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To address the issues of high-dimensional coupling parameters easily falling into
local optima and multi-objective conflicts in the beam transport of medical heavy
ion accelerators, this paper proposes an improved non-dominated sorting
differential evolution (NSDE) algorithm. The algorithm employs inverse
learning for initialization and introduces an adaptive mechanism to adjust the
mutation factor and crossover probability online, balancing exploration and
exploitation. Additionally, it incorporates local enhancement based on
crowding distance in particle swarm optimization (PSO) to refine non-
dominated elite solutions. Large-scale experiments based on FLUKA Monte
Carlo coupled simulation (nine-dimensional decision variables) have shown
that the improved NSDE has increased the beam transport efficiency from the
baseline of 92.42% to 99.21% (an improvement of 6.79%), while also achieving
continuous improvements in key physical indicators such as the beam spot size at
the end point, system power consumption, and energy retention rate. The
research indicates that the proposed method exhibits significant advantages in
enhancing optimization quality and maintaining robustness, making it suitable for
accelerator engineering optimization that demands stringent real-time
performance and multi-objective accuracy.

adaptive mechanism, beam transmission efficiency, medical heavy ion accelerator, NSDE
algorithm, PSO algorithm

1 Introduction

With the widespread application of heavy ion therapy in tumor treatment, the
performance optimization of medical heavy ion accelerators has become a key link in
ensuring clinical treatment effects (Sokol and Durante, 2023; Yamada et al., 2022). During
the process of beam transmission from the accelerator outlet to the treatment terminal, its
transmission efficiency and beam spot quality directly affect the accuracy of dose
distribution and treatment safety. Since there are a large number of parameters
involved in the transmission system, such as magnet current, pipeline geometry,
vacuum state, efc., there is a significant coupling relationship between these high-
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dimensional parameters, making optimization extremely difficult.
In addition, there is often a performance conflict between high beam
transmission efficiency and small beam spot size, and traditional
methods find it difficult to take both into account. Seeking efficient
and robust multi-objective optimization strategies to improve beam
performance has important engineering value and clinical
significance.

In order to solve the multi-objective conflict problem of medical
heavy ion accelerator beam in high-dimensional coupled parameter
space, the existing system has the following defects: traditional
optimization methods such as NSGA-II (Ma et al, 2023) and
MOEA/D (Gao et al,, 2024) are prone to fall into local optimality
when dealing with high-dimensional parameters, and it is difficult to
effectively explore complex parameter space; and these methods
have insufficient adaptive adjustment capabilities for parameters,
resulting in slow convergence speed and insufficient diversity of
solution sets when balancing multi-objective performance, making
it difficult to balance the conflicts of key indicators such as beam
transmission efficiency and beam spot size. To address the above
problems, this paper proposes an improved NSDE algorithm that
integrates reverse learning initialization, adaptive parameter control
and PSO local refinement. The initial population with diversity is
generated by reverse mapping and non-dominated crowding
screening, which enhances the global search capability; in the
main iteration process, the mutation factor and crossover
probability are dynamically adjusted according to the fitness,
achieving a balance between global exploration and local
convergence; the PSO algorithm is applied to the Pareto elite
solution for local refinement every 20 generations, which
improves the convergence accuracy and stability of the algorithm
in high-dimensional multi-objective optimization and solves the
local traps and multi-objective conflicts of the existing system. After
200 iterative experiments, the improved algorithm achieved a beam
transmission efficiency of 99.21% + 0.49%, a minimum beam spot
size of 5.13 mm * 0.10 mm, a minimum power consumption of
153.68 kW + 1.42 kW, and an energy retention rate of 94.12% =+
0.39%. Its performance is better than NSDE, NSGA-II (non-
dominated sorting genetic algorithm II), MOEA/D (multi-
objective evolutionary algorithm based on decomposition),
MOPSO (multi-objective particle swarm optimization algorithm)
and other methods, and the beam transmission efficiency has the
most significant improvement compared with the original medical
heavy ion accelerator, specifically an increase of 6.79%, which proves
the effectiveness of this method.

Paper Contribution:

1. The algorithm is integrated with reverse learning initialization,
adaptive differential parameter adjustment and PSO local
refinement mechanism to improve the global exploration
and local convergence capabilities of the algorithm in high-
dimensional multi-objective optimization.

2. A multi-objective model including beam efficiency, beam spot
size, power consumption and energy retention rate is
constructed, and high-fidelity Monte Carlo simulation
verification is performed in combination with FLUKA.

3. Under the 9-dimensional decision variable, the beam

transmission efficiency is significantly improved, and the

four objectives are comprehensively superior to NSGA-II,
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MOPSO, etc., which has practical engineering guidance
value for the design optimization of heavy ion accelerators.

2 Related works

In the research of medical heavy ion accelerators, in order to
improve the beam transmission efficiency and treatment accuracy of
medical heavy ion accelerators, many particle therapy centers
in-depth
accelerator beam transmission systems. Pivi M T F and other

around the world have conducted research on
scholars introduced the system layout and beam transmission
improvement work of the MedAustron particle therapy facility in
Austria in carbon ion and proton beam therapy, especially the
introduction of a synchronous control mechanism in the rotator
system to improve the beam transmission quality and treatment
consistency in the patient’s body (Pivi, 2024). Han M C and other
scholars have ensured the stability and safety of the beam
transmission process through precise clinical workflow and
quality control processes (IHan et al., 2024). Shayanmoghadam A
A and other scholars have studied the energy deposition
characteristics of heavy ion beams in inertial fusion and the
transmission effects under different ion types and energy
conditions with the help of the GEANT4 simulation platform,
theoretical beam
transmission efficiency modeling (Shayanmoghadam et al.,, 2025).

providing an important reference  for
Liang X et al. reviewed the cutting-edge progress of heavy ion
therapy in modern radiotherapy from the perspective of clinical
radiation oncology, emphasizing the core role of beam quality
control in treatment safety and efficacy (Liang et al., 2025). The
above research has promoted the development of medical heavy ion
accelerators from multiple aspects, including system architecture,
clinical process, simulation modeling and treatment mechanism.
Most existing methods focus on physical structure improvement
and treatment strategy optimization, but lack the ability to
coordinate multi-parameter and multi-objective control of beams
in complex transmission channels. In particular, when there is a
significant conflict between performance indicators such as
transmission efficiency and beam spot size, there is still a lack of
effective  high-dimensional global optimization strategies.
Introducing stronger intelligent optimization algorithms to solve
the problems of high-dimensional coupling, multi-objective trade-
offs, and local optimal traps in the transmission process and improve
the overall performance of the beam system has become an
important research direction.

With the emergence of intelligent algorithms, researchers have
gradually introduced intelligent optimization algorithms into this
field to improve transmission efficiency and system performance. Ge
Y et al. proposed a multi-objective optimization strategy based on
NSGA-II, which effectively reduced the variable dimension and
significantly improved the efficiency of the accelerator neutron
source system by combining multivariate statistical methods (Ge
et al., 2024). In order to solve the problem of strong divergence of
laser-accelerated proton beams, Yan Y and other scholars designed a
high-efficiency beam collection system that combines permanent
magnetic quadrupoles with GA (Genetic Algorithm). The system
significantly improved the transmission efficiency through pre-

focusing and achieved an efficiency gain of up to 6 times in the
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experiment, verifying the feasibility of GA in structural parameter
configuration (Yan et al, 2024). Yan W et al. applied DE
(Differential Evolution) to the design of beam optical systems for
X-ray sources. They demonstrated through examples that DE has
good global search capabilities and solution quality in high-
dimensional complex spaces, improving the efficiency of the
traditional design process (Yan et al, 2022). Liu Y et al
integrated DE with an expert system to create an intelligent
control system, which significantly shortened the convergence
time and enhanced the solution quality in synchrotron radiation
nanobeamline tests, demonstrating the potential of this method in
rapid beam adjustment and multi-target collaboration (Liu Y. et al.,
2024). The above research has achieved certain results in parameter
optimization, optical system design and transmission system
structure configuration, but some strategies have not been able to
fully avoid falling into local optimality, and in the case of multi-
objective performance conflicts, it is difficult to balance the diversity
and convergence of the solution set. At the same time, there has been
no targeted and in-depth research on the optimization of the beam
transmission efficiency of medical heavy ion accelerators.

In recent years, multi-objective evolutionary algorithms have
shown significant advantages in the field of high-dimensional
nonlinear optimization. However, in order to address the
complex characteristics of beam transmission in medical heavy
ion accelerators, it is necessary to further enhance the diversity,
global search and local refinement capabilities of the algorithm.
Reverse learning initialization generates symmetric and
information-rich candidate solutions at the beginning of the
population, which can better balance the spatial coverage and
quickly construct a diverse Pareto approximation set (Cao et al,
2023; Ahmad et al, 2022; Qtaish et al, 2025). The adaptive
mechanism monitors the evolutionary state of the population in
real time, dynamically adjusts the mutation factor and crossover
probability, and realizes smooth switching between global
exploration and local development to avoid premature maturity
(Wang et al., 2022; Huang et al, 2025). The PSO algorithm is
combined with the local stage of non-dominated elite solutions,
which enables the algorithm to perform efficient local search and
accelerate convergence near the Pareto frontier (Ramirez-Ochoa
et al,, 2022; Lin et al,, 2023). The above method has been proven to
reduce computational overhead, improve solution quality, and
effectively get rid of local optimality in applications in other
fields. Existing studies have failed to apply it to the optimization
of beam transmission efficiency of medical heavy ion accelerators,
and are prone to falling into local optimality and high-dimensional
multi-objective conflicts.

Research gaps:

o Multi-objective Bayesian active learning for MeV ultrafast
electron diffraction: In the MeV-UED experiment, a multi-
objective Bayesian optimization algorithm was used to achieve
efficient tuning of beam parameters, reduce experimental time,
and provide a new method for optimizing beam transmission
efficiency (Ji et al., 2024).

o Application of multi-objective Bayesian optimization in
accelerators: A multi-objective Bayesian  optimization

scheme was proposed, which can efficiently find the

Pareto frontier of accelerator

complete optimization
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problems, reduce the number of required observations, and
provide a key step for online multi-objective optimization
(Roussel et al., 2021).

o Application of Bayesian optimization in beam injection
process: Studies have shown that the Bayesian optimization
method performs well in beam injection tuning,

outperforming traditional manual tuning and Nelder-Mead

optimization algorithms, especially when dealing with up to
nine tuning parameters, with higher efficiency and stability

(Xu et al., 2023).

The literature meta-analysis is shown in Table 1.

The literature reviewed in this paper covers multiple aspects
such as physical architecture improvement, clinical process
optimization, simulation modeling and intelligent algorithm
application of medical heavy ion accelerator beam transmission
system, highlighting the important role of intelligent multi-objective
optimization methods in improving transmission efficiency and
system performance. For example, methods based on NSGA-II,
genetic algorithm (GA), differential evolution (DE) and multi-
objective Bayesian optimization have shown good global search
capabilities and solution quality in high-dimensional complex space,
significantly improving efficiency and convergence speed; however,
some methods still have problems such as falling into local
optimality, insufficient solution diversity and inflexible parameter
adjustment. This paper innovatively introduces an improved NSDE
algorithm that combines reverse learning initialization, adaptive
parameter control and PSO local reinforcement, effectively solving
high-dimensional coupling, multi-objective conflict and local
optimal traps, significantly improving beam transmission
efficiency and system robustness, and filling the gap in the
current research on intelligent optimization algorithms in the
field of medical heavy ion accelerator beam transmission
efficiency optimization.

3 Optimization design of beam
transmission efficiency of medical
heavy ion accelerators

3.1 Multi-objective optimization modeling

3.1.1 Decision variable definition

In order to achieve global coordinated optimization of multiple
physical processes in the beam transmission path of medical heavy
ion accelerators, this paper incorporates nine physical parameters
that are strongly related to beam dynamics into the decision variable
set. The expression formula of the decision vector x is shown in
Equation 1.

X = [X), Xp, X3, X4, X5, Xg, X7, Xg, Xo ]| (1)

Among them, x; represents the quadrupole magnet gradient, which
adjusts the beam spot convergence; x, represents the deflection
magnet current, which directly controls the particle trajectory
deflection angle. x5 represents Incident beam lateral emittance; x4
represents the divergence angle, and x5 represents Relative energy
dispersion. x¢ represents the magnet spacing, which regulates the
coupling behavior between magnetic elements, x; represents
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TABLE 1 Literature meta-analysis.

Serial number

Research object

Methods

Main contributions

10.3389/fmech.2025.1736300

Disadvantages and

challenges

Pivi (2024)

Carbon ion/proton beam
transport system

Synchronous control
mechanism

Improve treatment consistency and
transmission quality

Unsolved multi-objective high-
dimensional optimization problems

Han et al. (2024)

Shayanmoghadam et al. (2025)

Liang et al. (2025)

Ge et al. (2024)

Yan et al. (2024)

Yan et al. (2022)

Clinical beam transport
process

Heavy ion beam energy
deposition modeling

Advances in heavy ion
radiotherapy

Neutron source system
Laser accelerated proton
beam collection

X-ray source beam
system design

Clinical process and quality
control

GEANT4 simulation
Radiation oncology review
NSGA-II + multivariate

statistical dimension reduction

Permanent magnetic
quadrupole + GA

DE

Improve transmission stability and
safety

Provide theoretical reference for
energy deposition characteristics

Emphasis the importance of beam
quality to efficacy

Improve system efficiency and
optimize dimension reduction

Experimental efficiency increased
by 6 times

Strong high-dimensional global
search capability

Lack of exploration of complex multi-
objective global optimization

Only theoretical simulation, lack of
optimization strategy

Lack of practical optimization
implementation scheme

Limited diversity of solution sets
under multi-objective conflict

High risk of local optimality, global
performance not evaluated

Convergence accuracy needs to be
further improved

Liu et al. (2024a)

Synchrotron radiation
nanobeam line

DE + expert system

Improve tuning efficiency and
shorten convergence time

Multi-objective performance tradeoffs
are not fully considered

Cao et al. (2023), Ahmad et al.

(2022), Qtaish et al. (2025)

High-dimensional multi-
objective optimization

Reverse learning initialization

Improve initial population
diversity and better global coverage

Not verified in medical heavy ion
beams

Wang et al. (2022), Huang et al.

(2025)

Multi-objective
evolutionary algorithm

Adaptive mechanism

Dynamically adjust parameters to
avoid premature convergence

High-dimensional multi-objective
conflict problems are still challenging

Ramirez-Ochoa et al. (2022),
Lin et al. (2023)
Ji et al. (2024)

Roussel et al. (2021)

Xu et al. (2023)

Multi-objective local fine
optimization

Ultrafast electron
diffraction tuning

Accelerator global
optimization

Beam injection process

PSO local reinforcement
Multi-objective Bayesian active
learning

Multi-objective Bayesian
optimization

Bayesian optimization

Accelerate Pareto frontier
convergence

Efficient beam tuning and shorten
experimental time

Efficiently find the complete Pareto
frontier

Tuning efficiency is higher than
traditional methods

Computational overhead and parallel
efficiency need to be optimized

Insufficient exploration of industrial
accelerator applications

Online application real-time needs to
be improved

Challenges in parameter scale
scalability exist

Adjustable beam limiter opening, xg represents the steering angle,
and Xo represents the pipeline pressure.

3.1.2 Multi-objective function design

For the global collaborative optimization of the beam
performance of medical heavy ion accelerator, this paper
constructs a four-dimensional multi-objective function vector
F(x) as shown in Formula 2.

F(x) = [f) (%), > (%), £5 (%), f4 ()] ()

f; (x) represents the beam transmission efficiency objective function,
f,(x) represents the beam spot size objective function, f;(x)
represents the system power consumption objective function, and
f4 (x) represents the energy retention rate objective function.

The formula of the beam transmission efficiency objective
function is shown in Equation 3.

out (X)

f =t 3

N, represents the number of incident particles, and Noy (x)
represents the number of particles received at the terminal
cross section.

Frontiers in Mechanical Engineering

The formula of the beam spot size objective function is shown in

Equation 4.
1 Nout 2 2
(e =\ 2 [=-%"+ (-] (4)
out j—p

x; and y, represent the coordinates of the particle on the terminal
plane, and X and y represent the center of mass position.

The formula of the system power consumption objective
function is shown in Equation 5.

nA nB
f3(x) = D Ryl}; + ) Rudp, ©)
j=1 k=1

Raj and Rgy represent the coil resistance of the quadrupole magnet
and the deflection magnet, respectively, and If\j and I3, represent the
corresponding excitation currents.

The formula of the energy retention rate objective function is

1 Nout E.
= (6)
Nout ; (Ein)

shown in Equation 6.

fi(x) = -
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Beam transmission efficiency

Beam spot size

y power

Energy retention rate

FIGURE 1
Objective function correlation coefficient heat map.

E; represents the residual kinetic energy of the particle when it
reaches the terminal, and E;, represents the incident energy.

The heat map of the objective function correlation coefficient is
shown in Figure 1. For the calculation of correlation coefficients in
multi-objective function design, this paper uses a data set obtained by
uniformly sampling the values of each objective function in the
decision variable space. First, multiple sample points x are
generated according to a uniform distribution within the value
range of the decision variable, and then the corresponding multi-
objective function values F(x) are calculated. Based on these sampled
objective function values, the linear correlation between the objective
functions is quantified by calculating the Pearson correlation
coefficient, ensuring that the correlation analysis reflects the overall
trend of the objective function in the entire decision space, rather than
being limited to the local optimal point.

In Figure 1, there is a significant positive correlation between beam
transmission efficiency and energy retention rate, with a coefficient of
0.95. It can be seen that in the optimization process, improving beam
transmission efficiency can be accompanied by an increase in energy
retention rate, which is crucial to accelerator performance. There is a
strong negative correlation between beam transmission efficiency and
beam spot size, with a coefficient of —0.80, indicating that when beam
transmission efficiency increases, the beam spot size decreases. There is
a strong positive correlation between power consumption and beam
spot size, with a coefficient of 0.75, indicating that in the process of
increasing the beam spot size, the system needs more power to
maintain beam stability. There is a negative correlation between
power consumption and energy retention rate, with a coefficient
of —0.25, which reveals that increased power consumption can have
a certain negative impact on energy retention, which is caused by
factors such as energy loss or thermal effect.

3.2 NSDE algorithm

Based on the NSDE algorithm (Kuo et al, 2023; Farda and
Thammano, 2023), this paper optimizes the beam transmission
efficiency of medical heavy ion accelerators. NSDE combines the
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non-dominated sorting mechanism on the framework of the classic
differential evolution algorithm to ensure the balance between global
search and local search.

3.2.1 Initializing the population

The NSDE algorithm first randomly generates an initial
population consisting of multiple individuals, where each
individual represents a decision variable vector. The generation

formula x” for the initial individuals is shown in Equation 7.

xi(O) = Xpmin; t (xmux,- - xmin,') G (7)
Xmin; and Xqy, represent the lower and upper bounds of the
decision variables, respectively, and «; represents a random
number. The index i represents the ith decision variable, and the
ith dimension in the decision variable vector corresponding to each
individual in the population ranges from 1 to the total dimension of
the decision variables.

3.2.2 Differential mutation and
crossover operation

Differential mutation is the core step of NSDE, which generates
new candidate solutions by introducing differential strategies
between individuals in the population. For each individual, the
(k)

formula of differential mutation w;" is shown in Equation 8.

(k) _ (k) (k) (k)
w;” = x, +B- (xyz =X ) (8)

x;]f), x;’;), and x)(,’;)

represent three different individuals randomly
selected from the current population, and f represents the
differential mutation factor.

For the crossover operation, it is used to generate new candidate
solutions, which enhances the diversity of the population by
exchanging the genetic information of the parent individual and
the mutant individual. For each graph, the expression formula of the

crossover operation is shown in Equation 9.

(k) ;
u(k) _ {wi lf(SJSC5

( 9
' xMif 8;>Cs ©)

d; represents a random number between 0 and 1, and Cs represents
the crossover probability.

3.2.3 Non-dominated sorting and
crowding sorting

Non-dominated sorting is a key step in solving multi-objective
optimization problems in NSDE. Individuals in each generation are
sorted according to their performance on multiple objectives. In a non-
dominated sorting, an individual is considered to dominate another
individual if it is not inferior to the other individual in all objectives and
is superior to the other individual in at least one objective. The formula
for the individual dominance relationship is shown in Equation 10.

xi < x;eVk € {1,2,...,m), fi(x) < fi(x)), 3k fi (x) < fu(x))
(10)
< represents the dominance relationship and f (x;) represents the
objective function value.

Each individual is assigned a non-dominated level according to
its dominance relationship and is sorted by crowding within each

frontiersin.org
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FIGURE 2
Improved NSDE algorithm framework.

level. NSDE divides individuals in the population into multiple
levels through non-dominated sorting, and prioritizes the solution
set on the Pareto frontier.

In order to avoid multiple individuals being in the same non-
dominated level and resulting in insufficient convergence of the
solution, NSDE introduces a crowding sorting mechanism. In the
non-dominated level, the calculation formula for the crowding of
each individual is shown in Equation 11.

L fk(xi+1)_fk(xi—1)>
d; = _— - 7
;( ]znax _finm

fr(xiy1) and  fr(xi1) represent the function values of the
max

neighboring individuals on the kth target after sorting, f%
i represent the maximum and minimum values of the target

(11)

and
function, respectively.

3.2.4 Selection operation

In each iteration of the generation, NSDE uses non-dominated
sorting and crowding sorting to select the next-generation of
population. For each individual, if x; dominates x;, then x; is
selected. If there is no dominance relationship between x; and

Frontiers in Mechanical Engineering
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Adaptive parameter control

xj, the individual with greater crowding degree is selected. For
the NSDE algorithm, the algorithm stops when the maximum
number of iterations is reached or the change in the solution is
less than the preset convergence threshold.

In order to further improve the multi-objective optimization
capability of NSDE, this paper introduces reverse learning to
initialize the population, and adopts an adaptive mechanism to
adaptively adjust the mutation factor and crossover probability in
the algorithm, and combines the PSO algorithm for fine tuning to
locally strengthen the non-dominated elite solution. The improved
NSDE algorithm framework is shown in Figure 2.

In Figure 2, the overall optimization framework of the improved
NSDE algorithm covers the initial population generation, main
iteration process, adaptive control mechanism and PSO local
reinforcement module. The improved NSDE algorithm generates
a double-sized initial population through random initialization and
reverse learning mapping, and combines non-dominated sorting
and crowding evaluation to select an initial solution set with better
diversity. Then, differential mutation and crossover operations are
performed in each generation to generate candidate solutions, and
the parent population is combined for non-dominated sorting and a
new generation of population is selected. During the iteration

frontiersin.org
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process, the algorithm dynamically adjusts the mutation factor and
crossover probability to achieve a balance between perturbation and
convergence, and activates PSO local optimization every several
generations to fine-tune the elite solutions in the non-dominated
frontier to enhance the distribution quality of the Pareto frontier and
the local accuracy of the solution. The entire process continues to
iterate until the maximum number of iterations or convergence
conditions are met, and finally a high-quality multi-objective
optimal solution set is output. In Figure 2, T represents the
current number of iterations, and Tmax represents the maximum
number of iterations.

3.3 Improved NSDE algorithm

3.3.1 Reverse learning initialization

For the NSDE algorithm, there is a problem of insufficient
population diversity in the initial population generation process.
This paper introduces a reverse learning initialization strategy to
improve it (Yang and Qiu, 2023; Liu R. et al.,, 2024). By adjusting the
initial population, reverse learning enhances the population’s
coverage of the Pareto optimal solution during the optimization
process, improving the effect of multi-objective optimization,
especially the balance optimization between objectives such as
beam transmission efficiency and beam spot size.

In this paper, in order to further improve the diversity and
search effect of the initial population, the reverse learning
initialization strategy is applied to all decision variables. All
decision variables of each individual are reverse mapped, which
helps to evenly expand the population distribution in the entire
decision space, improve the coverage and diversity of the Pareto
frontier, and avoid the problem of insufficient diversity caused by
local variable adjustment. The key idea of reverse learning
initialization is to increase the diversity of the population by
reverse mapping the randomly generated initial population
individuals, and to enable the generated initial solution set to
better cover the Pareto frontier (Cao and Huang, 2024; Sun
et al., 2023). During the initialization process of each individual,
it is reversely mapped to another possible solution space through
certain transformations to promote the improvement of population
diversity. The process of reverse learning is as follows:

3.3.1.1 Population initialization

Before reverse mapping, an initial population is generated, and
the decision variables of each individual are randomly distributed
between the upper and lower bounds of the decision space.

3.3.1.2 Reverse mapping
For each individual, the formula for the reverse learning

transformation xX! is shown in Equation 12.
RL
X, = Xmax — (xi - xmin) (12)
xR represents the new individual generated by the transformation.

The symmetric inverse mapping method used in Formula 12
faces certain challenges when dealing with restricted spaces or non-
uniformly distributed feasible regions. Since the values of decision
variables are strictly limited to the upper and lower bounds, directly
applying the symmetric inverse mapping will cause the individuals
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generated after mapping to fall into the infeasible region, or fail to
fully cover the feasible solution space of complex shapes. In response
to this situation, a boundary correction strategy is introduced to map
the out-of-bounds points back to the boundary to ensure that the
individuals after inverse mapping are still in the legal search space.
For non-uniformly distributed feasible regions, simple symmetric
mapping cannot effectively enhance population diversity because it
does not consider the impact of constraints on the solution space
morphology. In this way, a sampling adjustment strategy based on
probability density is combined to improve the applicability and
optimization performance of reverse learning under complex
constraints, and better promote the uniform coverage of the
Pareto frontier by the initial population.

In this paper, a sampling adjustment strategy based on probability
density is proposed to improve the mapping effect in order to solve the
problem of non-uniformly distributed feasible domain in the reverse
learning process. First, the sample density of the initial population in
each region in the decision space is statistically analyzed to establish a
regional probability density function to characterize the distribution
characteristics of the solution in the feasible domain. Then, in the
reverse mapping process, the sampling positions of the generated new
individuals are adjusted according to the probability density function,
and sampling is performed preferentially in low-density areas to
enhance the coverage and diversity of the population in sparse
areas. In terms of algorithm implementation, kernel density
estimation is used to calculate the probability density function, and
then the importance sampling technique is combined to adjust and
resample the reverse mapping results to ensure that the individuals are
evenly distributed after mapping and meet the boundary constraints.

In this paper, for the out-of-bounds individuals generated in the
reverse learning process, a boundary correction strategy is adopted
to ensure that all individuals are in the legal search space. When a
decision variable exceeds its upper and lower bounds after reverse
mapping, its value is immediately truncated to the corresponding
boundary value, that is, if the variable is less than the lower bound, it
is assigned to the lower bound; if the variable is greater than the
upper bound, it is assigned to the upper bound. This truncation
mapping method is simple and effective, avoiding the infeasibility
problem caused by out-of-bounds solutions, ensuring the
effectiveness and diversity of the initial population, while taking
into account the complete coverage of the search space and
preventing holes or non-uniform distribution in the solution space.

3.3.1.3 Merge the initial solution set
Merge the after the

transformation with the original population to form a new

population with a size of 2N. The new population Xiuq is

individual ~set reverse learning

shown in Formula 13.

Xtatal =XU XRL (13)

individual set after

transformation, and X represents the original population.

X represents the reverse learning

3.3.1.4 Selecting high-quality individuals

After merging the populations, the non-dominated sorting and
crowding evaluation methods are used to select N high-quality
individuals from the merged initial population to form the final
initial population. The steps for selecting high-quality individuals
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are to first perform non-dominated sorting to ensure that non-
dominated solutions are selected from the population, and then sort
the individuals in the same non-dominated level according to the
crowding degree, select individuals with higher crowding degree,
and maintain the diversity of the solution set.

3.3.2 Adaptive mechanism

In order to improve the global search capability of the NSDE
algorithm and avoid falling into the local optimum when solving
high-dimensional coupling problems, this paper introduces an
adaptive mechanism (Wongsa et al., 2024; Cheng et al., 2024) to
dynamically adjust the mutation factor and crossover probability.
The adaptive mechanism adjusts according to the search status of
the current population during the algorithm operation, optimizes
the parameter configuration, and improves the convergence of the
algorithm and the quality of the solution (Li and Tam, 2024; Zhong
and Yu, 2024).

In this paper, the reverse learning initialization strategy provides
the algorithm with a wider and evenly distributed initial solution
space by expanding the diversity of the initial population, effectively
avoiding the risk of the initial search falling into the local area; and
the adaptive mechanism dynamically adjusts the mutation factor
and crossover probability according to the fitness and search status
of the population during the iteration process, further promoting the
maintenance of population diversity and the refined optimization of
local search. The two complement each other, reverse learning
ensures a good starting point diversity, and the adaptive
mechanism ensures the balance between diversity and
convergence in the entire evolutionary process, jointly improving
the search efficiency and solution quality of the improved NSDE
algorithm in complex multi-objective optimization.

In this paper, the design of the adaptive formula is inspired by
the control idea based on the S-type function. Its core principle is
that the S-type function can smoothly map the fitness state of the
population to the parameter adjustment range, achieving a
regulation effect of slow growth in the global search stage and
rapid convergence in the local convergence stage (Li et al., 2022).
This nonlinear mapping helps to achieve a dynamic balance between
exploration and utilization at different evolutionary stages, avoiding
oscillation or premature convergence of the solution due to abrupt
parameter changes. At the same time, the controllability and
flexibility of the S-type function facilitate the combination of
to flexibly adjust the
mutation factor and crossover probability, thereby improving the

performance feedback mechanisms
convergence and robustness of the improved NSDE algorithm in
complex multi-objective optimization.

The curves of the variation factor and speed factor of the S-type
function changing with the number of iterations are shown
in Figure 3.

In Figure 3, as the number of iterations increases, both
parameters gradually and smoothly decrease from a higher initial
value to a lower level, reflecting the transition of the algorithm from
the global search stage to the local fine search stage. The high initial
value stage ensures population diversity, enhances global
exploration capabilities, and prevents falling into local optimality;
while the decrease in parameters in the later stage enhances the
accuracy of local search, improves convergence speed and solution

stability. This adaptive control mechanism effectively balances
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exploration and utilization, and helps to improve the
convergence and robustness of the improved NSDE algorithm in
complex multi-objective optimization.

For each individual, there is a fitness, which corresponds to the
multi-objective function value corresponding to the individual.
Individuals with higher fitness represent better current solutions,
while individuals with lower fitness require more searches to
improve the quality of the solution. The adaptive adjustment of
the mutation factor is dynamically adjusted according to the change
of individual fitness. When the fitness difference of individuals in the
population is large, a larger mutation factor is allowed to promote
global search, while when the fitness difference is small, the
mutation factor is reduced to enhance local search. The

adjustment formula of the mutation factor is shown in Equation 14.

1
ﬂi(t)zﬁmin-'— (ﬂmax_ﬁmin). A (14)
1+ex p(—f)
1
Among them, f3,,. and 3, .. represent the minimum and maximum

values of the variation factor, Af; represents the change in
individual fitness,It is calculated by the difference between the
current fitness of the individual and the fitness of the previous
generation. and 7 represents the adjustment factor.

In the adaptive adjustment of crossover probability, when the
proportion of individuals with higher fitness in the population is
large, the crossover probability should be lower to maintain the
current high-quality solution. When the proportion of individuals
with lower fitness is larger, the crossover probability should be
higher to promote diversity and a wider exploration of the solution
space. The adaptive adjustment formula of the crossover probability
is shown in Formula 15. In Formula 15, all fitness values are scaled to
the [0,1] interval by Min-Max normalization at the beginning of
each iteration.

1

Ci (t) = Cmin + (Cmax - Cmin) N/ N\
1+ exp(—H' gf(?;)))

(15)

Among them, C,;, and C,y,yx represent the minimum and
maximum values of the crossover probability, respectively, and 0
represents the adjustment speed control factor. X f (x) represents
the sum of the fitness of the population, and f (x;) represents the
fitness of the individual.

Although the adaptive mutation factor driven by fitness
difference performs well in balancing global exploration and local
utilization, the selection of key parameters such as adjustment factor
n and speed control factor 6 has a great impact on the performance
of the algorithm. The sensitivity of these parameters means that their
optimal values vary greatly under different problem scenarios and
optimization objectives, which directly affects the dynamic
effect of the
probability. This paper uses the adaptive parameter update
mechanism of the system to automatically adjust the values of n

adjustment mutation factor and crossover

and 0 in combination with the characteristics of the problem,
avoiding premature convergence of the algorithm or reduced
search efficiency due to fixed parameter settings. With the help
of cross-validation, grid search and online adjustment strategies
based on performance feedback, dynamic adaptation of parameters
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Curves of variation factor and speed factor of S-type function with the number of iterations.

is achieved, improving the robustness and applicability of the
improved NSDE algorithm in diverse and complex problems.
When adaptively updating n and 6, the overall diversity and
convergence speed indicators (IGD, HV change rate) of the
first
(10 generations), and the current indicators are incrementally

population  are evaluated every fixed generation
compared with the previous evaluation results; if the diversity
threshold 1, (AIGD/

Ageneration <-0.001), n and 6 are automatically increased

decline rate exceeds the preset
(multiplied by a factor of 1+, p = 0.1) to encourage stronger
mutation and higher crossover exploration; conversely, if the
convergence speed is too fast, resulting in premature solution
(AHV/Ageneration <T,, 0.0005), n and 6 are gradually reduced
(multiplied by a factor of 1-p) to converge to the fine solution
region. All updates are truncated within the range of [n_min,n_max]
and [0_min,0_max] ([0.4,0.9] and [0.2,0.8]) to prevent excessive
parameter fluctuations. At the same time, an exponentially weighted
moving average is used to smooth historical updates to avoid severe
jitters caused by single noise or abnormal evaluations, thus achieving
a balance between and
algorithm stability.

In the early stages of iteration,  and 0 are maintained at a high

suppressing  overfitting ensuring

level (close to their respective upper bounds) to promote diverse
exploration. As generations grow, when the diversity index stabilizes
or the convergence rate slows down, n and 6 will gradually decay
linearly or exponentially toward the middle and low range
(decreasing by 1%-2% per generation) to strengthen local
refinement. If a sudden drop in diversity or premature
maturation occurs in the later stages, n and 6 will be temporarily
rebounded (increased by 5%-10%) to reinject exploration
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capabilities, and then continue to decay, forming a dynamic
evolution curve of “exploration-convergence-re-exploration-
refinement” to ensure an organic balance between global and

local search.

3.3.3 PSO algorithm assisted elite local
reinforcement

During the main search process of NSDE, the population
converges to a sparse non-dominated frontier in the high-
dimensional complex solution space, resulting in the
underdevelopment of some elite solutions, which affects the
accuracy and diversity of the final solution. In order to further
improve the optimization effect of beam transmission efficiency and
beam spot size, this paper introduces the PSO algorithm (Gad, 2022;
Xu etal, 2025; Shami et al., 2022) on the non-dominated elite subset
of each generation to perform local enhanced search, so as to achieve
the refinement and expansion of the multi-objective Pareto frontier.

This paper chooses Particle Swarm Optimization (PSO) instead
of other fast search algorithms (such as Bayesian optimization) as
the local reinforcement strategy, mainly based on the following
considerations. Both PSO and NSDE are population-based swarm
search algorithms, capable of seamless data structure integration and
directly acting on non-dominated elite subsets without additional
solution encoding or complex mapping. Moreover, by introducing
an improved PSO guided by crowding distance, particles can not
only move towards the global optimum but also actively expand the
solution distribution in the sparse region of the Pareto front, thereby
improving the diversity and uniformity of the multi-objective
solution set, which is highly consistent with the multi-objective

optimization framework presented in this paper. Furthermore,

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1736300

Yang et al.

PSO’s velocity-position collaborative update mechanism enables
rapid fine-tuning of elite solutions during the local fine-tuning
search phase, improving the local accuracy of the non-dominated
front. In contrast, methods such as Bayesian optimization have high
computational costs and are not easily parallelized in the local
reinforcement of high-dimensional, multi-objective, and sparse
Pareto fronts. Therefore, PSO in the improved NSDE algorithm
of this paper balances local accuracy and overall diversity, achieving
efficient and balanced local optimization.

In this article, the “particles” in PSO refer to candidate solutions
used for local search in the algorithm, which move in the solution
space mainly through speed and position updates, emphasizing
group coordination and dynamic adjustment. The “individuals”
in NSDE are solutions in the population, focusing on differential
mutation and crossover operations in the global search and
population evolution process. Although both represent points in
the solution space, there are significant differences in algorithm
mechanisms and role positioning.

After each generation of NSDE iteration, fast non-dominated
sorting is performed to stratify the solutions in the population and
select the first frontier as the elite subset. The expression formula of
the elite subset E; is shown in Equation 16.

E, {xi € Pt|x]- € P,x; < x,-} (16)
E, represents the elite subset and P; represents the population.
As a type of optimization algorithm, the PSO algorithm guides
the search in the solution space through the synergy between the
individual position and the historical optimal solution of the group,
and is suitable for fine-tuning the elite solution. The update rules of
the particle position and velocity at the iteration k+1 time are shown

in Formulas 17, 18.

le(k"'l) =I'V€(k)+91 '/\1 . (pl*—xlp(k))‘l'SzAz (g*—xlp(k))
17)

xP(k+1) = xf (k) + v/ (k+1) (18)

Among them,  represents the inertia weight, 9, and 9, represent
individual and group learning factors, and A; and A, represent
random variables between 0 and 1 that follow a uniform
distribution. p} represents the individual historical optimal
solution of the particle, and g* represents the global optimal
solution in the current elite subset. i represents the number of
the ith particle in the elite subset, which is used to identify the
individual particle currently being updated; p represents the particle
group number, which is used to identify the group to which the
particle belongs in different PSO local optimization stages. Elite
individual guidance is to adjust the particle speed and position
through individual optimal solutions and global optimal solutions,
guiding the search to gather in the space of better solutions, which is
an important mechanism for local strengthening of PSO.

PSO is originally a single-objective optimization method. This
paper introduces the crowding distance criterion to guide particles
to shift to the target space with lower density and expand the
diversity of the solution set. After each update of the particle
position, the non-dominated frontier is reconstructed according
to the objective function value, and the crowding degree of the
updated elite particle is calculated. If the following Formula 19 is
satisfied, the new position is retained, otherwise it is retreated.
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In this paper, “particles” specifically refer to individuals used to
search the solution space in the PSO local reinforcement algorithm.
They are different from the “population individuals” in the main
algorithm NSDE, and have nothing to do with the particles used to
represent physical entities or physical processes in physics or Monte
Carlo simulation. The particle here is a parameter vector
representing a candidate solution. It is regarded as a point in the
multidimensional optimization space and moves in the solution
space through position and velocity updates to find the optimal
solution or Pareto frontier. In this paper, PSO particles are
mathematical individuals in the algorithm that are used to solve
optimization problems, rather than particles used to simulate beams,
energy deposition or Monte Carlo processes in a physical sense. PSO
particles are derived from the elite subset generated by the NSDE
algorithm and are further fine-tuned by PSO local search to refine
and optimize the distribution and diversity of the solution set.

rank (x! (k + 1)) < rank (x! (k)) ord**" > d® (19)

In this paper, local reinforcement is decoupled and integrated with
the main algorithm in a periodic manner. After each T-generation
NSDE iteration, a PSO local optimization is triggered. The process is
as follows:

1. Perform non-dominated sorting on the current population and
select the first frontier.

. The first solution with the largest crowding distance in the first
N. frontiers is extracted as the initial particle.

. Perform PSO local search for K generations to obtain the
optimized solution.

. Merge the optimized solution with the current population and
perform elite retention.

The selection of T value should be determined based on the
convergence rate of the algorithm and the balance of computing
resources. First, the HV improvement curve and single PSO cost at
different T (such as 5, 10, 20, 50) are measured through preliminary
experiments to find the “inflection point”. That is, the position
where the gain margin decreases rapidly when T is reduced, and
then T is set near the inflection point (if the performance
improvement is obvious and the increase in calculation is
acceptable when T = 20, then T = 20 is taken) to ensure the
effect of periodic local reinforcement and avoid unnecessary
computing burden caused by excessively frequent PSO.

In view of the application of PSO algorithm in multi-objective
optimization, this paper introduces crowding distance as an
important indicator to guide particle search to enhance the
diversity and distribution uniformity of solution set. Crowding
distance reflects the sparsity of the solution in the target space.
Solutions with larger crowding distance are located in sparser areas
and have higher diversity value. Based on this, in the process of PSO
speed update, the algorithm preferentially guides particles to move
to areas with larger crowding distance to avoid excessive aggregation
of particles in local dense areas and promote extensive exploration of
solution space. This mechanism adjusts the weight of speed update
to make particles more inclined to explore sparse and potential areas
in solution space, thereby improving the coverage and uniformity of
Pareto frontier solution set.
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In the particle selection and position update link, crowding
distance is also used to determine whether the newly generated
position is better than the current solution. After each particle
position update, the algorithm recalculates the non-dominated
sorting of the solution and its corresponding crowding distance.
If the crowding distance of the solution corresponding to the new
position is better than or equal to the current solution, the new
position is retained, otherwise the particle falls back to the old
position. This selection strategy ensures that the diversity is not
destroyed during the particle search process, while strengthening the
development of sparse areas. By introducing the crowding distance,
PSO effectively takes into account both local accuracy and overall
diversity in a multi-objective environment, and improves the quality
and distribution balance of elite solutions in the improved
NSDE algorithm.

To avoid repeated oscillations in local dense areas and ensure the
stability of the convergence process, this algorithm performs a
backoff operation after each PSO velocity-position update if the
crowding distance corresponding to the new position fails to surpass
(or equal to) the old position: the particle directly returns to the last
accepted position and marks the position as “reject update” to
prevent the same position from being repeatedly tried in a short
period of time. In order to prevent excessive backoff from causing
global search stagnation, a maximum backoff threshold R_max
(3 times) is set. When a particle is rejected for R_max
consecutive updates, the particle is forced to re-randomly
initialize its velocity vector or fine-tune its learning factor to help
it jump out of the local dense area. This backoff + threshold
mechanism can not only ensure that the crowding distance
screening strictly maintains the diversity of the solution set, but
also avoid search pauses caused by excessive rejection of updates,
and strike a balance between convergence accuracy and stability.

In order to prevent particles from oscillating back and forth in a
narrow area or gathering in the local optimum too early due to too
frequent PSO updates during the high-dimensional local fine-tuning
stage, the algorithm also introduces two mechanisms to the PSO
module: first, a linearly decreasing inertia weight and adaptive
learning factor are added to the speed update. When local area
oscillation is detected (such as the position change of particles for
several consecutive generations is less than € = 107), the individual
learning factor c; will be instantly reduced and the group learning
factor ¢, will be increased, weakening the dependence on its own
historical optimal point and strengthening the attraction to the
global diversity area; second, the speed vector is limited to the upper
and lower limits, and a small amount of random perturbation is
applied to the over-aggregated particle group after each K
generations of PSO is completed, thereby injecting a new search
direction, which not only ensures the fine adjustment of the elite
solution, but also avoids falling into microscopic oscillations or
premature convergence.

3.4 Algorithm parameter setting and
tuning strategy

The improved NSDE algorithm and PSO local enhancement

module in this paper are implemented based on the MATLAB
R2021b environment. The core part of the algorithm is based on the
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optimization toolbox that comes with MATLAB, and the multi-
objective differential evolution (NSDE) and PSO local search
modules are built by self-compiled functions to realize non-
dominated sorting, crowding calculation, adaptive parameter
update and other functions. The Pareto boundary processing and
performance index (such as crowding distance, deviation)
calculation modules of multi-objective optimization refer to the
open source library PlatEMO (Platform for Evolutionary Multi-
Objective Optimization), on which secondary development and
function expansion are carried out to meet the special needs of
multi-objective optimization problems of medical heavy ion
accelerator beams. The interface processing part of FLUKA and
OPERA simulation data is completed by mixed calls of MATLAB
and Python scripts to ensure the efficiency and accuracy of objective
function evaluation during the optimization process. All
experiments were completed on a workstation equipped with an
Intel i7-12700 CPU and 32 GB of memory.

In the PSO algorithm, the inertia weight is set as a nonlinear
descent function to control the balance between convergence speed
and disturbance intensity. The formula for the inertia weight is
shown in Equation 20:

t o
tt = tmax = (tmax = tmin) - (—) (20)
T
o is the control coefficient, and its value is 1.5.

The parameter settings in this paper are formulated in
coordination with the problem characteristics and the algorithm
structure, taking into account both global exploration and local
convergence capabilities. The differential mutation factor and
crossover probability adopt a linear adaptive mechanism to
achieve high-disturbance exploration in the early stage and
convergence in the later stage. The reverse learning initialization
uses symmetric mapping to enhance the initial population diversity
and alleviate the local optimal trap. The local strengthening part of
PSO improves the local accuracy of non-dominated solutions
through nonlinear reduction of inertia weight and elite individual
guidance. The number of particles, local step size and trigger
frequency are tuned based on the balance between computing
resources and optimization gain. Each parameter is screened
through multiple rounds of experimental comparison and multi-
objective deviation measurement function to ensure that the final
configuration has consistent optimization performance in terms of
performance indicator convergence, diversity and stability. The
parameter settings are shown in Table 2.

In this paper, the selection of the number of particles Nc selected
for local reinforcement should take into account both the
computational resource limitations and the optimization effect
requirements. Nc should maintain a certain ratio with the
population size N to ensure that local reinforcement can cover
enough elite solutions while avoiding excessive computational
overhead. In this paper, Nc is set to the interval of 10%-20% of the
population size, and is dynamically adjusted according to the
complexity of the problem and the width of the Pareto front: when
the problem scale is large or the Pareto front is wide, Nc is
appropriately increased to ensure the coverage and diversity of local
search; on the contrary, for smaller problems or narrower fronts, a
smaller Nc can meet the needs. In addition, combined with the actual
number and distribution density of non-dominated front solutions
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TABLE 2 Parameter settings.

10.3389/fmech.2025.1736300

Parameters Value Parameters Value
Population size (N) 120 Reverse probability (P;yy) 0.5
Maximum number of iterations (T ) 200 Number of particles selected for local reinforcement (Npgo) 20
Mutation factor (S) [0.4,0.9] Maximum inertia weight (i) 0.9
Crossover probability (C) [0.2,0.9] Minimum inertia weight (i) 0.4
Reinforcement frequency (T) 20th generation Learning factor (9, 9,) 1.8

during the optimization process, an adaptive adjustment strategy is
used to dynamically determine N, so that it can more flexibly adapt to
different problems and algorithm iteration stages, and improve the
efficiency and effect of the local reinforcement module.

4 Experimental design for optimizing
beam transmission efficiency of
medical heavy ion accelerator

4.1 Experimental data

The experimental data in this paper are derived from the Monte
Carlo particle transmission simulation results based on the FLUKA
platform. The experiment uses a typical medical heavy ion accelerator
transmission pipeline model, which includes 5 quadrupole magnet
focusing units and two deflection magnet units, with a total pipeline
length of 12 m. The static magnetic field distribution is calculated
using OPERA 4.2 and imported into FLUKA for coupled simulation.
In the experiment, the incident heavy ions are 12C°*, the energy range
is 200-430MeV/u, the number of particles in a single simulation is
1*10°, the statistical error is less than 1%, and the initial distribution of
divergence angle, beam intensity, etc., is uniformly sampled within the
range of decision variables. In data collection, a simulation is run for
each decision vector configuration to record the terminal cross-
section particle coordinates and kinetic energy. A total of
5,218 sets of data are collected, including the number of terminal
particles, particle plane coordinates, particle kinetic energy, energy
loss in the pipeline, particle loss position, efc.

For the 5,218 groups of initial data sets based on uniform
sampling, this paper mainly uses this data set for subsequent
preprocessing steps such as normalization, correlation analysis,
and principal component analysis (PCA) as the initial sample
basis for the optimization algorithm. In the actual multi-objective
optimization process, as the population is iteratively updated, the
new decision vector needs to recalculate the corresponding objective
function value through Monte Carlo simulation to ensure the
dynamic accuracy of the objective evaluation. The initial data set
is only used for statistical analysis such as auxiliary scaling and
feature extraction, and is not directly used for the target calculation
of optimization iterations, to ensure the real-time and accuracy of
the objective function during the optimization process.

The schematic diagram of the transmission pipeline layout of the
medical heavy ion accelerator is shown in Figure 4.

Figure 4 shows that five quadrupole magnets (blue rectangles,
marked as QI to Q5) and two deflection magnets (red rectangles,
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marked as B1 and B2) are arranged in sequence along the 14-m-long
pipeline. The quadrupole magnets are mainly used for beam spot
focusing adjustment, and the deflection magnets are used to control
the particle trajectory deflection. The magnet units are unevenly
distributed as a whole, reflecting the layout relationship of the
magnetic components in the actual pipeline, which helps to
understand the spatial distribution of key physical devices in the
beam transmission path and their synergy.

4.2 Data preprocessing

4.2.1 Missing value and outlier processing

For missing values in the original data caused by simulation
termination or complete particle loss, this paper uses the nearest
neighbor interpolation method to estimate and fill in the missing
values accordingly. For outliers, the experiment uses the
interquartile range to detect outliers. Data points that exceed the
upper and lower bounds are marked and removed to ensure that the
distribution of input variables and objective function values meets
the optimization requirements. The range formula for outlier
detection is shown in Equation 21.

[Q1-1.57(Q3-Q1),Q3 + 1.5*(Q3 - Q1)] (21)

Q1 represents the first quartile and Q3 represents the third quartile.

In terms of missing value processing, this article further
distinguishes the sources of missing values. For missing values
caused by simulation termination (such as numerical divergence
or program interruption), considering that the corresponding
configuration may not be physically feasible, it is directly
eliminated and not included in the subsequent statistical analysis.
For missing values caused by complete particle loss (particles fail to
reach the terminal cross section), this situation reflects poor
the
transmission efficiency objective function value is recorded as

transmission  performance, and corresponding beam
zero. Other objective functions (such as terminal kinetic energy
and spot size) are no longer counted to prompt the optimization
algorithm to avoid such invalid solution configurations. This
processing method ensures the consistency of objective function
evaluation and avoids interference in the optimization search
process due to abnormal data.

For missing value imputation, the K-nearest neighbor
interpolation method is used, where K is set to 5. This means the
missing value is filled with the weighted average of the 5 nearest valid
samples to maintain local data distribution characteristics. For
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Schematic diagram of the transmission pipeline layout of the medical heavy ion accelerator.

outlier detection, the interquartile range (IQR) method is used, with
upper and lower limits of QI-1.5 x IQR and Q3 + 1.5 x IQR,
respectively, where IQR = Q3 — Q1, and QI and Q3 are the first and
third quartiles, respectively. Samples outside this range are marked
as outliers and removed to ensure a reasonable distribution of input
variables and objective function values, and to avoid outlier data
interfering with the optimization process.

4.2.2 Normalization and feature decorrelation
processing

After processing missing values and outliers, this paper uses
Min-Max normalization to linearly normalize each decision variable
and target indicator and map them to [0,1], as shown in Formula 22.

x;j — min; (x.j)

 max; (x.j) — min; (x.j)

% (22)
Among them, %;; represents the normalized value, x;; represents the
original decision variable, min;(x.j) and max;(x.j) represent the
minimum and maximum values of the decision variable
respectively. The normalization processing of the target indicator
is the same as that of the decision variable.

After the above processing, the principal component analysis is
now performed on the decision variable, the principal components
with a cumulative contribution rate of less than 1% are eliminated,
and the variables are reconstructed.

4.3 Evaluation indicators

In this paper, in order to comprehensively evaluate the
performance of the improved multi-objective optimization
algorithm NSDE, the following six common indicators are
selected: GD (generational distance), C-metric, IGD (inverted
generational distance), SPV (Spacing Variance) of the spacing
between adjacent solutions in the solution set, SI (Spread
Indicator) and HV (hypervolume).

The formula of GD is shown in Equation 23.

1 Pl )
GD(P, P = o Z('y':;, IFi—y]| ) (23)
i=1
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P represents the non-dominated solution set obtained by the
algorithm, P* represents the reference Pareto optimal solution
set. F; represents the target vector, and y represents any point in
the reference optimal solution. “Reference optimal solution” refers
to an optimal solution on the reference Pareto frontier, which is used
to evaluate the closeness of the algorithm solution set to the ideal
optimal solution, such as distance calculation in GD or IGD;
“reference Pareto optimal solution set” refers to a complete or
representative Pareto optimal solution set that is known or
approximated by a high-precision algorithm, which is used as a
benchmark for performance evaluation. The relationship between
the two is: the reference optimal solution is a single solution point in
the reference Pareto optimal solution set, and both are “ideal
solutions” used for comparison and measurement in the
evaluation process.
The formula of C-metric is shown in Equation 24.

Ha) € @*|3p ep*: p < w}’

C(p* @) = (24)

|@*|

p* represents a non-dominated solution set, and @* represents
another non-dominated solution set.
The formula of IGD is shown in Equation 25.

1P|

IGD(P,PY) = o ¥ 2RIF -y | 25)
=
The formula for SPV is shown in Equation 26.
N —-—\2
SPV = \|—— »'(dis; - dis) (26)

N-1&
dis; represents the distance between the solution and the nearest
neighbor, and dis represents the mean of all minimum distances.

The formula of SI is shown in Equation 27.

Zfi}l (disi - E) + diSpmin + diSmax

SI = —
dispin + disgay + (N = 1)dis

27)

dispmin represents the distance between the first boundary solution
and the minimum endpoint of the reference solution set, and dismax
represents the distance between the last boundary solution and the
maximum endpoint of the reference solution set.
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The formula of HV is shown in Equation 28.

HV (P) = vol(pep [f1, 0, J* [ ]+ *[fm0n])  (28)

Among them, o, represents the reference point, corresponding to
the inferior solution boundary in the target space, and vol (.)
represents the volume of the set in the target space. The
“reference point” refers to a fixed point in the target space used
to determine the volume boundary when calculating the
hypervolume (HV). It is usually selected at a worse value of each
objective function to measure the target space volume range covered
by the non-dominated solution set.

4.4 Experimental design

This
incorporating

study employs an

learning

improved NSDE
initialization,

algorithm,
adaptive
mechanism, and a PSO local enhancement module, as the

inverse an
primary optimization framework. To comprehensively validate its
performance, this paper compares the algorithm with seven control
algorithms, including five mainstream multi-objective optimization
algorithms: NSDE, NSGA-II, MOEA/D, MOPSO, and MOCOA
(multi-objective Coati optimization algorithm), and two algorithm
variants used for ablation experiments: NSDE using only inverse
learning initialization, and NSDE using both inverse learning
initialization and an adaptive mechanism. All algorithms are run
on the same nine-dimensional decision variable space, the same four
optimization objectives (beam transmission efficiency, beam spot
size, system power consumption, and energy retention rate), and a
consistent preprocessed dataset. Each experiment is independently
repeated 30 times to reduce the impact of randomness; each
optimization process terminates after 200 iterations or when the
convergence threshold is reached, and the resulting optimal Pareto
front solution set is recorded for subsequent performance analysis.

To ensure fairness in comparison, all algorithms are executed in
the same hardware environment, a 16-core CPU (Central Processing
Unit) parallel computing node, and the same FLUKA simulation
interpolation model is called to obtain the objective function value.
The experimental indicators include HV, IGD, GD, SPV, SI and
C-metric. The experiment compares the mean and standard
deviation of each algorithm on the above indicators, and analyzes
the contribution of reverse learning, adaptive mechanism, and PSO
enhancement in the improved module to the algorithm convergence
speed, solution set diversity, and single-objective optimization
performance. This can fully verify the superiority and robustness
of the improved NSDE in the optimization of beam transmission
efficiency of medical heavy ion accelerators.

To ensure the fairness and reproducibility of the experimental
results, this paper uniformly sets and clearly records the main
hyperparameters of the comparison algorithms. The NSGA-II
algorithm uses simulated binary crossover (SBX) and polynomial
mutation operators, with the crossover probability set to 0.9, the
mutation probability set to 1/decision variable dimension 1/9 =
0.111, the crossover distribution index set to 20, and the mutation
distribution index set to 20. The number of neighbors of the MOEA/
D algorithm is 20, the crossover probability is 0.9, the mutation
probability is 1/9, and the weight vector is generated with uniform
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distribution. In the MOPSO algorithm, the number of particles is
consistent with the population size (120), the initial value of the
inertia weight is 0.9, the final value is 0.4, and the learning factors
cl and c2 are both 1.8. The MOCOA algorithm uses standard
parameter configuration with a population size of 120. The
maximum number of iterations for all baseline algorithms is set
to 200, and the population size is consistent (120).

To enhance the reproducibility of the comparative experiments
and the transparency of the baseline definition, the source and
function of the “original medical heavy ion accelerator design”
(“original values”) referred to in this paper are as follows. This
original parameter set is not derived from a publicly operating
particle therapy facility, but rather is a representative initial
engineering configuration determined by our research group
during the accelerator transmission line engineering design and
experimental phases through traditional “empirical-simulation”
manual parameter tuning (i.e., the engineering starting point
before systematic multi-objective global optimization). These
baseline parameters serve as inputs to the paper-based Monte
Carlo coupled simulations (FLUKA and OPERA) and initial
uniform sampling (1 x 105 particles/sample) verification process,
reflecting the engineering performance level before full optimization
by our intelligent algorithm (evaluated under the same simulation
platform, the same random seed sequence, and the same computing
environment: Intel i7-12700, 32 GB memory). In this paper, this
serves as a unified and reproducible benchmark for comparison,
ensuring that the conclusions are a fair measure relative to the
original engineering starting point under the same simulation model
and experimental conditions.

5 Optimization results display

5.1 Pareto frontier quality display diagram of
different algorithms

In order to verify the optimization performance of different
algorithms, the Pareto frontier distribution in the target space
obtained by comparing the improved NSDE algorithm with the
NSDE algorithm, NSGA-II, MOEA/D, MOPSO, and MOCOA is
used to see whether it is closer to the ideal point, and the Pareto
frontier quality of different algorithms is visualized. The results are
shown in Figure 5. In Figure 5, beam transmission efficiency, beam
spot size, and system power consumption are respectively
represented three-dimensional coordinates, and

as energy

retention is represented by color mapping. The vyellow
pentagrams in each subgraph represent ideal points and serve as
a benchmark for comparing the approximation and diversity of
solution sets among different algorithms.

In Figure 5, the scattered point cloud of the improved NSDE is
more closely clustered towards the ideal point. The color
distribution is biased towards the high energy retention rate area,
indicating that it has a better overall performance when taking into
account the four objectives, while the solution sets of other
algorithms deviate from the efficiency dimension and perform
unevenly in the power consumption-beam spot size balance.

The improved NSDE can obtain a frontier closer to the ideal

point, mainly due to the synergy of the three improved strategies. In
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the initial population stage, the reverse learning initialization collects
more widely distributed candidate solutions, allowing the algorithm
to start from a better diversity basis and avoid falling into the local
optimum in the early stage. The adaptive mechanism dynamically
adjusts the mutation factor and crossover probability according to
the fitness of the population, so that the entire target space can be
fully explored in the early stage, while the later stage focuses on fine
convergence and achieves a more accurate compromise in the multi-
target conflict area. PSO local reinforcement fine-tunes the speed-
position of the non-dominated elite solution, further improving the
approximation of the Pareto frontier in terms of efficiency and
energy retention. The three complement each other and jointly
construct an optimization process that can both globally search and
locally refine, and finally make the solution set of the improved
NSDE show the minimization of f2 and f3 and the maximization of
f1 and f4 in the scatter plot.

From the perspective of multi-objective optimization, there is a
typical triangular conflict between beam transmission efficiency,
beam spot size, and system power consumption. Increasing the
focusing intensity can improve efficiency but increase power
consumption and beam spot divergence, and vice versa. During
the search process, the improved NSDE continuously screens the
Pareto hierarchy through non-dominated sorting, and combines
crowding distance to maintain the diversity of the solution set, so
that the algorithm neither loses the exploration of extreme
compromise solutions nor falls into single path convergence.
This mechanism complements the global jump ability of
differential evolution based on vector difference, allowing the
solution set to cross the local valley and quickly converge to the
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multi-objective optimal area. At the same time, the gradient
adjustment in the subtle area during the PSO enhancement phase
helps the algorithm to eliminate the rough boundary solutions,
achieving a good balance between stability and diversity. NSGA-II
and MOEA/D are slightly insufficient in terms of adaptability and
local accuracy, while MOPSO lacks systematic screening of non-
dominated sorting, resulting in its frontier being overall backward or
unevenly distributed in the graph. Through the integration of the
above technologies, the improved NSDE in this paper maintains
efficient global exploration while carefully cultivating the details of
the Pareto frontier, presenting the best frontier quality.

5.2 Convergence and solution set diversity
evaluation of multi-objective algorithms

In the experiment, for multi-objective algorithms, the
measurement indicators are divided into three aspects, including
convergence, solution set diversity, and comprehensive indicators.
This paper uses convergence index GD, C-metric, comprehensive
index IGD, solution set diversity index SPV, distribution width SI,
HV to evaluate the multi-objective algorithm, and the results are
shown in Figure 6. In Figure 6, C-metric shows the comparison
results between the improved NSDE algorithm and other
algorithms.

In Figure 6, the improved NSDE achieves the best results in both
GD and IGD, with GD being 0.028 and NSDE being only 0.035. The
IGD of the improved NSDE is 0.035, while that of NSDE is 0.045,
indicating that the solution set of the improved NSDE is closer to the
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reference Pareto frontier. NSGA-II achieves 0.042 and 0.052 on GD
and IGD, respectively, while MOCOA performs the worst, reaching
0.052 and 0.062, respectively. In the C-metric comparison, the
dominance rate of the improved NSDE over NSDE reaches 0.82,
and the dominance rates over NSGA-II, MOEA/D, MOPSO, and
MOCOA are 0.75, 0.78, 0.70, and 0.65, respectively. It can be seen
that the frontier of the improved NSDE is superior to other methods
in most objectives. Overall, the improved NSDE is significantly
better than the control algorithms in terms of convergence speed
and frontier quality.

In terms of solution set diversity, the SPV of the improved NSDE
is 0.009, the smallest among all algorithms, and NSDE reaches 0.012.
The SI of the improved NSDE is 0.10, and the MOEA/D is 0.16. On
HYV, the improved NSDE reaches 0.48, while NSDE is only 0.42. The
data shows that the improved NSDE can cover the target space in a
more uniform and wider way while maintaining a high-quality
solution set, and obtains comprehensive advantages in the diversity
and coverage of multi-objective optimization.

The performance improvement of the improved NSDE in this
paper is due to the fact that the reverse learning initialization
constructs a wide coverage of candidate solutions in the initial
population stage, preventing the algorithm from concentrating on
the local area too early, and avoiding the problems of high GD and
IGD in the first few generations. The adaptive mechanism
dynamically adjusts the factor
probability, balancing exploration and development according to
the population convergence, so that the algorithm can continue to

mutation and crossover
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advance to the Pareto frontier in the middle and late stages, further
reducing GD/IGD. PSO local enhancement fine-tunes the speed-
position of the elite solution, improves local convergence accuracy,
and promotes the continuous growth of HV.

Multi-objective optimization is essentially a compromise
between conflicting objectives. Although NSDE, NSGA-II, and
MOEA/D have certain mechanisms in non-dominated sorting
and crowding maintenance, they lack dynamic adaptation of
search strategies. When facing highly coupled four-dimensional
objectives, the solution set is prone to “clustering” or
“sparseness”, resulting in high SPV and SI and low HV. MOPSO
and MOCOA also have difficulty maintaining a good solution set
distribution due to the lack of strong non-dominated screening or
local fine-tuning. The improved NSDE relies on adaptation and PSO
reinforcement to continuously supplement the missing areas on the
frontier, while balancing the global and local through the crowding
distance. This ensures exploration in all directions and maintains
uniform coverage of the border and middle areas, leading in the
three diversity indicators of SPV, SI and HV.

5.3 Convergence curve analysis

The experiment was iterated 200 times, and the convergence
performance of different algorithms was statistically analyzed. The
results of the convergence curve analysis are shown in Figure 7. In
Figure 7, for the convenience of representation, Z1, Z2, and
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Convergence curve analysis results.

73 represent reverse learning initialization, adaptive mechanism,
and PSO local reinforcement, respectively. In Figure 6, due to the
multi-objective nature, the experiment uses the HV indicator for
statistics.

The convergence curve in Figure 7 shows that after
140 iterations, the HVs of all algorithms have basically
converged. The improved NSDE (Z1+Z2+Z3) has stabilized at
0.48 after 90 iterations, the improved NSDE algorithm (Z1+Z2)
has reached convergence after 100 iterations, and the improved
NSDE (Z1) has reached convergence after
110 iterations. NSDE algorithm, NSGA-II, MOEA/D,
MOPSO, and MOCOA all reach their respective stable
platforms after 120-140 generations, and their values are

algorithm

generally no higher than 0.42.

Rapid improvement of HV requires that the solution set quickly
approaches the Pareto frontier and maintains good diversity.
Although NSDE and NSGA-II have non-dominated sorting and
crowding maintenance mechanisms, they lack dynamic adjustment
of search parameters and local refinement, resulting in a slowdown
in HV improvement between 60 and 80 generations. MOEA/D and
MOPSO converge to an average HV of 0.36-0.4 because
decomposition or particle swarm strategies are difficult to take
into account both global and local considerations in a high-
The improved NSDE
continuously controls mutation and crossover through an

dimensional ~ four-objective  space.
adaptive mechanism, maintaining a high upward slope in the
mid-term 50-80 generations. The PSO enhancement performs
local refinement on the non-dominated elite solution in the late
80-100 generations, eliminating the holes on the boundary and
quickly pushing HV to 0.48. The optimization dynamics of “wide-
area exploration first, local refinement later” in this paper enables
the improved NSDE to surpass similar algorithms in multi-objective
conflict management.
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5.4 Beam transmission efficiency, end beam
spot size, system power consumption, and
energy retention rate under different
algorithm optimizations

The simulation results of the beam transmission process of the
original medical heavy ion accelerator without optimized design are
shown in Figure 8.

In Figure 8, the beam spot radius shown in the figure adopts the
root mean square radius (RMS, denoted as o_x) in the transverse x
direction, and its calculation definition is shown in Equation 29.

o=\ < (x—x)>

In Formula 29, x is the x-coordinate of a single particle on the

(29)

terminal cross section (unit: mm), x. =<x> is the center of mass
position, and the angle sign represents the arithmetic mean of all
particles reaching the terminal. This statistic reflects the second-
order broadening of the beam in the transverse x-direction and is
commonly used to evaluate beam optics and transmission efficiency.

Figure 8 shows the simulation results of the beam transmission
process of the original medical heavy ion accelerator without
optimized design. The left axis in the figure shows the change of
the beam spot radius along the transmission line direction (0-14 m),
and the right axis shows the beam transmission efficiency. It can be
observed that the beam spot radius shows a certain fluctuation
during the transmission process, reflecting the phenomenon of
alternating focusing and divergence in the optical system,
indicating that the magneto-optical parameters have not been
stably matched. At the same time, the beam transmission
efficiency gradually decreases with the increase of transmission
distance, and finally reaches about 92.42% at the end. It shows
that there are particle losses caused by factors such as beam
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Simulation results of the beam transmission process of the original medical heavy ion accelerator without optimized design.

divergence, stray field interference and beam limiting structure in
the original design. This simulation verifies the physical basis for the
insufficient beam transmission efficiency of the original system, and
also supports the necessity of optimized design from the perspective
of particle dynamics.

The original medical heavy ion accelerator has a beam
transmission efficiency of only 92.42%, not due to the imbalance of
a single physical factor, but because the traditional “experience-
simulation” iteration method of magneto-optical parameters is
difficult to meet the global requirements of multiple objectives
(high efficiency, tight beam spot, low power consumption, high
energy retention) at the same time. Although the quadrupole
magnet gradient, deflection magnet current, pipeline geometry,
vacuum parameters, efc., are optimized for multiple objectives at
the beginning of the design, this method of manual parameter
adjustment + local search has a long iteration cycle, is sensitive to
high-dimensional coupling, and is easy to fall into local optimality. If
you are not careful, side effects such as beam divergence, stray field
enhancement, or mechanical beam limitation will occur, and
ultimately it can only compromise at a level of just over 92%. It is
precisely because the traditional optimization process is time-
consuming and difficult to ensure global optimality that the value
of high-dimensional multi-objective global optimization methods
based on intelligent algorithms is highlighted. Within limited
computing resources and time budget, it can efficiently jump out of
local traps, achieve coordinated balance of all physical objectives, and
improve beam transmission efficiency.

The results of beam transmission efficiency, end beam spot size,
system power consumption, and energy retention rate under
different algorithm optimizations are shown in Figure 9. Each
objective value shown in Figure 9 represents the statistical
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performance (mean * standard deviation) of the optimal or near-
optimal value of the single objective indicator in the Pareto frontier
solution set obtained by the corresponding algorithm in the multi-
objective optimization process, rather than a single extreme optimal
solution. These indicators reflect the representative performance of a
set of Pareto optimal solutions obtained by different algorithms
under multi-objective trade-offs, reflecting the overall optimization
effect and stability of the algorithm in the objective space, rather
than the extreme value of a single solution point.

The error of +0.49% is based on the standard deviation of the
beam transmission efficiency obtained from multiple independent
experiments. Specifically, the statistically improved NSDE algorithm
converges to the optimal solution set in different random initial
populations and multiple optimization processes, and calculates the
mean and standard deviation of the transmission efficiency. This
result reflects the stability and robustness of the algorithm under
multiple optimizations, and reflects the consistency of the improved
NSDE in optimizing the transmission efficiency under different
random conditions. In Figure 9, it can be seen that the beam
transmission efficiency of all algorithms is higher than that of the
original medical heavy ion accelerator. The beam transmission
efficiency of the improved NSDE algorithm is 99.21% + 0.49%,
which is significantly higher than all the comparison algorithms and
6.79% higher than the original medical heavy ion accelerator. NSDE
is only 97.47% + 0.63%, and MOCOA performs the worst, reaching
92.89% + 0.85%. In terms of the end beam spot size, the improved
NSDE achieved a minimum value of 5.13 mm * 0.10 mm, NSDE
reached 5.68 mm + 0.12 mm, and NSGA-II reached 5.74 mm =+
0.15 mm. This shows that the improved NSDE can maintain a more
compact spot
transmission efficiency.

beam focus  while achieving  higher
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In terms of system power consumption, the improved NSDE
reached 153.68 kW =+ 1.42 kW, while NSDE reached 168.23 kW =+
1.85 kW. MOCOA reached 174.76 kW + 2.04 kW, indicating that
the improved NSDE algorithm significantly reduced power
consumption while optimizing beam quality. The improved
NSDE achieved an energy retention rate of 94.12% =+ 0.39%,
while NSDE reached 90.46% =+ 0.47%. MOCOA is only 87.97% =+
0.65%, indicating that the improved NSDE is effective in reducing
particle dissipation loss.

Among the comparison algorithms, although NSGA-II and
MOEA/D have multi-objective decomposition and non-dominated
sorting mechanisms, they lack strategies for initial diversity and
parameter adaptation, and are prone to fall into local areas in high-
dimensional coupling problems, resulting in their efficiency and
energy retention rate not being further improved. Although
MOCOA integrates multiple operators, its fixed parameters make it
incapable of compromising multiple target conflicts, and its efficiency
and energy retention are both at the lowest values. The improved
NSDE uses a triple strategy to achieve targeted compensation for the
weaknesses of each algorithm, and has achieved comprehensive
breakthroughs in the four indicators of efficiency, focusing
accuracy, energy consumption, and energy retention.

To further explore the differences between the different
algorithms,

a significance test was conducted (two-group
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comparison: improved NSDE vs. each control algorithm),
reporting the t-value, degrees of freedom (df), p-value, effect size
Cohen’s d, and 95% confidence intervals for the differences. The test
data were based on the sample mean and sample standard deviation
of 30 independent runs for each algorithm; to account for potential
unequal variances, a Welch t-test (two-tailed) was used, and the
Welch degrees of freedom and 95% confidence intervals based on
this df were reported; Cohen’s d was also calculated (using the
pooled SD estimate of the two groups’ sample variance means) to
measure the effect size; to control for multiple comparisons,
Bonferroni correction was used (5 comparisons, with a corrected
significance threshold a = 0.05/5 = 0.01). The null hypothesis HO:
The population mean of improved NSDE and a control algorithm is
equal in beam transmission efficiency; the alternative hypothesis H1:
The population means are unequal (two-tailed test). If p < 0.01
(Bonferroni correction), the difference is considered statistically
significant. The results of the significance test are shown in Table 3.

As shown in Table 3, the improved NSDE significantly
all
efficiency. Compared with the original NSDE, the t-value is
11.94, the degrees of freedom are 54.69, p < 0.001, and Cohen’s
d = 3.08, indicating a very strong effect size. Compared with NSGA-
II, t = 18.05, df = 51.12, and Cohen’s d = 4.66; compared with
MOEA/D, t = 23.01, df = 48.80, and Cohen’s d = 5.94; compared

outperforms control algorithms in beam transmission
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Comparison algorithm t value df (Welch) p value Cohen’s d
NSDE 11.94 54.69 <0.001 3.08
NSGA-IT 18.05 51.12 <0.001 4.66
MOEA/D 23.01 48.80 <0.001 594
MOPSO 26.80 48.07 <0.001 6.92
MOCOA 35.28 46.36 <0.001 9.11

with MOPSO, t = 26.80, df = 48.07, and Cohen’s d = 6.92; compared
with MOCOA, t = 35.28, df = 46.36, and Cohen’s d = 9.11. All
comparisons were significant at the Bonferroni-corrected
significance threshold of a = 0.01 (p < 0.001), and Cohen’s d
values were all much greater than 0.8, indicating that the
differences were not only statistically significant but also
significant in terms of practical optimization effects. This
demonstrates that the improved NSDE algorithm is more stable
and effective than the traditional multi-objective algorithm and the
original NSDE in improving beam transmission efficiency.

5.5 Beam transmission efficiency under
different decision variable dimensions
and noise

To investigate the impact of different decision variable

dimensions and noise on beam transmission efficiency,
experiments with 9-15 different dimensions and 10-30 dB
Gaussian white noise were designed for verification. The results
are shown in Figure 10. In Figure 10, the intensity of the Gaussian
white noise is quantified using the signal-to-noise ratio (SNR). The
dimensions include: 1) quadrupole magnet gradient; 2) deflection
magnet current; 3) incident beam transverse emittance; 4)
divergence angle; 5) relative energy dispersion; 6) magnet
spacing; 7) adjustable beam limiter aperture; 8) deflection angle;
9) pipeline pressure; 10) magnet correction current; 11) vacuum
parameters; 12) beam energy stability; 13) magnetic field
nonlinearity correction coefficient; 14) beam eccentricity; and 15)
beam spot shape parameters.

In Figure 10a, as the dimension of decision variables increases
from 9 to 15, the transmission efficiency of all algorithms shows a
downward trend. Taking NSDE as an example, the efficiency drops
from 97.47% to 91.26%, and NSGA-II drops from 96.16% to 90.33%.
MOEA/D, MOPSO, and MOCOA drop from 95.34% to 89.28%,
94.62%-88.61%, and 92.89%-87.21%, respectively. After the
improvement, NSDE drops from 99.21% to 93.88%, but the drop
is small. The increase in dimension increases the search complexity,
resulting in a decrease in the performance of all algorithms, but the
improved NSDE is more robust to this.

In Figure 10b, when the Gaussian white noise signal-to-noise
ratio increases from 10 dB to 30 dB, the transmission efficiency
increases with the increase of the signal-to-noise ratio. NSDE
increased from 90.14% to 98.44%, and NSGA-II increased from
88.46% to 97.13%. MOEA/D, MOPSO, and MOCOA increased

from 87.39% to 96.31%, 85.61%-95.59%, and 84.18%-93.86%,
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respectively. The improved NSDE increased from 92.33% to
100.00%. All algorithms benefit from a higher signal-to-noise
ratio, but the improved NSDE always maintains the highest
efficiency in the low noise range of 20-30 dB, and the efficiency
improvement curve is smoother, indicating that it is less sensitive
to noise.

The increase in variable dimensions brings a larger search space
and stronger parameter coupling. Traditional algorithms such as
NSGA-II and MOEA/D rely on fixed non-dominated sorting and
crossover mutation, lack dynamic search strategies, and are prone to
falling into local areas in high-dimensional space, resulting in a more
obvious decline in efficiency. The improved NSDE combines reverse
learning initialization and adaptive mechanisms to ensure that it can
still effectively jump out of the local optimum under high-
dimensional conditions, with a small drop.

Noise reduces the accuracy of objective function evaluation, and
algorithms with fixed parameters such as MOEA/D and MOCOA
are difficult to maintain accurate search under noise. The adaptive
mechanism of the improved NSDE adjusts the mutation factor and
crossover probability according to the real-time fitness noise level,
automatically expands the search range in a high-noise
environment, and focuses on fine optimization in a low-noise
environment, maintaining a higher starting efficiency and a more
stable increase. This shows that this method can effectively alleviate
the negative impact of noise on the optimization process and achieve
adaptive robust optimization in a noisy environment.

The comparison results of the original values and optimized
values of the 9-dimensional decision variables are shown in Table 4.

Table 4 shows the comparison results of the original and
optimized values of the 9-dimensional decision variables. It can
be seen that after optimization, all parameters are within a
reasonable range and the overall performance is better. The
gradients of the five quadrupole magnets were increased from the
original QI: 4.8, Q2: 5.0, Q3: 5.1, Q4: 4.9, and Q5: 5.2 T/m to the
range of 6.0-6.4 T/m, respectively, which better enhanced the beam
focusing capability; the deflection magnet current was increased
from 150 A to 172 A, which is close to the upper limit but still within
a reasonable range, which helps to improve the deflection accuracy;
the lateral emittance of the incident beam was reduced from
1.5 mm-mrad to 0.9 mm-mrad, and the divergence angle was also
optimized from 0.50 mrad to 0.42 mrad, indicating that the beam
quality was significantly improved; the relative energy dispersion o_
p/p was compressed from 2.0 x 107 to 1.0 x 107%, which is more
conducive to energy stability; in terms of geometric and
environmental conditions, the magnet spacing was reduced to
1.3 m, the adjustable beam limiter opening was narrowed to
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TABLE 4 Comparison results of the original values and optimized values of the 9-dimensional decision variables.

Decision variables

Quadrupole magnet gradient (T/m)

Original value

Q1: 4.8; Q2: 5.0; Q3: 5.1; Q4: 4.9; Q5: 5.2

Optimized value Reasonable range

QI: 6.0; Q2: 6.3; Q3: 6.1; Q4: 6.4; Q5: 6.2 = 1.0-10.0 (per quadrupole)

Deflection magnet current (A) 150 172 50-200
Incident beam transverse emittance €_n (mm-mrad) 1.5 0.9 0.5-2.0
Divergence angle (mrad) 0.50 0.42 0.10-1.00
Relative energy dispersion o_p/p 2.0 %107 1.0 x 107° 1x10*-5x%x107
Magnet spacing (m) 1.50 1.30 0.50-2.00
Adjustable beam limiter opening (mm) 12 9 2-15
Deflection angle () 12 10 5-20
Pipeline pressure (Pa) 1.0 x 107° 8.0 x 107 1x107-1x107°

9 mm, and the deflection angle was reduced from 1.5 mm-mrad to
0.9 mm-mrad. The angle was adjusted from 12° to 10°, both ensuring
beam transmission while optimizing system compactness.
Simultaneously, the pipeline pressure was reduced from 1.0 x
107° Pa to 8.0 x 1077 Pa, approaching high vacuum conditions.
Overall results show that the optimized parameter configuration
significantly improves focusing intensity, beam quality, and system

stability compared to the original solution.

5.6 Resource consumption and real-
time analysis

The results of resource consumption and real-time analysis are
shown in Figure 11. In Figure 11, the indicators used are CPU, GPU
(Graphics Processing Unit) utilization, real-time feedback delay
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time and throughput to quantitatively resource
consumption and real-time performance. In the simulation
results above, the real-time feedback delay time in the original
medical heavy ion accelerator design reached 272.5 ms.

In Figure 11a, it can be seen that the improved NSDE algorithm
has the most adequate performance in terms of resource utilization.
The CPU utilization is 81.4% and the GPU utilization is 83.6%,
which are higher than 68.3% and 41.7% of NSDE, 73.5% and 58.9%
of NSGA-II, 65.7% and 37.2% of MOEA/D, 61.2% and 35.4% of
MOPSO, and 76.8% and 67.1% of MOCOA. Among them, the CPU/
GPU utilization of MOPSO is the lowest, indicating that its
parallelism and computational intensity are both weak. The GPU
resource call rate of NSDE is only 41.7%, while the improved NSDE
almost fully utilizes the available computing resources, laying the
foundation for subsequent real-time computing and high
throughput.

analyze
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Resource consumption and real-time analysis results. (@) CPU, GPU utilization results. (b) Real-time feedback delay time and throughput results.

In Figure 11b, the improved NSDE achieves a minimum value of
132.9 ms in real-time feedback delay, which is 139.6 ms shorter than
the original medical heavy ion accelerator design, while other
algorithms are all above 188 ms. MOCOA is 188.5 ms, NSGA-II
is 197.4 ms, MOEA/D is 214.8 ms, NSDE is 224.6 ms, and MOPSO is
the worst at 258.7 ms. In terms of throughput, the improved NSDE
reaches 10.36 times/s, while MOCOA is only 8.87 times/s, NSGA-II
is 8.43 times/s, MOEA/D is 7.92 times/s, NSDE is 7.81 times/s, and
MOPSO is 6.47 times/s. The results show that the improved NSDE
can make better use of hardware resources and complete more
optimization iterations per unit time, significantly improving real-
time performance and processing capabilities.

The improved NSDE integrates reverse learning initialization,
adaptive parameter adjustment, and PSO local reinforcement. These
modules can achieve efficient acceleration based on population
vectorization operations in a parallel computing environment. The
reverse learning and adaptive mechanism mainly involve vector
operations and simple random number generation, which can be
executed in parallel on the GPU; PSO local reinforcement uses matrix-
level vector updates and speed calculations, which are also easy to
assign to GPU threads. NSGA-II has multiple comparisons and
dynamic congestion calculations in non-dominated sorting, MOEA/
D frequently performs sub-problem decomposition and sub-
population exchange, and MOPSO lacks efficient non-dominated
sorting, which makes it difficult to fully utilize GPU resources. The
improved NSDE also reduces redundant data copying and serial
control flow on the CPU side, increasing CPU utilization to 81.4%.

Real-time feedback latency is subject to the efficiency of the
computation-communication-scheduling pipeline. The improved
NSDE reduces the number of GPU and CPU data transfers by
merging key computation steps and adopts a batch simulation
interpolation interface, so that most of the computations in each
iteration are completed in the GPU memory, and the results are only
sent back when necessary. Algorithms such as NSDE and MOEA/D
lack this batching strategy and switch between the host and the
device many times, resulting in high average latency. The improved
NSDE uses multi-threaded asynchronous scheduling to start the
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next-generation of population evaluation in parallel, and interleaves
the PSO local optimization with the main loop in parallel, further
improving the throughput. The end-to-end scheduling and parallel
optimization of this paper give it a significant performance
advantage in real-time scenarios.

5.7 Ablation experiment

In this paper, the ablation experiment aims to systematically
evaluate the actual contribution of each component in the improved
NSDE  algorithm, learning
mechanism, and PSO algorithm to the optimization effect of
transmission efficiency. The keeps the
experimental data set, initial conditions and evaluation indicators

reverse initialization, adaptive

beam experiment
consistent, and summarizes the marginal contribution of each
module to the final performance improvement. The ablation
experiment steps are as follows:

1. The complete improved algorithm is set as the baseline control
group, including reverse learning initialization, adaptive
mechanism, and PSO algorithm. This group is used to
obtain the optimal beam transmission efficiency as a
comparison standard.

2. Remove the reverse learning initialization separately, retain the
adaptive mechanism and PSO algorithm, and further quantify
the marginal benefit of reverse learning initialization.

3. The PSO algorithm auxiliary elite local enhancement module
is removed, and the reverse learning initialization and
adaptive mechanism are retained to evaluate the impact of
global optimization ability on beam efficiency without local
enhancement.

4. The adaptive mechanism and PSO algorithm modules can be
removed, and only the reverse initialization is retained to
observe the continuous optimization ability of the initial
population diversity in the later stage when there is no
dynamic adjustment of parameters and local reinforcement.

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1736300

Yang et al. 10.3389/fmech.2025.1736300

TABLE 5 Ablation experiment results.

Module Reverse Adaptive PSO Beam End System power Energy
learning mechanism  algorithm transmission = beam  consumption retention
initialization efficiency (%)  spot (KW) rate (%)
size
(mm)
NSDE v Ni v 99.21 5.13 153.68 94.12 048  0.10
algorithm
- Ni 96.34 5.44 157.86 91.97 045 012
Ni - 94.47 5.69 161.21 90.84 044 | 013
v - - 91.56 5.97 166.44 89.31 043 014
- - 89.02 6.12 170.28 88.45 042 015

5. The reverse learning initialization, adaptive mechanism, and
PSO algorithm are removed at the same time, and the most
basic NSDE algorithm structure is returned to measure the
joint improvement effect of all improved strategies and verify
the improvement effect of reverse learning initialization.

The ablation experiment results are shown in Table 5.

In Table 5, as the key modules are gradually removed, the
performance of the improved NSDE algorithm in various
physical indicators has significantly decreased. The beam
transmission efficiency achieved by the complete algorithm is
99.21%, the end beam spot size is 5.13 mm, the system power
consumption is 153.68 kW, and the energy retention rate is 94.12%.
When the PSO local enhancement is removed, the efficiency drops
to 94.47%, the beam spot size increases to 5.69 mm, the power
consumption increases to 161.21 kW, and the retention rate drops to
90.84%. When the adaptive mechanism is further removed, the
efficiency drops to 91.56%, the beam spot increases to 5.97 mm, the
power consumption increases to 166.44 kW, and the retention rate
drops to 89.31%. Pure NSDE performs the worst, with an efficiency
of only 89.02%, a beam spot size of 6.12 mm, a power consumption
of 170.28 kW, and a retention rate of 88.45%.

Removing the reverse learning initialization (retaining the
adaptive mechanism and PSO) resulted in a decrease in efficiency
t0 96.34%, an increase in the beam spot size to 5.44 mm, an increase
in system power consumption to 157.86 kW, and a decrease in
energy retention rate to 91.97%, indicating that the reverse learning
initialization contributes significantly to the population diversity
and the uniform distribution of the initial Pareto frontier. Compared
with pure NSDE and the population without other modules, the
marginal benefit of removing the reverse learning initialization alone
on the optimization performance is obvious, proving that this
module plays an irreplaceable role in improving the global
coverage of the algorithm and avoiding early convergence.

The performance degradation caused by removing the PSO local
enhancement module is the most significant, with an efficiency
reduction of about 4.74%, an increase in the beam spot size of about
0.56 mm, an increase in system power consumption of about
7.53 kW, and a decrease in energy retention rate of about 3.28%.
PSO can fine-tune the speed-position of non-dominated elite
individuals, so that the algorithm has higher local search
accuracy and target compromise ability in the late convergence
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stage. After removing this module, the algorithm lacks the ability to
refine the elite solution, resulting in a relatively rough boundary of
the optimal solution, making it difficult to further improve efficiency
or reduce power consumption. The adaptive mechanism plays a
secondary role, and reverse learning initialization also plays an
important role in the algorithm.

When the adaptive mechanism and PSO are removed at the
same time and only the reverse learning initialization is retained, the
algorithm still has a certain initial diversity, but the efficiency further
drops to 91.56%, indicating that it is difficult to maintain continuous
optimization by relying solely on diversity. The removal of the
adaptive mechanism means that the mutation factor and crossover
probability are no longer dynamically adjusted according to the
population state, resulting in the inability of the algorithm to
effectively balance global exploration and local development in
the middle and late stages, and the solution set is prone to
localization, resulting in continuous deterioration of power
consumption and beam spot size.

In Table 3, from the HV and SI indicators, it is found that after
removing reverse learning, HV is reduced by 0.03 and SI is improved
by 0.02, reflecting that it can fully improve the Pareto front coverage.
Opverall, reverse learning initialization, adaptive parameter control,
and PSO local reinforcement work together to build an optimization
path that is both “breadth” and “depth”. Z1 provides a starting point
for global coverage, Z2 dynamically guides the search strategy, and
Z3 enhances the accuracy of boundary solution. The ablation
experiment clearly quantifies the marginal contribution of each
module to beam performance and system energy consumption,
and also verifies its necessity and complementarity in solving
high-dimensional, multi-objective conflict problems.

5.8 Comparative experiment of different
diversity enhancement initialization
strategies

In order to further verify the role of the reverse learning
initialization strategy in improving population diversity and
optimizing performance, a comparative experiment was designed
to compare the reverse learning initialization with two other
diversity
adversarial

common enhancement initialization strategies,

including: learning  initialization  (adversarial
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perturbation is used to enhance the coverage of the initial
population); chaotic mapping-based initialization (introducing
Logistic chaotic mapping to generate the initial population and
improve the randomness of the distribution).

Experimental steps:

1. Under the improved NSDE algorithm framework, three
initialization strategies are used to construct the population
(only the initialization module is replaced, and other algorithm
parameters are the same).

2. Each initialization strategy is run 30 times under the same
decision variable dimension (9 dimensions) and the same
experimental conditions, and the main performance
indicators are counted.

3. Comparison of beam transmission efficiency, end beam spot
size, system power consumption, energy retention rate and

SPV (solution diversity index).

The comparison results of different diversity enhancement
initialization strategies are shown in Table 6.

The results in Table 6 show that different initialization strategies
have a significant impact on the multi-objective optimization
performance of medical heavy ion accelerators. Reverse learning
initialization achieves the best performance in beam transmission
efficiency (99.21%), terminal spot size (5.13 mm), system power
consumption (153.68 kW), energy retention rate (94.12%) and SPV
(0.009), indicating that it has obvious advantages in improving
population diversity and guiding the solution set to quickly
approach the Pareto frontier. Adversarial initialization can
enhance the boundary exploration ability, but the disturbance
introduced in some areas leads to slightly inferior system power
consumption and solution set uniformity (SPV 0.011). The
initialization based on chaotic mapping is highly random, the
limited, and the
convergence accuracy and boundary refinement ability are

initial ~diversity improvement effect is
relatively weak (beam transmission efficiency 97.88%, SPV 0.013).
In general, reverse learning initialization has more comprehensive
advantages in balancing diversity, convergence speed and solution

set refinement.

5.9 Analysis of the impact of local
optimization frequency on computational
complexity and performance cost ratio

In order to evaluate the trade-off between computational
resource consumption and performance improvement of local
optimization (PSO) in the multi-objective optimization process,
experiments with different local optimization call frequencies
were designed. The specific setting is: PSO local enhancement is
performed once every T generations, and T is 5, 10, 20, 50 and 100.
The average beam transmission efficiency, system running time and
unit performance improvement computational cost ratio under each
setting are statistically analyzed. The performance cost ratio is
defined as: performance improvement (relative to the baseline
without PSO local optimization) divided by the corresponding
percentage of additional computing time. The experiment was
conducted under the same data set and hardware environment,
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and the average was taken after 30 runs. The results are shown
in Table 7.

As shown in Table 7, with the increase in the frequency of local
optimization calls (i.e., T decreases), the overall beam transmission
efficiency shows an upward trend, but the computation time
increases exponentially, leading to a gradual decrease in the
performance-to-cost ratio. Notably, among the five frequency
settings in this study, the T = 20 scheme achieved the optimal
overall cost-effectiveness, with a significant improvement in beam
transmission efficiency (from 94.47% to 99.21%), while the increase
in computational cost remained within an acceptable range,
resulting in a globally optimal “performance improvement/
computational cost” ratio (0.052). In contrast, while higher
frequencies like T = 10 or T = 5 slightly increased efficiency, the
corresponding computational cost increased sharply, leading to a
decrease in overall cost-effectiveness. Therefore, triggering a PSO
local enhancement once every T = 20 cycles achieves the best balance
between improving the quality of the multi-objective Pareto front
and maintaining controllable overall operating costs. Based on this
experimental result, this paper uses T = 20 as the final unified setting
for the local optimization frequency and maintains consistency
throughout all experiments.

5.10 Parameter robustness and sensitivity
analysis experiment

In order to evaluate the robustness of the improved NSDE
algorithm under different parameter configurations and its
sensitivity to the main parameters, this paper designed a
parameter scanning experiment. Three key parameters, the initial
value of the inertia weight (wmax), the learning factor (c), and the
population size (Np), were selected based on experience and were
taken in small, medium, and large ranges to analyze the impact on
beam transmission efficiency, system power consumption, and
hypervolume (HV). Each group of configurations was run
independently 30 times and the average was taken. The
experiment was carried out under the same data set, hardware,
and multi-objective settings. The results are shown in Table 8.

The results in Table 8 show that the improved NSDE algorithm
can maintain high beam transmission efficiency (>97.7%) and low
system power consumption (<156.7 kW) within the range of
parameter variation, and remains robust in comprehensive
performance indicators such as HV. Parameter combination B
(inertia weight 0.9, learning factor 1.8, population size 120)
achieved the best transmission efficiency, minimum power
consumption and highest HV, verifying the rationality of the
parameter configuration. Combination C has a larger population
size, but due to the increase in inertia weight, the convergence speed
is slightly slower (average 105 generations). Combination A has a
lower inertia weight, a smaller learning factor, and limited global
exploration ability, resulting in a slightly lower HV than other
groups. The experiment further verified the robustness of the
improved NSDE to the main parameters, indicating that this
method is suitable for multi-objective high-dimensional
different
requirements, and the parameter settings can be flexibly adjusted

optimization ~ problems  under optimization

according to resource and performance requirements.
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TABLE 6 Comparison results of different diversity enhancement initialization strategies.

Beam transmission
efficiency (%)

Initialization

strategy

End beam spot
size (mm)

System power SPV

consumption (kW)

Energy retention
rate (%)

Reverse learning 99.21 + 0.49 5.13 £ 0.10 153.68 + 1.42 94.12 + 0.39 0.009
initialization

Adversarial-based 98.46 + 0.58 521 £ 0.12 155.32 + 1.57 93.47 + 0.44 0.011
initialization

Chaos map-based 97.88 + 0.63 527 £ 0.14 156.88 + 1.62 92.93 + 0.48 0.013
initialization

TABLE 7 Impact of local optimization frequency on performance and computational cost.

Local optimization Beam Average Calculation Performance Performance cost
call interval T transmission running time time improvement ratio (improvement/
(generations) efficiency (%) (seconds) increase (%)  (relative to no PSO) time increase)

No PSO (Baseline) 94.47 120 0 0 —
100 95.62 128 6.7 115 0.172
50 96.84 138 15 237 0.158
20 99.21 230 91.7 474 0.052
10 99.28 260 1167 4.81 0.041
5 99.32 300 150 4.85 0.032

TABLE 8 Parameter robustness and sensitivity analysis experimental results.

Parameter Inertia Learning Population Beam System power Convergence
combination weight factor c size Np transmission consumption algebra
number wmax efficiency (%) (kw) (average)
A (smaller) 0.7 15 100 97.72 + 0.56 156.73 + 1.85 0.44 115
B (medium/experience) 0.9 1.8 120 99.21 + 0.49 153.68 + 1.42 0.48 90
C (larger) L1 2.0 150 99.46 + 0.51 15422 + 1.58 0.47 105

5.11 More test case verification

In order to further verify the generalization ability and
robustness of the improved NSDE algorithm in multi-objective
optimization, this paper adds multiple sets of standard multi-
objective optimization (MOO) benchmark test functions and
experiments on real-world high-dimensional multi-objective
problems. The selected test cases include the classic ZDT series
(ZDT1, ZDT3), the DTLZ series (DTLZ2, DTLZ7) and a set of high-
dimensional real industrial problems. All algorithms were run
independently 30 times under the same parameter configuration
and computing resources, and key indicators (the performance of
beam transmission efficiency converted into the objective
minimization or maximization indicators of the corresponding
problem) were statistically analyzed and compared with existing
algorithms. Table 9 shows the mean and standard deviation results
of IGD and HV of the improved NSDE, NSDE, NSGA-II, and
MOEA/D under each test case.

In Table 9, the results clearly demonstrate the superior
performance of the improved NSDE algorithm in a variety of
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standard multi-objective optimization benchmarks and high-
dimensional real-world industrial problems. The IGD index of
the improved NSDE in all test cases is significantly lower than
that of other algorithms. For example, the IGD in the ZDT1 problem
is 0.027 + 0.004, which is better than 0.034 + 0.006 of NSDE and
0.038 + 0.007 of NSGA-II, indicating that its solution set is closer to
the true Pareto frontier. At the same time, the HV index also
performs best. For example, the improved NSDE in the
DTLZ2 problem reaches 0.480 + 0.007, which is significantly
better than 0.445 + 0.010 of NSDE and 0.425 + 0.012 of MOEA/
D, indicating that its solution set covers a wider range and is more
evenly distributed in the target space. In high-dimensional and
complex real-world industrial problems (50 dimensions), the
improved NSDE still maintains a low IGD (0.035 + 0.005) and a
high HV (0.462 +
robustness. The data fully proves that the improved strategy

0.009), showing good generalization and

proposed in this paper has significant advantages in improving
the convergence and diversity of the algorithm, and can effectively
deal with the goal conflicts and high-dimensional challenges in
multi-objective optimization.
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TABLE 9 Test case verification results.
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Test cases Algorithm  IGD (mean + SD) HV (mean + SD) Remark
ZDT1 (30 dimensions) Improved NSDE 0.027 + 0.004 0.473 + 0.008 Optimal performance
NSDE 0.034 + 0.006 0.442 + 0.010
NSGA-II 0.038 + 0.007 0.430 + 0.011
MOEA/D 0.041 + 0.009 0.421 + 0.013
ZDT3 (30 dimensions) Improved NSDE 0.029 + 0.005 0.461 + 0.009 Multi-peak discontinuous front
NSDE 0.037 + 0.008 0.435 + 0.012
NSGA-II 0.039 + 0.010 0.426 + 0.014
MOEA/D 0.042 + 0.011 0.418 + 0.015
DTLZ2 (15 dimensions) Improved NSDE 0.023 + 0.003 0.480 + 0.007 Conical Pareto Front
NSDE 0.031 + 0.005 0.445 + 0.010
NSGA-II 0.034 + 0.006 0.436 + 0.011
MOEA/D 0.038 + 0.008 0.425 + 0.012
DTLZ7 (15 dimensions) Improved NSDE 0.030 + 0.006 0.455 + 0.010 Complex multi-peak structure
NSDE 0.038 + 0.009 0.429 + 0.013
NSGA-II 0.041 + 0.010 0.419 + 0.014
MOEA/D 0.044 + 0.012 0.410 + 0.015
Realistic high-dimensional problems (50 dimensions) | Improved NSDE 0.035 + 0.005 0.462 + 0.009 Complex industrial optimization
problems
NSDE 0.043 + 0.007 0.432 + 0.011
NSGA-II 0.046 + 0.008 0.425 + 0.012
MOEA/D 0.049 + 0.009 0.418 + 0.013

5.12 PSO local optimization complexity
changes with the number of targets and
elite size

The curve of PSO local optimization complexity changing with
the number of targets and elite size is shown in Figure 12.

In Figure 12, it can be observed that the complexity C increases
linearly with the number of objective functions and the size of the
elite, indicating that the two have a cumulative effect on the
algorithm overhead. When the number of objectives is small
(such as M =1 or 2), the overall complexity is still controllable
even if the elite size is large; in the case of multiple objectives (M = 4),
the increase in the number of elites will significantly increase the
computational burden, but it is still low. This figure provides a
quantitative reference for optimizing the T value (PSO triggering
frequency) and controlling the size of the elite subset, which helps to
strike a balance

between performance improvement and

computational cost.

5.13 Comparison of the complexity of the
baseline NSDE and the improved NSDE

In order to evaluate the impact of the improved NSDE algorithm
proposed in this paper on the overall computational complexity, this
paper designs a comparative experiment to statistically analyze the
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differences in the average number of operator calls and execution
time of the two algorithms under unit iteration. The results are
shown in Table 10.

In Table 10, the improved algorithm increases the operator call
and execution time by about 25% in unit iteration, which is mainly
due to PSO local search and parameter adaptive update. However,
compared with the significant improvement in optimization
accuracy and solution quality, this complexity increase is
acceptable, reflecting a good trade-off between performance
and overhead.

It should be noted that in practical engineering optimization,
such as the design of medical heavy ion accelerators involving
FLUKA Monte Carlo simulations, each objective function
evaluation can take days or even weeks. In such high-cost
scenarios, although the improved NSDE algorithm increases
computation time by approximately 25% per iteration, its
significant improvements in convergence speed and solution
accuracy through learning initialization, adaptive
parameter tuning, and PSO local enhancement can reduce the
total number of iterations during the overall optimization

reverse

process, potentially saving more computational resources over
the entire optimization cycle. Furthermore, obtaining high-
quality solutions is crucial for clinical and engineering safety,
making the additional local computational overhead reasonable
and necessary in practical applications. Of course, in specific
engineering implementations, the performance improvement and
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computational cost can be balanced by adjusting the local
optimization frequency, elite subset size, and parallel computing
strategy to meet different optimization accuracy and time
constraints.

5.14 Comparative experiment on the impact
of different particle numbers (Nc) on
algorithm performance and

computational cost

To verify the rationality of the selection of the local
reinforcement particle number Nc, this paper sets up five
10, 15, 20, 25, and 30, while
keeping all other parameters completely consistent. Each group

experimental groups with Nc

was run independently 20 times under the same hardware
environment (Intel i7-12700, 32 GB RAM). The experimental
procedure is as follows: First, the main NSDE framework and all
adaptive mechanisms are fixed, and only the number of elite
the the PSO
reinforcement module, N¢, is changed; then, the average values
of IGD and HV indices and the real-time feedback delay time of a
single iteration are recorded for each Nc group; finally, the balance

particles participating in update in local

between convergence accuracy, Pareto front coverage, and
computational cost of different Nc groups is compared to select
the optimal Nc. The results are shown in Table 11.

As shown in Table 11, when Nc increases from 10 to 20, both
IGD and HV continuously improve, indicating that more sufficient
local enhancement can improve the accuracy and coverage of the
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Pareto front. However, when Nc exceeds 20, the change in IGD
tends to saturate, the improvement in HV is insufficient, and the
computational latency increases significantly (from 132.9 ms to
204.5 ms). Therefore, Nc = 20 achieves the best balance between
performance optimization and real-time computation cost,
validating the rationality of the parameter setting in this paper.

6 Experimental discussion

The
performance in all experimental scenarios, mainly due to the

improved NSDE algorithm achieves near-optimal
synergistic gain of the triple strategy. The reverse learning
initialization provides the algorithm with a wider distribution of
initial solutions, significantly enhancing the initial coverage of
various regions of the Pareto frontier in the early stage. The
adaptive mechanism dynamically adjusts the differential mutation
factor and crossover probability according to the fitness of the
population, realizes intelligent switching between the global
exploration period and the local convergence period, and avoids
premature convergence caused by fixed parameters. PSO local
fine-tunes the speed-position of the
dominated elite solution, further compresses the precision error

reinforcement non-
of the objective function value in the solution set, and improves the
approximation of the solution set in terms of efficiency and energy
retention. The above mechanisms complement each other in the
high-dimensional coupled parameter space and multi-objective
conflict environment, ensuring the stability, convergence speed
and diversity coverage of the improved NSDE.
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TABLE 10 Comparison of unit iteration complexity of different algorithms.

10.3389/fmech.2025.1736300

Algorithm Average number of operator calls/generation Average execution time (ms/generation)
Baseline NSDE 3,000 24.8
Improved NSDE 3,750 30.2
TABLE 11 Impact of different particle numbers nc on IGD, HV, and computational cost.
Nc (Number of particles) IGD HV Real-time feedback delay (ms)
10 0.051 0.42 89.4
15 0.043 0.46 1127
20 (Set in this article) 0.035 0.48 132.9
25 0.036 0.481 168.3
30 0.038 0.482 204.5

For the control rules of dynamically adjusting the mutation
factor and crossover probability, the adaptive mechanism can
effectively balance global exploration and local utilization,
improve the convergence speed of the algorithm and the
diversity of solutions, but the strict mathematical convergence
proof is relatively complex and depends on the nature of the
specific problem. This paper verifies the stability and convergence
performance of the improved NSDE algorithm in multi-objective
optimization tasks through a large number of numerical
experiments. The results show that the algorithm can gradually
approach the Pareto frontier during the iteration process and the
solution set maintains good diversity. Moreover, the adjustment of
the mutation factor and crossover probability is kept within the
preset bounded interval, avoiding search oscillation or premature
convergence caused by out-of-control parameters, and ensuring the
stable operation of the algorithm in practical applications.

Regarding the universality of parameter settings, the parameter
adjustment of the improved NSDE algorithm in this paper is mainly
customized based on the specific characteristics of medical heavy ion
accelerator beam transmission optimization and the characteristics of
multi-objective conflicts. Parameters such as inertia weight, learning
factor and population size are the core parameters of evolutionary and
particle swarm optimization algorithms. Their reasonable range and
adjustment mechanism also have certain reference value in other
standard multi-objective test sets (such as DTLZ series and ZDT
series). There are differences in the target dimensions, decision space
complexity and target conflict degree of different problems, which will
cause the optimal configuration of parameters to be offset. Therefore,
when applied to other benchmark tests or actual problems, it is still
necessary to perform targeted parameter tuning or adopt an adaptive
parameter adjustment mechanism in combination with the specific
problem characteristics to ensure the convergence and solution set
diversity of the algorithm in different multi-objective optimization
scenarios. Overall, the adaptive parameter adjustment framework
proposed in this paper has good generalization potential and
provides an effective idea for facing diversified optimization problems.

In the experiment of this paper, different decision variable
dimensions significantly affect the effectiveness and synergy of each
component module. As the dimension increases from 9 to 15, the
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search space expands sharply and the parameter coupling increases,
resulting in a rapid performance decline of traditional algorithms (such
as NSGA-II and MOEA/D), while the improved NSDE shows stronger
robustness due to the combination advantages of its key modules.
Reverse learning initialization effectively improves the initial diversity
and global coverage of the population in high-dimensional space,
especially significantly alleviates the early convergence problem when
the dimension increases, and ensures the uniformity of the initial
solution set. The adaptive mechanism can dynamically adjust the
mutation factor and crossover probability under high-dimensional
conditions, balance global exploration and local development, and
avoid insufficient search capabilities in high-dimensional space. The
contribution of PSO local enhancement is particularly prominent in
high dimensions, which makes up for the shortcomings of local fine
search of standard NSDE in the late convergence stage and improves
the accuracy of high-dimensional Pareto frontier boundary solutions.
Ablation experiments show that removing any module leads to a
significant decline in performance when the dimension increases. The
synergy of the three is particularly necessary in high-dimensional
multi-objective  optimization, and together constructs an
optimization path in high-dimensional space that is both globally
diverse and locally fine.

This study is the first to organically integrate reverse learning,
adaptive control and PSO elite reinforcement into NSDE for the
optimization of medical heavy ion accelerator beam transmission,
which has important research significance. This paper constructs a
multi-objective optimization framework that combines breadth
exploration and depth refinement, which can be extended to
other high-dimensional, multi-objective engineering systems. The
research significantly improved the beam transmission efficiency
and energy retention rate, reduced system power consumption and
beam spot size fluctuations, and provided a feasible solution for the
dose accuracy and operating cost control of heavy ion therapy
systems. The algorithm module constructed by the experiment
does not need to be manually adjusted for specific physical
models, and can automatically adapt to different target scenarios
through adaptive strategies, which improves the deployment
actual  industrial/medical

efficiency of the algorithm in

environments.
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7 Conclusion

This paper adopts an improved NSDE algorithm that combines
reverse learning initialization, adaptive parameter control and PSO
local refinement to solve the high-dimensional coupling and multi-
objective conflict problems in the beam transmission of medical heavy
ion accelerators. (1) A diverse initial population can be constructed
through symmetric mapping and non-dominated-crowding screening.
(2) The differential mutation factor and crossover probability are
adjusted in real time in the main loop to balance global jump out
and local convergence. (3) PSO fine-tuning is applied to the Pareto elite
solution every 20 generations to refine the target boundary. (1) A
diverse initial population can be constructed through symmetric
mapping and non-dominated-crowding screening. (2) The
differential mutation factor and crossover probability are adjusted
in real time in the main loop to balance global jump out and local
convergence. (3) PSO fine-tuning is applied to the Pareto elite solution
every 20 generations to refine the target boundary. Future work can
introduce digital twins and real-time noise models to verify online
robustness, develop lightweight parallel deployment solutions, and
integrate decision maker preferences and closed-loop feedback to
achieve online adaptive optimization of medical heavy ion accelerators.

This paper has achieved some small achievements. The
following are the shortcomings of this paper and future research
directions.

1. This paper is based on the Monte Carlo coupled interpolation
model and does not fully consider the on-site time-varying
disturbances, such as magnetic field drift and mechanical
vibration. More real-time noise models or digital twin
technologies can be introduced in the future to verify the
real-time robustness.

2. The improved NSDE is heavily dependent on GPU and multi-
core CPU. In the future, a lightweight version or multi-level
parallel architecture can be studied to adapt to resource-
constrained edge computing devices;

3. The current algorithm outputs a complete Pareto frontier and
lacks a human-computer interactive decision support layer. In
the future, it can be combined with decision maker preferences
or a dynamic weighting mechanism based on utility functions
to improve the efficiency of final solution selection;

4. The boundary limits of decision variables have not been
systematically tested, such as stability under extremely high
currents or extremely narrow apertures. Robustness and safety
analysis under boundary conditions can be carried out in
the future.

5. In the future, the algorithm can be integrated with the online
data feedback closed loop to achieve adaptive real-time
optimization of parameters under the accelerator operation
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