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Continuous monitoring of the cutting tool insert’s condition is essential to 
enhance product quality and efficient machining process, by reducing the 
machine downtime. But the available tool condition monitoring approaches 
are often limited by coolant induced visibility loss in the cutting zone that 
reduces the feature reliability. This study proposes a transfer learning based 
deep learning method where the machining vibration signals are converted 
into visual representations and classified using ResNet 18, MobileNet V2, 
SqueezeNet, ShuffleNet, DenseNet 201, and EfficientNet B0 pretrained 
convolutional neural networks. This combination enables the model to learn 
deep wear profiles from vibration data without the manual feature extraction. 
Also, this method enhances signal strength, making it highly suitable for smart, 
scalable, and real world manufacturing environments. The effects of the 
proposed pretrained network hyperparameters, such as mini batch size, solver 
type, learning rate, and filter size, were studied and EfficientNet B0 was identified 
as the best performing network with a classification accuracy of 89.23% for tool 
condition monitoring tasks.
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1 Introduction

The present smarter and effective production environments use the Industrial Internet 
of Things (IIoT) to assist real time data generation, machine monitoring, and predictive 
analytics, which enables intelligent and connected systems within the present environment. 
In this framework, tool condition monitoring (TCM) has gained value as a main component 
of predictive maintenance. As the future industrial revolution focuses on human centric 
approaches, intelligent TCM systems will be the key to this competitiveness. This has 
stimulated growing interest among researchers in the development of advanced TCMs, that 
includes collecting, organizing, and analysing experimental data for real time applications 
and increases the tool wear detection, also reduces downtime of the machine (Okada et al., 
2011; Jardine et al., 2006). For instance, Wilcox et al. framed a tool wear monitoring system 
using self organizing maps (SOM) and adaptive resonance theory neural networks. This 
system studied the sensor data from accelerometers, microphones, and strain gauges, and 
combined the neural network output with taylor’s tool life model to rank tool wear. The 
study showed that integrating neural networks with an expert system improves accuracy 
and makes it a reliable real time monitoring solution (Silva et al., 2006). Kadim et al. 
identified the tool wear during turning operations by measuring strain and vibration from 
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the cutting tool using a piezoelectric strain sensor and an 
accelerometer connected to a data acquisition card. As a result, a 
sum of 24 feature indicators of tool wear was extracted from the 
obtained raw signal, which includes time domain, frequency 
domain, time series model coefficients, and wavelet packet 
analysis features by a (2 × 3) SOM (Abid Al-Sahib and Bachaa, 
2005). Sudhan Kasiviswanathan et al. reviewed the indirect TCM 
methods for turning operations. The study showed the importance 
of integrating IIoT and ML into TCM systems for achieving higher 
efficiency, enhancing performance, and to support sustainable 
intelligent manufacturing (Kasiviswanathan et al., 2024). Alonso 
et al. utilized a feedforward backpropagation network to assess 
cutting tool’s flank wear, leveraging vibration signals and singular 
spectrum analysis (Alonso and Salgado, 2008). Similarly, Dutta et al. 
developed a real time TCM system that applies image texture 
analysis like gray level cooccurrence matrix, Voronoi tessellation, 
and discrete wavelet transforms, to extract features related to the 
cutting tool’s flank wear state. A linear support vector machine 
regression model was then used to predict tool flank wear and 
achieved a lower prediction error (Dutta et al., 2016). The 
advancement and demand for condition monitoring led to the 
use of sophisticated methods like infrared thermography. On the 
other hand, such methods are expensive and demand skilled 
operators (Bagavathiappan et al., 2013). Earlier studies show that 
vibration signals are widely used for monitoring machine tool 
conditions. However, analysing them is difficult because of their 
rapidly changing behaviour and intricate structure. Researchers 
have used different methods, including histograms, statistical 
measures, support vector machines and fuzzy logic, to track tool 
conditions (Mohanraj et al., 2020). Additionally, feature selection 
techniques like Filter methods, wrapper methods, embedded 
methods, and decision trees have been employed. The selected 
features are then classified using various types of ML algorithms, 
namely, Navie Bayes, decision trees, Random Forest, and K nearest 
neighbour’s families. While numerous studies have explored the use 
of ML algorithms for TCM, the performance and efficiency of these 
algorithms are greatly dependent on the standard of the extracted 
and selected features. Since the present data led diagnostic methods 
are based on AI principles, they become an essential tool for 
handling these large datasets. Geoffrey Hinton introduced a deep 
learning strategy known as a deep neural network (DNN), which 
consists of numerous neural layers arranged hierarchically to extract 
information from input data. This configuration is referred to as 
“deep” because its intervention on raw data at different levels 
progressively uncovers the structure of complex data sets and 
independently identifies the most significant attributes (Ekundayo 
and Ezugwu, 2025). This ability to learn the features, paired with 
current nonlinear regression functions, has led DL models to gain 
widespread popularity in areas like Natural Language Processing, 
object detection, image classification, and pattern recognition 
(Elhefnawy et al., 2022). The research conducted by Yang Fu 
et al. used deep belief networks (DBN) to automatically construct 
a feature space for cutting tool monitoring and utilized a greedy 
layer wise strategy for pretraining and back propagation for fine 
tuning. The performance of DBNs is compared with manually 
defined features from both time and frequency domains. The 
results demonstrate that DBN provide comparable feature 
characterization with a significantly higher modelling accuracy 

(Fu et al., 2015). Verstraete et al. applied short time fourier 
transform, wavelet transform, and hilbert huang transform to 
identify the rolling element bearing faults by vibration signals 
and achieved reliable accuracy with limited data (Verstraete 
et al., 2017). Luis Enrique Escajeda Ochoa et al. conducted TCM 
for highspeed machining using the stacked sparse autoencoder 
method and it showed reliable tool wear prediction (Ochoa et al., 
2019), while Pradeep Katta et al. study presents optimized DBN for 
analysing induction motor performance by using stacked restricted 
Boltzmann machines and trained with an Ant Colony algorithm 
which is designed to extract features from sensor based vibration 
signals and experimental results showed robust fault detection 
accuracy (Katta et al., 2024). From these cases it is identified, 
DNN were primarily used as classifiers without fully exploiting 
their feature learning potential. However, since 2015, researchers 
have begun using DNN for learning, selecting, and classifying 
features for comprehensive solutions by eliminating the necessity 
for explicit feature extraction and selection, DNN learn from 
provided input images, with corresponding labels as output, 
where this advanced stage of fault diagnosis was explored in 
recent studies. The research conducted by Guo et al. (2016) to 
monitor the condition of roller bearings by employing a deep CNN 
with two ensembles, one method emphasizes feature extraction and 
fault pattern recognition, while the other focuses on fault 
classification. The complexity of vibration signals makes the task 
of feature extraction a challenging one. To address these difficulties, 
researchers are now concentrating on developing an automated 
system that can classify data directly from raw signals, bypassing the 
need for explicit feature extraction. Recently, DL has shown its 
potential in tackling condition monitoring issues by automatically 
learning features from images to achieve accurate classifications. In 
DL methods, especially CNN, image features are learned 
automatically, allowing classification without the need for 
separate attribute extraction, selection, and labelling tools. 
Although DL techniques are primarily designed for image 
processing, capturing images while the tool is in operation is 
challenging, hazardous, and costly. According to the literature, 
the best method for gathering vibration signals from the 
machining area is to place the sensor near the cutting 
environment. For this research, several sensor placement trial 
runs were conducted and positioning it on the tool holder, near 
the cutting area, was identified as the optimal location for vibration 
signal acquisition. CNNs can learn features from these graphs and 
classify them based on predefined wear profile categories.

From the literature it is found that only few attempts were made 
on utilizing DL based pretrained networks for industrial TCM 
applications and no attempts were made for utilizing vibration 
signatures as an input to the pretrained networks. These 
networks are referred to as “pretrained” because they are 
previously trained on a large scale dataset, enabling them to learn 
rich features from the input data. This process of leveraging a 
pretrained model is called transfer learning, and it significantly 
reduces the time and computational resources needed for training 
on new tasks, when the available data is limited. The proposed 
research presents a novel approach to assess the tool’s condition 
using vibration signatures by employing high performing pretrained 
DL models, such as SqueezeNet, its lightweight architecture allows it 
to process the raw data with minimal computation, which makes it 
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suitable for the TCM application (Guo et al., 2016), ShuffleNet, its 
group convolution and channel shuffling process allows it to achieve 
high classification efficiency by capturing localized texture variations 
in vibration signature images (X. Zhang et al., 2017), ResNet 18, 
enables stable feature learning of wear profiles and training process 
(Li et al., 2024), MobileNet V2, its inverted residual block structures 
process the data with high accuracy and efficient for industrial 
applications (Sandler et al., 2018), DenseNet 201, offers a dense 
features which improves the structures flow (Salim et al., 2023) and 
EfficientNet B0, uses compound scaling of input data resolution to 
achieve accuracy (Ali et al., 2025).

Further, this study explored several conventional and current 
TCM methods used in real time environment and observed that 
effectiveness varies significantly. Traditional TCM approaches that 
use statistical data, frequency domain analysis, and customize 
features are effective, but their accuracy relies on the feature 
design. These methods also often have challenges on recording 
tool wear behaviour that changes over time. Image based 
monitoring methods are compatible for CNN based deep 
learning, but they have practical difficulties like coolant blocking 
near the cutting area, limited accessibility for tool workpiece 
interface, and decreased image resolution during rapid 
machining, which makes it harder to get continuous images 
while machining (Wang et al., 2021). Vibration signals based 
methods on the other hand provided a non intrusive, cost 
effective, and reliable way to monitor the tools condition (Y. 
Zhang et al., 2023). Traditional vibration based methods require 
high feature extraction, which may not possess in all wear 
conditions (Wang et al., 2021; Li et al., 2024). Even though 
vibration signals are commonly used to monitor tool wear, most 
studies still use manual features with traditional machine learning 
classifiers or train deep networks with small data sets (Wang et al., 
2021). These approaches often fail due to the requirement for 
extensive preprocessing of signal data, and the application of 
transfer learning with pretrained CNN models, as well as the 
data conversion is limited. This survey shows that a hybrid deep 
learning method that combines the reliability of vibration sensing 
with the modern CNN is needed to transform one dimensional 
vibration data into two dimensional images.

This research mitigates these constraints by enhancing,

• A vibration based tool wear monitoring framework transforms 
one dimensional vibration signals into two dimensional GASF 
images, facilitating CNN based feature learning without 
necessitating manual feature engineering.

• A systematic transfer learning approach for tool wear 
classification under consistent experimental conditions was 
used to test the pretrained CNN architectures SqueezeNet, 
ShuffleNet, ResNet 18, MobileNet V2, DenseNet 201, and 
EfficientNet B0.

• A strategy for dividing data into batches that reduces signal 
similarity leakage and gives a reliable measure of the extent to 
which a model generalizes.

• A thorough study of hyperparameter optimization that 
observes how the size of the minibatch, the type of solver, 
the learning rate, and the size of the filter affect the 
classification of tool wear based on vibration images.

• Validation of a computationally efficient and scalable solution 
for real time monitoring of the condition of industrial tools 
using a small amount of training data.

• The suggested method uses existing visual feature 
representations and transforms them to work for wear 
recognition by combining transfer learning with 
pretrained CNNs.

2 Methodology

The stated methodology comprises several sequential stages, 
from signal acquisition to TCM prognostic model deployment, as 
shown in Figure 1, and is based on analyzing vibration signals using 
DL models.

• Tool insert selection: Based on microscopic and surface 
observations, for this study, four pattern tools are selected, 
namely, Good or No wear, Nose, Crater, and Flank wear.

• Vibration Signal: During machining operations, these selected 
tools are mounted to the tool holder one by one to obtain the 
vibration data using the accelerometer sensors fixed on the 
tool holder.

• Signal amplification: At this phase, the generated vibration 
signal will be filtered and amplified to enhance the signal to 
noise ratio.

• Analogue to Digital signal conversion: Using the ADC, the 
vibration signals are converted into digital signals for 
computing and frequency time (FT) domain vibration plot 
generation.

• Dataset preparation: For effective analysis, the training and 
testing datasets are split from the obtained 2D GASF image 
data. The training datasets are used to train the model, and the 
testing datasets are used to validate the model.

• Training phase: Using the training datasets, the proposed 
models were trained for their classification accuracy.

• Validation phase: The pretrained model’s classification 
accuracy, precision, recall, and overall reliability were 
evaluated using the testing dataset.

• Prediction of tool wear: The decisions made by each proposed 
model on tool condition were monitored to present a reliable 
and non intrusive solution for real time tool wear prediction.

2.1 Transforming a 1D vibration plot into a 
2D GASF image

The GASF method was utilized to convert vibration signals into 
images as it can record the time dependencies and encode global 
signal correlations in a structured two dimensional form. GASF 
captures the pairwise angular relationships between all time samples, 
which retains long range temporal information that is essential for 
identifying the difference between gradual and nonlinear tool wear 
progression. This differs from traditional time frequency 
representations like short time Fourier transform (STFT) and 
wavelet transform, which focus on localized frequency content.
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In GASF, the transformation of a normalized one dimensional 
signal into a polar coordinate system facilitates the encoding of 
temporal dynamics as spatial patterns, preserving both amplitude 
variation and temporal ordering. This representation is particularly 
beneficial in monitoring tool wear based on vibration plots because 
changes caused by wear often show up as small changes in signal 
correlation instead of clear spectral peaks. Additionally, GASF 
creates dense and smooth image textures that work well with 
convolutional neural networks. This makes it easy to learn 
features without having to do explicit time frequency 
decomposition or hand picking features.

GASF is a deterministic and parameter light transformation 
that is sensitive to window size and decomposition parameters 
than other vibration to image encoding methods like recurrence 
plots or scalograms. This makes it stronger and easier to use in 
industry, especially when combined with transfer learning that 
uses pretrained CNN architectures. As a result, GASF is an 
excellent method to connect reliable vibration sensing with 
strong image based deep learning models for 
classifying tool wear.

The one dimensional vibration signals acquired from the 
accelerometer were converted into two dimensional GASF images 
to facilitate image based deep learning. The GASF encodes the 
temporal correlations of the signal into a structured matrix 
representation that is appropriate for CNN based analysis.

Step 1: Signal normalization, each vibration signal x(t) was first 
rescaled to the range [-1,1] using Equation 1

xi0 �
xi− min x( )

max x( )− min x( )
× Xmax−Xmin( ) +Xmin (1)

Where,

xi = original value
max(x)− min(x) = minimum and maximum values of the 
feature in the dataset
(Xmax−Xmin) = desired scaling range
xi0 = normalized value

Step 2: Polar Encoding, the normalized signal was converted into 
angular form using Equation 2

φ � arccos 􏽥yi( 􏼁, -1 ≤ 􏽥yi( 􏼁≤ 1, 􏽥yi∈Ỹ (2)

Where,
Ỹ � y1, y2., yn is the set of rescaled cutting force samples (after 

Min–Max normalization or similar).
The angular coordinate ϕ is obtained from the across mapping 

of 􏽥yi

Step 3: 2D GASF image generation

The GASF matrix was computed using Equation 3

GASF �

cos ϕ1 + ϕ1( 􏼁 cos ϕ1 + ϕ2( 􏼁 ⋯ cos ϕ1 + ϕn( 􏼁

cos ϕ2 + ϕ1( 􏼁 cos ϕ2 + ϕ2( 􏼁 ⋯ cos ϕ2 + ϕn( 􏼁

..

. ..
.

⋱ ..
.

cos ϕn + ϕ1( 􏼁 cos ϕn + ϕ2( 􏼁 ⋯ cos ϕn + ϕn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

FIGURE 1 
Tool wear assessment methodology.
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2.2 Transfer learning approach

To utilize the feature representations from large image datasets and 
to adapt these representations for the classification of tool wear based 
on vibration data transfer learning was applied. For this study, 
pretrained weights from the ImageNet dataset was used to initialize 
all CNNs used. We removed the original fully connected classification 
layers in each pretrained model and added a new task specific 
classification head which was generated for the tool wear classes. 
The convolutional backbone layers were initially frozen during training 
to retain the pretrained feature representations. Only the new 
classification layers were trained with the GASF images. Selective 
fine tuning was performed by unfreezing the upper convolutional 
blocks of each network, enabling restricted adaptation to the features 
extracted from vibration images. We used a low learning rate during 
the fine tuning process to lower the chance of losing all the pretrained 
weight. All the models used categorical cross entropy loss for training 
and were improved by solvers based on stochastic gradient descent. 
During the optimization study, hyperparameters such as learning rate, 
minibatch size, and solver type varied in a systematic way. This transfer 
learning approach allows models to converge promptly using fewer 
training data, and it further decreases overfitting.

3 Empirical research

The vibration data used for this study was obtained from 
standalone machining experiments which were conducted for this 

research. The experiments were performed with controlled cutting 
conditions along with a tri axial accelerometer mounted on the tool 
holder which allowed to continuously record the vibration signals 
while the machining. Progressive wear measurements were used to 
group the tool wear states, to make sure that signal acquisition and 
wear classification were consistently similar. This experimental design 
makes it possible to accurately test the proposed vibration based deep 
learning framework in real world machining situations.

3.1 Experimental facility configuration

The experimental setup for this study consisted of an industrial 
CNC turning center, a single axis accelerometer sensor, and a Data 
collection system (DAQ).

The single point cutting tool carbide Insert TNMG160404 was 
used along with the tool holder, and an EN8 carbon steel shaft with a 
length of 320 mm and a diameter of 50 mm was used as a workpiece 
and held in place by a hydraulic chuck on the CNC turning center. 
Vibration signals were obtained using a uniaxial piezoelectric 
accelerometer, which was securely mounted on the tool holder 
with a mount. These signals were processed and transformed 
into digital format by the signal conditioning module in 
LabVIEW software, which included an integrated analog to 
digital converter (ADC). The digitally converted vibration signal 
patterns are then transmitted to a personal system for storage. 
Figure 2 illustrates the experimental Configuration utilized for 
this research.

FIGURE 2 
TCM experimental setup.
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3.2 Data collection

Data collection (DAQ) transforms real world physical signals 
into digital values for display, analysis, and storage. In this research, 
TCM was carried out by capturing vibration signals using a 
piezoelectric single axis accelerometer with a sensitivity of 
10.22 mV/g. Accelerometers can capture a broad spectrum of 
vibrations, with their output voltage directly reflecting the 
intensity of the vibrations. In this study, the sensor was securely 
mounted on the arm of the cutting tool holder, positioned as close as 
possible to the cutting zone, using adhesive to maintain signal 
accuracy. An analog to digital converter (ADC) was used to 
digitise the collected analog signals. These digital vibration 
signals were then used to generate vibration plots, which were 
stored on a computer for further analysis. A TL based strategy 
was implemented to determine which pretrained model delivered 
the most effective performance for TCM.

3.3 Experimental process

3.3.1 Cutting tool insert selection
In this study, three commonly occurring types of tool wear 

conditions and no wear or good tool were considered for the 
experimentation as outlined in Table 1.

3.3.2 Experimentation
A new carbide turning insert with a 0.4 mm nose diameter was 

secured to a tool holder, which was fixed to a tool turret head, 
along with the acceleration sensor mounted on the cutting tool 
holder’s arm. The factors for signal acquisition, such as the length 
of the sample, frequency of the sample, and the type of signal, were 
established in advance. Following the Nyquist sampling theorem, 
the frequency of the sample was set to 25 kHz, which is twice the 
observed frequency of 12.5 kHz. To begin the turning process, an 
EN8 steel shaft with a 50 mm diameter was positioned in the 
center of the three jaw hydraulic chuck. The machining 
parameters are given in Table 2, which were coded into the 
CNC turning center for each tool category. Upon commencing 
the machine, the DAQ system was powered on, and initial signals 
were discarded to reduce random variations. Vibration data were 
recorded from the mounted sensor. The signal collection factors 
were as follows:

• Length of sample: 8,192 steps
• Frequency of sample: 25 kHz
• Count of occurrences per condition: 86

3.4 Data processing

A dataset of images representing various tool factors was 
generated from the acquired vibration data signals for this study. 
A grouped partitioning approach was adopted to split the data 
set and to eliminate signal similarity from leak between training 
and testing sets. All vibration samples are collected from a single 
machining run, linked to one tool condition batch, were 
combined and categorized into either the training or testing 
set. Applying a 70/30 split at the batch level instead of the sample 
level performed well to prevent the training and testing data 
from overlapping. This approach also makes sure that the 
reported performance is a true indication of the model’s 
ability to generalize Figure 3 shows how to turn one 
dimensional vibration plots into two dimensional 
GASF image data.

TABLE 1 Tool condition selection for experimentation.

Wear type Wear description

No wear (or) 
good

Fresh cutting tool insert, an unused tool that has no wear

Nose wear Wear occurred on the cutting edge of the insert due to friction 
between the workpiece and the cutting tool

Crater wear A concave area formed on the rake face of the tool insert due to 
the sliding motion of the chip

Flank wear Wear developed on the flank of the cutting edge because of 
friction between the side face of the cutting edge and the 
workpiece during machining

TABLE 2 Processing factors for experimentation.

Machining sets

Speed (rpm) Feed (mm/rev) Depth of cut (mm) Tool 
Condition

Representation

1,000 0.2 1 No wear (or) good tool (NOT) NOT-S1F0.2D1

1,000 0.2 1 Nose wear (NWT) NWT-S1F0.2D1

1,000 0.2 1 Crater wear (CWT) CWT-S1F0.2D1

1,000 0.2 1 Flank wear (FWT) FWT-S1F0.2D1

1,000 0.2 1.5 No wear (or) good tool (NOT) NOT-S1F0.2D1.5

1,000 0.2 1.5 Nose wear (NWT) NWT-S1F0.2D1.5

1,000 0.2 1.5 Crater wear (CWT) CWT-S1F0.2D1.5

1,000 0.2 1.5 Flank wear (FWT) FWT-S1F0.2D1.5
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FIGURE 3 
1D vibration data plots to 2D GSAF images of different wear tools (a) No wear or good tool (b) Nose wear tool (c) Crater wear tool (d) Flank wear tool.
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A total of 688 images, generated from the set conditions, from 
the vibration signals. The input images underwent the required 
preprocessing steps to prepare them for use in the selected 
pretrained models:

• Resized: All images were resized to 224 × 224 pixels to match 
the input size required by the pretrained models.

• Normalization: Pixel values were normalized to the [0, 1] range 
to standardize input across samples and speed up convergence.

• Colour Channel Formatting: The single channel grayscale 
GASF images were replicated across three channels to 
conform with the RGB input format expected by the 
ImageNet pretrained models.

• Data Augmentation: To improve generalization, basic 
augmentation techniques were applied, including random 
rotations ±15°, horizontal flipping, and slight zooming. This 
helped expose the models to varied representations of tool 
wear patterns during training.

4 Application of pretrained models

The structured design of the CNN’s architecture enables it to 
learn and extract the intended data from the inputs. These 
extracted data features during the convolutional process decide 
the performance of a network by generating weights and biases, 
which create a link between the input image and its features. The 
features like edges, textures, and shapes of the image are examined 

by the model’s filters, which aid in its overall decision making ability. 
To address the challenges faced by the conventional model and to 
utilize the features of DL for this study, six pretrained networks and 
the transfer learning (TL) approach are used. These pretrained 
models are trained to recognize general patterns and visual 
features, which makes them highly suited for tool wear 
classification tasks. The final classification layer of the model was 
replaced with the proposed models, where the initial layers are the 
same. The models are then fine tuned on the vibration datasets 
images converted by the GASF method. This method enables the 
model to quickly learn the specific patterns. Further, this section 
outlines the pretrained networks employed to evaluate the condition 
of a carbide cutting tool insert, and converting 1D vibration signals 
into 2D spectrograms enhances the ability of deep learning models to 
detect wear patterns. This approach is driven by the proven 
effectiveness of deep learning in enhancing feature recognition for 
industrial applications [26]. Figure 4 illustrates the architecture of the 
pretrained model utilized in this study.

4.1 Characteristics of the pretrained 
model used

To explore how well TL can be applied to tool condition 
monitoring, a selected mix of well known and modern pretrained 
convolutional neural networks was used. These models vary in 
design and complexity, which helps provide a balanced 
comparison of accuracy, efficiency, and suitability for industrial 

FIGURE 4 
(a) SqueezeNet architecture (b) ShuffleNet architecture with a bottleneck unit (c) MobileNet V2 architecture (d) ResNet 18 architecture (e) DenseNet 
201architecture (f) EfficientNet B0 architecture.
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use. Each model was fine tuned using vibration signal plots from 
machining operations to assess its ability to classify tool wear 
effectively. A summary of each model and its role in this study is 
presented in Table 3.

5 Results and discussion

The Deep Learning Toolbox and TL package in MATLAB 2020a 
was used for the experiments. To ensure that no vibration samples from 
the same machining run were in both sets, a 70/30 train test split was 
executed at the tool batch level. Eight hyperparameter configurations 
were explored, and the key findings are summarized below.

5.1 Minibatch size effects

Minibatch size influences memory, training speed, and 
generalization. In this study, the 8,192 sample dataset was split into 
batches of 4, 8, and 16, revealing that the batch of 8 gave the best overall 
results. ResNet 18 reached 89.8% accuracy with this size, MobileNet 
V2 and ShuffleNet also peaked at batch 8, 87.9% and 86.1%, 
respectively, while SqueezeNet performed best with batch 4, 83.76% 
the DenseNet 201 achieved its best performance 89.4% and EfficientNet 
B0 also reached its top accuracy of 90.2% with a batch size of 8.

5.2 Solver type effects

The solver is an expansion algorithm that modifies model 
weights during training to reduce the loss function. This 
selection shows effects on the speed, accuracy, and 
generalization. Three optimisers were related in this study: 
Stochastic Gradient Descent with Momentum (SGDM), 
Adaptive Moment Estimation (ADAM), and Root Mean 
Square Propagation (RMSProp). SGDM produced the extreme 
accuracy for SqueezeNet 89.9%, ShuffleNet 86.7%, and ResNet 
18 80.5%. MobileNet V2 performed best with Adam, 88.6%. 
DenseNet 201 performed best with RMSProp, achieving 88.9% 
accuracy and EfficientNet B0 reached its top performance of 
87.3% using ADAM.

5.3 Learning rate factor effects

The learning rate controls how much a model’s weights are 
updated during training. Choosing the exact value is difficult for this 
process. A lesser value can slow down the process, while a higher 
value can end up in poor training of the model. The general used 
common values of 0.01, 0.001, and 0.0001 are chosen for the training 
phase. The highest accuracy of all the used networks was reached at a 
0.0001 learning rate factor.

5.4 Filter size effects

For feature extraction, the filter size plays an important role by 
determining the receptive field. The model’s execution, 
computational efficiency depends on the proper selection of filter 
size. Filter sizes of 1 × 1, 3 × 3, and 5 × 5 were examined. ResNet 
18 was most accurate with 1 × 1 filters, 83.3%, whereas ShuffleNet, 
SqueezeNet, and MobileNet V2 all peaked with 5 × 5 filters, 87.4%, 
87.1%, and 87%. DenseNet 201 used a filter size of 3 × 3 and achieved 
an accuracy of 88.5%. EfficientNet B0 also peaked at 90.2% with 
3 × 3 filters.

5.5 Pretrained model comparative study 
with hyperparameter optimization

Using optimal hyperparameters, EfficientNet B0 achieved the 
highest classification accuracy of 89.23% while also requiring less 
computation time with 50 epochs, as shown in Table 4.

TABLE 3 Pretrained model characteristics.

Pretrained 
model

Characteristics

SqueezeNet Lightweight model with “fire modules”, reduces 
parameters while maintaining accuracy, ideal for low 
resource settings

ShuffleNet Employs group convolutions and channel shuffling, 
highly efficient for edge and embedded device 
deployment

ResNet 18 Utilises residual connections to maintain gradient flow, 
efficient and reliable for moderate sized datasets

MobileNet V2 Incorporates inverted residuals and linear bottlenecks, 
optimised for speed and accuracy on mobile platforms

DenseNet 201 Densely connected layers promote feature reuse and 
stable gradient flow, they perform well in deep learning 
tasks with limited data

EfficientNetB0 Uses compound scaling and MBConv layers to achieve 
high accuracy with fewer parameters; suitable for real 
time industrial use

TABLE 4 Overall classification accuracy of the pretrained models.

Hyperparameter Minibatch size Solver type Learning rate factor Filter size Overall accuracy

SqueezeNet 83.76% 89.9% 0.0001 87.1% 86.92%

ShuffleNet 86.1% 86.7% 0.0001 87.4% 86.73%

ResNet 18 89.8% 80.5% 0.0001 83.3% 84.53%

MobileNet V2 87.9% 88.6% 0.0001 87% 87.83%

DenseNet 201 89.9% 88.9% 0.0001 88.5% 89.1%

EfficientNet B0 90.2% 87.3% 0.0001 90.2% 89.23%
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The effective performance variations observed in Table 4 across 
the pretrained networks can be defined by their architectural 
features compared to the characteristics of GASF images. 
EfficientNet B0 attains highest accuracy because of its compound 
scaling method, which balances the network’s depth, width, and 
resolution. This balance allows the model to gain both global and 
local wear related features from GASF representations. EfficientNet 
B0 implements MBConv Mobile Inverted Bottleneck Convolution 
blocks and squeeze excitation modules to optimize the best use of 
the features and make it more sensitive to minor variations. These 

features are most useful for vibration based GASF images, where 
wear patterns are shown by minor variations in space and intensity 
(Ali et al., 2025). Lightweight models like SqueezeNet and 
ShuffleNet, apply aggressive parameter reduction approaches like 
fire modules and depthwise group convolutions these methods make 
it challenging for the models to learn detailed wear signatures which 
are present in 2D image data (Sandler et al., 2018). Deeper networks 
such as DenseNet 201 can represent more information, though they 
are more likely to overfit when there is not sufficient data due to the 
amount of feature connections increases. Their learning curves show 

FIGURE 5 
Training and Loss Validation Curve at 50 Epochs (a) EfficientNet B0 (b) DenseNet 201, (c) MobileNet V2, (d) ResNet 18, (e) ShuffleNet and (f) 
SqueezeNet.
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that they stabilize more slowly than EfficientNet B0 (Terzioğlu et al., 
2025). ResNet 18 and MobileNet V2 performed moderately well 
using both residual and inverted residual structures (Ali et al., 2025). 
However, they did not employ the compound scaled feature 
extraction pipeline that makes EfficientNet B0 significantly more 
accurate and effective. The confusion matrix indicates that 
EfficientNet B0 can generalize better tool batches. To evaluate the 
model behaviour, training, and validation loss curves were analysed 
as shown in Figure 5. For the uniform comparison, all models were 

trained for 50 epochs. But the loss curves for DenseNet 201, 
ShuffleNet, and SqueezeNet showed a down trend which become 
slightly unstable toward the end of training. This behavior indicates 
that these models benefited from extended epochs to attain full 
convergence. Preliminary tests with longer training times of 80 and 
100 epochs showed that the accuracy improvement was usually less 
than 1% and did not change the ranking of model performance. 
EfficientNet B0 was always found to be the best network. The 
stopping criterion of 50 epochs was kept the same for all 

FIGURE 6 
Confusion matrix analysis of the pretrained model (a) EfficientNet B0, (b) DenseNet 201, (c) MobileNet V2, (d) ResNet 18, (e) ShuffleNet and (f) 
SqueezeNet.
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architectures to make sure that the results were stable and 
representative.

EfficientNet B0 showed the most stable and balanced learning, 
indicating strong generalisation. Its residual connections helped 
maintain gradient flow, making it well suited for small datasets. 
In contrast, other models showed fluctuations or early convergence. 
Confusion matrix analysis confirmed EfficientNet B0 accuracy in 
distinguishing clear wear states, though it was slightly less effective 
with intermediate cases as shown in Figure 6.

5.6 Comparison with existing classifiers

Latest studies in tool wear class have employed a variety of ML 
and DL techniques to enhance projecting accuracy and strength. 
These approaches use diverse sensor data types, including vibration 
signals, acoustic emissions, and images, each involving separate 
feature extraction and classification strategies. Despite stated 
accuracy findings varying broadly across dissimilar studies due to 
variations in datasets, empirical setups, and evaluation protocols, 
making direct correlation of these metrics demanding and potentially 
deceiving (Wang et al., 2021). Therefore, this work points out a 
qualitative review of key methodologies and their respective strengths 
to aid the proposed approach. To enable a meaningful performance 
comparison, several baseline representative methods were applied 
and assessed them alongside with the proposed model using the same 
dataset and experimental settings (Y. Zhang et al., 2023; Li et al., 
2024). The features consist of standard time domain descriptors such 
as RMS, peak value, crest factor, kurtosis, and skewness, as well as 
frequency domain characteristics that come from FFT analysis. This 
shows the common work in TCM, where the quality of handcrafted 
features has significant impacts on performance (González et al., 
2022; Wang et al., 2021). The proposed pretrained CNN models were 
trained for GASF imaging, which makes it easier to extract the 
features. Table 5 provides a comparison of methods between 
traditional feature engineered classifiers and deep learning based 
feature learners, not a direct comparison using the same inputs. This 
distinction clarifies that the high performance of CNN models is due 
to their capability to learn discriminative representations directly 
from transformed vibration images, which reduces reliance on 
manual feature engineering (Y. Zhang et al., 2023; Wang et al., 2021).

Among the means tested, EfficientNe B0 showed the best 
performance. Traditional classifiers such as Decision Trees and 
Naive Bayes achieved accuracies of 78.2% and 85.28%, respectively, 
but were outperformed by the proposed model, which attained an 
accuracy of 89.23% using vibration signal plots combined with TL.

The generated dataset had 688 GASF images, but various design 
choices reduced the risk of overfitting. Transfer learning 
substantially decreased data requirements as pretrained CNNs 
possess broad, generalizable feature representations that were 
learned from the large ImageNet dataset. The final layers of the 
networks were tuned to perform efficiently with vibration based 
images, which makes the method effective with limited data. The 
tool batch level was used to split the data into 70/30 parts. This 
ensured that all of the test samples came from machining runs that 
had never been seen before. This method stops leaks and forces the 
models to go beyond just local signal similarities. Third, applying 
random rotations, flips, zooming, and normalization to the data set 
made the training samples diverse and made the model most 
reliable. The training and validation curves were not diverged 
and further processed without overfitting. The dataset was 
sufficient for testing the viability of the proposed method.

6 Conclusion

This study presents six pretrained DL models, SqueezeNet, 
ShuffleNet, ResNet 18, MobileNet V2, DenseNet 201, and 
EfficientNet B0, to assess the condition of single point cutting tool’s 
wear through vibration signal plot images. The study focused on four 
definite wear states of the cutting tool, namely, no wear (indicating a 
good tool), nose wear, crater wear, and flank wear of cutting tool 
inserts. The utilized pretrained model, based on a CNN architecture, 
provides a complete monitoring of the cutting tool’s condition by 
including feature extraction, selection and classification into an 
integrated framework, which gives an effective classification of the 
vibration plots. The experimental findings show that all the proposed 
models learned complex features and resulted in consistent 
classification for tool condition monitoring. The hyperparameters 
train test split ratio, optimizer, learning rate, and batch size were 
optimized for accuracy for the model’s requirements. Of all the models 
EfficientNet B0 achieved the highest classification accuracy of 89.23% 
closely followed by DenseNet 201 with 89.1%, MobileNet V2 at 87.83% 
with less computation time SqueezeNet and ShuffleNet acchived the 
accuracy of 86.92% and 86.73%. ResNet 18 was the least performing 
model with an accuracy of 84.53%. Due to exceptional accuracy, 
minimal computational complexity, and proficiency in managing 
complex feature learning and achieving higher classification 
accuracy on this comparative analysis, EfficientNet B0 is 
recommended for real time monitoring of the condition of the 
cutting tool. Applications of a pretrained model in an industrial 
environment can achieve an accuracy and high oversight and 
reduce machine downtime, which can increase productivity. This 
approach aligns well with the modern industrial requirement where 
real time monitoring and predictive maintenance are crucial.

6.1 Future work

Current studies on tool wear classification have used various 
machine learning and deep learning methods with separate sensor 
inputs, but reported accuracies are often not directly comparable 
due to variations in datasets and setups. This work shows the 
effectiveness of using vibration signal plots with pretrained CNN 

TABLE 5 Comparison of attainment accuracy with other classifiers.

Classifiers Classification accuracy in %

BayesNet 83.34

Decision tree 78.2

Naviebayes 85.28

K Star 78

Proposed method 89.23
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models. However, the current approach uses a single data processing 
pipeline. Future work will explore alternate techniques, such as 
wavelet decomposition, statistical features, and raw signal input to 
1D CNNs or LSTMs, to improve robustness and provide a more 
comprehensive evaluation.
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Nomenclature
CNC Computer Numerical Control

DL Deep Learning

TCM Tool Condition Monitoring

ART Adaptive Resonance Theory

SOM Self Organizing Maps

ML Machine Learning

DTs Decision Trees

IoT Internet of Things

SVM Support Vector Machine

DAQ Data Collection System

TL Transfer Learning

CNN Convolutional Neural Network

FC Fully Connected Layer

CONV Convolution
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