
Multi-objective optimization of 
beam transport in medical heavy 
ion accelerators using an 
improved non-dominated sorting 
differential evolution algorithm 
(NSDE)

Yanhong Yang1*, Mian Zhang2 and Kun Wei3

1College of Medical Technology, Wuwei Vocational and Technical University, Wuwei, Gansu, China, 
2No.212 Nuclear Geological Brigade of Gansu Province, Wuwei, Gansu, China, 3Zhongke College of Low- 
Carbon and New Energy Technology, Wuwei Vocational and Technical University, Wuwei, Gansu, China

To address the issues of high-dimensional coupling parameters easily falling into 
local optima and multi-objective conflicts in the beam transport of medical heavy 
ion accelerators, this paper proposes an improved non-dominated sorting 
differential evolution (NSDE) algorithm. The algorithm employs inverse 
learning for initialization and introduces an adaptive mechanism to adjust the 
mutation factor and crossover probability online, balancing exploration and 
exploitation. Additionally, it incorporates local enhancement based on 
crowding distance in particle swarm optimization (PSO) to refine non- 
dominated elite solutions. Large-scale experiments based on FLUKA Monte 
Carlo coupled simulation (nine-dimensional decision variables) have shown 
that the improved NSDE has increased the beam transport efficiency from the 
baseline of 92.42% to 99.21% (an improvement of 6.79%), while also achieving 
continuous improvements in key physical indicators such as the beam spot size at 
the end point, system power consumption, and energy retention rate. The 
research indicates that the proposed method exhibits significant advantages in 
enhancing optimization quality and maintaining robustness, making it suitable for 
accelerator engineering optimization that demands stringent real-time 
performance and multi-objective accuracy.
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1 Introduction

With the widespread application of heavy ion therapy in tumor treatment, the 
performance optimization of medical heavy ion accelerators has become a key link in 
ensuring clinical treatment effects (Sokol and Durante, 2023; Yamada et al., 2022). During 
the process of beam transmission from the accelerator outlet to the treatment terminal, its 
transmission efficiency and beam spot quality directly affect the accuracy of dose 
distribution and treatment safety. Since there are a large number of parameters 
involved in the transmission system, such as magnet current, pipeline geometry, 
vacuum state, etc., there is a significant coupling relationship between these high- 
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dimensional parameters, making optimization extremely difficult. 
In addition, there is often a performance conflict between high beam 
transmission efficiency and small beam spot size, and traditional 
methods find it difficult to take both into account. Seeking efficient 
and robust multi-objective optimization strategies to improve beam 
performance has important engineering value and clinical 
significance.

In order to solve the multi-objective conflict problem of medical 
heavy ion accelerator beam in high-dimensional coupled parameter 
space, the existing system has the following defects: traditional 
optimization methods such as NSGA-II (Ma et al., 2023) and 
MOEA/D (Gao et al., 2024) are prone to fall into local optimality 
when dealing with high-dimensional parameters, and it is difficult to 
effectively explore complex parameter space; and these methods 
have insufficient adaptive adjustment capabilities for parameters, 
resulting in slow convergence speed and insufficient diversity of 
solution sets when balancing multi-objective performance, making 
it difficult to balance the conflicts of key indicators such as beam 
transmission efficiency and beam spot size. To address the above 
problems, this paper proposes an improved NSDE algorithm that 
integrates reverse learning initialization, adaptive parameter control 
and PSO local refinement. The initial population with diversity is 
generated by reverse mapping and non-dominated crowding 
screening, which enhances the global search capability; in the 
main iteration process, the mutation factor and crossover 
probability are dynamically adjusted according to the fitness, 
achieving a balance between global exploration and local 
convergence; the PSO algorithm is applied to the Pareto elite 
solution for local refinement every 20 generations, which 
improves the convergence accuracy and stability of the algorithm 
in high-dimensional multi-objective optimization and solves the 
local traps and multi-objective conflicts of the existing system. After 
200 iterative experiments, the improved algorithm achieved a beam 
transmission efficiency of 99.21% ± 0.49%, a minimum beam spot 
size of 5.13 mm ± 0.10 mm, a minimum power consumption of 
153.68 kW ± 1.42 kW, and an energy retention rate of 94.12% ± 
0.39%. Its performance is better than NSDE, NSGA-II (non- 
dominated sorting genetic algorithm II), MOEA/D (multi- 
objective evolutionary algorithm based on decomposition), 
MOPSO (multi-objective particle swarm optimization algorithm) 
and other methods, and the beam transmission efficiency has the 
most significant improvement compared with the original medical 
heavy ion accelerator, specifically an increase of 6.79%, which proves 
the effectiveness of this method.

Paper Contribution:

1. The algorithm is integrated with reverse learning initialization, 
adaptive differential parameter adjustment and PSO local 
refinement mechanism to improve the global exploration 
and local convergence capabilities of the algorithm in high- 
dimensional multi-objective optimization.

2. A multi-objective model including beam efficiency, beam spot 
size, power consumption and energy retention rate is 
constructed, and high-fidelity Monte Carlo simulation 
verification is performed in combination with FLUKA.

3. Under the 9-dimensional decision variable, the beam 
transmission efficiency is significantly improved, and the 
four objectives are comprehensively superior to NSGA-II, 

MOPSO, etc., which has practical engineering guidance 
value for the design optimization of heavy ion accelerators.

2 Related works

In the research of medical heavy ion accelerators, in order to 
improve the beam transmission efficiency and treatment accuracy of 
medical heavy ion accelerators, many particle therapy centers 
around the world have conducted in-depth research on 
accelerator beam transmission systems. Pivi M T F and other 
scholars introduced the system layout and beam transmission 
improvement work of the MedAustron particle therapy facility in 
Austria in carbon ion and proton beam therapy, especially the 
introduction of a synchronous control mechanism in the rotator 
system to improve the beam transmission quality and treatment 
consistency in the patient’s body (Pivi, 2024). Han M C and other 
scholars have ensured the stability and safety of the beam 
transmission process through precise clinical workflow and 
quality control processes (Han et al., 2024). Shayanmoghadam A 
A and other scholars have studied the energy deposition 
characteristics of heavy ion beams in inertial fusion and the 
transmission effects under different ion types and energy 
conditions with the help of the GEANT4 simulation platform, 
providing an important theoretical reference for beam 
transmission efficiency modeling (Shayanmoghadam et al., 2025). 
Liang X et al. reviewed the cutting-edge progress of heavy ion 
therapy in modern radiotherapy from the perspective of clinical 
radiation oncology, emphasizing the core role of beam quality 
control in treatment safety and efficacy (Liang et al., 2025). The 
above research has promoted the development of medical heavy ion 
accelerators from multiple aspects, including system architecture, 
clinical process, simulation modeling and treatment mechanism. 
Most existing methods focus on physical structure improvement 
and treatment strategy optimization, but lack the ability to 
coordinate multi-parameter and multi-objective control of beams 
in complex transmission channels. In particular, when there is a 
significant conflict between performance indicators such as 
transmission efficiency and beam spot size, there is still a lack of 
effective high-dimensional global optimization strategies. 
Introducing stronger intelligent optimization algorithms to solve 
the problems of high-dimensional coupling, multi-objective trade- 
offs, and local optimal traps in the transmission process and improve 
the overall performance of the beam system has become an 
important research direction.

With the emergence of intelligent algorithms, researchers have 
gradually introduced intelligent optimization algorithms into this 
field to improve transmission efficiency and system performance. Ge 
Y et al. proposed a multi-objective optimization strategy based on 
NSGA-II, which effectively reduced the variable dimension and 
significantly improved the efficiency of the accelerator neutron 
source system by combining multivariate statistical methods (Ge 
et al., 2024). In order to solve the problem of strong divergence of 
laser-accelerated proton beams, Yan Y and other scholars designed a 
high-efficiency beam collection system that combines permanent 
magnetic quadrupoles with GA (Genetic Algorithm). The system 
significantly improved the transmission efficiency through pre- 
focusing and achieved an efficiency gain of up to 6 times in the 
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experiment, verifying the feasibility of GA in structural parameter 
configuration (Yan et al., 2024). Yan W et al. applied DE 
(Differential Evolution) to the design of beam optical systems for 
X-ray sources. They demonstrated through examples that DE has 
good global search capabilities and solution quality in high- 
dimensional complex spaces, improving the efficiency of the 
traditional design process (Yan et al., 2022). Liu Y et al. 
integrated DE with an expert system to create an intelligent 
control system, which significantly shortened the convergence 
time and enhanced the solution quality in synchrotron radiation 
nanobeamline tests, demonstrating the potential of this method in 
rapid beam adjustment and multi-target collaboration (Liu Y. et al., 
2024). The above research has achieved certain results in parameter 
optimization, optical system design and transmission system 
structure configuration, but some strategies have not been able to 
fully avoid falling into local optimality, and in the case of multi- 
objective performance conflicts, it is difficult to balance the diversity 
and convergence of the solution set. At the same time, there has been 
no targeted and in-depth research on the optimization of the beam 
transmission efficiency of medical heavy ion accelerators.

In recent years, multi-objective evolutionary algorithms have 
shown significant advantages in the field of high-dimensional 
nonlinear optimization. However, in order to address the 
complex characteristics of beam transmission in medical heavy 
ion accelerators, it is necessary to further enhance the diversity, 
global search and local refinement capabilities of the algorithm. 
Reverse learning initialization generates symmetric and 
information-rich candidate solutions at the beginning of the 
population, which can better balance the spatial coverage and 
quickly construct a diverse Pareto approximation set (Cao et al., 
2023; Ahmad et al., 2022; Qtaish et al., 2025). The adaptive 
mechanism monitors the evolutionary state of the population in 
real time, dynamically adjusts the mutation factor and crossover 
probability, and realizes smooth switching between global 
exploration and local development to avoid premature maturity 
(Wang et al., 2022; Huang et al., 2025). The PSO algorithm is 
combined with the local stage of non-dominated elite solutions, 
which enables the algorithm to perform efficient local search and 
accelerate convergence near the Pareto frontier (Ramirez-Ochoa 
et al., 2022; Lin et al., 2023). The above method has been proven to 
reduce computational overhead, improve solution quality, and 
effectively get rid of local optimality in applications in other 
fields. Existing studies have failed to apply it to the optimization 
of beam transmission efficiency of medical heavy ion accelerators, 
and are prone to falling into local optimality and high-dimensional 
multi-objective conflicts.

Research gaps:

• Multi-objective Bayesian active learning for MeV ultrafast 
electron diffraction: In the MeV-UED experiment, a multi- 
objective Bayesian optimization algorithm was used to achieve 
efficient tuning of beam parameters, reduce experimental time, 
and provide a new method for optimizing beam transmission 
efficiency (Ji et al., 2024).

• Application of multi-objective Bayesian optimization in 
accelerators: A multi-objective Bayesian optimization 
scheme was proposed, which can efficiently find the 
complete Pareto frontier of accelerator optimization 

problems, reduce the number of required observations, and 
provide a key step for online multi-objective optimization 
(Roussel et al., 2021).

• Application of Bayesian optimization in beam injection 
process: Studies have shown that the Bayesian optimization 
method performs well in beam injection tuning, 
outperforming traditional manual tuning and Nelder-Mead 
optimization algorithms, especially when dealing with up to 
nine tuning parameters, with higher efficiency and stability 
(Xu et al., 2023).

The literature meta-analysis is shown in Table 1.
The literature reviewed in this paper covers multiple aspects 

such as physical architecture improvement, clinical process 
optimization, simulation modeling and intelligent algorithm 
application of medical heavy ion accelerator beam transmission 
system, highlighting the important role of intelligent multi-objective 
optimization methods in improving transmission efficiency and 
system performance. For example, methods based on NSGA-II, 
genetic algorithm (GA), differential evolution (DE) and multi- 
objective Bayesian optimization have shown good global search 
capabilities and solution quality in high-dimensional complex space, 
significantly improving efficiency and convergence speed; however, 
some methods still have problems such as falling into local 
optimality, insufficient solution diversity and inflexible parameter 
adjustment. This paper innovatively introduces an improved NSDE 
algorithm that combines reverse learning initialization, adaptive 
parameter control and PSO local reinforcement, effectively solving 
high-dimensional coupling, multi-objective conflict and local 
optimal traps, significantly improving beam transmission 
efficiency and system robustness, and filling the gap in the 
current research on intelligent optimization algorithms in the 
field of medical heavy ion accelerator beam transmission 
efficiency optimization.

3 Optimization design of beam 
transmission efficiency of medical 
heavy ion accelerators

3.1 Multi-objective optimization modeling

3.1.1 Decision variable definition
In order to achieve global coordinated optimization of multiple 

physical processes in the beam transmission path of medical heavy 
ion accelerators, this paper incorporates nine physical parameters 
that are strongly related to beam dynamics into the decision variable 
set. The expression formula of the decision vector x is shown in 
Equation 1. 

x � x1, x2, x3, x4, x5, x6, x7, x8, x9[ ]T (1)

Among them, x1 represents the quadrupole magnet gradient, which 
adjusts the beam spot convergence; x2 represents the deflection 
magnet current, which directly controls the particle trajectory 
deflection angle. x3 represents Incident beam lateral emittance; x4

represents the divergence angle, and x5 represents Relative energy 
dispersion. x6 represents the magnet spacing, which regulates the 
coupling behavior between magnetic elements, x7 represents 
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Adjustable beam limiter opening, x8 represents the steering angle, 
and x9 represents the pipeline pressure.

3.1.2 Multi-objective function design
For the global collaborative optimization of the beam 

performance of medical heavy ion accelerator, this paper 
constructs a four-dimensional multi-objective function vector 
F(x) as shown in Formula 2. 

F x( ) � f1 x( ), f2 x( ), f3 x( ), f4 x( )[ ]
T (2)

f1(x) represents the beam transmission efficiency objective function, 
f2(x) represents the beam spot size objective function, f3(x)
represents the system power consumption objective function, and 
f4(x) represents the energy retention rate objective function.

The formula of the beam transmission efficiency objective 
function is shown in Equation 3. 

f 1 x( ) � −
Nout x( )

Nin
(3)

Nin represents the number of incident particles, and Nout(x)
represents the number of particles received at the terminal 
cross section.

The formula of the beam spot size objective function is shown in 
Equation 4. 

f2 x( ) �

������������������������

1
Nout

􏽘

Nout

i�1
( xi − x–􏼁2

+ ( yi − y–􏼁2
􏽨 􏽩

􏽶
􏽴

(4)

xi and yi represent the coordinates of the particle on the terminal 
plane, and x– and y– represent the center of mass position.

The formula of the system power consumption objective 
function is shown in Equation 5. 

f 3 x( ) �􏽘
nA

j�1
RAjI2

Aj +􏽘
nB

k�1
RBkI2

Bk (5)

RAj and RBk represent the coil resistance of the quadrupole magnet 
and the deflection magnet, respectively, and I2

Aj and I2
Bk represent the 

corresponding excitation currents.
The formula of the energy retention rate objective function is 

shown in Equation 6. 

f 4 x( ) � −
1

Nout
􏽘

Nout

i�1

Ei

Ein
􏼠 􏼡 (6)

TABLE 1 Literature meta-analysis.

Serial number Research object Methods Main contributions Disadvantages and 
challenges

Pivi (2024) Carbon ion/proton beam 
transport system

Synchronous control 
mechanism

Improve treatment consistency and 
transmission quality

Unsolved multi-objective high- 
dimensional optimization problems

Han et al. (2024) Clinical beam transport 
process

Clinical process and quality 
control

Improve transmission stability and 
safety

Lack of exploration of complex multi- 
objective global optimization

Shayanmoghadam et al. (2025) Heavy ion beam energy 
deposition modeling

GEANT4 simulation Provide theoretical reference for 
energy deposition characteristics

Only theoretical simulation, lack of 
optimization strategy

Liang et al. (2025) Advances in heavy ion 
radiotherapy

Radiation oncology review Emphasis the importance of beam 
quality to efficacy

Lack of practical optimization 
implementation scheme

Ge et al. (2024) Neutron source system NSGA-II + multivariate 
statistical dimension reduction

Improve system efficiency and 
optimize dimension reduction

Limited diversity of solution sets 
under multi-objective conflict

Yan et al. (2024) Laser accelerated proton 
beam collection

Permanent magnetic 
quadrupole + GA

Experimental efficiency increased 
by 6 times

High risk of local optimality, global 
performance not evaluated

Yan et al. (2022) X-ray source beam 
system design

DE Strong high-dimensional global 
search capability

Convergence accuracy needs to be 
further improved

Liu et al. (2024a) Synchrotron radiation 
nanobeam line

DE + expert system Improve tuning efficiency and 
shorten convergence time

Multi-objective performance tradeoffs 
are not fully considered

Cao et al. (2023), Ahmad et al. 
(2022), Qtaish et al. (2025)

High-dimensional multi- 
objective optimization

Reverse learning initialization Improve initial population 
diversity and better global coverage

Not verified in medical heavy ion 
beams

Wang et al. (2022), Huang et al. 
(2025)

Multi-objective 
evolutionary algorithm

Adaptive mechanism Dynamically adjust parameters to 
avoid premature convergence

High-dimensional multi-objective 
conflict problems are still challenging

Ramirez-Ochoa et al. (2022), 
Lin et al. (2023)

Multi-objective local fine 
optimization

PSO local reinforcement Accelerate Pareto frontier 
convergence

Computational overhead and parallel 
efficiency need to be optimized

Ji et al. (2024) Ultrafast electron 
diffraction tuning

Multi-objective Bayesian active 
learning

Efficient beam tuning and shorten 
experimental time

Insufficient exploration of industrial 
accelerator applications

Roussel et al. (2021) Accelerator global 
optimization

Multi-objective Bayesian 
optimization

Efficiently find the complete Pareto 
frontier

Online application real-time needs to 
be improved

Xu et al. (2023) Beam injection process Bayesian optimization Tuning efficiency is higher than 
traditional methods

Challenges in parameter scale 
scalability exist
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Ei represents the residual kinetic energy of the particle when it 
reaches the terminal, and Ein represents the incident energy.

The heat map of the objective function correlation coefficient is 
shown in Figure 1. For the calculation of correlation coefficients in 
multi-objective function design, this paper uses a data set obtained by 
uniformly sampling the values of each objective function in the 
decision variable space. First, multiple sample points x are 
generated according to a uniform distribution within the value 
range of the decision variable, and then the corresponding multi- 
objective function values F(x) are calculated. Based on these sampled 
objective function values, the linear correlation between the objective 
functions is quantified by calculating the Pearson correlation 
coefficient, ensuring that the correlation analysis reflects the overall 
trend of the objective function in the entire decision space, rather than 
being limited to the local optimal point.

In Figure 1, there is a significant positive correlation between beam 
transmission efficiency and energy retention rate, with a coefficient of 
0.95. It can be seen that in the optimization process, improving beam 
transmission efficiency can be accompanied by an increase in energy 
retention rate, which is crucial to accelerator performance. There is a 
strong negative correlation between beam transmission efficiency and 
beam spot size, with a coefficient of −0.80, indicating that when beam 
transmission efficiency increases, the beam spot size decreases. There is 
a strong positive correlation between power consumption and beam 
spot size, with a coefficient of 0.75, indicating that in the process of 
increasing the beam spot size, the system needs more power to 
maintain beam stability. There is a negative correlation between 
power consumption and energy retention rate, with a coefficient 
of −0.25, which reveals that increased power consumption can have 
a certain negative impact on energy retention, which is caused by 
factors such as energy loss or thermal effect.

3.2 NSDE algorithm

Based on the NSDE algorithm (Kuo et al., 2023; Farda and 
Thammano, 2023), this paper optimizes the beam transmission 
efficiency of medical heavy ion accelerators. NSDE combines the 

non-dominated sorting mechanism on the framework of the classic 
differential evolution algorithm to ensure the balance between global 
search and local search.

3.2.1 Initializing the population
The NSDE algorithm first randomly generates an initial 

population consisting of multiple individuals, where each 
individual represents a decision variable vector. The generation 
formula x(0)i for the initial individuals is shown in Equation 7. 

x
0( )
i � xmin i + xmax i −xmin i( 􏼁 · αi (7)

xmin i and xmax i represent the lower and upper bounds of the 
decision variables, respectively, and αi represents a random 
number. The index i represents the ith decision variable, and the 
ith dimension in the decision variable vector corresponding to each 
individual in the population ranges from 1 to the total dimension of 
the decision variables.

3.2.2 Differential mutation and 
crossover operation

Differential mutation is the core step of NSDE, which generates 
new candidate solutions by introducing differential strategies 
between individuals in the population. For each individual, the 
formula of differential mutation w(k)i is shown in Equation 8. 

w
k( )
i � x

k( )
γ1 + β · x k( )

γ2 − x k( )
γ3􏼐 􏼑 (8)

x
(k)
γ1 , x(k)γ2 , and x(k)γ3 represent three different individuals randomly 

selected from the current population, and β represents the 
differential mutation factor.

For the crossover operation, it is used to generate new candidate 
solutions, which enhances the diversity of the population by 
exchanging the genetic information of the parent individual and 
the mutant individual. For each graph, the expression formula of the 
crossover operation is shown in Equation 9. 

u
k( )
i �

w
k( )
i if δj ≤Cδ

x
k( )
i if δj >Cδ

􏼨 (9)

δj represents a random number between 0 and 1, and Cδ represents 
the crossover probability.

3.2.3 Non-dominated sorting and 
crowding sorting

Non-dominated sorting is a key step in solving multi-objective 
optimization problems in NSDE. Individuals in each generation are 
sorted according to their performance on multiple objectives. In a non- 
dominated sorting, an individual is considered to dominate another 
individual if it is not inferior to the other individual in all objectives and 
is superior to the other individual in at least one objective. The formula 
for the individual dominance relationship is shown in Equation 10. 

xi ≺ xj⇔∀k ∈ 1, 2, . . . , m{ }, fk xi( )≤fk xj􏼐 􏼑,∃kfk xi( )<fk xj􏼐 􏼑

(10)

≺ represents the dominance relationship and fk(xi) represents the 
objective function value.

Each individual is assigned a non-dominated level according to 
its dominance relationship and is sorted by crowding within each 

FIGURE 1 
Objective function correlation coefficient heat map.
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level. NSDE divides individuals in the population into multiple 
levels through non-dominated sorting, and prioritizes the solution 
set on the Pareto frontier.

In order to avoid multiple individuals being in the same non- 
dominated level and resulting in insufficient convergence of the 
solution, NSDE introduces a crowding sorting mechanism. In the 
non-dominated level, the calculation formula for the crowding of 
each individual is shown in Equation 11. 

di �􏽘
m

k�1

fk xi+1( )−fk xi−1( )

fk
max −fkmin

􏼠 􏼡 (11)

fk(xi+1) and fk(xi−1) represent the function values of the 
neighboring individuals on the kth target after sorting, fkmax and 
fk
min represent the maximum and minimum values of the target 

function, respectively.

3.2.4 Selection operation
In each iteration of the generation, NSDE uses non-dominated 

sorting and crowding sorting to select the next-generation of 
population. For each individual, if xi dominates xj, then xi is 
selected. If there is no dominance relationship between xi and 

xj, the individual with greater crowding degree is selected. For 
the NSDE algorithm, the algorithm stops when the maximum 
number of iterations is reached or the change in the solution is 
less than the preset convergence threshold.

In order to further improve the multi-objective optimization 
capability of NSDE, this paper introduces reverse learning to 
initialize the population, and adopts an adaptive mechanism to 
adaptively adjust the mutation factor and crossover probability in 
the algorithm, and combines the PSO algorithm for fine tuning to 
locally strengthen the non-dominated elite solution. The improved 
NSDE algorithm framework is shown in Figure 2.

In Figure 2, the overall optimization framework of the improved 
NSDE algorithm covers the initial population generation, main 
iteration process, adaptive control mechanism and PSO local 
reinforcement module. The improved NSDE algorithm generates 
a double-sized initial population through random initialization and 
reverse learning mapping, and combines non-dominated sorting 
and crowding evaluation to select an initial solution set with better 
diversity. Then, differential mutation and crossover operations are 
performed in each generation to generate candidate solutions, and 
the parent population is combined for non-dominated sorting and a 
new generation of population is selected. During the iteration 

FIGURE 2 
Improved NSDE algorithm framework.
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process, the algorithm dynamically adjusts the mutation factor and 
crossover probability to achieve a balance between perturbation and 
convergence, and activates PSO local optimization every several 
generations to fine-tune the elite solutions in the non-dominated 
frontier to enhance the distribution quality of the Pareto frontier and 
the local accuracy of the solution. The entire process continues to 
iterate until the maximum number of iterations or convergence 
conditions are met, and finally a high-quality multi-objective 
optimal solution set is output. In Figure 2, T represents the 
current number of iterations, and Tmax represents the maximum 
number of iterations.

3.3 Improved NSDE algorithm

3.3.1 Reverse learning initialization
For the NSDE algorithm, there is a problem of insufficient 

population diversity in the initial population generation process. 
This paper introduces a reverse learning initialization strategy to 
improve it (Yang and Qiu, 2023; Liu R. et al., 2024). By adjusting the 
initial population, reverse learning enhances the population’s 
coverage of the Pareto optimal solution during the optimization 
process, improving the effect of multi-objective optimization, 
especially the balance optimization between objectives such as 
beam transmission efficiency and beam spot size.

In this paper, in order to further improve the diversity and 
search effect of the initial population, the reverse learning 
initialization strategy is applied to all decision variables. All 
decision variables of each individual are reverse mapped, which 
helps to evenly expand the population distribution in the entire 
decision space, improve the coverage and diversity of the Pareto 
frontier, and avoid the problem of insufficient diversity caused by 
local variable adjustment. The key idea of reverse learning 
initialization is to increase the diversity of the population by 
reverse mapping the randomly generated initial population 
individuals, and to enable the generated initial solution set to 
better cover the Pareto frontier (Cao and Huang, 2024; Sun 
et al., 2023). During the initialization process of each individual, 
it is reversely mapped to another possible solution space through 
certain transformations to promote the improvement of population 
diversity. The process of reverse learning is as follows:

3.3.1.1 Population initialization
Before reverse mapping, an initial population is generated, and 

the decision variables of each individual are randomly distributed 
between the upper and lower bounds of the decision space.

3.3.1.2 Reverse mapping
For each individual, the formula for the reverse learning 

transformation xRLi is shown in Equation 12. 

xRLi � xmax − xi − xmin( ) (12)

xRLi represents the new individual generated by the transformation.
The symmetric inverse mapping method used in Formula 12

faces certain challenges when dealing with restricted spaces or non- 
uniformly distributed feasible regions. Since the values of decision 
variables are strictly limited to the upper and lower bounds, directly 
applying the symmetric inverse mapping will cause the individuals 

generated after mapping to fall into the infeasible region, or fail to 
fully cover the feasible solution space of complex shapes. In response 
to this situation, a boundary correction strategy is introduced to map 
the out-of-bounds points back to the boundary to ensure that the 
individuals after inverse mapping are still in the legal search space. 
For non-uniformly distributed feasible regions, simple symmetric 
mapping cannot effectively enhance population diversity because it 
does not consider the impact of constraints on the solution space 
morphology. In this way, a sampling adjustment strategy based on 
probability density is combined to improve the applicability and 
optimization performance of reverse learning under complex 
constraints, and better promote the uniform coverage of the 
Pareto frontier by the initial population.

In this paper, a sampling adjustment strategy based on probability 
density is proposed to improve the mapping effect in order to solve the 
problem of non-uniformly distributed feasible domain in the reverse 
learning process. First, the sample density of the initial population in 
each region in the decision space is statistically analyzed to establish a 
regional probability density function to characterize the distribution 
characteristics of the solution in the feasible domain. Then, in the 
reverse mapping process, the sampling positions of the generated new 
individuals are adjusted according to the probability density function, 
and sampling is performed preferentially in low-density areas to 
enhance the coverage and diversity of the population in sparse 
areas. In terms of algorithm implementation, kernel density 
estimation is used to calculate the probability density function, and 
then the importance sampling technique is combined to adjust and 
resample the reverse mapping results to ensure that the individuals are 
evenly distributed after mapping and meet the boundary constraints.

In this paper, for the out-of-bounds individuals generated in the 
reverse learning process, a boundary correction strategy is adopted 
to ensure that all individuals are in the legal search space. When a 
decision variable exceeds its upper and lower bounds after reverse 
mapping, its value is immediately truncated to the corresponding 
boundary value, that is, if the variable is less than the lower bound, it 
is assigned to the lower bound; if the variable is greater than the 
upper bound, it is assigned to the upper bound. This truncation 
mapping method is simple and effective, avoiding the infeasibility 
problem caused by out-of-bounds solutions, ensuring the 
effectiveness and diversity of the initial population, while taking 
into account the complete coverage of the search space and 
preventing holes or non-uniform distribution in the solution space.

3.3.1.3 Merge the initial solution set
Merge the individual set after the reverse learning 

transformation with the original population to form a new 
population with a size of 2N. The new population Xtotal is 
shown in Formula 13. 

Xtotal � X ∪ XRL (13)

XRL represents the individual set after reverse learning 
transformation, and X represents the original population.

3.3.1.4 Selecting high-quality individuals
After merging the populations, the non-dominated sorting and 

crowding evaluation methods are used to select N high-quality 
individuals from the merged initial population to form the final 
initial population. The steps for selecting high-quality individuals 
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are to first perform non-dominated sorting to ensure that non- 
dominated solutions are selected from the population, and then sort 
the individuals in the same non-dominated level according to the 
crowding degree, select individuals with higher crowding degree, 
and maintain the diversity of the solution set.

3.3.2 Adaptive mechanism
In order to improve the global search capability of the NSDE 

algorithm and avoid falling into the local optimum when solving 
high-dimensional coupling problems, this paper introduces an 
adaptive mechanism (Wongsa et al., 2024; Cheng et al., 2024) to 
dynamically adjust the mutation factor and crossover probability. 
The adaptive mechanism adjusts according to the search status of 
the current population during the algorithm operation, optimizes 
the parameter configuration, and improves the convergence of the 
algorithm and the quality of the solution (Li and Tam, 2024; Zhong 
and Yu, 2024).

In this paper, the reverse learning initialization strategy provides 
the algorithm with a wider and evenly distributed initial solution 
space by expanding the diversity of the initial population, effectively 
avoiding the risk of the initial search falling into the local area; and 
the adaptive mechanism dynamically adjusts the mutation factor 
and crossover probability according to the fitness and search status 
of the population during the iteration process, further promoting the 
maintenance of population diversity and the refined optimization of 
local search. The two complement each other, reverse learning 
ensures a good starting point diversity, and the adaptive 
mechanism ensures the balance between diversity and 
convergence in the entire evolutionary process, jointly improving 
the search efficiency and solution quality of the improved NSDE 
algorithm in complex multi-objective optimization.

In this paper, the design of the adaptive formula is inspired by 
the control idea based on the S-type function. Its core principle is 
that the S-type function can smoothly map the fitness state of the 
population to the parameter adjustment range, achieving a 
regulation effect of slow growth in the global search stage and 
rapid convergence in the local convergence stage (Li et al., 2022). 
This nonlinear mapping helps to achieve a dynamic balance between 
exploration and utilization at different evolutionary stages, avoiding 
oscillation or premature convergence of the solution due to abrupt 
parameter changes. At the same time, the controllability and 
flexibility of the S-type function facilitate the combination of 
performance feedback mechanisms to flexibly adjust the 
mutation factor and crossover probability, thereby improving the 
convergence and robustness of the improved NSDE algorithm in 
complex multi-objective optimization.

The curves of the variation factor and speed factor of the S-type 
function changing with the number of iterations are shown 
in Figure 3.

In Figure 3, as the number of iterations increases, both 
parameters gradually and smoothly decrease from a higher initial 
value to a lower level, reflecting the transition of the algorithm from 
the global search stage to the local fine search stage. The high initial 
value stage ensures population diversity, enhances global 
exploration capabilities, and prevents falling into local optimality; 
while the decrease in parameters in the later stage enhances the 
accuracy of local search, improves convergence speed and solution 
stability. This adaptive control mechanism effectively balances 

exploration and utilization, and helps to improve the 
convergence and robustness of the improved NSDE algorithm in 
complex multi-objective optimization.

For each individual, there is a fitness, which corresponds to the 
multi-objective function value corresponding to the individual. 
Individuals with higher fitness represent better current solutions, 
while individuals with lower fitness require more searches to 
improve the quality of the solution. The adaptive adjustment of 
the mutation factor is dynamically adjusted according to the change 
of individual fitness. When the fitness difference of individuals in the 
population is large, a larger mutation factor is allowed to promote 
global search, while when the fitness difference is small, the 
mutation factor is reduced to enhance local search. The 
adjustment formula of the mutation factor is shown in Equation 14. 

βi t( ) � βmin + βmax − βmin( 􏼁 ·
1

1 + exp Δfi
η􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

Among them, βmin and βmax represent the minimum and maximum 
values of the variation factor, Δfi represents the change in 
individual fitness,It is calculated by the difference between the 
current fitness of the individual and the fitness of the previous 
generation. and η represents the adjustment factor.

In the adaptive adjustment of crossover probability, when the 
proportion of individuals with higher fitness in the population is 
large, the crossover probability should be lower to maintain the 
current high-quality solution. When the proportion of individuals 
with lower fitness is larger, the crossover probability should be 
higher to promote diversity and a wider exploration of the solution 
space. The adaptive adjustment formula of the crossover probability 
is shown in Formula 15. In Formula 15, all fitness values are scaled to 
the [0,1] interval by Min–Max normalization at the beginning of 
each iteration. 

Ci t( ) � Cmin + Cmax −Cmin( ) ·
1

1 + exp −θ · f xi( )

Σf x( )
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (15)

Among them, Cmin and Cmax represent the minimum and 
maximum values of the crossover probability, respectively, and θ
represents the adjustment speed control factor. Σf(x) represents 
the sum of the fitness of the population, and f(xi) represents the 
fitness of the individual.

Although the adaptive mutation factor driven by fitness 
difference performs well in balancing global exploration and local 
utilization, the selection of key parameters such as adjustment factor 
η and speed control factor θ has a great impact on the performance 
of the algorithm. The sensitivity of these parameters means that their 
optimal values vary greatly under different problem scenarios and 
optimization objectives, which directly affects the dynamic 
adjustment effect of the mutation factor and crossover 
probability. This paper uses the adaptive parameter update 
mechanism of the system to automatically adjust the values of η 
and θ in combination with the characteristics of the problem, 
avoiding premature convergence of the algorithm or reduced 
search efficiency due to fixed parameter settings. With the help 
of cross-validation, grid search and online adjustment strategies 
based on performance feedback, dynamic adaptation of parameters 
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is achieved, improving the robustness and applicability of the 
improved NSDE algorithm in diverse and complex problems.

When adaptively updating η and θ, the overall diversity and 
convergence speed indicators (IGD, HV change rate) of the 
population are first evaluated every fixed generation 
(10 generations), and the current indicators are incrementally 
compared with the previous evaluation results; if the diversity 
decline rate exceeds the preset threshold τ1 (ΔIGD/ 
Δgeneration <−0.001), η and θ are automatically increased 
(multiplied by a factor of 1+μ, μ ≈ 0.1) to encourage stronger 
mutation and higher crossover exploration; conversely, if the 
convergence speed is too fast, resulting in premature solution 
(ΔHV/Δgeneration <τ2, 0.0005), η and θ are gradually reduced 
(multiplied by a factor of 1−μ) to converge to the fine solution 
region. All updates are truncated within the range of [η_min,η_max] 
and [θ_min,θ_max] ([0.4,0.9] and [0.2,0.8]) to prevent excessive 
parameter fluctuations. At the same time, an exponentially weighted 
moving average is used to smooth historical updates to avoid severe 
jitters caused by single noise or abnormal evaluations, thus achieving 
a balance between suppressing overfitting and ensuring 
algorithm stability.

In the early stages of iteration, η and θ are maintained at a high 
level (close to their respective upper bounds) to promote diverse 
exploration. As generations grow, when the diversity index stabilizes 
or the convergence rate slows down, η and θ will gradually decay 
linearly or exponentially toward the middle and low range 
(decreasing by 1%–2% per generation) to strengthen local 
refinement. If a sudden drop in diversity or premature 
maturation occurs in the later stages, η and θ will be temporarily 
rebounded (increased by 5%–10%) to reinject exploration 

capabilities, and then continue to decay, forming a dynamic 
evolution curve of “exploration-convergence-re-exploration- 
refinement” to ensure an organic balance between global and 
local search.

3.3.3 PSO algorithm assisted elite local 
reinforcement

During the main search process of NSDE, the population 
converges to a sparse non-dominated frontier in the high- 
dimensional complex solution space, resulting in the 
underdevelopment of some elite solutions, which affects the 
accuracy and diversity of the final solution. In order to further 
improve the optimization effect of beam transmission efficiency and 
beam spot size, this paper introduces the PSO algorithm (Gad, 2022; 
Xu et al., 2025; Shami et al., 2022) on the non-dominated elite subset 
of each generation to perform local enhanced search, so as to achieve 
the refinement and expansion of the multi-objective Pareto frontier.

This paper chooses Particle Swarm Optimization (PSO) instead 
of other fast search algorithms (such as Bayesian optimization) as 
the local reinforcement strategy, mainly based on the following 
considerations. Both PSO and NSDE are population-based swarm 
search algorithms, capable of seamless data structure integration and 
directly acting on non-dominated elite subsets without additional 
solution encoding or complex mapping. Moreover, by introducing 
an improved PSO guided by crowding distance, particles can not 
only move towards the global optimum but also actively expand the 
solution distribution in the sparse region of the Pareto front, thereby 
improving the diversity and uniformity of the multi-objective 
solution set, which is highly consistent with the multi-objective 
optimization framework presented in this paper. Furthermore, 

FIGURE 3 
Curves of variation factor and speed factor of S-type function with the number of iterations.
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PSO’s velocity-position collaborative update mechanism enables 
rapid fine-tuning of elite solutions during the local fine-tuning 
search phase, improving the local accuracy of the non-dominated 
front. In contrast, methods such as Bayesian optimization have high 
computational costs and are not easily parallelized in the local 
reinforcement of high-dimensional, multi-objective, and sparse 
Pareto fronts. Therefore, PSO in the improved NSDE algorithm 
of this paper balances local accuracy and overall diversity, achieving 
efficient and balanced local optimization.

In this article, the “particles” in PSO refer to candidate solutions 
used for local search in the algorithm, which move in the solution 
space mainly through speed and position updates, emphasizing 
group coordination and dynamic adjustment. The “individuals” 
in NSDE are solutions in the population, focusing on differential 
mutation and crossover operations in the global search and 
population evolution process. Although both represent points in 
the solution space, there are significant differences in algorithm 
mechanisms and role positioning.

After each generation of NSDE iteration, fast non-dominated 
sorting is performed to stratify the solutions in the population and 
select the first frontier as the elite subset. The expression formula of 
the elite subset Et is shown in Equation 16. 

Et � xi ∈ Pt
􏼌􏼌􏼌􏼌xj ∈ Pt, xj ≺ xi􏽮 􏽯 (16)

Et represents the elite subset and Pt represents the population.
As a type of optimization algorithm, the PSO algorithm guides 

the search in the solution space through the synergy between the 
individual position and the historical optimal solution of the group, 
and is suitable for fine-tuning the elite solution. The update rules of 
the particle position and velocity at the iteration k+1 time are shown 
in Formulas 17, 18. 

v
p

i k + 1( ) � ι · vpi k( ) + ϑ1 · λ1 · pi ​*−xpi k( )( 􏼁 + ϑ2 · λ2 · g* −xpi k( )( 􏼁

(17)
x
p

i k + 1( ) � x
p

i k( ) + v
p

i k + 1( ) (18)

Among them, ι represents the inertia weight, ϑ1 and ϑ2 represent 
individual and group learning factors, and λ1 and λ2 represent 
random variables between 0 and 1 that follow a uniform 
distribution. pi ​* represents the individual historical optimal 
solution of the particle, and g* represents the global optimal 
solution in the current elite subset. i represents the number of 
the ith particle in the elite subset, which is used to identify the 
individual particle currently being updated; p represents the particle 
group number, which is used to identify the group to which the 
particle belongs in different PSO local optimization stages. Elite 
individual guidance is to adjust the particle speed and position 
through individual optimal solutions and global optimal solutions, 
guiding the search to gather in the space of better solutions, which is 
an important mechanism for local strengthening of PSO.

PSO is originally a single-objective optimization method. This 
paper introduces the crowding distance criterion to guide particles 
to shift to the target space with lower density and expand the 
diversity of the solution set. After each update of the particle 
position, the non-dominated frontier is reconstructed according 
to the objective function value, and the crowding degree of the 
updated elite particle is calculated. If the following Formula 19 is 
satisfied, the new position is retained, otherwise it is retreated.

In this paper, “particles” specifically refer to individuals used to 
search the solution space in the PSO local reinforcement algorithm. 
They are different from the “population individuals” in the main 
algorithm NSDE, and have nothing to do with the particles used to 
represent physical entities or physical processes in physics or Monte 
Carlo simulation. The particle here is a parameter vector 
representing a candidate solution. It is regarded as a point in the 
multidimensional optimization space and moves in the solution 
space through position and velocity updates to find the optimal 
solution or Pareto frontier. In this paper, PSO particles are 
mathematical individuals in the algorithm that are used to solve 
optimization problems, rather than particles used to simulate beams, 
energy deposition or Monte Carlo processes in a physical sense. PSO 
particles are derived from the elite subset generated by the NSDE 
algorithm and are further fine-tuned by PSO local search to refine 
and optimize the distribution and diversity of the solution set. 

rank x
p

i k + 1( )( 􏼁< rank x
p

i k( )( 􏼁 ord k+1( )
i >d k( )

i (19)

In this paper, local reinforcement is decoupled and integrated with 
the main algorithm in a periodic manner. After each T-generation 
NSDE iteration, a PSO local optimization is triggered. The process is 
as follows:

1. Perform non-dominated sorting on the current population and 
select the first frontier.

2. The first solution with the largest crowding distance in the first 
Nc frontiers is extracted as the initial particle.

3. Perform PSO local search for K generations to obtain the 
optimized solution.

4. Merge the optimized solution with the current population and 
perform elite retention.

The selection of T value should be determined based on the 
convergence rate of the algorithm and the balance of computing 
resources. First, the HV improvement curve and single PSO cost at 
different T (such as 5, 10, 20, 50) are measured through preliminary 
experiments to find the “inflection point”. That is, the position 
where the gain margin decreases rapidly when T is reduced, and 
then T is set near the inflection point (if the performance 
improvement is obvious and the increase in calculation is 
acceptable when T = 20, then T ≈ 20 is taken) to ensure the 
effect of periodic local reinforcement and avoid unnecessary 
computing burden caused by excessively frequent PSO.

In view of the application of PSO algorithm in multi-objective 
optimization, this paper introduces crowding distance as an 
important indicator to guide particle search to enhance the 
diversity and distribution uniformity of solution set. Crowding 
distance reflects the sparsity of the solution in the target space. 
Solutions with larger crowding distance are located in sparser areas 
and have higher diversity value. Based on this, in the process of PSO 
speed update, the algorithm preferentially guides particles to move 
to areas with larger crowding distance to avoid excessive aggregation 
of particles in local dense areas and promote extensive exploration of 
solution space. This mechanism adjusts the weight of speed update 
to make particles more inclined to explore sparse and potential areas 
in solution space, thereby improving the coverage and uniformity of 
Pareto frontier solution set.
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In the particle selection and position update link, crowding 
distance is also used to determine whether the newly generated 
position is better than the current solution. After each particle 
position update, the algorithm recalculates the non-dominated 
sorting of the solution and its corresponding crowding distance. 
If the crowding distance of the solution corresponding to the new 
position is better than or equal to the current solution, the new 
position is retained, otherwise the particle falls back to the old 
position. This selection strategy ensures that the diversity is not 
destroyed during the particle search process, while strengthening the 
development of sparse areas. By introducing the crowding distance, 
PSO effectively takes into account both local accuracy and overall 
diversity in a multi-objective environment, and improves the quality 
and distribution balance of elite solutions in the improved 
NSDE algorithm.

To avoid repeated oscillations in local dense areas and ensure the 
stability of the convergence process, this algorithm performs a 
backoff operation after each PSO velocity-position update if the 
crowding distance corresponding to the new position fails to surpass 
(or equal to) the old position: the particle directly returns to the last 
accepted position and marks the position as “reject update” to 
prevent the same position from being repeatedly tried in a short 
period of time. In order to prevent excessive backoff from causing 
global search stagnation, a maximum backoff threshold R_max 
(3 times) is set. When a particle is rejected for R_max 
consecutive updates, the particle is forced to re-randomly 
initialize its velocity vector or fine-tune its learning factor to help 
it jump out of the local dense area. This backoff + threshold 
mechanism can not only ensure that the crowding distance 
screening strictly maintains the diversity of the solution set, but 
also avoid search pauses caused by excessive rejection of updates, 
and strike a balance between convergence accuracy and stability.

In order to prevent particles from oscillating back and forth in a 
narrow area or gathering in the local optimum too early due to too 
frequent PSO updates during the high-dimensional local fine-tuning 
stage, the algorithm also introduces two mechanisms to the PSO 
module: first, a linearly decreasing inertia weight and adaptive 
learning factor are added to the speed update. When local area 
oscillation is detected (such as the position change of particles for 
several consecutive generations is less than ε = 10−4), the individual 
learning factor c1 will be instantly reduced and the group learning 
factor c2 will be increased, weakening the dependence on its own 
historical optimal point and strengthening the attraction to the 
global diversity area; second, the speed vector is limited to the upper 
and lower limits, and a small amount of random perturbation is 
applied to the over-aggregated particle group after each K 
generations of PSO is completed, thereby injecting a new search 
direction, which not only ensures the fine adjustment of the elite 
solution, but also avoids falling into microscopic oscillations or 
premature convergence.

3.4 Algorithm parameter setting and 
tuning strategy

The improved NSDE algorithm and PSO local enhancement 
module in this paper are implemented based on the MATLAB 
R2021b environment. The core part of the algorithm is based on the 

optimization toolbox that comes with MATLAB, and the multi- 
objective differential evolution (NSDE) and PSO local search 
modules are built by self-compiled functions to realize non- 
dominated sorting, crowding calculation, adaptive parameter 
update and other functions. The Pareto boundary processing and 
performance index (such as crowding distance, deviation) 
calculation modules of multi-objective optimization refer to the 
open source library PlatEMO (Platform for Evolutionary Multi- 
Objective Optimization), on which secondary development and 
function expansion are carried out to meet the special needs of 
multi-objective optimization problems of medical heavy ion 
accelerator beams. The interface processing part of FLUKA and 
OPERA simulation data is completed by mixed calls of MATLAB 
and Python scripts to ensure the efficiency and accuracy of objective 
function evaluation during the optimization process. All 
experiments were completed on a workstation equipped with an 
Intel i7-12700 CPU and 32 GB of memory.

In the PSO algorithm, the inertia weight is set as a nonlinear 
descent function to control the balance between convergence speed 
and disturbance intensity. The formula for the inertia weight is 
shown in Equation 20: 

ιt � ιmax − ιmax − ιmin( ) ·
t
T
􏼒 􏼓

o
(20)

o is the control coefficient, and its value is 1.5.
The parameter settings in this paper are formulated in 

coordination with the problem characteristics and the algorithm 
structure, taking into account both global exploration and local 
convergence capabilities. The differential mutation factor and 
crossover probability adopt a linear adaptive mechanism to 
achieve high-disturbance exploration in the early stage and 
convergence in the later stage. The reverse learning initialization 
uses symmetric mapping to enhance the initial population diversity 
and alleviate the local optimal trap. The local strengthening part of 
PSO improves the local accuracy of non-dominated solutions 
through nonlinear reduction of inertia weight and elite individual 
guidance. The number of particles, local step size and trigger 
frequency are tuned based on the balance between computing 
resources and optimization gain. Each parameter is screened 
through multiple rounds of experimental comparison and multi- 
objective deviation measurement function to ensure that the final 
configuration has consistent optimization performance in terms of 
performance indicator convergence, diversity and stability. The 
parameter settings are shown in Table 2.

In this paper, the selection of the number of particles Nc selected 
for local reinforcement should take into account both the 
computational resource limitations and the optimization effect 
requirements. Nc should maintain a certain ratio with the 
population size N to ensure that local reinforcement can cover 
enough elite solutions while avoiding excessive computational 
overhead. In this paper, Nc is set to the interval of 10%–20% of the 
population size, and is dynamically adjusted according to the 
complexity of the problem and the width of the Pareto front: when 
the problem scale is large or the Pareto front is wide, Nc is 
appropriately increased to ensure the coverage and diversity of local 
search; on the contrary, for smaller problems or narrower fronts, a 
smaller Nc can meet the needs. In addition, combined with the actual 
number and distribution density of non-dominated front solutions 
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during the optimization process, an adaptive adjustment strategy is 
used to dynamically determine Nc, so that it can more flexibly adapt to 
different problems and algorithm iteration stages, and improve the 
efficiency and effect of the local reinforcement module.

4 Experimental design for optimizing 
beam transmission efficiency of 
medical heavy ion accelerator

4.1 Experimental data

The experimental data in this paper are derived from the Monte 
Carlo particle transmission simulation results based on the FLUKA 
platform. The experiment uses a typical medical heavy ion accelerator 
transmission pipeline model, which includes 5 quadrupole magnet 
focusing units and two deflection magnet units, with a total pipeline 
length of 12 m. The static magnetic field distribution is calculated 
using OPERA 4.2 and imported into FLUKA for coupled simulation. 
In the experiment, the incident heavy ions are 12C6+, the energy range 
is 200–430MeV/u, the number of particles in a single simulation is 
1*105, the statistical error is less than 1%, and the initial distribution of 
divergence angle, beam intensity, etc., is uniformly sampled within the 
range of decision variables. In data collection, a simulation is run for 
each decision vector configuration to record the terminal cross- 
section particle coordinates and kinetic energy. A total of 
5,218 sets of data are collected, including the number of terminal 
particles, particle plane coordinates, particle kinetic energy, energy 
loss in the pipeline, particle loss position, etc.

For the 5,218 groups of initial data sets based on uniform 
sampling, this paper mainly uses this data set for subsequent 
preprocessing steps such as normalization, correlation analysis, 
and principal component analysis (PCA) as the initial sample 
basis for the optimization algorithm. In the actual multi-objective 
optimization process, as the population is iteratively updated, the 
new decision vector needs to recalculate the corresponding objective 
function value through Monte Carlo simulation to ensure the 
dynamic accuracy of the objective evaluation. The initial data set 
is only used for statistical analysis such as auxiliary scaling and 
feature extraction, and is not directly used for the target calculation 
of optimization iterations, to ensure the real-time and accuracy of 
the objective function during the optimization process.

The schematic diagram of the transmission pipeline layout of the 
medical heavy ion accelerator is shown in Figure 4.

Figure 4 shows that five quadrupole magnets (blue rectangles, 
marked as Q1 to Q5) and two deflection magnets (red rectangles, 

marked as B1 and B2) are arranged in sequence along the 14-m-long 
pipeline. The quadrupole magnets are mainly used for beam spot 
focusing adjustment, and the deflection magnets are used to control 
the particle trajectory deflection. The magnet units are unevenly 
distributed as a whole, reflecting the layout relationship of the 
magnetic components in the actual pipeline, which helps to 
understand the spatial distribution of key physical devices in the 
beam transmission path and their synergy.

4.2 Data preprocessing

4.2.1 Missing value and outlier processing
For missing values in the original data caused by simulation 

termination or complete particle loss, this paper uses the nearest 
neighbor interpolation method to estimate and fill in the missing 
values accordingly. For outliers, the experiment uses the 
interquartile range to detect outliers. Data points that exceed the 
upper and lower bounds are marked and removed to ensure that the 
distribution of input variables and objective function values meets 
the optimization requirements. The range formula for outlier 
detection is shown in Equation 21. 

Q1 − 1.5* Q3 − Q1( ),Q3 + 1.5* Q3 − Q1( )[ ] (21)

Q1 represents the first quartile and Q3 represents the third quartile.
In terms of missing value processing, this article further 

distinguishes the sources of missing values. For missing values 
caused by simulation termination (such as numerical divergence 
or program interruption), considering that the corresponding 
configuration may not be physically feasible, it is directly 
eliminated and not included in the subsequent statistical analysis. 
For missing values caused by complete particle loss (particles fail to 
reach the terminal cross section), this situation reflects poor 
transmission performance, and the corresponding beam 
transmission efficiency objective function value is recorded as 
zero. Other objective functions (such as terminal kinetic energy 
and spot size) are no longer counted to prompt the optimization 
algorithm to avoid such invalid solution configurations. This 
processing method ensures the consistency of objective function 
evaluation and avoids interference in the optimization search 
process due to abnormal data.

For missing value imputation, the K-nearest neighbor 
interpolation method is used, where K is set to 5. This means the 
missing value is filled with the weighted average of the 5 nearest valid 
samples to maintain local data distribution characteristics. For 

TABLE 2 Parameter settings.

Parameters Value Parameters Value

Population size (N) 120 Reverse probability (Pinv) 0.5

Maximum number of iterations (Tmax) 200 Number of particles selected for local reinforcement (NPSO) 20

Mutation factor (β) [0.4,0.9] Maximum inertia weight (ιmax) 0.9

Crossover probability (C) [0.2,0.9] Minimum inertia weight (ιmin) 0.4

Reinforcement frequency (T) 20th generation Learning factor (ϑ1 , ϑ2) 1.8
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outlier detection, the interquartile range (IQR) method is used, with 
upper and lower limits of Q1−1.5 × IQR and Q3 + 1.5 × IQR, 
respectively, where IQR = Q3 − Q1, and Q1 and Q3 are the first and 
third quartiles, respectively. Samples outside this range are marked 
as outliers and removed to ensure a reasonable distribution of input 
variables and objective function values, and to avoid outlier data 
interfering with the optimization process.

4.2.2 Normalization and feature decorrelation 
processing

After processing missing values and outliers, this paper uses 
Min-Max normalization to linearly normalize each decision variable 
and target indicator and map them to [0,1], as shown in Formula 22. 

x̂ij �
xij −minj x.j( 􏼁

maxj x.j( 􏼁−minj x.j( 􏼁
(22)

Among them, x̂ij represents the normalized value, xij represents the 
original decision variable, minj(x.j) and maxj(x.j) represent the 
minimum and maximum values of the decision variable 
respectively. The normalization processing of the target indicator 
is the same as that of the decision variable.

After the above processing, the principal component analysis is 
now performed on the decision variable, the principal components 
with a cumulative contribution rate of less than 1% are eliminated, 
and the variables are reconstructed.

4.3 Evaluation indicators

In this paper, in order to comprehensively evaluate the 
performance of the improved multi-objective optimization 
algorithm NSDE, the following six common indicators are 
selected: GD (generational distance), C-metric, IGD (inverted 
generational distance), SPV (Spacing Variance) of the spacing 
between adjacent solutions in the solution set, SI (Spread 
Indicator) and HV (hypervolume).

The formula of GD is shown in Equation 23. 

GD P, P*( ) �
1
P| |

��������������

􏽘

P| |

i�1

min
y∈P* Fi−y

����
����

2
􏼒 􏼓

􏽶
􏽴

(23)

P represents the non-dominated solution set obtained by the 
algorithm, P* represents the reference Pareto optimal solution 
set. Fi represents the target vector, and y represents any point in 
the reference optimal solution. “Reference optimal solution” refers 
to an optimal solution on the reference Pareto frontier, which is used 
to evaluate the closeness of the algorithm solution set to the ideal 
optimal solution, such as distance calculation in GD or IGD; 
“reference Pareto optimal solution set” refers to a complete or 
representative Pareto optimal solution set that is known or 
approximated by a high-precision algorithm, which is used as a 
benchmark for performance evaluation. The relationship between 
the two is: the reference optimal solution is a single solution point in 
the reference Pareto optimal solution set, and both are “ideal 
solutions” used for comparison and measurement in the 
evaluation process.

The formula of C-metric is shown in Equation 24. 

C ρ*,ω− *( 􏼁 �
ω− ∈ ω− * ∃ρ ∈

􏼌􏼌􏼌􏼌 ρ*: ρ ≺ ω−􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

ω− *| |
(24)

ρ* represents a non-dominated solution set, and ω− * represents 
another non-dominated solution set.

The formula of IGD is shown in Equation 25. 

IGD P, P*( ) �
1

P*| |
􏽘

P*| |

j�1

min
F∈P F −‖ yj

����� (25)

The formula for SPV is shown in Equation 26. 

SPV �

�����������������

1
N − 1

􏽘

N

i�1
disi − dis􏼐 􏼑

2

􏽶
􏽴

(26)

disi represents the distance between the solution and the nearest 
neighbor, and dis represents the mean of all minimum distances.

The formula of SI is shown in Equation 27. 

SI �
􏽐

N−1
i�1 disi − dis􏼐 􏼑 + dismin + dismax

dismin + dismax + N − 1( )dis
(27)

dismin represents the distance between the first boundary solution 
and the minimum endpoint of the reference solution set, and dismax

represents the distance between the last boundary solution and the 
maximum endpoint of the reference solution set.

FIGURE 4 
Schematic diagram of the transmission pipeline layout of the medical heavy ion accelerator.
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The formula of HV is shown in Equation 28. 

HV P( ) � vol U
F∈P f1, ϱ1􏼂 􏼃* f2, ϱ2􏼂 􏼃* . . . * fm, ϱm􏼂 􏼃( 􏼁 (28)

Among them, ϱm represents the reference point, corresponding to 
the inferior solution boundary in the target space, and vol (.) 
represents the volume of the set in the target space. The 
“reference point” refers to a fixed point in the target space used 
to determine the volume boundary when calculating the 
hypervolume (HV). It is usually selected at a worse value of each 
objective function to measure the target space volume range covered 
by the non-dominated solution set.

4.4 Experimental design

This study employs an improved NSDE algorithm, 
incorporating inverse learning initialization, an adaptive 
mechanism, and a PSO local enhancement module, as the 
primary optimization framework. To comprehensively validate its 
performance, this paper compares the algorithm with seven control 
algorithms, including five mainstream multi-objective optimization 
algorithms: NSDE, NSGA-II, MOEA/D, MOPSO, and MOCOA 
(multi-objective Coati optimization algorithm), and two algorithm 
variants used for ablation experiments: NSDE using only inverse 
learning initialization, and NSDE using both inverse learning 
initialization and an adaptive mechanism. All algorithms are run 
on the same nine-dimensional decision variable space, the same four 
optimization objectives (beam transmission efficiency, beam spot 
size, system power consumption, and energy retention rate), and a 
consistent preprocessed dataset. Each experiment is independently 
repeated 30 times to reduce the impact of randomness; each 
optimization process terminates after 200 iterations or when the 
convergence threshold is reached, and the resulting optimal Pareto 
front solution set is recorded for subsequent performance analysis.

To ensure fairness in comparison, all algorithms are executed in 
the same hardware environment, a 16-core CPU (Central Processing 
Unit) parallel computing node, and the same FLUKA simulation 
interpolation model is called to obtain the objective function value. 
The experimental indicators include HV, IGD, GD, SPV, SI and 
C-metric. The experiment compares the mean and standard 
deviation of each algorithm on the above indicators, and analyzes 
the contribution of reverse learning, adaptive mechanism, and PSO 
enhancement in the improved module to the algorithm convergence 
speed, solution set diversity, and single-objective optimization 
performance. This can fully verify the superiority and robustness 
of the improved NSDE in the optimization of beam transmission 
efficiency of medical heavy ion accelerators.

To ensure the fairness and reproducibility of the experimental 
results, this paper uniformly sets and clearly records the main 
hyperparameters of the comparison algorithms. The NSGA-II 
algorithm uses simulated binary crossover (SBX) and polynomial 
mutation operators, with the crossover probability set to 0.9, the 
mutation probability set to 1/decision variable dimension 1/9 ≈ 
0.111, the crossover distribution index set to 20, and the mutation 
distribution index set to 20. The number of neighbors of the MOEA/ 
D algorithm is 20, the crossover probability is 0.9, the mutation 
probability is 1/9, and the weight vector is generated with uniform 

distribution. In the MOPSO algorithm, the number of particles is 
consistent with the population size (120), the initial value of the 
inertia weight is 0.9, the final value is 0.4, and the learning factors 
c1 and c2 are both 1.8. The MOCOA algorithm uses standard 
parameter configuration with a population size of 120. The 
maximum number of iterations for all baseline algorithms is set 
to 200, and the population size is consistent (120).

To enhance the reproducibility of the comparative experiments 
and the transparency of the baseline definition, the source and 
function of the “original medical heavy ion accelerator design” 
(“original values”) referred to in this paper are as follows. This 
original parameter set is not derived from a publicly operating 
particle therapy facility, but rather is a representative initial 
engineering configuration determined by our research group 
during the accelerator transmission line engineering design and 
experimental phases through traditional “empirical-simulation” 
manual parameter tuning (i.e., the engineering starting point 
before systematic multi-objective global optimization). These 
baseline parameters serve as inputs to the paper-based Monte 
Carlo coupled simulations (FLUKA and OPERA) and initial 
uniform sampling (1 × 10̂5 particles/sample) verification process, 
reflecting the engineering performance level before full optimization 
by our intelligent algorithm (evaluated under the same simulation 
platform, the same random seed sequence, and the same computing 
environment: Intel i7-12700, 32 GB memory). In this paper, this 
serves as a unified and reproducible benchmark for comparison, 
ensuring that the conclusions are a fair measure relative to the 
original engineering starting point under the same simulation model 
and experimental conditions.

5 Optimization results display

5.1 Pareto frontier quality display diagram of 
different algorithms

In order to verify the optimization performance of different 
algorithms, the Pareto frontier distribution in the target space 
obtained by comparing the improved NSDE algorithm with the 
NSDE algorithm, NSGA-II, MOEA/D, MOPSO, and MOCOA is 
used to see whether it is closer to the ideal point, and the Pareto 
frontier quality of different algorithms is visualized. The results are 
shown in Figure 5. In Figure 5, beam transmission efficiency, beam 
spot size, and system power consumption are respectively 
represented as three-dimensional coordinates, and energy 
retention is represented by color mapping. The yellow 
pentagrams in each subgraph represent ideal points and serve as 
a benchmark for comparing the approximation and diversity of 
solution sets among different algorithms.

In Figure 5, the scattered point cloud of the improved NSDE is 
more closely clustered towards the ideal point. The color 
distribution is biased towards the high energy retention rate area, 
indicating that it has a better overall performance when taking into 
account the four objectives, while the solution sets of other 
algorithms deviate from the efficiency dimension and perform 
unevenly in the power consumption-beam spot size balance.

The improved NSDE can obtain a frontier closer to the ideal 
point, mainly due to the synergy of the three improved strategies. In 
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the initial population stage, the reverse learning initialization collects 
more widely distributed candidate solutions, allowing the algorithm 
to start from a better diversity basis and avoid falling into the local 
optimum in the early stage. The adaptive mechanism dynamically 
adjusts the mutation factor and crossover probability according to 
the fitness of the population, so that the entire target space can be 
fully explored in the early stage, while the later stage focuses on fine 
convergence and achieves a more accurate compromise in the multi- 
target conflict area. PSO local reinforcement fine-tunes the speed- 
position of the non-dominated elite solution, further improving the 
approximation of the Pareto frontier in terms of efficiency and 
energy retention. The three complement each other and jointly 
construct an optimization process that can both globally search and 
locally refine, and finally make the solution set of the improved 
NSDE show the minimization of f2 and f3 and the maximization of 
f1 and f4 in the scatter plot.

From the perspective of multi-objective optimization, there is a 
typical triangular conflict between beam transmission efficiency, 
beam spot size, and system power consumption. Increasing the 
focusing intensity can improve efficiency but increase power 
consumption and beam spot divergence, and vice versa. During 
the search process, the improved NSDE continuously screens the 
Pareto hierarchy through non-dominated sorting, and combines 
crowding distance to maintain the diversity of the solution set, so 
that the algorithm neither loses the exploration of extreme 
compromise solutions nor falls into single path convergence. 
This mechanism complements the global jump ability of 
differential evolution based on vector difference, allowing the 
solution set to cross the local valley and quickly converge to the 

multi-objective optimal area. At the same time, the gradient 
adjustment in the subtle area during the PSO enhancement phase 
helps the algorithm to eliminate the rough boundary solutions, 
achieving a good balance between stability and diversity. NSGA-II 
and MOEA/D are slightly insufficient in terms of adaptability and 
local accuracy, while MOPSO lacks systematic screening of non- 
dominated sorting, resulting in its frontier being overall backward or 
unevenly distributed in the graph. Through the integration of the 
above technologies, the improved NSDE in this paper maintains 
efficient global exploration while carefully cultivating the details of 
the Pareto frontier, presenting the best frontier quality.

5.2 Convergence and solution set diversity 
evaluation of multi-objective algorithms

In the experiment, for multi-objective algorithms, the 
measurement indicators are divided into three aspects, including 
convergence, solution set diversity, and comprehensive indicators. 
This paper uses convergence index GD, C-metric, comprehensive 
index IGD, solution set diversity index SPV, distribution width SI, 
HV to evaluate the multi-objective algorithm, and the results are 
shown in Figure 6. In Figure 6, C-metric shows the comparison 
results between the improved NSDE algorithm and other 
algorithms.

In Figure 6, the improved NSDE achieves the best results in both 
GD and IGD, with GD being 0.028 and NSDE being only 0.035. The 
IGD of the improved NSDE is 0.035, while that of NSDE is 0.045, 
indicating that the solution set of the improved NSDE is closer to the 

FIGURE 5 
Pareto front quality display of different algorithms. (a) Results of the improved NSDE algorithm; (b) Results of the NSDE algorithm. (c) Results of the 
NSGA-II algorithm; (d) Results of the MOEA/D algorithm. (e) Results of the MOPSO algorithm; (f) Results of the MOCOA algorithm.
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reference Pareto frontier. NSGA-II achieves 0.042 and 0.052 on GD 
and IGD, respectively, while MOCOA performs the worst, reaching 
0.052 and 0.062, respectively. In the C-metric comparison, the 
dominance rate of the improved NSDE over NSDE reaches 0.82, 
and the dominance rates over NSGA-II, MOEA/D, MOPSO, and 
MOCOA are 0.75, 0.78, 0.70, and 0.65, respectively. It can be seen 
that the frontier of the improved NSDE is superior to other methods 
in most objectives. Overall, the improved NSDE is significantly 
better than the control algorithms in terms of convergence speed 
and frontier quality.

In terms of solution set diversity, the SPV of the improved NSDE 
is 0.009, the smallest among all algorithms, and NSDE reaches 0.012. 
The SI of the improved NSDE is 0.10, and the MOEA/D is 0.16. On 
HV, the improved NSDE reaches 0.48, while NSDE is only 0.42. The 
data shows that the improved NSDE can cover the target space in a 
more uniform and wider way while maintaining a high-quality 
solution set, and obtains comprehensive advantages in the diversity 
and coverage of multi-objective optimization.

The performance improvement of the improved NSDE in this 
paper is due to the fact that the reverse learning initialization 
constructs a wide coverage of candidate solutions in the initial 
population stage, preventing the algorithm from concentrating on 
the local area too early, and avoiding the problems of high GD and 
IGD in the first few generations. The adaptive mechanism 
dynamically adjusts the mutation factor and crossover 
probability, balancing exploration and development according to 
the population convergence, so that the algorithm can continue to 

advance to the Pareto frontier in the middle and late stages, further 
reducing GD/IGD. PSO local enhancement fine-tunes the speed- 
position of the elite solution, improves local convergence accuracy, 
and promotes the continuous growth of HV.

Multi-objective optimization is essentially a compromise 
between conflicting objectives. Although NSDE, NSGA-II, and 
MOEA/D have certain mechanisms in non-dominated sorting 
and crowding maintenance, they lack dynamic adaptation of 
search strategies. When facing highly coupled four-dimensional 
objectives, the solution set is prone to “clustering” or 
“sparseness”, resulting in high SPV and SI and low HV. MOPSO 
and MOCOA also have difficulty maintaining a good solution set 
distribution due to the lack of strong non-dominated screening or 
local fine-tuning. The improved NSDE relies on adaptation and PSO 
reinforcement to continuously supplement the missing areas on the 
frontier, while balancing the global and local through the crowding 
distance. This ensures exploration in all directions and maintains 
uniform coverage of the border and middle areas, leading in the 
three diversity indicators of SPV, SI and HV.

5.3 Convergence curve analysis

The experiment was iterated 200 times, and the convergence 
performance of different algorithms was statistically analyzed. The 
results of the convergence curve analysis are shown in Figure 7. In 
Figure 7, for the convenience of representation, Z1, Z2, and 

FIGURE 6 
Convergence and solution diversity evaluation of multi-objective algorithms. (a) GD evaluation results. (b) C-metric evaluation results. (c) IGD 
evaluation results. (d) SPV evaluation results. (e) SI evaluation results. (f) HV evaluation results.
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Z3 represent reverse learning initialization, adaptive mechanism, 
and PSO local reinforcement, respectively. In Figure 6, due to the 
multi-objective nature, the experiment uses the HV indicator for 
statistics.

The convergence curve in Figure 7 shows that after 
140 iterations, the HVs of all algorithms have basically 
converged. The improved NSDE (Z1+Z2+Z3) has stabilized at 
0.48 after 90 iterations, the improved NSDE algorithm (Z1+Z2) 
has reached convergence after 100 iterations, and the improved 
NSDE algorithm (Z1) has reached convergence after 
110 iterations. NSDE algorithm, NSGA-II, MOEA/D, 
MOPSO, and MOCOA all reach their respective stable 
platforms after 120–140 generations, and their values are 
generally no higher than 0.42.

Rapid improvement of HV requires that the solution set quickly 
approaches the Pareto frontier and maintains good diversity. 
Although NSDE and NSGA-II have non-dominated sorting and 
crowding maintenance mechanisms, they lack dynamic adjustment 
of search parameters and local refinement, resulting in a slowdown 
in HV improvement between 60 and 80 generations. MOEA/D and 
MOPSO converge to an average HV of 0.36–0.4 because 
decomposition or particle swarm strategies are difficult to take 
into account both global and local considerations in a high- 
dimensional four-objective space. The improved NSDE 
continuously controls mutation and crossover through an 
adaptive mechanism, maintaining a high upward slope in the 
mid-term 50–80 generations. The PSO enhancement performs 
local refinement on the non-dominated elite solution in the late 
80–100 generations, eliminating the holes on the boundary and 
quickly pushing HV to 0.48. The optimization dynamics of “wide- 
area exploration first, local refinement later” in this paper enables 
the improved NSDE to surpass similar algorithms in multi-objective 
conflict management.

5.4 Beam transmission efficiency, end beam 
spot size, system power consumption, and 
energy retention rate under different 
algorithm optimizations

The simulation results of the beam transmission process of the 
original medical heavy ion accelerator without optimized design are 
shown in Figure 8.

In Figure 8, the beam spot radius shown in the figure adopts the 
root mean square radius (RMS, denoted as σ_x) in the transverse x 
direction, and its calculation definition is shown in Equation 29. 

σx �
�����������

< x−xc( )
2 >

􏽱

(29)

In Formula 29, x is the x-coordinate of a single particle on the 
terminal cross section (unit: mm), xc =<x> is the center of mass 
position, and the angle sign represents the arithmetic mean of all 
particles reaching the terminal. This statistic reflects the second- 
order broadening of the beam in the transverse x-direction and is 
commonly used to evaluate beam optics and transmission efficiency.

Figure 8 shows the simulation results of the beam transmission 
process of the original medical heavy ion accelerator without 
optimized design. The left axis in the figure shows the change of 
the beam spot radius along the transmission line direction (0–14 m), 
and the right axis shows the beam transmission efficiency. It can be 
observed that the beam spot radius shows a certain fluctuation 
during the transmission process, reflecting the phenomenon of 
alternating focusing and divergence in the optical system, 
indicating that the magneto-optical parameters have not been 
stably matched. At the same time, the beam transmission 
efficiency gradually decreases with the increase of transmission 
distance, and finally reaches about 92.42% at the end. It shows 
that there are particle losses caused by factors such as beam 

FIGURE 7 
Convergence curve analysis results.
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divergence, stray field interference and beam limiting structure in 
the original design. This simulation verifies the physical basis for the 
insufficient beam transmission efficiency of the original system, and 
also supports the necessity of optimized design from the perspective 
of particle dynamics.

The original medical heavy ion accelerator has a beam 
transmission efficiency of only 92.42%, not due to the imbalance of 
a single physical factor, but because the traditional “experience- 
simulation” iteration method of magneto-optical parameters is 
difficult to meet the global requirements of multiple objectives 
(high efficiency, tight beam spot, low power consumption, high 
energy retention) at the same time. Although the quadrupole 
magnet gradient, deflection magnet current, pipeline geometry, 
vacuum parameters, etc., are optimized for multiple objectives at 
the beginning of the design, this method of manual parameter 
adjustment + local search has a long iteration cycle, is sensitive to 
high-dimensional coupling, and is easy to fall into local optimality. If 
you are not careful, side effects such as beam divergence, stray field 
enhancement, or mechanical beam limitation will occur, and 
ultimately it can only compromise at a level of just over 92%. It is 
precisely because the traditional optimization process is time- 
consuming and difficult to ensure global optimality that the value 
of high-dimensional multi-objective global optimization methods 
based on intelligent algorithms is highlighted. Within limited 
computing resources and time budget, it can efficiently jump out of 
local traps, achieve coordinated balance of all physical objectives, and 
improve beam transmission efficiency.

The results of beam transmission efficiency, end beam spot size, 
system power consumption, and energy retention rate under 
different algorithm optimizations are shown in Figure 9. Each 
objective value shown in Figure 9 represents the statistical 

performance (mean ± standard deviation) of the optimal or near- 
optimal value of the single objective indicator in the Pareto frontier 
solution set obtained by the corresponding algorithm in the multi- 
objective optimization process, rather than a single extreme optimal 
solution. These indicators reflect the representative performance of a 
set of Pareto optimal solutions obtained by different algorithms 
under multi-objective trade-offs, reflecting the overall optimization 
effect and stability of the algorithm in the objective space, rather 
than the extreme value of a single solution point.

The error of ±0.49% is based on the standard deviation of the 
beam transmission efficiency obtained from multiple independent 
experiments. Specifically, the statistically improved NSDE algorithm 
converges to the optimal solution set in different random initial 
populations and multiple optimization processes, and calculates the 
mean and standard deviation of the transmission efficiency. This 
result reflects the stability and robustness of the algorithm under 
multiple optimizations, and reflects the consistency of the improved 
NSDE in optimizing the transmission efficiency under different 
random conditions. In Figure 9, it can be seen that the beam 
transmission efficiency of all algorithms is higher than that of the 
original medical heavy ion accelerator. The beam transmission 
efficiency of the improved NSDE algorithm is 99.21% ± 0.49%, 
which is significantly higher than all the comparison algorithms and 
6.79% higher than the original medical heavy ion accelerator. NSDE 
is only 97.47% ± 0.63%, and MOCOA performs the worst, reaching 
92.89% ± 0.85%. In terms of the end beam spot size, the improved 
NSDE achieved a minimum value of 5.13 mm ± 0.10 mm, NSDE 
reached 5.68 mm ± 0.12 mm, and NSGA-II reached 5.74 mm ± 
0.15 mm. This shows that the improved NSDE can maintain a more 
compact beam spot focus while achieving higher 
transmission efficiency.

FIGURE 8 
Simulation results of the beam transmission process of the original medical heavy ion accelerator without optimized design.
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In terms of system power consumption, the improved NSDE 
reached 153.68 kW ± 1.42 kW, while NSDE reached 168.23 kW ± 
1.85 kW. MOCOA reached 174.76 kW ± 2.04 kW, indicating that 
the improved NSDE algorithm significantly reduced power 
consumption while optimizing beam quality. The improved 
NSDE achieved an energy retention rate of 94.12% ± 0.39%, 
while NSDE reached 90.46% ± 0.47%. MOCOA is only 87.97% ± 
0.65%, indicating that the improved NSDE is effective in reducing 
particle dissipation loss.

Among the comparison algorithms, although NSGA-II and 
MOEA/D have multi-objective decomposition and non-dominated 
sorting mechanisms, they lack strategies for initial diversity and 
parameter adaptation, and are prone to fall into local areas in high- 
dimensional coupling problems, resulting in their efficiency and 
energy retention rate not being further improved. Although 
MOCOA integrates multiple operators, its fixed parameters make it 
incapable of compromising multiple target conflicts, and its efficiency 
and energy retention are both at the lowest values. The improved 
NSDE uses a triple strategy to achieve targeted compensation for the 
weaknesses of each algorithm, and has achieved comprehensive 
breakthroughs in the four indicators of efficiency, focusing 
accuracy, energy consumption, and energy retention.

To further explore the differences between the different 
algorithms, a significance test was conducted (two-group 

comparison: improved NSDE vs. each control algorithm), 
reporting the t-value, degrees of freedom (df), p-value, effect size 
Cohen’s d, and 95% confidence intervals for the differences. The test 
data were based on the sample mean and sample standard deviation 
of 30 independent runs for each algorithm; to account for potential 
unequal variances, a Welch t-test (two-tailed) was used, and the 
Welch degrees of freedom and 95% confidence intervals based on 
this df were reported; Cohen’s d was also calculated (using the 
pooled SD estimate of the two groups’ sample variance means) to 
measure the effect size; to control for multiple comparisons, 
Bonferroni correction was used (5 comparisons, with a corrected 
significance threshold α = 0.05/5 = 0.01). The null hypothesis H0: 
The population mean of improved NSDE and a control algorithm is 
equal in beam transmission efficiency; the alternative hypothesis H1: 
The population means are unequal (two-tailed test). If p < 0.01 
(Bonferroni correction), the difference is considered statistically 
significant. The results of the significance test are shown in Table 3.

As shown in Table 3, the improved NSDE significantly 
outperforms all control algorithms in beam transmission 
efficiency. Compared with the original NSDE, the t-value is 
11.94, the degrees of freedom are 54.69, p < 0.001, and Cohen’s 
d = 3.08, indicating a very strong effect size. Compared with NSGA- 
II, t = 18.05, df = 51.12, and Cohen’s d = 4.66; compared with 
MOEA/D, t = 23.01, df = 48.80, and Cohen’s d = 5.94; compared 

FIGURE 9 
Beam transmission efficiency, end beam spot size, system power consumption, energy retention rate under different algorithm optimizations. (a) 
Beam transmission efficiency under different algorithm optimizations. (b) End beam spot size under different algorithm optimizations. (c) System power 
consumption under different algorithm optimizations. (d) Energy retention rate under different algorithm optimizations.
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with MOPSO, t = 26.80, df = 48.07, and Cohen’s d = 6.92; compared 
with MOCOA, t = 35.28, df = 46.36, and Cohen’s d = 9.11. All 
comparisons were significant at the Bonferroni-corrected 
significance threshold of α = 0.01 (p < 0.001), and Cohen’s d 
values were all much greater than 0.8, indicating that the 
differences were not only statistically significant but also 
significant in terms of practical optimization effects. This 
demonstrates that the improved NSDE algorithm is more stable 
and effective than the traditional multi-objective algorithm and the 
original NSDE in improving beam transmission efficiency.

5.5 Beam transmission efficiency under 
different decision variable dimensions 
and noise

To investigate the impact of different decision variable 
dimensions and noise on beam transmission efficiency, 
experiments with 9–15 different dimensions and 10–30 dB 
Gaussian white noise were designed for verification. The results 
are shown in Figure 10. In Figure 10, the intensity of the Gaussian 
white noise is quantified using the signal-to-noise ratio (SNR). The 
dimensions include: 1) quadrupole magnet gradient; 2) deflection 
magnet current; 3) incident beam transverse emittance; 4) 
divergence angle; 5) relative energy dispersion; 6) magnet 
spacing; 7) adjustable beam limiter aperture; 8) deflection angle; 
9) pipeline pressure; 10) magnet correction current; 11) vacuum 
parameters; 12) beam energy stability; 13) magnetic field 
nonlinearity correction coefficient; 14) beam eccentricity; and 15) 
beam spot shape parameters.

In Figure 10a, as the dimension of decision variables increases 
from 9 to 15, the transmission efficiency of all algorithms shows a 
downward trend. Taking NSDE as an example, the efficiency drops 
from 97.47% to 91.26%, and NSGA-II drops from 96.16% to 90.33%. 
MOEA/D, MOPSO, and MOCOA drop from 95.34% to 89.28%, 
94.62%–88.61%, and 92.89%–87.21%, respectively. After the 
improvement, NSDE drops from 99.21% to 93.88%, but the drop 
is small. The increase in dimension increases the search complexity, 
resulting in a decrease in the performance of all algorithms, but the 
improved NSDE is more robust to this.

In Figure 10b, when the Gaussian white noise signal-to-noise 
ratio increases from 10 dB to 30 dB, the transmission efficiency 
increases with the increase of the signal-to-noise ratio. NSDE 
increased from 90.14% to 98.44%, and NSGA-II increased from 
88.46% to 97.13%. MOEA/D, MOPSO, and MOCOA increased 
from 87.39% to 96.31%, 85.61%–95.59%, and 84.18%–93.86%, 

respectively. The improved NSDE increased from 92.33% to 
100.00%. All algorithms benefit from a higher signal-to-noise 
ratio, but the improved NSDE always maintains the highest 
efficiency in the low noise range of 20–30 dB, and the efficiency 
improvement curve is smoother, indicating that it is less sensitive 
to noise.

The increase in variable dimensions brings a larger search space 
and stronger parameter coupling. Traditional algorithms such as 
NSGA-II and MOEA/D rely on fixed non-dominated sorting and 
crossover mutation, lack dynamic search strategies, and are prone to 
falling into local areas in high-dimensional space, resulting in a more 
obvious decline in efficiency. The improved NSDE combines reverse 
learning initialization and adaptive mechanisms to ensure that it can 
still effectively jump out of the local optimum under high- 
dimensional conditions, with a small drop.

Noise reduces the accuracy of objective function evaluation, and 
algorithms with fixed parameters such as MOEA/D and MOCOA 
are difficult to maintain accurate search under noise. The adaptive 
mechanism of the improved NSDE adjusts the mutation factor and 
crossover probability according to the real-time fitness noise level, 
automatically expands the search range in a high-noise 
environment, and focuses on fine optimization in a low-noise 
environment, maintaining a higher starting efficiency and a more 
stable increase. This shows that this method can effectively alleviate 
the negative impact of noise on the optimization process and achieve 
adaptive robust optimization in a noisy environment.

The comparison results of the original values and optimized 
values of the 9-dimensional decision variables are shown in Table 4.

Table 4 shows the comparison results of the original and 
optimized values of the 9-dimensional decision variables. It can 
be seen that after optimization, all parameters are within a 
reasonable range and the overall performance is better. The 
gradients of the five quadrupole magnets were increased from the 
original Q1: 4.8, Q2: 5.0, Q3: 5.1, Q4: 4.9, and Q5: 5.2 T/m to the 
range of 6.0–6.4 T/m, respectively, which better enhanced the beam 
focusing capability; the deflection magnet current was increased 
from 150 A to 172 A, which is close to the upper limit but still within 
a reasonable range, which helps to improve the deflection accuracy; 
the lateral emittance of the incident beam was reduced from 
1.5 mm·mrad to 0.9 mm·mrad, and the divergence angle was also 
optimized from 0.50 mrad to 0.42 mrad, indicating that the beam 
quality was significantly improved; the relative energy dispersion σ_ 
p/p was compressed from 2.0 × 10−3 to 1.0 × 10−3, which is more 
conducive to energy stability; in terms of geometric and 
environmental conditions, the magnet spacing was reduced to 
1.3 m, the adjustable beam limiter opening was narrowed to 

TABLE 3 Significance test results.

Comparison algorithm t value df (Welch) p value Cohen’s d

NSDE 11.94 54.69 <0.001 3.08

NSGA-II 18.05 51.12 <0.001 4.66

MOEA/D 23.01 48.80 <0.001 5.94

MOPSO 26.80 48.07 <0.001 6.92

MOCOA 35.28 46.36 <0.001 9.11
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9 mm, and the deflection angle was reduced from 1.5 mm·mrad to 
0.9 mm·mrad. The angle was adjusted from 12° to 10°, both ensuring 
beam transmission while optimizing system compactness. 
Simultaneously, the pipeline pressure was reduced from 1.0 × 
10−6 Pa to 8.0 × 10−7 Pa, approaching high vacuum conditions. 
Overall results show that the optimized parameter configuration 
significantly improves focusing intensity, beam quality, and system 
stability compared to the original solution.

5.6 Resource consumption and real- 
time analysis

The results of resource consumption and real-time analysis are 
shown in Figure 11. In Figure 11, the indicators used are CPU, GPU 
(Graphics Processing Unit) utilization, real-time feedback delay 

time and throughput to quantitatively analyze resource 
consumption and real-time performance. In the simulation 
results above, the real-time feedback delay time in the original 
medical heavy ion accelerator design reached 272.5 ms.

In Figure 11a, it can be seen that the improved NSDE algorithm 
has the most adequate performance in terms of resource utilization. 
The CPU utilization is 81.4% and the GPU utilization is 83.6%, 
which are higher than 68.3% and 41.7% of NSDE, 73.5% and 58.9% 
of NSGA-II, 65.7% and 37.2% of MOEA/D, 61.2% and 35.4% of 
MOPSO, and 76.8% and 67.1% of MOCOA. Among them, the CPU/ 
GPU utilization of MOPSO is the lowest, indicating that its 
parallelism and computational intensity are both weak. The GPU 
resource call rate of NSDE is only 41.7%, while the improved NSDE 
almost fully utilizes the available computing resources, laying the 
foundation for subsequent real-time computing and high 
throughput.

FIGURE 10 
Beam transmission efficiency under different decision variable dimensions and noise. (a) Beam transmission efficiency under different decision 
variable dimensions. (b) Beam transmission efficiency under different noise intensities.

TABLE 4 Comparison results of the original values and optimized values of the 9-dimensional decision variables.

Decision variables Original value Optimized value Reasonable range

Quadrupole magnet gradient (T/m) Q1: 4.8; Q2: 5.0; Q3: 5.1; Q4: 4.9; Q5: 5.2 Q1: 6.0; Q2: 6.3; Q3: 6.1; Q4: 6.4; Q5: 6.2 1.0–10.0 (per quadrupole)

Deflection magnet current (A) 150 172 50–200

Incident beam transverse emittance ε_n (mm·mrad) 1.5 0.9 0.5–2.0

Divergence angle (mrad) 0.50 0.42 0.10–1.00

Relative energy dispersion σ_p/p 2.0 × 10−3 1.0 × 10−3 1 × 10−4 – 5 × 10−3

Magnet spacing (m) 1.50 1.30 0.50–2.00

Adjustable beam limiter opening (mm) 12 9 2–15

Deflection angle (°) 12 10 5–20

Pipeline pressure (Pa) 1.0 × 10−6 8.0 × 10−7 1 × 10−7 – 1 × 10−5
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In Figure 11b, the improved NSDE achieves a minimum value of 
132.9 ms in real-time feedback delay, which is 139.6 ms shorter than 
the original medical heavy ion accelerator design, while other 
algorithms are all above 188 ms. MOCOA is 188.5 ms, NSGA-II 
is 197.4 ms, MOEA/D is 214.8 ms, NSDE is 224.6 ms, and MOPSO is 
the worst at 258.7 ms. In terms of throughput, the improved NSDE 
reaches 10.36 times/s, while MOCOA is only 8.87 times/s, NSGA-II 
is 8.43 times/s, MOEA/D is 7.92 times/s, NSDE is 7.81 times/s, and 
MOPSO is 6.47 times/s. The results show that the improved NSDE 
can make better use of hardware resources and complete more 
optimization iterations per unit time, significantly improving real- 
time performance and processing capabilities.

The improved NSDE integrates reverse learning initialization, 
adaptive parameter adjustment, and PSO local reinforcement. These 
modules can achieve efficient acceleration based on population 
vectorization operations in a parallel computing environment. The 
reverse learning and adaptive mechanism mainly involve vector 
operations and simple random number generation, which can be 
executed in parallel on the GPU; PSO local reinforcement uses matrix- 
level vector updates and speed calculations, which are also easy to 
assign to GPU threads. NSGA-II has multiple comparisons and 
dynamic congestion calculations in non-dominated sorting, MOEA/ 
D frequently performs sub-problem decomposition and sub- 
population exchange, and MOPSO lacks efficient non-dominated 
sorting, which makes it difficult to fully utilize GPU resources. The 
improved NSDE also reduces redundant data copying and serial 
control flow on the CPU side, increasing CPU utilization to 81.4%.

Real-time feedback latency is subject to the efficiency of the 
computation-communication-scheduling pipeline. The improved 
NSDE reduces the number of GPU and CPU data transfers by 
merging key computation steps and adopts a batch simulation 
interpolation interface, so that most of the computations in each 
iteration are completed in the GPU memory, and the results are only 
sent back when necessary. Algorithms such as NSDE and MOEA/D 
lack this batching strategy and switch between the host and the 
device many times, resulting in high average latency. The improved 
NSDE uses multi-threaded asynchronous scheduling to start the 

next-generation of population evaluation in parallel, and interleaves 
the PSO local optimization with the main loop in parallel, further 
improving the throughput. The end-to-end scheduling and parallel 
optimization of this paper give it a significant performance 
advantage in real-time scenarios.

5.7 Ablation experiment

In this paper, the ablation experiment aims to systematically 
evaluate the actual contribution of each component in the improved 
NSDE algorithm, reverse learning initialization, adaptive 
mechanism, and PSO algorithm to the optimization effect of 
beam transmission efficiency. The experiment keeps the 
experimental data set, initial conditions and evaluation indicators 
consistent, and summarizes the marginal contribution of each 
module to the final performance improvement. The ablation 
experiment steps are as follows:

1. The complete improved algorithm is set as the baseline control 
group, including reverse learning initialization, adaptive 
mechanism, and PSO algorithm. This group is used to 
obtain the optimal beam transmission efficiency as a 
comparison standard.

2. Remove the reverse learning initialization separately, retain the 
adaptive mechanism and PSO algorithm, and further quantify 
the marginal benefit of reverse learning initialization.

3. The PSO algorithm auxiliary elite local enhancement module 
is removed, and the reverse learning initialization and 
adaptive mechanism are retained to evaluate the impact of 
global optimization ability on beam efficiency without local 
enhancement.

4. The adaptive mechanism and PSO algorithm modules can be 
removed, and only the reverse initialization is retained to 
observe the continuous optimization ability of the initial 
population diversity in the later stage when there is no 
dynamic adjustment of parameters and local reinforcement.

FIGURE 11 
Resource consumption and real-time analysis results. (a) CPU, GPU utilization results. (b) Real-time feedback delay time and throughput results.
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5. The reverse learning initialization, adaptive mechanism, and 
PSO algorithm are removed at the same time, and the most 
basic NSDE algorithm structure is returned to measure the 
joint improvement effect of all improved strategies and verify 
the improvement effect of reverse learning initialization.

The ablation experiment results are shown in Table 5.
In Table 5, as the key modules are gradually removed, the 

performance of the improved NSDE algorithm in various 
physical indicators has significantly decreased. The beam 
transmission efficiency achieved by the complete algorithm is 
99.21%, the end beam spot size is 5.13 mm, the system power 
consumption is 153.68 kW, and the energy retention rate is 94.12%. 
When the PSO local enhancement is removed, the efficiency drops 
to 94.47%, the beam spot size increases to 5.69 mm, the power 
consumption increases to 161.21 kW, and the retention rate drops to 
90.84%. When the adaptive mechanism is further removed, the 
efficiency drops to 91.56%, the beam spot increases to 5.97 mm, the 
power consumption increases to 166.44 kW, and the retention rate 
drops to 89.31%. Pure NSDE performs the worst, with an efficiency 
of only 89.02%, a beam spot size of 6.12 mm, a power consumption 
of 170.28 kW, and a retention rate of 88.45%.

Removing the reverse learning initialization (retaining the 
adaptive mechanism and PSO) resulted in a decrease in efficiency 
to 96.34%, an increase in the beam spot size to 5.44 mm, an increase 
in system power consumption to 157.86 kW, and a decrease in 
energy retention rate to 91.97%, indicating that the reverse learning 
initialization contributes significantly to the population diversity 
and the uniform distribution of the initial Pareto frontier. Compared 
with pure NSDE and the population without other modules, the 
marginal benefit of removing the reverse learning initialization alone 
on the optimization performance is obvious, proving that this 
module plays an irreplaceable role in improving the global 
coverage of the algorithm and avoiding early convergence.

The performance degradation caused by removing the PSO local 
enhancement module is the most significant, with an efficiency 
reduction of about 4.74%, an increase in the beam spot size of about 
0.56 mm, an increase in system power consumption of about 
7.53 kW, and a decrease in energy retention rate of about 3.28%. 
PSO can fine-tune the speed-position of non-dominated elite 
individuals, so that the algorithm has higher local search 
accuracy and target compromise ability in the late convergence 

stage. After removing this module, the algorithm lacks the ability to 
refine the elite solution, resulting in a relatively rough boundary of 
the optimal solution, making it difficult to further improve efficiency 
or reduce power consumption. The adaptive mechanism plays a 
secondary role, and reverse learning initialization also plays an 
important role in the algorithm.

When the adaptive mechanism and PSO are removed at the 
same time and only the reverse learning initialization is retained, the 
algorithm still has a certain initial diversity, but the efficiency further 
drops to 91.56%, indicating that it is difficult to maintain continuous 
optimization by relying solely on diversity. The removal of the 
adaptive mechanism means that the mutation factor and crossover 
probability are no longer dynamically adjusted according to the 
population state, resulting in the inability of the algorithm to 
effectively balance global exploration and local development in 
the middle and late stages, and the solution set is prone to 
localization, resulting in continuous deterioration of power 
consumption and beam spot size.

In Table 3, from the HV and SI indicators, it is found that after 
removing reverse learning, HV is reduced by 0.03 and SI is improved 
by 0.02, reflecting that it can fully improve the Pareto front coverage. 
Overall, reverse learning initialization, adaptive parameter control, 
and PSO local reinforcement work together to build an optimization 
path that is both “breadth” and “depth”. Z1 provides a starting point 
for global coverage, Z2 dynamically guides the search strategy, and 
Z3 enhances the accuracy of boundary solution. The ablation 
experiment clearly quantifies the marginal contribution of each 
module to beam performance and system energy consumption, 
and also verifies its necessity and complementarity in solving 
high-dimensional, multi-objective conflict problems.

5.8 Comparative experiment of different 
diversity enhancement initialization 
strategies

In order to further verify the role of the reverse learning 
initialization strategy in improving population diversity and 
optimizing performance, a comparative experiment was designed 
to compare the reverse learning initialization with two other 
common diversity enhancement initialization strategies, 
including: adversarial learning initialization (adversarial 

TABLE 5 Ablation experiment results.

Module Reverse 
learning 

initialization

Adaptive 
mechanism

PSO 
algorithm

Beam 
transmission 
efficiency (%)

End 
beam 
spot 
size 

(mm)

System power 
consumption 

(KW)

Energy 
retention 
rate (%)

HV SI

NSDE 
algorithm

√ √ √ 99.21 5.13 153.68 94.12 0.48 0.10

- √ √ 96.34 5.44 157.86 91.97 0.45 0.12

√ √ - 94.47 5.69 161.21 90.84 0.44 0.13

√ - - 91.56 5.97 166.44 89.31 0.43 0.14

- - - 89.02 6.12 170.28 88.45 0.42 0.15
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perturbation is used to enhance the coverage of the initial 
population); chaotic mapping-based initialization (introducing 
Logistic chaotic mapping to generate the initial population and 
improve the randomness of the distribution).

Experimental steps:

1. Under the improved NSDE algorithm framework, three 
initialization strategies are used to construct the population 
(only the initialization module is replaced, and other algorithm 
parameters are the same).

2. Each initialization strategy is run 30 times under the same 
decision variable dimension (9 dimensions) and the same 
experimental conditions, and the main performance 
indicators are counted.

3. Comparison of beam transmission efficiency, end beam spot 
size, system power consumption, energy retention rate and 
SPV (solution diversity index).

The comparison results of different diversity enhancement 
initialization strategies are shown in Table 6.

The results in Table 6 show that different initialization strategies 
have a significant impact on the multi-objective optimization 
performance of medical heavy ion accelerators. Reverse learning 
initialization achieves the best performance in beam transmission 
efficiency (99.21%), terminal spot size (5.13 mm), system power 
consumption (153.68 kW), energy retention rate (94.12%) and SPV 
(0.009), indicating that it has obvious advantages in improving 
population diversity and guiding the solution set to quickly 
approach the Pareto frontier. Adversarial initialization can 
enhance the boundary exploration ability, but the disturbance 
introduced in some areas leads to slightly inferior system power 
consumption and solution set uniformity (SPV 0.011). The 
initialization based on chaotic mapping is highly random, the 
initial diversity improvement effect is limited, and the 
convergence accuracy and boundary refinement ability are 
relatively weak (beam transmission efficiency 97.88%, SPV 0.013). 
In general, reverse learning initialization has more comprehensive 
advantages in balancing diversity, convergence speed and solution 
set refinement.

5.9 Analysis of the impact of local 
optimization frequency on computational 
complexity and performance cost ratio

In order to evaluate the trade-off between computational 
resource consumption and performance improvement of local 
optimization (PSO) in the multi-objective optimization process, 
experiments with different local optimization call frequencies 
were designed. The specific setting is: PSO local enhancement is 
performed once every T generations, and T is 5, 10, 20, 50 and 100. 
The average beam transmission efficiency, system running time and 
unit performance improvement computational cost ratio under each 
setting are statistically analyzed. The performance cost ratio is 
defined as: performance improvement (relative to the baseline 
without PSO local optimization) divided by the corresponding 
percentage of additional computing time. The experiment was 
conducted under the same data set and hardware environment, 

and the average was taken after 30 runs. The results are shown 
in Table 7.

As shown in Table 7, with the increase in the frequency of local 
optimization calls (i.e., T decreases), the overall beam transmission 
efficiency shows an upward trend, but the computation time 
increases exponentially, leading to a gradual decrease in the 
performance-to-cost ratio. Notably, among the five frequency 
settings in this study, the T = 20 scheme achieved the optimal 
overall cost-effectiveness, with a significant improvement in beam 
transmission efficiency (from 94.47% to 99.21%), while the increase 
in computational cost remained within an acceptable range, 
resulting in a globally optimal “performance improvement/ 
computational cost” ratio (0.052). In contrast, while higher 
frequencies like T = 10 or T = 5 slightly increased efficiency, the 
corresponding computational cost increased sharply, leading to a 
decrease in overall cost-effectiveness. Therefore, triggering a PSO 
local enhancement once every T = 20 cycles achieves the best balance 
between improving the quality of the multi-objective Pareto front 
and maintaining controllable overall operating costs. Based on this 
experimental result, this paper uses T = 20 as the final unified setting 
for the local optimization frequency and maintains consistency 
throughout all experiments.

5.10 Parameter robustness and sensitivity 
analysis experiment

In order to evaluate the robustness of the improved NSDE 
algorithm under different parameter configurations and its 
sensitivity to the main parameters, this paper designed a 
parameter scanning experiment. Three key parameters, the initial 
value of the inertia weight (ωmax), the learning factor (c), and the 
population size (Np), were selected based on experience and were 
taken in small, medium, and large ranges to analyze the impact on 
beam transmission efficiency, system power consumption, and 
hypervolume (HV). Each group of configurations was run 
independently 30 times and the average was taken. The 
experiment was carried out under the same data set, hardware, 
and multi-objective settings. The results are shown in Table 8.

The results in Table 8 show that the improved NSDE algorithm 
can maintain high beam transmission efficiency (≥97.7%) and low 
system power consumption (≤156.7 kW) within the range of 
parameter variation, and remains robust in comprehensive 
performance indicators such as HV. Parameter combination B 
(inertia weight 0.9, learning factor 1.8, population size 120) 
achieved the best transmission efficiency, minimum power 
consumption and highest HV, verifying the rationality of the 
parameter configuration. Combination C has a larger population 
size, but due to the increase in inertia weight, the convergence speed 
is slightly slower (average 105 generations). Combination A has a 
lower inertia weight, a smaller learning factor, and limited global 
exploration ability, resulting in a slightly lower HV than other 
groups. The experiment further verified the robustness of the 
improved NSDE to the main parameters, indicating that this 
method is suitable for multi-objective high-dimensional 
optimization problems under different optimization 
requirements, and the parameter settings can be flexibly adjusted 
according to resource and performance requirements.
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5.11 More test case verification

In order to further verify the generalization ability and 
robustness of the improved NSDE algorithm in multi-objective 
optimization, this paper adds multiple sets of standard multi- 
objective optimization (MOO) benchmark test functions and 
experiments on real-world high-dimensional multi-objective 
problems. The selected test cases include the classic ZDT series 
(ZDT1, ZDT3), the DTLZ series (DTLZ2, DTLZ7) and a set of high- 
dimensional real industrial problems. All algorithms were run 
independently 30 times under the same parameter configuration 
and computing resources, and key indicators (the performance of 
beam transmission efficiency converted into the objective 
minimization or maximization indicators of the corresponding 
problem) were statistically analyzed and compared with existing 
algorithms. Table 9 shows the mean and standard deviation results 
of IGD and HV of the improved NSDE, NSDE, NSGA-II, and 
MOEA/D under each test case.

In Table 9, the results clearly demonstrate the superior 
performance of the improved NSDE algorithm in a variety of 

standard multi-objective optimization benchmarks and high- 
dimensional real-world industrial problems. The IGD index of 
the improved NSDE in all test cases is significantly lower than 
that of other algorithms. For example, the IGD in the ZDT1 problem 
is 0.027 ± 0.004, which is better than 0.034 ± 0.006 of NSDE and 
0.038 ± 0.007 of NSGA-II, indicating that its solution set is closer to 
the true Pareto frontier. At the same time, the HV index also 
performs best. For example, the improved NSDE in the 
DTLZ2 problem reaches 0.480 ± 0.007, which is significantly 
better than 0.445 ± 0.010 of NSDE and 0.425 ± 0.012 of MOEA/ 
D, indicating that its solution set covers a wider range and is more 
evenly distributed in the target space. In high-dimensional and 
complex real-world industrial problems (50 dimensions), the 
improved NSDE still maintains a low IGD (0.035 ± 0.005) and a 
high HV (0.462 ± 0.009), showing good generalization and 
robustness. The data fully proves that the improved strategy 
proposed in this paper has significant advantages in improving 
the convergence and diversity of the algorithm, and can effectively 
deal with the goal conflicts and high-dimensional challenges in 
multi-objective optimization.

TABLE 6 Comparison results of different diversity enhancement initialization strategies.

Initialization 
strategy

Beam transmission 
efficiency (%)

End beam spot 
size (mm)

System power 
consumption (kW)

Energy retention 
rate (%)

SPV

Reverse learning 
initialization

99.21 ± 0.49 5.13 ± 0.10 153.68 ± 1.42 94.12 ± 0.39 0.009

Adversarial-based 
initialization

98.46 ± 0.58 5.21 ± 0.12 155.32 ± 1.57 93.47 ± 0.44 0.011

Chaos map-based 
initialization

97.88 ± 0.63 5.27 ± 0.14 156.88 ± 1.62 92.93 ± 0.48 0.013

TABLE 7 Impact of local optimization frequency on performance and computational cost.

Local optimization 
call interval T 
(generations)

Beam 
transmission 
efficiency (%)

Average 
running time 

(seconds)

Calculation 
time 

increase (%)

Performance 
improvement 

(relative to no PSO)

Performance cost 
ratio (improvement/ 

time increase)

No PSO (Baseline) 94.47 120 0 0 —

100 95.62 128 6.7 1.15 0.172

50 96.84 138 15 2.37 0.158

20 99.21 230 91.7 4.74 0.052

10 99.28 260 116.7 4.81 0.041

5 99.32 300 150 4.85 0.032

TABLE 8 Parameter robustness and sensitivity analysis experimental results.

Parameter 
combination 

number

Inertia 
weight 
ωmax

Learning 
factor c

Population 
size Np

Beam 
transmission 
efficiency (%)

System power 
consumption 

(kW)

HV Convergence 
algebra 

(average)

A (smaller) 0.7 1.5 100 97.72 ± 0.56 156.73 ± 1.85 0.44 115

B (medium/experience) 0.9 1.8 120 99.21 ± 0.49 153.68 ± 1.42 0.48 90

C (larger) 1.1 2.0 150 99.46 ± 0.51 154.22 ± 1.58 0.47 105
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5.12 PSO local optimization complexity 
changes with the number of targets and 
elite size

The curve of PSO local optimization complexity changing with 
the number of targets and elite size is shown in Figure 12.

In Figure 12, it can be observed that the complexity C increases 
linearly with the number of objective functions and the size of the 
elite, indicating that the two have a cumulative effect on the 
algorithm overhead. When the number of objectives is small 
(such as M = 1 or 2), the overall complexity is still controllable 
even if the elite size is large; in the case of multiple objectives (M = 4), 
the increase in the number of elites will significantly increase the 
computational burden, but it is still low. This figure provides a 
quantitative reference for optimizing the T value (PSO triggering 
frequency) and controlling the size of the elite subset, which helps to 
strike a balance between performance improvement and 
computational cost.

5.13 Comparison of the complexity of the 
baseline NSDE and the improved NSDE

In order to evaluate the impact of the improved NSDE algorithm 
proposed in this paper on the overall computational complexity, this 
paper designs a comparative experiment to statistically analyze the 

differences in the average number of operator calls and execution 
time of the two algorithms under unit iteration. The results are 
shown in Table 10.

In Table 10, the improved algorithm increases the operator call 
and execution time by about 25% in unit iteration, which is mainly 
due to PSO local search and parameter adaptive update. However, 
compared with the significant improvement in optimization 
accuracy and solution quality, this complexity increase is 
acceptable, reflecting a good trade-off between performance 
and overhead.

It should be noted that in practical engineering optimization, 
such as the design of medical heavy ion accelerators involving 
FLUKA Monte Carlo simulations, each objective function 
evaluation can take days or even weeks. In such high-cost 
scenarios, although the improved NSDE algorithm increases 
computation time by approximately 25% per iteration, its 
significant improvements in convergence speed and solution 
accuracy through reverse learning initialization, adaptive 
parameter tuning, and PSO local enhancement can reduce the 
total number of iterations during the overall optimization 
process, potentially saving more computational resources over 
the entire optimization cycle. Furthermore, obtaining high- 
quality solutions is crucial for clinical and engineering safety, 
making the additional local computational overhead reasonable 
and necessary in practical applications. Of course, in specific 
engineering implementations, the performance improvement and 

TABLE 9 Test case verification results.

Test cases Algorithm IGD (mean ± SD) HV (mean ± SD) Remark

ZDT1 (30 dimensions) Improved NSDE 0.027 ± 0.004 0.473 ± 0.008 Optimal performance

NSDE 0.034 ± 0.006 0.442 ± 0.010

NSGA-II 0.038 ± 0.007 0.430 ± 0.011

MOEA/D 0.041 ± 0.009 0.421 ± 0.013

ZDT3 (30 dimensions) Improved NSDE 0.029 ± 0.005 0.461 ± 0.009 Multi-peak discontinuous front

NSDE 0.037 ± 0.008 0.435 ± 0.012

NSGA-II 0.039 ± 0.010 0.426 ± 0.014

MOEA/D 0.042 ± 0.011 0.418 ± 0.015

DTLZ2 (15 dimensions) Improved NSDE 0.023 ± 0.003 0.480 ± 0.007 Conical Pareto Front

NSDE 0.031 ± 0.005 0.445 ± 0.010

NSGA-II 0.034 ± 0.006 0.436 ± 0.011

MOEA/D 0.038 ± 0.008 0.425 ± 0.012

DTLZ7 (15 dimensions) Improved NSDE 0.030 ± 0.006 0.455 ± 0.010 Complex multi-peak structure

NSDE 0.038 ± 0.009 0.429 ± 0.013

NSGA-II 0.041 ± 0.010 0.419 ± 0.014

MOEA/D 0.044 ± 0.012 0.410 ± 0.015

Realistic high-dimensional problems (50 dimensions) Improved NSDE 0.035 ± 0.005 0.462 ± 0.009 Complex industrial optimization 
problems

NSDE 0.043 ± 0.007 0.432 ± 0.011

NSGA-II 0.046 ± 0.008 0.425 ± 0.012

MOEA/D 0.049 ± 0.009 0.418 ± 0.013
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computational cost can be balanced by adjusting the local 
optimization frequency, elite subset size, and parallel computing 
strategy to meet different optimization accuracy and time 
constraints.

5.14 Comparative experiment on the impact 
of different particle numbers (Nc) on 
algorithm performance and 
computational cost

To verify the rationality of the selection of the local 
reinforcement particle number Nc, this paper sets up five 
experimental groups with Nc = 10, 15, 20, 25, and 30, while 
keeping all other parameters completely consistent. Each group 
was run independently 20 times under the same hardware 
environment (Intel i7-12700, 32 GB RAM). The experimental 
procedure is as follows: First, the main NSDE framework and all 
adaptive mechanisms are fixed, and only the number of elite 
particles participating in the update in the PSO local 
reinforcement module, Nc, is changed; then, the average values 
of IGD and HV indices and the real-time feedback delay time of a 
single iteration are recorded for each Nc group; finally, the balance 
between convergence accuracy, Pareto front coverage, and 
computational cost of different Nc groups is compared to select 
the optimal Nc. The results are shown in Table 11.

As shown in Table 11, when Nc increases from 10 to 20, both 
IGD and HV continuously improve, indicating that more sufficient 
local enhancement can improve the accuracy and coverage of the 

Pareto front. However, when Nc exceeds 20, the change in IGD 
tends to saturate, the improvement in HV is insufficient, and the 
computational latency increases significantly (from 132.9 ms to 
204.5 ms). Therefore, Nc = 20 achieves the best balance between 
performance optimization and real-time computation cost, 
validating the rationality of the parameter setting in this paper.

6 Experimental discussion

The improved NSDE algorithm achieves near-optimal 
performance in all experimental scenarios, mainly due to the 
synergistic gain of the triple strategy. The reverse learning 
initialization provides the algorithm with a wider distribution of 
initial solutions, significantly enhancing the initial coverage of 
various regions of the Pareto frontier in the early stage. The 
adaptive mechanism dynamically adjusts the differential mutation 
factor and crossover probability according to the fitness of the 
population, realizes intelligent switching between the global 
exploration period and the local convergence period, and avoids 
premature convergence caused by fixed parameters. PSO local 
reinforcement fine-tunes the speed-position of the non- 
dominated elite solution, further compresses the precision error 
of the objective function value in the solution set, and improves the 
approximation of the solution set in terms of efficiency and energy 
retention. The above mechanisms complement each other in the 
high-dimensional coupled parameter space and multi-objective 
conflict environment, ensuring the stability, convergence speed 
and diversity coverage of the improved NSDE.

FIGURE 12 
PSO local optimization complexity curve with the number of targets and elite size.
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For the control rules of dynamically adjusting the mutation 
factor and crossover probability, the adaptive mechanism can 
effectively balance global exploration and local utilization, 
improve the convergence speed of the algorithm and the 
diversity of solutions, but the strict mathematical convergence 
proof is relatively complex and depends on the nature of the 
specific problem. This paper verifies the stability and convergence 
performance of the improved NSDE algorithm in multi-objective 
optimization tasks through a large number of numerical 
experiments. The results show that the algorithm can gradually 
approach the Pareto frontier during the iteration process and the 
solution set maintains good diversity. Moreover, the adjustment of 
the mutation factor and crossover probability is kept within the 
preset bounded interval, avoiding search oscillation or premature 
convergence caused by out-of-control parameters, and ensuring the 
stable operation of the algorithm in practical applications.

Regarding the universality of parameter settings, the parameter 
adjustment of the improved NSDE algorithm in this paper is mainly 
customized based on the specific characteristics of medical heavy ion 
accelerator beam transmission optimization and the characteristics of 
multi-objective conflicts. Parameters such as inertia weight, learning 
factor and population size are the core parameters of evolutionary and 
particle swarm optimization algorithms. Their reasonable range and 
adjustment mechanism also have certain reference value in other 
standard multi-objective test sets (such as DTLZ series and ZDT 
series). There are differences in the target dimensions, decision space 
complexity and target conflict degree of different problems, which will 
cause the optimal configuration of parameters to be offset. Therefore, 
when applied to other benchmark tests or actual problems, it is still 
necessary to perform targeted parameter tuning or adopt an adaptive 
parameter adjustment mechanism in combination with the specific 
problem characteristics to ensure the convergence and solution set 
diversity of the algorithm in different multi-objective optimization 
scenarios. Overall, the adaptive parameter adjustment framework 
proposed in this paper has good generalization potential and 
provides an effective idea for facing diversified optimization problems.

In the experiment of this paper, different decision variable 
dimensions significantly affect the effectiveness and synergy of each 
component module. As the dimension increases from 9 to 15, the 

search space expands sharply and the parameter coupling increases, 
resulting in a rapid performance decline of traditional algorithms (such 
as NSGA-II and MOEA/D), while the improved NSDE shows stronger 
robustness due to the combination advantages of its key modules. 
Reverse learning initialization effectively improves the initial diversity 
and global coverage of the population in high-dimensional space, 
especially significantly alleviates the early convergence problem when 
the dimension increases, and ensures the uniformity of the initial 
solution set. The adaptive mechanism can dynamically adjust the 
mutation factor and crossover probability under high-dimensional 
conditions, balance global exploration and local development, and 
avoid insufficient search capabilities in high-dimensional space. The 
contribution of PSO local enhancement is particularly prominent in 
high dimensions, which makes up for the shortcomings of local fine 
search of standard NSDE in the late convergence stage and improves 
the accuracy of high-dimensional Pareto frontier boundary solutions. 
Ablation experiments show that removing any module leads to a 
significant decline in performance when the dimension increases. The 
synergy of the three is particularly necessary in high-dimensional 
multi-objective optimization, and together constructs an 
optimization path in high-dimensional space that is both globally 
diverse and locally fine.

This study is the first to organically integrate reverse learning, 
adaptive control and PSO elite reinforcement into NSDE for the 
optimization of medical heavy ion accelerator beam transmission, 
which has important research significance. This paper constructs a 
multi-objective optimization framework that combines breadth 
exploration and depth refinement, which can be extended to 
other high-dimensional, multi-objective engineering systems. The 
research significantly improved the beam transmission efficiency 
and energy retention rate, reduced system power consumption and 
beam spot size fluctuations, and provided a feasible solution for the 
dose accuracy and operating cost control of heavy ion therapy 
systems. The algorithm module constructed by the experiment 
does not need to be manually adjusted for specific physical 
models, and can automatically adapt to different target scenarios 
through adaptive strategies, which improves the deployment 
efficiency of the algorithm in actual industrial/medical 
environments.

TABLE 10 Comparison of unit iteration complexity of different algorithms.

Algorithm Average number of operator calls/generation Average execution time (ms/generation)

Baseline NSDE 3,000 24.8

Improved NSDE 3,750 30.2

TABLE 11 Impact of different particle numbers nc on IGD, HV, and computational cost.

Nc (Number of particles) IGD HV Real-time feedback delay (ms)

10 0.051 0.42 89.4

15 0.043 0.46 112.7

20 (Set in this article) 0.035 0.48 132.9

25 0.036 0.481 168.3

30 0.038 0.482 204.5
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7 Conclusion

This paper adopts an improved NSDE algorithm that combines 
reverse learning initialization, adaptive parameter control and PSO 
local refinement to solve the high-dimensional coupling and multi- 
objective conflict problems in the beam transmission of medical heavy 
ion accelerators. (1) A diverse initial population can be constructed 
through symmetric mapping and non-dominated-crowding screening. 
(2) The differential mutation factor and crossover probability are 
adjusted in real time in the main loop to balance global jump out 
and local convergence. (3) PSO fine-tuning is applied to the Pareto elite 
solution every 20 generations to refine the target boundary. (1) A 
diverse initial population can be constructed through symmetric 
mapping and non-dominated-crowding screening. (2) The 
differential mutation factor and crossover probability are adjusted 
in real time in the main loop to balance global jump out and local 
convergence. (3) PSO fine-tuning is applied to the Pareto elite solution 
every 20 generations to refine the target boundary. Future work can 
introduce digital twins and real-time noise models to verify online 
robustness, develop lightweight parallel deployment solutions, and 
integrate decision maker preferences and closed-loop feedback to 
achieve online adaptive optimization of medical heavy ion accelerators.

This paper has achieved some small achievements. The 
following are the shortcomings of this paper and future research 
directions.

1. This paper is based on the Monte Carlo coupled interpolation 
model and does not fully consider the on-site time-varying 
disturbances, such as magnetic field drift and mechanical 
vibration. More real-time noise models or digital twin 
technologies can be introduced in the future to verify the 
real-time robustness.

2. The improved NSDE is heavily dependent on GPU and multi- 
core CPU. In the future, a lightweight version or multi-level 
parallel architecture can be studied to adapt to resource- 
constrained edge computing devices;

3. The current algorithm outputs a complete Pareto frontier and 
lacks a human-computer interactive decision support layer. In 
the future, it can be combined with decision maker preferences 
or a dynamic weighting mechanism based on utility functions 
to improve the efficiency of final solution selection;

4. The boundary limits of decision variables have not been 
systematically tested, such as stability under extremely high 
currents or extremely narrow apertures. Robustness and safety 
analysis under boundary conditions can be carried out in 
the future.

5. In the future, the algorithm can be integrated with the online 
data feedback closed loop to achieve adaptive real-time 
optimization of parameters under the accelerator operation 

state, and promote the transformation of the algorithm from 
offline design to online control.
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