that is essential for
identifying the difference between gradual and nonlinear tool wear
This differs
representations like short time Fourier transform (STFT) and

progression. from traditional time frequency

wavelet transform, which focus on localized frequency content.
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FIGURE 1
Tool wear assessment methodology.

In GASF, the transformation of a normalized one dimensional
signal into a polar coordinate system facilitates the encoding of
temporal dynamics as spatial patterns, preserving both amplitude
variation and temporal ordering. This representation is particularly
beneficial in monitoring tool wear based on vibration plots because
changes caused by wear often show up as small changes in signal
correlation instead of clear spectral peaks. Additionally, GASF
creates dense and smooth image textures that work well with
convolutional neural networks. This makes it easy to learn
features without having to do explicit time frequency
decomposition or hand picking features.

GASEF is a deterministic and parameter light transformation
that is sensitive to window size and decomposition parameters
than other vibration to image encoding methods like recurrence
plots or scalograms. This makes it stronger and easier to use in
industry, especially when combined with transfer learning that
uses pretrained CNN architectures. As a result, GASF is an
excellent method to connect reliable vibration sensing with
based

classifying tool wear.

strong  image deep  learning  models for

The one dimensional vibration signals acquired from the
accelerometer were converted into two dimensional GASF images
to facilitate image based deep learning. The GASF encodes the
temporal correlations of the signal into a structured matrix

representation that is appropriate for CNN based analysis.

Step 1: Signal normalization, each vibration signal x(t) was first
rescaled to the range [-1,1] using Equation 1

Frontiers in Mechanical Engineering

; xi —min (x)

Xo

=———— = x (Xmax — Xmin) + Xmin (1)
max (x) — min (x)

Where,

xi = original value
max (x) —min(x) = minimum and maximum values of the
feature in the dataset
(Xmax — Xmin) = desired scaling range
x = normalized value
Step 2: Polar Encoding, the normalized signal was converted into
angular form using Equation 2

¢ = arccos (yi),-1< (yi) < 1, yieY )

Where,

Y =y, y2., yn is the set of rescaled cutting force samples (after
Min-Max normalization or similar).

The angular coordinate ¢ is obtained from the across mapping
of yi

Step 3: 2D GASF image generation

The GASF matrix was computed using Equation 3

cos(¢1 + ¢1) cos(pl +¢2) - cos(Pl + ¢n)

cos(¢2 + 1) cos(¢2 +¢2) == cos(42 + ¢n)

GASF = (3)

cos(qﬁ;.a +¢1) cos (¢n +¢2) cos ((/m +¢n)
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2.2 Transfer learning approach

To utilize the feature representations from large image datasets and
to adapt these representations for the classification of tool wear based
on vibration data transfer learning was applied. For this study,
pretrained weights from the ImageNet dataset was used to initialize
all CNNs used. We removed the original fully connected classification
layers in each pretrained model and added a new task specific
classification head which was generated for the tool wear classes.
The convolutional backbone layers were initially frozen during training
to retain the pretrained feature representations. Only the new
classification layers were trained with the GASF images. Selective
fine tuning was performed by unfreezing the upper convolutional
blocks of each network, enabling restricted adaptation to the features
extracted from vibration images. We used a low learning rate during
the fine tuning process to lower the chance of losing all the pretrained
weight. All the models used categorical cross entropy loss for training
and were improved by solvers based on stochastic gradient descent.
During the optimization study, hyperparameters such as learning rate,
minibatch size, and solver type varied in a systematic way. This transfer
learning approach allows models to converge promptly using fewer
training data, and it further decreases overfitting.

3 Empirical research

The vibration data used for this study was obtained from
standalone machining experiments which were conducted for this

PC with NI LabVIEW

FIGURE 2
TCM experimental setup.
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research. The experiments were performed with controlled cutting
conditions along with a tri axial accelerometer mounted on the tool
holder which allowed to continuously record the vibration signals
while the machining. Progressive wear measurements were used to
group the tool wear states, to make sure that signal acquisition and
wear classification were consistently similar. This experimental design
makes it possible to accurately test the proposed vibration based deep
learning framework in real world machining situations.

3.1 Experimental facility configuration

The experimental setup for this study consisted of an industrial
CNC turning center, a single axis accelerometer sensor, and a Data
collection system (DAQ).

The single point cutting tool carbide Insert TNMG160404 was
used along with the tool holder, and an EN8 carbon steel shaft with a
length of 320 mm and a diameter of 50 mm was used as a workpiece
and held in place by a hydraulic chuck on the CNC turning center.
Vibration signals were obtained using a uniaxial piezoelectric
accelerometer, which was securely mounted on the tool holder
with a mount. These signals were processed and transformed
into digital format by the signal conditioning module in
LabVIEW software, which included an integrated analog to
digital converter (ADC). The digitally converted vibration signal
patterns are then transmitted to a personal system for storage.
Figure 2 illustrates the experimental Configuration utilized for

this research.

Work piece

Cutting Tool Holder

Sensor

Compact NI DAQ

05
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3.2 Data collection

Data collection (DAQ) transforms real world physical signals
into digital values for display, analysis, and storage. In this research,
TCM was carried out by capturing vibration signals using a
piezoelectric single axis accelerometer with a sensitivity of
10.22 mV/g. Accelerometers can capture a broad spectrum of
vibrations, with their output voltage directly reflecting the
intensity of the vibrations. In this study, the sensor was securely
mounted on the arm of the cutting tool holder, positioned as close as
possible to the cutting zone, using adhesive to maintain signal
accuracy. An analog to digital converter (ADC) was used to
digitise the collected analog signals. These digital vibration
signals were then used to generate vibration plots, which were
stored on a computer for further analysis. A TL based strategy
was implemented to determine which pretrained model delivered
the most effective performance for TCM.

3.3 Experimental process

3.3.1 Cutting tool insert selection

In this study, three commonly occurring types of tool wear
conditions and no wear or good tool were considered for the
experimentation as outlined in Table 1.

TABLE 1 Tool condition selection for experimentation.

Wear type  Wear description

No wear (or)
good

Fresh cutting tool insert, an unused tool that has no wear

Nose wear Wear occurred on the cutting edge of the insert due to friction

between the workpiece and the cutting tool

A concave area formed on the rake face of the tool insert due to
the sliding motion of the chip

Crater wear

Flank wear Wear developed on the flank of the cutting edge because of
friction between the side face of the cutting edge and the

workpiece during machining

TABLE 2 Processing factors for experimentation.

Machining sets

10.3389/fmech.2025.1748014

3.3.2 Experimentation

A new carbide turning insert with a 0.4 mm nose diameter was
secured to a tool holder, which was fixed to a tool turret head,
along with the acceleration sensor mounted on the cutting tool
holder’s arm. The factors for signal acquisition, such as the length
of the sample, frequency of the sample, and the type of signal, were
established in advance. Following the Nyquist sampling theorem,
the frequency of the sample was set to 25 kHz, which is twice the
observed frequency of 12.5 kHz. To begin the turning process, an
ENS steel shaft with a 50 mm diameter was positioned in the
center of the three jaw hydraulic chuck. The machining
parameters are given in Table 2, which were coded into the
CNC turning center for each tool category. Upon commencing
the machine, the DAQ system was powered on, and initial signals
were discarded to reduce random variations. Vibration data were
recorded from the mounted sensor. The signal collection factors
were as follows:

« Length of sample: 8,192 steps
 Frequency of sample: 25 kHz
« Count of occurrences per condition: 86

3.4 Data processing

A dataset of images representing various tool factors was
generated from the acquired vibration data signals for this study.
A grouped partitioning approach was adopted to split the data
set and to eliminate signal similarity from leak between training
and testing sets. All vibration samples are collected from a single
machining run, linked to one tool condition batch, were
combined and categorized into either the training or testing
set. Applying a 70/30 split at the batch level instead of the sample
level performed well to prevent the training and testing data
from overlapping. This approach also makes sure that the
reported performance is a true indication of the model’s
ability to generalize Figure 3 shows how to turn one
plots dimensional

dimensional  vibration into  two

GASF image data.

Speed (rpm) Feed (mm/rev) Depth of cut (mm) Tool Representation
Condition

1,000 0.2 1 No wear (or) good tool (NOT) NOT-S1F0.2D1

1,000 0.2 1 Nose wear (NWT) NWT-S1F0.2D1

1,000 0.2 1 Crater wear (CWT) CWT-S1F0.2D1

1,000 0.2 1 Flank wear (FWT) FWT-S1F0.2D1

1,000 0.2 1.5 No wear (or) good tool (NOT) NOT-S1F0.2D1.5
1,000 0.2 1.5 Nose wear (NWT) NWT-S1F0.2D1.5
1,000 0.2 1.5 Crater wear (CWT) CWT-S1F0.2D1.5
1,000 0.2 1.5 Flank wear (FWT) FWT-S1F0.2D1.5
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A total of 688 images, generated from the set conditions, from
the vibration signals. The input images underwent the required
preprocessing steps to prepare them for use in the selected
pretrained models:

Resized: All images were resized to 224 x 224 pixels to match

the input size required by the pretrained models.

» Normalization: Pixel values were normalized to the [0, 1] range
to standardize input across samples and speed up convergence.

o Colour Channel Formatting: The single channel grayscale
GASF images were replicated across three channels to
conform with the RGB input format expected by the
ImageNet pretrained models.

o Data Augmentation: To improve generalization, basic

augmentation techniques were applied, including random

rotations +15°, horizontal flipping, and slight zooming. This

helped expose the models to varied representations of tool

wear patterns during training.

Application of pretrained models

The structured design of the CNN’s architecture enables it to
learn and extract the intended data from the inputs. These
extracted data features during the convolutional process decide
the performance of a network by generating weights and biases,
which create a link between the input image and its features. The
features like edges, textures, and shapes of the image are examined

10.3389/fmech.2025.1748014

by the model’s filters, which aid in its overall decision making ability.
To address the challenges faced by the conventional model and to
utilize the features of DL for this study, six pretrained networks and
the transfer learning (TL) approach are used. These pretrained
models are trained to recognize general patterns and visual
features, which makes them highly suited for tool wear
classification tasks. The final classification layer of the model was
replaced with the proposed models, where the initial layers are the
same. The models are then fine tuned on the vibration datasets
images converted by the GASF method. This method enables the
model to quickly learn the specific patterns. Further, this section
outlines the pretrained networks employed to evaluate the condition
of a carbide cutting tool insert, and converting 1D vibration signals
into 2D spectrograms enhances the ability of deep learning models to
detect wear patterns. This approach is driven by the proven
effectiveness of deep learning in enhancing feature recognition for
industrial applications [26]. Figure 4 illustrates the architecture of the
pretrained model utilized in this study.

4.1 Characteristics of the pretrained
model used

To explore how well TL can be applied to tool condition
monitoring, a selected mix of well known and modern pretrained
convolutional neural networks was used. These models vary in
design and complexity, which helps provide a balanced
comparison of accuracy, efficiency, and suitability for industrial
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TABLE 3 Pretrained model characteristics.

Characteristics

Pretrained
model
SqueezeNet Lightweight model with “fire modules”, reduces
parameters while maintaining accuracy, ideal for low
resource settings

ShuffleNet Employs group convolutions and channel shuffling,
highly efficient for edge and embedded device

deployment

ResNet 18 Utilises residual connections to maintain gradient flow,

efficient and reliable for moderate sized datasets

MobileNet V2 Incorporates inverted residuals and linear bottlenecks,

optimised for speed and accuracy on mobile platforms

DenseNet 201 Densely connected layers promote feature reuse and

stable gradient flow, they perform well in deep learning
tasks with limited data

EfficientNetBO Uses compound scaling and MBConv layers to achieve

high accuracy with fewer parameters; suitable for real
time industrial use

use. Each model was fine tuned using vibration signal plots from
machining operations to assess its ability to classify tool wear
effectively. A summary of each model and its role in this study is
presented in Table 3.

5 Results and discussion

The Deep Learning Toolbox and TL package in MATLAB 2020a
was used for the experiments. To ensure that no vibration samples from
the same machining run were in both sets, a 70/30 train test split was
executed at the tool batch level. Eight hyperparameter configurations
were explored, and the key findings are summarized below.

5.1 Minibatch size effects
Minibatch size influences speed, and
generalization. In this study, the 8,192 sample dataset was split into
batches of 4, 8, and 16, revealing that the batch of 8 gave the best overall
results. ResNet 18 reached 89.8% accuracy with this size, MobileNet
V2 and ShuffleNet also peaked at batch 8, 87.9% and 86.1%,
respectively, while SqueezeNet performed best with batch 4, 83.76%
the DenseNet 201 achieved its best performance 89.4% and EfficientNet
BO also reached its top accuracy of 90.2% with a batch size of 8.

memory, training

TABLE 4 Overall classification accuracy of the pretrained models.

10.3389/fmech.2025.1748014

5.2 Solver type effects

The solver is an expansion algorithm that modifies model
weights during training to reduce the loss function. This
on the speed, and
generalization. Three optimisers were related in this study:
Stochastic Gradient Descent with Momentum (SGDM),
Adaptive Moment Estimation (ADAM), and Root Mean
Square Propagation (RMSProp). SGDM produced the extreme
accuracy for SqueezeNet 89.9%, ShuffleNet 86.7%, and ResNet
18 80.5%. MobileNet V2 performed best with Adam, 88.6%.
DenseNet 201 performed best with RMSProp, achieving 88.9%
accuracy and EfficientNet B0 reached its top performance of
87.3% using ADAM.

selection shows effects accuracy,

5.3 Learning rate factor effects

The learning rate controls how much a model’s weights are
updated during training. Choosing the exact value is difficult for this
process. A lesser value can slow down the process, while a higher
value can end up in poor training of the model. The general used
common values of 0.01, 0.001, and 0.0001 are chosen for the training
phase. The highest accuracy of all the used networks was reached at a
0.0001 learning rate factor.

5.4 Filter size effects

For feature extraction, the filter size plays an important role by
field. The model’s
computational efficiency depends on the proper selection of filter
size. Filter sizes of 1 x 1, 3 x 3, and 5 x 5 were examined. ResNet
18 was most accurate with 1 x 1 filters, 83.3%, whereas ShuffleNet,
SqueezeNet, and MobileNet V2 all peaked with 5 x 5 filters, 87.4%,
87.1%, and 87%. DenseNet 201 used a filter size of 3 x 3 and achieved
an accuracy of 88.5%. EfficientNet B0 also peaked at 90.2% with
3 x 3 filters.

determining the receptive execution,

5.5 Pretrained model comparative study
with hyperparameter optimization

Using optimal hyperparameters, EfficientNet BO achieved the
highest classification accuracy of 89.23% while also requiring less
computation time with 50 epochs, as shown in Table 4.

Hyperparameter Minibatch size Solver type Learning rate factor Filter size Overall accuracy
SqueezeNet 83.76% 89.9% 0.0001 87.1% 86.92%

ShuffleNet 86.1% 86.7% 0.0001 87.4% 86.73%

ResNet 18 89.8% 80.5% 0.0001 83.3% 84.53%

MobileNet V2 87.9% 88.6% 0.0001 87% 87.83%

DenseNet 201 89.9% 88.9% 0.0001 88.5% 89.1%

EfficientNet BO 90.2% 87.3% 0.0001 90.2% 89.23%
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SqueezeNet.

The effective performance variations observed in Table 4 across
the pretrained networks can be defined by their architectural
features compared to the characteristics of GASF images.
EfficientNet BO attains highest accuracy because of its compound
scaling method, which balances the network’s depth, width, and
resolution. This balance allows the model to gain both global and
local wear related features from GASF representations. EfficientNet
B0 implements MBConv Mobile Inverted Bottleneck Convolution
blocks and squeeze excitation modules to optimize the best use of
the features and make it more sensitive to minor variations. These

Frontiers in Mechanical Engineering

features are most useful for vibration based GASF images, where
wear patterns are shown by minor variations in space and intensity
(Ali et al, 2025). Lightweight models like SqueezeNet and
ShuffleNet, apply aggressive parameter reduction approaches like
fire modules and depthwise group convolutions these methods make
it challenging for the models to learn detailed wear signatures which
are present in 2D image data (Sandler et al., 2018). Deeper networks
such as DenseNet 201 can represent more information, though they
are more likely to overfit when there is not sufficient data due to the
amount of feature connections increases. Their learning curves show
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that they stabilize more slowly than EfficientNet BO (Terzioglu et al.,
2025). ResNet 18 and MobileNet V2 performed moderately well
using both residual and inverted residual structures (Ali et al., 2025).
However, they did not employ the compound scaled feature
extraction pipeline that makes EfficientNet B0 significantly more
accurate and effective. The confusion matrix indicates that
EfficientNet B0 can generalize better tool batches. To evaluate the
model behaviour, training, and validation loss curves were analysed

as shown in Figure 5. For the uniform comparison, all models were
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trained for 50 epochs. But the loss curves for DenseNet 201,
ShuffleNet, and SqueezeNet showed a down trend which become
slightly unstable toward the end of training. This behavior indicates
that these models benefited from extended epochs to attain full
convergence. Preliminary tests with longer training times of 80 and
100 epochs showed that the accuracy improvement was usually less
than 1% and did not change the ranking of model performance.
EfficientNet BO was always found to be the best network. The
stopping criterion of 50 epochs was kept the same for all
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TABLE 5 Comparison of attainment accuracy with other classifiers.

Classifiers Classification accuracy in %

BayesNet 83.34
Decision tree 78.2
Naviebayes 85.28
K Star 78
Proposed method 89.23

architectures to make sure that the results were stable and
representative.

EfficientNet BO showed the most stable and balanced learning,
indicating strong generalisation. Its residual connections helped
maintain gradient flow, making it well suited for small datasets.
In contrast, other models showed fluctuations or early convergence.
Confusion matrix analysis confirmed EfficientNet BO accuracy in
distinguishing clear wear states, though it was slightly less effective
with intermediate cases as shown in Figure 6.

5.6 Comparison with existing classifiers

Latest studies in tool wear class have employed a variety of ML
and DL techniques to enhance projecting accuracy and strength.
These approaches use diverse sensor data types, including vibration
signals, acoustic emissions, and images, each involving separate
feature extraction and classification strategies. Despite stated
accuracy findings varying broadly across dissimilar studies due to
variations in datasets, empirical setups, and evaluation protocols,
making direct correlation of these metrics demanding and potentially
deceiving (Wang et al, 2021). Therefore, this work points out a
qualitative review of key methodologies and their respective strengths
to aid the proposed approach. To enable a meaningful performance
comparison, several baseline representative methods were applied
and assessed them alongside with the proposed model using the same
dataset and experimental settings (Y. Zhang et al., 2023; Li et al,
2024). The features consist of standard time domain descriptors such
as RMS, peak value, crest factor, kurtosis, and skewness, as well as
frequency domain characteristics that come from FFT analysis. This
shows the common work in TCM, where the quality of handcrafted
features has significant impacts on performance (Gonzalez et al,
2022; Wang et al.,, 2021). The proposed pretrained CNN models were
trained for GASF imaging, which makes it easier to extract the
features. Table 5 provides a comparison of methods between
traditional feature engineered classifiers and deep learning based
feature learners, not a direct comparison using the same inputs. This
distinction clarifies that the high performance of CNN models is due
to their capability to learn discriminative representations directly
from transformed vibration images, which reduces reliance on
manual feature engineering (Y. Zhang et al., 2023; Wang et al., 2021).

Among the means tested, EfficientNe BO showed the best
performance. Traditional classifiers such as Decision Trees and
Naive Bayes achieved accuracies of 78.2% and 85.28%, respectively,
but were outperformed by the proposed model, which attained an
accuracy of 89.23% using vibration signal plots combined with TL.
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The generated dataset had 688 GASF images, but various design
choices reduced the risk of overfitting. Transfer learning
substantially decreased data requirements as pretrained CNNs
possess broad, generalizable feature representations that were
learned from the large ImageNet dataset. The final layers of the
networks were tuned to perform efficiently with vibration based
images, which makes the method effective with limited data. The
tool batch level was used to split the data into 70/30 parts. This
ensured that all of the test samples came from machining runs that
had never been seen before. This method stops leaks and forces the
models to go beyond just local signal similarities. Third, applying
random rotations, flips, zooming, and normalization to the data set
made the training samples diverse and made the model most
reliable. The training and validation curves were not diverged
and further processed without overfitting. The dataset was
sufficient for testing the viability of the proposed method.

6 Conclusion

This study presents six pretrained DL models, SqueezeNet,
ShuffleNet, ResNet 18, MobileNet V2, DenseNet 201,
EfficientNet BO, to assess the condition of single point cutting tool’s

and

wear through vibration signal plot images. The study focused on four
definite wear states of the cutting tool, namely, no wear (indicating a
good tool), nose wear, crater wear, and flank wear of cutting tool
inserts. The utilized pretrained model, based on a CNN architecture,
provides a complete monitoring of the cutting tool’s condition by
including feature extraction, selection and classification into an
integrated framework, which gives an effective classification of the
vibration plots. The experimental findings show that all the proposed
models learned complex features and resulted in consistent
classification for tool condition monitoring. The hyperparameters
train test split ratio, optimizer, learning rate, and batch size were
optimized for accuracy for the model’s requirements. Of all the models
EfficientNet BO achieved the highest classification accuracy of 89.23%
closely followed by DenseNet 201 with 89.1%, MobileNet V2 at 87.83%
with less computation time SqueezeNet and ShuffleNet acchived the
accuracy of 86.92% and 86.73%. ResNet 18 was the least performing
model with an accuracy of 84.53%. Due to exceptional accuracy,
minimal computational complexity, and proficiency in managing
complex feature learning and achieving higher classification
EfficientNet B0
recommended for real time monitoring of the condition of the

accuracy on this comparative analysis, is
cutting tool. Applications of a pretrained model in an industrial
environment can achieve an accuracy and high oversight and
reduce machine downtime, which can increase productivity. This
approach aligns well with the modern industrial requirement where

real time monitoring and predictive maintenance are crucial.

6.1 Future work

Current studies on tool wear classification have used various
machine learning and deep learning methods with separate sensor
inputs, but reported accuracies are often not directly comparable
due to variations in datasets and setups. This work shows the
effectiveness of using vibration signal plots with pretrained CNN
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models. However, the current approach uses a single data processing
pipeline. Future work will explore alternate techniques, such as
wavelet decomposition, statistical features, and raw signal input to
1D CNNs or LSTMs, to improve robustness and provide a more
comprehensive evaluation.
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Nomenclature

CNC Computer Numerical Control
DL Deep Learning

TCM Tool Condition Monitoring
ART Adaptive Resonance Theory
SOM Self Organizing Maps

ML Machine Learning

DTs Decision Trees

IoT Internet of Things

SVM Support Vector Machine
DAQ Data Collection System

TL Transfer Learning

CNN Convolutional Neural Network
FC Fully Connected Layer
CONV  Convolution
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