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Introduction: Precise risk-based design is essential for accurately identifying and 
assessing threats, improving reliability, and ensuring the overall safety of safety- 
critical systems. Failure Mode and Effect Analysis (FMEA) is a widely employed 
technique for the evaluation of risk of components, systems, services, and 
processes. To address subjectivity and ambiguity in decision-makers’ 
judgments in traditional FMEA, several methodological improvements have 
been proposed; however, a state-of-the-art review shows that several 
research avenues are still open in this domain. Reducing the variation in 
priority ranking within failure analysis remains a mostly underexplored area. 
This significant gap serves as the main motivation for investigating whether 
the synergy between different aggregation methods and normalization 
techniques, when combined with a fuzzy reference-based approach, can 
effectively decrease the distinct rankings.
Methodology: This study proposes an improved FMEA methodology that 
combines the Fuzzy Analytic Hierarchy Process (Fuzzy AHP), Fuzzy Elimination 
Et Choix Traduisant la REalité (Fuzzy ELECTRE III), and Entropy methods to derive 
a logical ranking of FMEA failure modes, thereby enhancing the effectiveness of 
FMEA. The proposed approach employs linguistic variables to set S, O, and D 
weights, FMEA using the Entropy and Fuzzy AHP methods, integrates these 
weights using Fuzzy ELECTRE III, and finally analyzes the priority of the 
options. To validate the practical applicability of the proposed framework, a 
real-world case study on a safety-critical machine component, the clutch 
system, which is a suitable case for risk-based engineering design, is conducted.
Results and discussion: The results are compared with those obtained by the 
integration of TOPSIS and VIKOR with FMEA, showing that the proposed method 
provides fewer priority rankings while delivering more effective results. Such 
clustering provides a more realistic representation of risk, acknowledging that 
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minor distinctions between failure modes are often statistically insignificant. This 
ensures that resources are not diverted to minor issues at the expense of 
catastrophic but rare failure modes.
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decision-making (MCDM), reliability

1 Introduction

The car clutch is a critical component in passenger safety, 
allowing the driver to quickly disengage power in emergencies, 
preventing unintended movement and reducing kickback (Acko, 
2024b; Moore and Rennell, 1991; Media Q, 2023; Acko, 2024a). A 
neglected clutch can cause issues such as slippage or sticking, 
increasing the risk of accidents. Ensuring its reliability is crucial 
for overall vehicle safety, making risk assessment and system 
improvement essential. The safety criticality of this system is 
detailed in Section 4.1.

Today’s competitive markets require proactive design during the 
development and continuous improvement of existing safety critical 
systems such as the clutch system. Failure Mode and Effects Analysis 
(FMEA) is a solution that addresses both. By systematically 
analyzing potential weaknesses early on, engineers can identify 
problems before they impact customers. Additionally, FMEA 
allows for periodic reevaluation of existing systems, helping 
identify areas susceptible to new problems or those with hidden 
weaknesses. The engineering mission of FMEA is to identify and 
avoid potential failures in systems or processes before they impact 
customers (Stamatis, 2003; Liu et al., 2015). To this end, FMEA 
assigns three factors to each failure mode: severity (S), occurrence 
(O), and detection (D). These factors represent the intensity of the 
impact, the probability of occurrence, and the ease of detecting the 
failure, respectively. In a typical FMEA assessment, the risk priority 
numbers (RPNs) of the failure modes are ranked by the risk factors 
(O, S, and D).

Although FMEA is a simple and valuable tool, its traditional 
approach using a single RPN score can mask important distinctions 
between failures (Ibarra et al., 2024). This is why various variations 
are systematically analyzed and implemented to improve the 
effectiveness of FMEA, leading to a more nuanced assessment, a 
more informed prioritization, and ultimately to more robust and 
reliable systems.

To identify which failure mode has a critical role, Wang et al. 
(2009) evaluated the risk factors of FMEA using fuzzy linguistic 
variables and proposed fuzzy RPN to identify the most critical 
failure modes for FMEA problems. However, limitations were 
observed across the Multiple Criteria Decision Making (MCDM) 
approaches. The traditional prioritization of failure modes for risk 
reduction is criticized based on methodological drawbacks, critical 
ones being: the identical relative weights of risk factors (Ouyang 
et al., 2022), dissimilarity of different sets of risk factors (Liu et al., 
2016), complicated fuzziness of FMEA phenomena by using 
numerical values (Resende et al., 2024), and the mathematical 
formula for obtaining RPNs is too simple and lacks a solid 
scientific foundation as there is no rationale about why O, S and 
D should be multiplied to calculate the RPN (Gargama and 

Chaturvedi, 2011). This disability in facing FMEA problems 
shows its weakness doubly when faced with MCDM methods. 
MCDM can be explained as the evaluation of the alternatives to 
select or rank, using a number of criteria, expressed in qualitative 
and/or quantitative measurement units.

Despite the advancements in risk assessment, traditional FMEA 
remains hindered by the limitations of the RPN, specifically its equal 
treatment of risk factors and its inability to distinguish between 
high-severity and high-occurrence risks effectively. While various 
MCDM methods have been introduced to mitigate these issues, 
many existing hybrid approaches rely solely on either subjective 
expert judgments or objective data. They often fail to capture the full 
spectrum of uncertainty. Moreover, widely used compensatory 
methods, such as TOPSIS and VIKOR, tend to generate highly 
dispersed rankings that can obscure the true criticality of failure 
modes by allowing low-risk factors to offset severe ones. To address 
these issues, the objective of this study is to develop a robust hybrid 
methodology that integrates several MCDM methods, aiming to 
minimize the variation in priority ranking and ensure a more logical, 
stable, and safety-critical categorization of failure modes.

In this study, an integrated method is proposed, which combines 
the rational approaches of two different MCDM methods, namely, 
Fuzzy AHP and Fuzzy ELECTRE III, to enhance the robustness of 
FMEA decision-making. The Fuzzy AHP method captures expert 
judgments with imprecision and is used to determine the risk 
factors’ weights, and Fuzzy ELECTRE III provides a robust 
outranking approach for prioritizing failure modes under 
uncertainty. This integrated approach aims to address traditional 
FMEA limitations by improving accuracy, reliability, and decision 
support in failure mode prioritization and to enhance FMEA 
effectiveness by making the following contributions:

1. Contribution 1. Proposing an integrated MCDM method using 
the AHP, Entropy, and ELECTRE methods to employ FMEA.

2. Contribution 2. Incorporating the fuzzy numbers in the 
integrated method to address subjectivity and imprecision 
in decision-making

3. Contribution 3. Reducing the number of failure mode 
prioritization levels to facilitate risk management 
strategic planning.

The following Section delves into conventional FMEA’s 
theoretical foundation, limitations, and the state of the art on 
variations of FMEA methods. In Section 3, the theoretical 
foundations of the new method are introduced. In Section 4, the 
proposed method is implemented in a case study to validate its 
functionality using a real-world example, and in Section 5, the 
limitations and future research paths are reported, and finally, in 
Section 6, a comprehensive conclusion is provided.
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2 Literature review

In order to perform a preliminary analysis of the literature to 
illuminate the overall research landscape of the field, several Scopus 
queries were conducted in December 2024. The preliminary analysis 
reveals the distribution and integration of methodologies within the 
field of FMEA. The first search string, (FMEA OR ‘Failure mode and 
effects analysis’), produced 8,812 documents (Figure 1), establishing 
a baseline for the conventional implementation of FMEA. 
Introducing fuzzy logic in the search with string (FMEA OR 
‘Failure Mode and Effect Analysis’) AND fuzzy reduced the 
results to 1,086 documents (Figure 2), representing 
approximately 12.89% of the total FMEA documents. Further 
refinement of the search to include MCDM methods alongside 
fuzzy logic, using string (FMEA OR ‘Failure Mode and Effects 
Analysis’) AND Fuzzy AND (mcdm OR Fuzzy AHP OR topsis 

OR vikor OR Fuzzy ELECTRE III OR promethee OR maut OR anp 
OR dematel OR moora), yielded 290 articles (Figure 3). This subset 
represents 3.44% of the fuzzy-enhanced FMEA documents. These 
figures indicate a growing interest in integrating fuzzy logic and 
MCDM methods with FMEA.

Members of FMEA teams usually originate from a variety of 
backgrounds, and as a result, their perspectives may differ 
significantly. They may also differ in terms of their levels of 
evaluation, practical experience, and knowledge structures. 
Because individual rationality and cognition differ, as does the 
impact of social ties, experts in the FMEA may have varying 
effects on the decision-making process. Furthermore, it is 
essential to capture the fuzziness of the experts’ evaluations by 
using partial weights of risk factors (Sabripoor et al., 2024).

In order to investigate how the fuzzy process can cope with 
uncertainties, including subjective expert evaluations due to 

FIGURE 1 
Document results per year for each search string in December 2024 in SCOPUS. Results of search string: (fmea OR ‘Failure Mode and 
Effects Analysis’).

FIGURE 2 
Document results per year for each search string in December 2024 in SCOPUS. Results of search string: fmea OR ‘Failure Mode and Effects Analysis’ 
AND Fuzzy.
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subjective perspectives, incomplete information, and linguistic 
assessments of decision-makers through the FMEA, this study 
evaluates a large number of methodologies that have been 
reported to model the uncertainties in the decision data collected 
from FMEA team members. This study explores how the fuzzy 
process can address uncertainties, such as subjective expert 
evaluations, incomplete information, and linguistic evaluations of 
decision-makers in FMEA. To achieve this, it reviews various 
approaches and methodologies used to model these uncertainties 
in the decision data provided by the FMEA team members (Bowles 
and Peláez, 1995) originally developed a fuzzy logic-based FMEA for 
analyzing the structures, reliability and assessment of system 
criticality based on the severity of the failure and the probability 
of its occurrence to discover the relationships between risk factors 
and risk of failure.

Based on the literature review on decision making techniques 
and the objective of this research, the widely used MCDM methods 
include multi-attribute utility methods (MAUT) (e.g., AHP and 
ANP), outranking methods (e.g., ELECTRE) and compromise 
methods (e.g., TOPSIS and VIKOR). In addition, Saaty (2008)
uses expert judgment to determine priority scales and suggests 
AHP for measurement through pairwise comparisons. Pairwise 
comparisons of criteria in the AHP method, a structured 
approach to handle complicated decision-making problems, offer 
a precise, reliable and practical means to accommodate real-life 
circumstances, making it superior to other MCDM methods. AHP 
models the decision problem into a hierarchy with a goal, decision 
criteria, and alternatives. In contrast, the ANP forms a network 
structure that is a more general form of the AHP used in multi- 
criteria decision analysis (Saaty, 2005).

He et al. (2012) presented an integrated approach with the 
objective of maximizing the level of customer service and 
minimizing logistics costs by using a fuzzy AHP-based integer 
linear programming model for the multi-criteria transshipment 
problem. Kaya and Kahraman (2010) employed a combination of 
fuzzy VIKOR and AHP to determine the most suitable renewable 
energy policy and select the optimal production site in Istanbul. 

Similarly, Fouladgar et al. (2012) used fuzzy AHP and VIKOR to 
propose a decision-making method for the selection of the project 
portfolio in investment decisions. They stated that their proposed 
method addressed qualitative assessment information without the 
need for a numerical conversion. Liu et al. (2016) reported an 
integrated multi-attribute decision-making model to classify 
failure modes under uncertainty. Mohsen and Fereshteh (2017)
proposed an extension of VIKOR based on entropy measures for the 
risk assessment of failure modes. The entropy of measurements 
quantifies the average level of uncertainty, which measures the 
expected amount of information needed to describe the state of 
the variable, considering the distribution of probabilities across all 
potential states (Gray, 2011). Furthermore, Wang et al. (2017)
presented an FMEA method employing a house-of-reliability- 
based rough VIKOR approach.

The Preference Ranking Organization Method for Enrichment 
of Evaluations (PROMETHEE), developed in the early 1980s, is 
widely employed in decision making in diverse fields, including 
business, governmental institutions, transportation, healthcare, and 
education. Rather than prescribing a definitive ‘right’ decision, 
PROMETHEE helps decision makers identify the alternative that 
best aligns with their goals. It allows structuring the decision-making 
process to identify and quantify conflicts and synergies between 
alternatives (Behzadian et al., 2010). Another influential approach in 
multi-criteria decision-making is the ELECTRE method, developed 
by Roy (1968). Unlike PROMETHEE, which ranks alternatives 
based on preference, ELECTRE compares alternatives in pairs to 
establish dominance. This method suitably addresses uncertainty 
and is especially effective in cases that involve both qualitative and 
quantitative criteria. ELECTRE III, in particular, employs a fuzzy- 
based outranking approach. Chen et al. (2021) proposed an 
approach for bid evaluation, called “ELECTRE III-based Multi- 
Criteria Group Decision-Making (MCGDM)”, which manages 
uncertainty through “Generalized Comparative Linguistic 
Expressions (GCLEs)” for qualitative assessments. Their model 
improves expert consensus and integrates subjective and 
objective weighting.

FIGURE 3 
Document results per year for each search string in December 2024 in SCOPUS. Results of search string: (fmea OR ‘Failure Mode and Effects 
Analysis’) AND Fuzzy AND (mcdm OR Fuzzy AHP OR topsis OR vikor OR Fuzzy ELECTRE III OR promethee OR maut OR anp OR dematel OR moora).
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Beyond implementing fuzzy logic, hybrid methods have gained 
significant traction in operations research due to their ability to 
combine the strengths of multiple techniques, thus improving the 
precision and robustness of decision making (Akhtar et al., 2024; 
Boral et al., 2020; Dabous et al., 2021; Ervural and Ayaz, 2023; Xiao 
et al., 2011). For example, hybrid methods are commonly used in 
problems with a large number of criteria (Liu et al., 2015), effectively 
handling uncertainty (Pelissari et al., 2021; Yang et al., 2011), 
reducing the number of criteria (Pawlak and Słowinski, 1994), 
and handling constraints under the value-at-risk measure 
(Hooshmand et al., 2023), and offer the solution of gray 
stochastic MCDM problems (Zhou et al., 2019; Zhou et al., 
2019). However, a significant gap remains when comparing the 
prevalence of these hybrid methods with the conventional FMEA 
approach. This gap highlights the ongoing challenges of ambiguity 
and inaccuracy associated with traditional FMEA, as discussed 
in Section 2.

2.1 Problem statement and 
proposed solution

Although FMEA is an effective risk assessment tool (Brown, 
2007), it has limitations. In some cases, the RPN may not adequately 
differentiate between failure modes. For instance, consider two 
failure modes through the typical RPN (Formula 1). 

RPN � S × O × D (1)

Failure mode 1: (S � 4, O � 3, D � 3)

RPN1 � S1 × O1 × D1 � 4 × 3 × 3 � 36 

Failure mode 2: (S � 9, O � 1, D � 4)

RPN2 � S2 × O2 × D2 � 9 × 1 × 4 � 36 

Although both failure modes have the same RPN, failure mode 
2 has a high severity (9) and a low occurrence (1). This distinction is 
not captured by the traditional RPN calculation.

Fattahi and Khalilzadeh (2018) introduced a fuzzy hybrid 
method to address this limitation. Their approach replaced 

traditional RPNs with “Fuzzy Weighted Risk Priority Numbers” 
(FWRPNs). Furthermore, previous research has explored the use of 
Vikor and Fuzzy AHP as weighting factors in FMEA (Liu et al., 2015; 
Safari et al., 2016; Jianxing et al., 2021). The integration of MCDM 
approaches with FMEA has shown significant potential to enhance 
the accuracy of FMEA results. Table 1 shows the approved 
improvements gained from the integration of FMEA with fuzzy 
logic and MCDM approaches. This is the main motive for 
investigating alternative hybrid methods to achieve more 
improvements. Therefore, a general research question arises: 
Does the combination of other MCDM approaches improve the 
FMEA results?

The proposed approach in this article uses fuzzy logic combined 
with Fuzzy AHP and entropy methods to weight factors, followed by 
the Fuzzy ELECTRE III method for ranking failure modes. 
However, several other MCDM methods can be employed to 
enhance the FMEA process. Each method has unique strengths 
that can address different aspects of decision-making and risk 
assessment. Future research will involve studying these 
combinations and comparing their effectiveness in various 
industrial contexts. The goal of future studies with several 
alternative methods implemented in various domains is to 
develop a versatile and adaptive FMEA framework that can be 
tailored to different types of systems and operational conditions, 
ensuring a more comprehensive risk assessment and 
mitigation strategy.

2.2 Theoretical foundation of 
conventional FMEA

Failure mode and effects analysis is the most common tool in the 
broad area of failure effects analysis. This tool follows a process 
aimed at the systematic and logical study of how a system reacts to 
failures (Rausand and Hoyland, 2003). Sometimes, this process 
includes criticality analysis, and the name extends to Failure 
Mode, Effects, and Criticality Analysis.

Given the wide variety of FMEA-based methods, standardizing 
this widely used tool is essential to ensure consistency and reliability 
in risk assessment (Booker et al., 2020). The first published standard 

TABLE 1 Improvements in FMEA through Fuzzy logic and MCDM Approaches integration.

Improvement Reference Explanation

Enhanced decision-making Wang et al. (2009) MCDM approaches such as fuzzy AHP (analytic hierarchy process), TOPSIS (technique for order of 
preference by similarity to ideal solution), and VIKOR (VIšekriterijumsko KOmpromisno Rangiranje) offer 
systematic methods to enhance decision-making by integrating multiple criteria and handling uncertainty in 
FMEA.

Handling subjectivity and 
ambiguity

Sharma et al. (2005) MCDM techniques introduce rigor by quantifying and prioritizing criteria (e.g., FMEA risk factors). This 
helps mitigate the subjective judgments that can influence traditional FMEA results

Integration of expert knowledge Braglia and Bevilacqua 
(2000)

A decision-making support system incorporating fuzzy logic and AHP assists maintenance staff in assessing 
failure mode criticality. By using triangular fuzzy numbers (TFNs) instead of crisp inputs in fuzzy models, the 
methodology evaluates expert opinions effectively, reducing subjectivity in FMEA.

Optimization of prioritization Liu et al. (2015) By combining different MCDM approaches, FMEA can achieve optimized prioritization of failure modes 
based on comprehensive analyses that consider various perspectives and criteria simultaneously

Enhanced effectiveness Certa et al. (2017) Studies have demonstrated that integrating MCDM techniques like fuzzy ELECTRE III (Elimination and 
choice expressing reality) with FMEA results in more effective identification and mitigation of critical failure 
modes compared to using FMEA alone
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that describes the detailed approach of the FMEA method was 
demonstrated in the US Armed Forces Military Procedures 
document MIL-P-1629 (Military, 1949). The revised version of 
this standard is MIL-STD-1629A, which was introduced in 
1980 and is widely used to systematically evaluate failures by 
item failure mode analysis. It assesses the potential impact of 
failures on mission success, personnel and system safety, system 
performance, maintainability, and maintenance requirements 
(Agarwala, 1990; Baig and Prasanthi, 2013). The current study 
employs fuzzy logic due to the inherent subjectivity and 
ambiguity associated with FMEA assessments. Fuzzy logic allows 
experts to incorporate their knowledge and experience when 
evaluating failure modes (Pelissari et al., 2021; Radojevic and 
Petrovic, 1997).

Traditional FMEA relies on a multiplication operation to 
calculate the RPN; the approach is sensitive to changes in factor 
assessments and can lead to similar RPN values for significantly 
different failure modes. This is why Fuzzy FMEA’s popularity has 
sharply increased. Fuzzy logic, introduced by (Zadeh, 1965), is a 
mathematical framework to represent uncertainty and partial truth. 
In contrast with traditional logic, where variables are true or false, 
fuzzy logic allows for degrees of truth between 0 (completely false) 
and 1 (completely true). Fuzzy set theory utilizes membership 
functions (MFs) to represent these degrees of 
membership. Triangular MFs are commonly used in Fuzzy 
FMEA applications (Zha et al., 2023).

Fuzzy FMEA offers several advantages. Fuzzy logic aligns well 
with human language, making it easier for experts to provide FMEA 
input (Burduk et al., 2024). In addition, fuzzy FMEA can handle 
both quantitative data and qualitative information, providing a more 
comprehensive evaluation of failure modes (Sabripoor et al., 2024). 

Figure 4 outlines the step-by-step process of Fuzzy FMEA, which 
consists of failure mode identification, risk factor evaluation, 
fuzzification, weighting, aggregation, defuzzification, and 
final ranking.

The process starts with identifying potential failure modes 
(FM1, FM2, . . ., FMn) and evaluating their risk factors: Severity 
(S), Occurrence (O), and Detection (D). In the fuzzification 
step, these crisp risk factor values are converted into fuzzy 
numbers (S̃, Õ, D̃) using appropriate membership functions. In 
the Fuzzy FMEA process shown in Figure 4, the failure modes 
(FM1, FM2, . . . , FMn) are identified, leading to a risk 
assessment based on risk factors S, O and D. In the next 
step (fuzzification), they are transformed into fuzzy 
numbers (wS, wO, wD) which are obtained using fuzzy AHP 
and entropy, which balance the subjectivity of expert 
judgments with an objective weighting mechanism. Next, in 
the aggregation step, the risk factors are combined into a fuzzy 
Risk Priority Number (RPN) using the weighted sum 
(Equation 2) (Liu et al., 2011): 

RP̃Ni � wS · S̃i + wO · Õi + wD · D̃i (2)

Since RP̃Ni is still a fuzzy number, the defuzzification step 
converts it into a single crisp value to enable ranking. The centroid 
method is commonly used, defined in Equation 3 (Sodenkamp 
et al., 2018). 

RPNi �
ai + bi + ci

3
(3)

Finally, the ranking of failure modes is determined using Fuzzy 
ELECTRE III, which constructs a preference matrix based on the 
defuzzified RPN values. This ensures a more robust ranking 

FIGURE 4 
Flowchart of the Fuzzy FMEA and Entropy process.
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compared to conventional FMEA, which often suffers from 
ambiguity and inconsistent prioritization.

In the last decade, various efforts have been made to improve 
FMEA. Different MCDM methods, FVIKOR, FCOPRAS, 
FMOORA, FMABAC, FTOPSIS, FMAIRCA, and Fuzzy AHP, are 
widely used to address the drawbacks of simply multiplying the three 
RPNs. Some specific improvements are gained by integrating 
MCDM with FMEA, which is reported in Table 1. However, 
there are other variations of FMEA that, in general, improve the 
results, such as:

1. Gupta et al. (2021) proposed a fuzzy FMECA model utilizing 
Dempster-Shafer theory and a linear equation to aggregate 
expert opinions and calculate risk. However, their approach 
relies on a compensatory linear formula that fails to prevent 
high-severity risks from being overshadowed by other factors, 
and it lacks an objective weighting component (such as 
Entropy) to mitigate the subjectivity of expert judgments.

2. Boral et al. (2020) proposed an integrated MCDM approach 
combining Fuzzy AHP for weighting and Fuzzy MAIRCA for 
ranking failure modes. However, they rely solely on subjective 
expert judgment (Fuzzy AHP) for weighting without 
validating it against objective data (Entropy), and they 
utilize MAIRCA, a compensatory method that, unlike 
Fuzzy ELECTRE III, may allow low-risk factors to offset 
critical high-severity failures.

3. Zhu et al. (2020a) proposed a hybrid risk ranking model using 
linguistic neutrosophic numbers, regret theory, and 
PROMETHEE, with weights derived from a maximizing 
deviation model and TOPSIS. However, while they address 
psychological behavior, their weighting method lacks the 
specific synergy of combining subjective hierarchical 
structure (AHP) with objective data (Entropy), and their 
approach adds significant computational complexity 
(neutrosophic sets) without explicitly addressing the 
reduction of ranking variation.

4. Wang et al. (2020) proposed a novel FMEA method using an 
extended matter-element model for ranking and AHP for 
deriving risk factor weights. However, their reliance on AHP 
alone introduces purely subjective bias into the weights, and 
the matter-element model is a correlation-based approach 
that lacks the non-compensatory “veto” thresholds provided 
by Fuzzy ELECTRE III to ensure safety-critical failures are not 
downplayed.

5. Huang et al. (2022) proposed a reliability model integrating 
probabilistic linguistic term sets with the TODIM method, 
utilizing TOPSIS to derive objective weights. However, by 
using TOPSIS for weights, they ignore the structural expert 
intuition provided by AHP (relying only on objective data), 
and the TODIM method focuses on gain/loss psychology 
rather than the strict outranking relationships necessary to 
distinctively separate close priority rankings.

6. Liu et al. (2019) proposed an integrated risk prioritization 
approach using interval-valued intuitionistic fuzzy sets and 
the MABAC method, with a linear programming model for 
optimal weights. However, their method uses MABAC, which 
aggregates distances linearly (compensatory), and their 
weighting optimization is mathematical rather than a 

hybrid approach that balances the decision-makers’ intent 
(Subjective AHP) with the data’s information content 
(Objective Entropy).

7. Bian et al. (2018) proposed a risk priority model utilizing D 
numbers to handle uncertainty and TOPSIS to rank failure 
modes. However, TOPSIS is a compensatory distance-based 
method that can hide severe risks if other factors are 
favorable, and the study fails to incorporate a hybrid 
weighting mechanism, leaving the relative importance of 
risk factors potentially unbalanced or ill-defined.

8. Grunske et al. (2007) proposed a method using probabilistic 
fault injection and model checking to identify if failure modes 
exceed tolerable hazard rates. However, this is a formal 
verification technique rather than an MCDM framework, 
meaning it lacks the ability to rank failures based on the 
trade-offs of subjective criteria (severity, detection) using 
hybrid weights and linguistic variables.

9. Liu et al. (2012) proposed a fuzzy FMEA model using 
linguistic variables and the extended VIKOR method to 
determine risk priorities. However, VIKOR creates a 
“compromise” solution that is inherently compensatory, 
whereas the Fuzzy ELECTRE III method in this study uses 
non-compensatory outranking to ensure that high-severity 
failures retain a high priority regardless of other factors.

10. Shi and Yang (2009) proposed an evaluation framework for 
software trustworthiness using Fuzzy AHP for weights and 
Fuzzy TOPSIS for ranking. However, their approach suffers 
from the same limitations as traditional fuzzy FMEA 
improvements. It relies exclusively on subjective weights 
(FAHP) without an objective Entropy check, and uses 
TOPSIS, which fails to provide the granular, non- 
compensatory differentiation of rankings offered by Fuzzy 
ELECTRE III.

The articles listed above present various methods for 
calculating risk priority. However, the novelty of this paper lies 
in the integration of FMEA with Fuzzy AHP and Fuzzy ELECTRE 
III. This new approach limits the results to the most feasible 
answers. In the next section, the proposed method is 
systematically presented.

3 Methodology

This section explains the process of combining the 
implementation of fuzzy logic with MCDM within the proposed 
hybrid FMEA approach, and then, in detail, the outline of the steps 
of the proposed method is explained.

3.1 Methods and tools

To overcome the ambiguity and subjectivity often present in 
conventional FMEA, this study combines four distinct mathematical 
tools: Fuzzy Logic, Fuzzy Analytic Hierarchy Process (AHP), 
Shannon Entropy, and Fuzzy ELECTRE III. The rationale for 
selecting these specific methods and their role in the overall 
structure is outlined below.
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3.1.1 Fuzzy logic
In engineering risk assessment, precise numerical data is often 

unavailable, and expert judgments are frequently expressed in 
linguistic terms (e.g., “High,” “Low”). To handle this inherent 
uncertainty by using degrees of truth rather than rigid binary 
sets, Fuzzy logic is employed based on a spectrum of data 
derived from Fuzzy set theory.

Unlike traditional binary sets (where the variables must be 0 or 
1), fuzzy logic variables may have a truth value between 0 and 1 
(Zadeh, 1965). This approach enables the modeling of concepts that 
are inherently vague or ambiguous, such as ‘tallness’. Fuzzy logic 
provides a robust framework for handling the uncertainty and 
imprecision found in many real-world problems. It has been 
widely applied in fields such as control systems (Ferdaus et al., 
2020), artificial intelligence (Bakhtavar et al., 2021), and decision- 
making processes where human-like reasoning is advantageous 
(Mardani et al., 2019).

The study implements Triangular Fuzzy Numbers (TFNs) 
due to their computational efficiency and ability to represent the 
linear uncertainty typical in risk estimation (Klir and Yuan, 
1995). In order to implement triangular fuzzy logic, the steps 
derived from several sources (e.g., Klir and Yuan, 1995; Kutlu 
and Ekmekçioğlu, 2012; Lai et al., 1992; Zadeh, 1965) can be 
followed. The process begins with the input TFN (a1, a2, a3), 
followed by Fuzzification, where the membership function in 
Equation 4 is applied. 

μÃ X( ) �

0, x< a1

x− a1

a2 − a1
, a1 ≤x≤ a2

a3 −x
a3 − a2

, a2 ≤x≤ a3

0, x> a3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

The Fuzzy Evaluation Scores Table is conducted based on fuzzy 
numbers. A fuzzy number is a special fuzzy set in the universe of 
discourse X whose membership function is convex and normal. 
Several methods are used to express imprecision by means of fuzzy 
numbers. Among these methods, TFNs are more popular compared 
to the others because of their simplicity and features. They are useful 
in promoting representation and information processing in a fuzzy 
environment. Linguistic variables are generated during the 
aggregation step and provide the basis for the final ranking and 
decision-making process. The sample linguistic variables used for 
rating the failure modes are shown in Table 2 and Figure 5.

Finally, defuzzification (Tseng and Tzeng, 2002; Zhang 
et al., 1999) converts the aggregated fuzzy values into a crisp 
output. Defuzzification uses predefined fuzzy rules to process 
fuzzified inputs. In this study, the center of area (COA) method 
is used for defuzzification. It is a simple and practical method that 
finds the best non-fuzzy performance (BNP) value. The BNP value 
of the TFN ã � (a1, a2, a3) is the defuzzied value of x̄0(ã) and is 
calculated using Equation 5. 

x̄0 ã( ) �
1
3

a3 − a1( ) + a2 − a1( )[ ] + a1 (5)

This final step leads to the Output Result, providing a crisp 
ranking of failure modes. Each formula is displayed outside the 
corresponding process block for clarity.

3.1.2 Fuzzy AHP method
While traditional FMEA treats risk factors (Severity, 

Occurrence, Detection) as equally important, scientific reality 
dictates that different systems prioritize these factors differently 
based on operational context. Fuzzy AHP is selected to capture the 
subjective engineering knowledge required to weight these factors. 
This approach, which was originally developed by Saaty (1990), is a 
structured technique for organizing and analyzing complex 
decisions, based on mathematics and psychology (Saaty, 2008; 
Sankar and Prabhu, 2001; Vaidya and Kumar, 2006). Fuzzy AHP 
facilitates decision making by structuring a hierarchy of criteria, 
comparing them pairwise, and calculating weightings that reflect the 
relative importance of each criterion (Ahmed and Kilic, 2024; 
Ghodsi et al., 2022). The implementation of Fuzzy AHP is 
increasing sharply due to the advantages highlighted by 
researchers and practitioners (Chan et al., 2008; Wu et al., 2023; 
Gonzalez-Urango et al., 2024; Zhu et al., 2021).

The flow chart in Figure 6 illustrates the steps involved in the 
Fuzzy AHP method (Buckley et al., 2001). The process begins by 
identifying and defining the criteria and sub-criteria. Each formula 
used in this process is shown to the right of the corresponding step in 
the flow chart.

To evaluate failure modes in fuzzy AHP methods, first, the fuzzy 
numbers representing performance scores λk > 0 (for decision 
makers) should be determined, satisfying the constraint 

TABLE 2 Fuzzy evaluation scores for alternative.

Linguistic terms Fuzzy score

Very poor (VP) (0,0,1)

Poor (P) (0,1,3)

Medium poor (MP) (1,3,5)

Fair (F) (3,5,7)

Medium good (MG) (5,7,9)

Good (G) (7,9,10)

Very good (VG) (9,10,10)

FIGURE 5 
Linguistic terms and corresponding triangular fuzzy numbers 
used in the study.
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􏽐
K
k�1λk � 1. Next, the results of the pairwise comparison are 

combined to construct the fuzzy pairwise comparison matrix 
(Ã), as shown in Equation 6. 

ãij � aij1, aij2, aij3􏼐 􏼑, i � 1, 2, . . . , n− 1, j � 2, 3, . . . , n,

where aij1 �􏽘
K

k�1
λkakij1, aij2 �􏽘

K

k�1
λkakij2, aij3 �􏽘

K

k�1
λkakij3. (6)

Then construct the fuzzy pairwise comparison matrix (Ã)
(Equation 7). 

Ã � ãij􏽨 􏽩 �

ã11 ã12 ⋯ ã1n
ã21 ã22 ⋯ ã2n

..

. ..
.

⋱ ..
.

ãn1 ãn2 ⋯ ãnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1 ã12 ⋯ ã1n

1􏼎ã12 1 ⋯ ã2n

..

. ..
.

⋱ ..
.

1􏼎ã1n 1􏼎ã2n ⋯ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Next, the fuzzy geometric mean is calculated for each criterion 
by employing the geometric technique. To obtain the fuzzy 
geometric mean ri of the fuzzy comparison values between 
criteria, Equation 8 is used. 

r̃i � ãi1 × ãi2 ×⋯× ãin( )
1
n (8)

The next step involves synthesizing the pairwise comparisons to 
derive fuzzy weights for each criterion. These fuzzy weights are 
calculated using the average of the fuzzy comparison values 
Equation 9. Subsequently, the fuzzy weights are defuzzified using 
Equation 10 where w̃si can be indicated by the TFN 

w̃si � (w
s
i 1, w

s
i 2, w

s
i 3). Then the subjective weight of criterion i 

(wis) can be first defuzzified and normalized using Equation 11. 

w̃s
i � r̃i × r̃1 + r̃2 +⋯ + r̃n( )

−1 (9)

x̄0 ã( ) �
1
3

a3 − a1( ) + a2 − a1( )[ ] + a1 (10)

ws
i �

w̄ s
i

􏽐
n

i�1w̄
s
i

(11)

By structuring the decision problem hierarchically and using 
pairwise comparisons (Equation 6), Fuzzy AHP allows the 
engineering team to express relative importance based on their 
experience. This step is crucial for incorporating the “human 
element” of engineering expertise into the mathematical 
model (Figure 6).

3.1.3 Entropy method
Relying solely on expert judgment (AHP) can introduce 

cognitive bias. To counterbalance this, the Entropy method is 
integrated to provide objective weights as a decision-making 
technique. The entropy method for decision making is a 
technique used to evaluate and rank alternatives by measuring 
the level of uncertainty or disorder in the decision matrix 
(Zeleny and Cochrane, 1982; Zhu Y. et al., 2020). It assigns 
weights to criteria based on their entropy values, reflecting their 
importance in the decision process (Yoon and Hwang, 1995). In the 
current article, the Shannon Entropy (Shannon, 1948) is used. 
Figure 7 illustrates the step-by-step outline of this method.

FIGURE 6 
Flowchart of the fuzzy AHP method.
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After identifying the decision criteria and the available 
alternatives in the ‘Defining Criteria and Alternatives Step’, 
the decision matrix should be normalized to ensure that all 
criteria are comparable. Normalization is performed by 
Equation 12, where pij indicates the projected outcomes of 
criterion j. 

Pij �
xij

􏽐
m

i�1xij
(12)

Then the entropy value of each criterion, which indicates the 
degree of disorder or uncertainty in the data, is computed using 
Equation 13, which calculares the entropy Ej of the set of projected 
outcomes of criterion j that the result stays between 0 and 1. The 

FIGURE 7 
Flowchart of the entropy method.

FIGURE 8 
Updated flowchart of the fuzzy ELECTRE III method.
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entropy value indicates the degree of disorder or uncertainty in 
the data. 

Ej � −
1

ln m
􏼒 􏼓􏽘

m

i�1
Pij · lnPij (13)

In the ‘Calculate the Entropy Weights’ step, which assigns 
greater importance to criteria with lower entropy (higher 
information content), the weights of the criteria are determined 
using the entropy values in Equation 14. 

wj �
1 −Ej

􏽐
n

j�1 1 −Ej􏼐 􏼑
(14)

Figure 7 illustrates the step-by-step outline of the Shannon 
Entropy method.

3.1.4 Fuzzy ELECTRE III method
The choice of the ranking method is critical for safety analysis. 

Traditional RPN and distance-based MCDM methods are 
“compensatory,” allowing high performance in one factor to 
offset dangerously low performance in another critical systems, 
where catastrophic severity must never be diluted by other 
scores. To ensure a non-compensatory and more reliable 
assessment, this study employs the Fuzzy ELECTRE III 
(Elimination and Choice Expressing Reality) method. The Fuzzy 
ELECTRE III in this article is taken from (Bayyurt, 2013; 
Triantaphyllou, 2000) and follows the following steps as also 
shown in Figure 8.

First, a vector normalization is performed using the Equation 15
and the weighted normalized decision matrix is constructed using 
Equation 16 where 􏽐n

j�1Wj � 1, for j � 1, . . . , n. 

rij �
aij
������
􏽐
m

k�1a
2
kj

􏽱 (15)

Yi �􏽘

n

j�1
Wjrij (16)

The Concordance Matrix C and the Discordance Matrix D are 
calculated in the next step. To obtain the concordance matrix C, we 
first define the matching set. For any pair of alternatives Ak and Al
(k, l � 1, . . . , m and k ≠ l), the set of decision criteria j
(j � 1, 2, . . . , n) is divided into two subsets (Equation 17): 

Ckl � j | Ykj ≥Ylj􏽮 􏽯 (17)

Then the concordance matrix C is structured as follows in 
matrix (Equation 18). 

C �

− C12 . . . C1n
C21 − . . . C2n

..

. ..
.

⋱ ..
.

Cm1 Cm2 . . . −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

To measure the relative compliance with the matching index, the 
concordance index Ckl between the alternatives Ak and Al is 
calculated with Equation 19 where Wj indicates the weight of the 
criterion j and Ckl is the concordance index that measures the 
degree to which alternative Ak is at least as good as alternative Al in 
the matching criteria. 

Ckl � 􏽘
j∈Ckl

Wj (19)

The discordance matrix D is formed using the discordance 
indices dkl obtained from the decision matrix Y. It is defined by 
Equation 20. 

Dkl �

max
j∈Dkl
|Ykj −Ylj|

max
j
|Ykj −Ylj|

(20)

The discordance index (Equation 21) is constrained by: 

0<Dkl < 1 (21)

The next step is to obtain the Compliance F and Absence G
Control Matrix.

In the decision-making process, matrix control is performed by 
adjusting a threshold value. This ensures that an alternative Ak
qualifies on the basis of its matching index only if it meets a 
predefined threshold. For example, an alternative Ak is 
considered to have successfully passed the matching index 
requirement if and only if its concordance index Ck exceeds a 
predefined threshold value Cth.

The elements of the membership matrix F (denoted as Fkl) take 
values of 0 or 1. There are no diagonal elements in the matrix, which 
means that there is no element in the cases where k � l
(Equation 22). 

Fkl �
1, if Ckl ≥Cth
0, otherwise􏼨 (22)

The threshold value Cth can be defined as the average 
compliance index, calculated with Equation 23 and, similarly, for 
the Absence G Control Matrix the threshold value Dth is calculated 
by Equation 24. 

C �
1

m m− 1( )
􏽘

m

k�1
􏽘

m

l�1
Ckl (23)

D �
1

m m− 1( )
􏽘

m

k�1
􏽘

m

l�1
Dkl (24)

In the next step, the master matrix E (dominance matrix) will be 
defined. According to Triantaphyllou (2000) the values of E are also 0 or 
1 (Equation 25). Finally, the less desirable alternatives will be eliminated. 

Ekl �
1 if C̃kl ≥C* and D̃kl ≤D*
0 otherwise􏼨 (25)

It establishes dominance relationships using concordance 
(agreement) and discordance (disagreement) indices. Crucially, it 
utilizes “veto thresholds” scientific boundaries that prevent a failure 
mode from being ranked favorably if a specific risk factor exceeds a 
safety limit. This aligns the mathematical ranking process with the 
strict safety protocols required in automotive engineering (Figure 8).

3.2 Proposed hybrid approach

Previous studies have highlighted that FMEA is not a reliable 
method of assessing risk factors because it does not account for their 
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relative importance and treat them equally; in addition, previous 
approaches often consider only subjective or objective weights of 
risk factors independently, each having its limitations (Section 2). To 
address these shortcomings, this study employs a hybrid weighting 
mechanism that integrates Fuzzy AHP with the Entropy method. 
The reliance on a single source for weighting often leads to skewed 
risk assessments. Expert-based methods alone are prone to cognitive 
bias, while data-driven methods can lack engineering context. Fuzzy 
AHP is utilized to capture the subjective experience of the 
engineering team, allowing for the hierarchical structuring of risk 
factors and handling the ambiguity inherent in linguistic judgments. 
However, to prevent potential bias or inconsistency in human 
judgment, the Entropy method is introduced as an objective 
counterweight. By calculating weights based on the probabilistic 
distribution and information content of the data itself, Entropy 
reduces the uncertainty associated with purely subjective 
assessments. Consequently, the synergy of these two methods 
ensures a balanced weighting scheme that incorporates expert 
intuition while being mathematically validated by the data 
structure. Decision makers’ opinions are elicited as linguistic 
variables within a group MCDM framework using FMEA. These 
linguistic variables are then translated into TFNs. Subsequently, a 
systematic approach combining weighting and the Fuzzy ELECTRE 

III method is utilized to prioritize the risks associated with failure 
modes. Actually, the rationale for this hybrid structure is twofold:

• Balanced Weighting Mechanism: By integrating Fuzzy AHP 
with Entropy, the model captures the experiential knowledge 
of the engineering team (Subjective) while cross-validating it 
against the statistical information content of the data 
(Objective). This synergy prevents skewed risk assessments 
that might arise from dominant opinions or 
statistical anomalies.

• Non-Compensatory Prioritization: Safety-critical systems 
require a “safety-first” logic. The use of Fuzzy ELECTRE III 
ensures that high-risk failure modes (e.g., those with 
catastrophic severity) are not mathematically masked by 
favorable scores in other categories, a common flaw in 
compensatory methods like RPN or TOPSIS.

The flow chart in Figure 9 presents a systematic approach 
divided into several sequential steps, each addressing a crucial 
aspect of the analysis. The flowchart details the structured 
process, each step contributing to the overall methodology. 
The steps and their progression in the figure are outlined 
as follows.

FIGURE 9 
Flow chart of the proposed FMEA approach integrated with Fuzzy AHP, Entropy, and Fuzzy ELECTRE III.
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Start FMEA This is the initiation point of the FMEA Step 1: Risk 
Assessment and Analysis.

• Clarify the Goals: Define the objectives of the risk assessment 
to accurately determine the levels of risk.

• Develop Failure Mode List: Create a comprehensive list of 
potential failure modes that could affect the system.

• Evaluate Failure Modes: Assess the failure modes and 
determine their relative importance using linguistic variables.

• Box: The dashed box groups these nodes together, indicating 
they are part of the same phase (Step 1) in the process.

Step 2: Team Assembly.

• Node: Assemble the FMEA Team
• Description: Form a team to perform the linguistic evaluation 

of failure modes. This team will help ensure the accuracy and 
comprehensiveness of the FMEA.

Step 3: Objective Weighing.

• Node: Weigh the Objectives
• Description: Assign weights to the different objectives based 

on their importance to the analysis.

Step 4: Hybrid Method Application.

• Node: Apply Hybrid Fuzzy AHP-Entropy Method
• Description: Use a combination of Fuzzy AHP and Entropy 

methods to determine the final weights of the objectives. This 
hybrid method helps in effectively evaluating and 
prioritizing criteria.

Step 5: Decision Making.

• Node: Use Fuzzy ELECTRE
• Description: Apply the Fuzzy ELECTRE III method for 

decision-making. This technique is used to handle 
uncertainty and provide a final evaluation of the alternatives.

Step 6: Corrective Actions.

• Node: Implement Corrective Actions
• Description: Based on the findings and decisions made in the 

previous steps, implement corrective actions and changes to 
address identified issues.

Return arrow description: After completing the final step, there 
is a return arrow from Implement Corrective Actions to Clarify the 
Goals. This indicates that the results and actions taken might require 
a review of the initial goals or other steps to refine the analysis 
and actions.

In summary, the flow chart integrates various methods to 
improve the analysis and decision-making process, ensuring a 
robust approach to identifying and addressing potential failures 
in a system.

4 Case study

In this section, the implementation of the proposed approach is 
presented, and the method is validated by analyzing the Fuzzy 
ELECTRE III method and comparing it with other methods of 
MCDM in FMEA.

4.1 Real-life case and condition

The case study focuses on a car manufacturer, founded in 
1965 and located in Iran. Operations research methods and 
MCDM and, in particular, FMEA are widely used in car 
manufacturing to optimize production and decision making (Fan 
et al., 2022; Yousaf et al., 2023; Deulgaonkar et al., 2021; 2019; 
Moreno and Espejo, 2015). Techniques like linear programming 
streamline schedules (Wan and Zhan, 2021), reduce waste or 
emission (Zhang et al., 2024), and inventory and distribution 
(Ramos et al., 2022).

The target of this study is a component of the economy sedan 
model, the clutch system of the car (Figure 10). This essential system 
is positioned between the engine and the gearbox and is actuated 
through the clutch pedal. Therefore, it is an integral part of the car’s 
operation, in that it allows the driver to connect the engine to the 
gearbox and disconnect while changing gears smoothly, in such a 
way that the power is transferred without a single beat missed.

Since the clutch system has this very critical function in relation 
to car performance (Pourgol-Mohammad et al., 2017) and safety 
(Cho and Han, 2011), its failure or malfunction can result in serious 
operational problems or safety hazards. One of the key functions of a 
car’s clutch is to enhance safety, as it can serve as a crucial feature in 
emergencies. By depressing the clutch pedal, the driver can quickly 
disconnect the power from the wheels, helping to regain control or 
prevent unintended forward movement in critical situations. In 
addition, in the case of mechanical jams, it reduces the risk of 
kickback. However, a neglected clutch system can cause serious 
problems such as slipping, sticking, or difficulty in engaging the 
gears, resulting in reduced efficiency and potential accidents. 
Therefore, the presence of a clutch inherently contributes to 
vehicle safety (Matthes, 2005). Moreover, the clutch is a crucial 
component in ensuring the safety of the vehicle, especially when 
driving on mountainous areas or on other curvy roads (Wu et al., 
2022). Recent studies focused on designing specific safety–critical 
clutch systems to avoid some types of accidents (Kumar et al., 2022). 
Finally, Trieu Minh (2012) unveiled the criticality of the clutch 
system in a hybrid electric vehicle for vibration reduction. Given its 
significance, it is essential to analyze potential failure risks and 
improve system reliability to enhance overall safety.

This system requires a risk analysis to identify probable modes of 
failure, estimate their impacts, and finally resolve them to improve 
the reliability and safety of the system (Lijesh et al., 2016). It prevents 
unexpected failure, assures smoothness in car operation, and hence 
is crucial to driver safety and satisfaction (Godina et al., 2021; Yousaf 
et al., 2023).

The technical design details associated with this study are 
confidential, as the technology owner has restricted the 
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publication of details about the design parameters. Consequently, 
throughout the remainder of this article, all technical parameters will 
be referenced using labels only, without a detailed explanation. This 
approach is satisfactory for the research project because the objective 
of the case study is to implement and validate the proposed process 
while ensuring that the focus remains on the process itself and its 
performance, rather than on the particular characteristics of the 
machine part under consideration.

4.2 Implementation and results

To conduct the case study, the initial steps involve defining the 
objectives of the risk assessment to accurately determine the levels of 
risk. This includes clarifying the goals, developing a comprehensive 
list of failure modes, and evaluating these failure modes to determine 
their relative importance using linguistic variables. These activities, 
grouped together in Step 1, are carried out within the engineering 
department.

Following this, the process moves to Step 2, which focuses on 
team assembly. In this phase, a team is formed to perform the 
linguistic evaluation of failure modes, ensuring the accuracy and 
comprehensiveness of the FMEA. Once the team assembly is 
completed, the weighting phase begins. The group is made up of 

five experts, which are named GM1, GM2, GM3, GM4 and GM5. 
Table 3 shows the ranking results (Figure 9) used as input to the 
Subjective Weighting using Fuzzy AHP. The parameters in 
Table 3 are: CM1: Appearance. CM2: Parallel—It specifies the 
allowable deviation from parallelism between two surfaces. 
CM3: Limp—State of weakness or instability, often associated 
with physical rotation of the wheel. CM4: Internal diameter 
CM5: Surface finish CM6: Hole diameter CM7: 
External diameter.

Accordingly, in Table 3, experts are asked to express their 
assessments qualitatively using linguistic variables. These 
7 linguistic terms for O, S, and D are assigned mathematical 
numbers for the fuzzy process. Thus, the meanings of these 
variables are VG (Very Good), G (Good), MG (Medium Good), 
MP (Medium Poor), P (Poor), VP (Very Poor), F (Fair).

FIGURE 10 
Clutch Disk Under Study (Originally designed by Kia Motors but modified several times by the Iranian company). The figures on the left and center 
depict the critical design parameters under investigation, complete with their respective tolerances. The figure on the right showcases an actual post- 
manufacture machine part.

TABLE 3 Failure modes linguistic scores according to the risk factors assigned by the FMEA team.

Critical 
mode

Occurrence Severity Detection

GM1 GM2 GM3 GM4 GM5 GM1 GM2 GM3 GM4 GM5 GM1 GM2 GM3 GM4 GM5

CM1 MG G F MG F G G G G G P F P P P

CM2 MP P MP MP MP VG G G VG G VP VP VP P VP

CM3 G MG G MG MG G MG G G G F F MP F F

CM4 F F P F F F F MP F F VP MP VP MP VP

CM5 F MP F F F F MG MG F F P MP P P P

CM6 VG MG VG VG VG MG MG MG MG MG MG F MG MG F

CM7 F F F MG F MP MP MP F F F MP MP MP MP

TABLE 4 Pairwise comparison matrix.

Risk 
factor

O S D

O 1.000 1.000 1.000 0.182 0.288 0.588 0.294 0.480 1.667

S 1.701 3.472 5.495 1.000 1.000 1.000 3.500 1.500 2.083

D 0.600 2.083 3.401 0.480 0.667 0.286 1.000 1.000 1.000
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4.2.1 Subjective weighting using fuzzy AHP
The subjective weighting process begins with collecting 

evaluations from team members and constructing a fuzzy 
pairwise comparison matrix for risk factors (Table 4).

The weights are obtained using the following process. The 
evaluations of the team members are collected and a fuzzy 
pairwise comparison matrix is constructed to calculate the 
AHP weights for O, S, and D. Table 4 represents the 
pairwise comparison matrix for the three risk factors. This 
matrix was derived from five experts who compared these 
factors relative to each other in terms of importance and 
representation of how much more important one factor is 
compared to another, and the T row is the sum of each 
column (total for each criterion), used for normalization 
and weight calculation. The fuzzy values come from 
linguistic terms (such as “More important,” “Less 
important,” etc.), which are then transformed into fuzzy 
numbers for mathematical processing.

Next, compute the fuzzy geometric mean according to the 
formulas, exponent each of the elements to 1/3 and calculate 
rij � (aij)

1
3 and shown in Table 5.

In Table 6, the COA method is applied to defuzzify fuzzy 
numbers using the formula Ti � a

1
3
i1a

1
3
i2 + a

− 1
3

i1 a
1
3
i3 + a

− 1
3

i2 a
− 1

3
i3 and 

these defuzzified values are normalized in Table 7 to obtain 
subjective weights for each risk factor, which W1, W2 and 
W3 represent as fuzzy weights of criteria.

Furthermore, Table 8 shows the final normalized subjective 
weights for each of the three risk factors (WJS1, WJS2, WJS3) for 
the risk factors (O, S, D) after applying Fuzzy AHP.

4.2.2 Formation of total rank fuzzy weighted matrix
A fuzzy weighted matrix is then formed based on the evaluations 

provided by five experts on seven criteria. The evaluations are 
summed across seven options for each of the criteria (O, S, and 
D), resulting in a matrix that includes seven items and three options 
(see Table 9, and fuzzy failure modes of fuzzy total rank in Table 10).

4.2.3 Objective weighting using entropy method
The objective weights of the risk factors are determined using 

the Entropy method. In the entropy method, objective weights for 
risk factors (Occurrence, Severity, and Detection) are determined by 
quantifying the amount of uncertainty to avoid bias when dealing 
with subjective data from experts (Table 11). In Table 11 Ej 
represents the entropy for each risk factor, ‘1-Ej’ gives the 
complement of the entropy, showing the degree of certainty or 

TABLE 5 Fuzzy geometric mean matrix.

Risk 
factor

O S D

O 1.000 1.000 1.000 0.567 0.660 0.838 0.665 0.783 1.186

S 1.194 1.514 1.765 1.000 1.000 1.000 1.518 1.145 1.277

D 0.843 1.277 1.504 0.783 0.874 0.659 1.000 1.000 1.000

TABLE 6 Calculation of T.

Risk factor O S D

O 0.377 0.517 0.993

S 1.812 1.733 2.254

D 0.660 1.116 0.991

T 2.850 3.366 4.237

TABLE 7 Obtained weights and defuzzification.

Risk factor O S D

W1 0.089 0.154 0.349

W2 0.428 0.515 0.791

W3 0.156 0.331 0.348

DeFuzzy 0.197 0.578 0.278 1.053

TABLE 8 Goal weight of risk factors with Fuzzy AHP method.

WJS1 0.187

WJS2 0.549

WJS3 0.264

TABLE 9 Aggregated fuzzy failure modes data for O, S, and D.

O S D

4.600 6.600 8.400 7.000 9.000 10.000 0.600 1.800 3.800

0.800 2.600 4.600 7.800 9.400 10.000 0.000 0.200 1.400

5.800 7.800 9.400 6.600 8.600 9.800 2.600 4.600 6.600

2.400 4.200 6.200 2.600 4.600 6.600 0.600 1.800 3.400

2.600 4.600 6.600 3.800 5.800 7.800 0.200 1.400 3.400

8.200 9.400 9.800 5.000 7.000 9.000 4.200 6.200 8.200

3.400 5.400 7.400 1.800 3.800 5.800 1.400 3.400 5.400

TABLE 10 Defuzzified Failure Mode values.

O S D

6.533 8.667 2.067

2.667 9.067 0.533

7.667 8.333 4.600

4.267 4.600 1.933

4.600 5.800 1.667

9.133 7.000 6.200

5.400 3.800 3.400
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consensus in expert judgments, and Wj represents the final weight 
for each risk factor, which is used in subsequent analyzes.

4.2.4 Combined weight calculation
This step entails the synergistic aggregation of subjective weights 

derived from Fuzzy AHP and objective weights calculated via the 
Entropy method to determine the final comprehensive weights for 
each risk factor. The justification for this composite approach lies in 
its ability to mitigate the inherent limitations of using a single 
weighting source. While Fuzzy AHP captures the experiential 
knowledge of the engineering team, it remains susceptible to 
cognitive bias. Conversely, the Entropy method provides a purely 
mathematical assessment of data variation but lacks engineering 
context. By combining these two distinct inputs using a linear 
weighting formula, the methodology ensures that the final 
importance of S, O, and D is not solely dictated by human 
preference nor blindly driven by data dispersion. The coefficient 
ϕ is introduced to govern this trade-off. In this study, a value of 
ϕ � 0.5 is selected to establish an equilibrium, treating expert 
intuition and objective information content as equally critical 
components of the risk assessment. The resulting weights are 
presented in Table 12.

4.2.5 Application of fuzzy ELECTRE III method
In this stage, the Fuzzy ELECTRE III method is applied to rank 

the failure modes based on their weighted evaluations. The process 
consists of multiple steps following the process explained in 
Section 3.1.4.

First, the weights obtained from Table 12 are multiplied by the 
values in Table 10 (Defuzzy Total Rank Fuzzy Failure Modes) to 
calculate the weighted matrix. Where wcj values are the combination 
weights of criteria, and φ ∈ [0, 1], showing the relative importance 
between subjective and objective weight (Table 13). In this paper, 
weights are assumed to be equally important using φ � 0.5 (Liu et al., 
2015). However, in future studies, the impact of using φ � 1 and 0
can be studied by means of sensitivity analysis.

The results of the remaining stages of the ELECTRE method are 
obtained through the following steps:.

1. Determine coordinated and uncoordinated sets using the 
Fuzzy ELECTRE III method (Equation 26).

Ckl � j | ykj ≥ylj􏽮 􏽯, Dkl � j | ykj ≤ylj􏽮 􏽯 (26)

2. Form the coordinated matrix I based on the weights from C.
3. Construct the uncoordinated matrix using Equation 27.

dkl �

max
j∈Dkl
|ykj −ylj|

max
j
|ykj −ylj|

(27)

4. Calculate the effective coordinated and uncoordinated 
matrices. Effective coordinated matrix: 􏽘 each item divided 
by 1; otherwise, set to 0. Effective uncoordinated matrix: Sum 
all items divided by the number of items; set to 0 for each.

5. Multiply the effective coordinated matrix by the effective 
uncoordinated matrix (Table 14).

6. Prioritize based on Fuzzy ELECTRE III principles.

As a result of the ELECTRE III analysis, the seven failure mode 
options are ranked into five priority levels:

1. The first priority is assigned to CM6.
2. The second priority is shared by CM1 and CM3, which have 

equal values.

TABLE 11 Objective weight of risk factors with entropy method.

Risk factor O S D

Ej 0.967 0.978 0.900

1 −Ej 0.033 0.022 0.100

Wj 0.212 0.141 0.647

TABLE 12 Final weight gain.

Risk factor ϕ ϕ ϕ

0.500 1.000 0.000

O 0.199 0.187 0.212

S 0.345 0.549 0.141

D 0.456 0.264 0.647

TABLE 13 Weighted matrix with ϕ = 0.5 to adjust the relative importance of 
the subjective and objective weights.

Risk factor O S D

1 1.300 2.990 0.942

2 0.531 3.128 0.243

3 1.526 2.875 2.098

4 0.849 1.587 0.882

5 0.915 2.001 0.760

6 1.818 2.415 2.827

7 1.075 1.311 1.550

TABLE 14 The effective coordination of the inconsistent matrix 
multiplication.

Critical 
mode

CM1 CM2 CM3 CM4 CM5 CM6 CM7

CM1 - 1 0 1 1 0 1

CM2 0 - 0 0 0 0 0

CM3 1 1 - 1 1 0 1

CM4 0 0 0 - 0 0 0

CM5 0 0 0 1 - 0 0

CM6 1 1 1 1 1 - 1

CM7 0 0 0 1 0 0 -
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3. The third priority is shared by CM2, CM5, and CM7, which 
also have equal values.

4. The fourth priority is assigned to CM4, which has the 
lowest rank.

This ranking provides valuable information for decision makers 
about prioritizing failure modes and implementing corrective 
actions accordingly.

4.3 Validation of implementation feasibility

To assess the effectiveness of the proposed method, the results are 
compared with those obtained using alternative techniques, specifically 
Fuzzy TOPSIS and Fuzzy VIKOR. These alternative approaches are 
applied to rank the car component under study (Figure 10), using the 
same input data as in this article (Table 3) but alternative techniques 
proposed by Liu et al. (2015). The results are compared to those 
generated by the Fuzzy ELECTRE III method (Table 15; Figure 11).

Table 16 presents the priority rankings calculated using Fuzzy 
TOPSIS and Fuzzy VIKOR methods, as presented in Behzadian et al. 
(2012), while Table 17 displays the corresponding results derived 

from the Fuzzy VIKOR method, as presented in Opricovic and 
Tzeng (2007); the measures S, R and Q of the VIKOR method are 
detailed in Table 18.

The comparison highlights how effective coordination of the 
inconsistent multiplication of matrices in our proposal compared to 
the TOPSIS and VIKOR methodologies. The results of this 
comparison are presented in Table 15.

4.3.1 Discussion
The comparative analysis highlights a fundamental divergence 

in how risk is prioritized. While traditional MCDM methods 
(TOPSIS, VIKOR) rely on “net distance” or “compromise” 
calculations, the proposed hybrid ELECTRE III method relies on 
“outranking” relations with veto thresholds. As detailed below, this 
leads to a superior risk assessment profile by eliminating the ‘illusion 
of precision’ often seen in linear rankings and preventing the 
masking of high-severity risks.

4.3.1.1 Sensitivity and instability in fuzzy TOPSIS
The results in Table 16 reveal that Fuzzy TOPSIS is highly 

sensitive to the weight restriction parameter (ϕ). For instance, 
FM6 jumps from Rank 3 to Rank 1 simply by adjusting the 

TABLE 15 Priority options on the FMEA with a variety of MCDM methods including Fuzzy AHP. ENTROPY, and ELECTRE III. (ϕ � 0.5).

Priority Ranking with fuzzy ELECTRE Ranking with fuzzy VIKOR Ranking with fuzzy TOPSIS

Priority 1 FM3, FM2 FM6 FM6

Priority 2 FM7, FM6 FM3 FM3

Priority 3 FM5, FM1 FM1 FM7

Priority 4 FM4 FM2 FM1

Priority 5 – FM7 FM5

Priority 6 – FM5 FM4

Priority 7 – FM4 FM2

FIGURE 11 
Relationship diagram obtained by Fuzzy ELECTRE III method. The chart provides a graphical illustration of the results of Table 14.
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balance between subjective and objective weights. This volatility is a 
significant drawback in safety-critical engineering; it suggests that 
the ranking is driven more by mathematical assumptions than by the 
inherent risk of the component. Furthermore, TOPSIS assigns a 
unique rank to every failure mode based on Euclidean distance. This 
creates artificial distinctions between failure modes that are 
practically identical in risk profile, potentially leading to 
misallocated maintenance resources.

4.3.1.2 Inconsistency in fuzzy VIKOR measures
The analysis of Fuzzy VIKOR (Table 17) reveals a limitation 

regarding ranking stability across its internal measures. 

While FM6 is identified as the highest risk, the method 
produces inconsistent rankings for secondary risks (FM1 and 
FM3) depending on whether the Group Utility (S) or Individual 
Regret (R) is prioritized. This ambiguity compels decision- 
makers to rely on the composite index (Q), which attempts a 
mathematical compromise but may obscure the specific 
nature of the risk (e.g., high severity vs. high occurrence). 
Unlike the proposed ELECTRE III method, which 
establishes clear dominance, VIKOR’s compromise approach 
forces a trade-off that may not always align with the strict 
“safety-first” constraints required for critical automotive 
components.

TABLE 16 Ranking with a combination of Fuzzy TOPSIS and VIKOR.

Failure mode Proposed 
approach 
(ϕ � 1)

Proposed 
approach 
(ϕ � 0.5)

Proposed 
approach 
(ϕ � 0)

Traditional 
FMEA

Fuzzy TOPSIS Final results

Q Rank Q Rank Q Rank O S D RPN Rank Rc Rank Ranking

FM1 0.859 2 0.656 3 0.224 4 7 9 2 126 3 0.853 4 FM6

FM2 0.745 4 0.527 4 0.026 6 3 10 1 30 6 0.914 7 FM3

FM3 0.905 1 0.759 2 0.660 2 8 9 4 288 2 0.786 2 FM7

FM4 0.000 7 0.000 7 0.018 7 4 4 1 16 7 0.903 6 FM1

FM5 0.309 5 0.216 6 0.104 5 5 6 1 30 5 0.883 5 FM5

FM6 0.835 3 1.000 1 1.000 1 9 7 6 378 1 0.734 1 FM4

FM7 0.162 6 0.300 5 0.362 3 6 4 3 72 4 0.848 3 FM2

The ranking is shown under the ‘Final Results’ column from the top (Highest rank) to down (Lowest).

TABLE 17 Ranking the conventional alternative approach for FMEA using Fuzzy VIKOR.

Failure mode FM1 FM2 FM3 FM4 FM5 FM6 FM7

BY S 5 4 6 1 2 7 3

BY R 6 4 5 1 2 7 3

BY Q 5 4 6 1 2 7 3

Result

Ranking from right (highest rank) to left (lowest) FM6 FM3 FM1 FM2 FM7 FM5 FM4

The ranking is shown under the results row from the right (Highest rank) to the left (Lowest). The S, R, and Q measures are detailed in Table 18.

TABLE 18 Interpretation and ranking impact of VIKOR measures.

Name Ranking measures for 
alternatives

Interpretation Ranking impact

S Group utility measure Measures the overall deviation of each failure mode from the ideal solution 
across all criteria. Lower S means the failure mode is closer to the best possible 
performance

Failure modes with lower S values rank 
higher (better)

R Regret measure Focuses on the worst performance of each failure mode across all criteria. 
Lower R indicates a failure mode with more balanced performance

Failure modes with lower R values rank 
higher (more stable risk profile)

Q Final VIKOR index Combines S and R to provide a compromise ranking, balancing overall utility 
and worst-case performance. Lower Q means a failure mode is more critical

Failure modes with lower Q values rank 
highest in the final ranking
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4.3.1.3 Logical clustering via fuzzy AHP-entropy-fuzzy 
ELECTRE III

The results obtained by the proposed hybrid method (Table 15) 
demonstrate a superior logical structure compared to the 
comparative methods. While TOPSIS and VIKOR force a strict 
linear ranking (1 through 7) based on minute decimal differences, 
the Fuzzy ELECTRE III method clusters the failure modes into four 
distinct priority levels. For instance, FM3 and FM2 are grouped 
together in the highest priority level. This “clustered ranking” is 
methodologically more robust for risk assessment because it 
acknowledges the inherent uncertainty of expert inputs; 
distinguishing between a “Rank 2” and “Rank 3” risk often 
implies a precision that simply does not exist in linguistic data. 
Furthermore, the method demonstrates distinct safety advantages 
through its non-compensatory nature. Unlike TOPSIS, which allows 
high detection scores to mask severe risks, ELECTRE III utilizes veto 
thresholds to ensure critical failure modes are not demoted. 
Additionally, the method validates its accuracy by converging 
with other methods on low-risk items; like VIKOR and TOPSIS, 
it correctly identifies FM4 as the lowest priority (Priority 4), 
confirming that the model is calibrated correctly while providing 
more actionable, safety-critical insights at the top of the 
ranking order.

The proposed Hybrid Fuzzy ELECTRE III method sorted the 
FMs into four distinct priorities (see the first column and rows 
from Priority 1 to 4 in Table 15; Figure 11). Instead, the two other 
methods identify seven distinct priorities. This reduction in the 
number of distinct priorities and the formation of equal priority 
classes can simplify strategies needed to enhance the reliability of 
the final products. However, this inference requires validation 
through additional case studies to test the hypothesis in 
future research.

The differences in priority rankings highlight how the choice of 
the MCDM method impacts the outcome. Different methodologies 
lead to different prioritization, which can influence the risk 
management activities that follow.

Methodological differences have a crucial impact on the results 
of different approaches. For example, the impact on aggregation and 
normalization is as follows:

• The different aggregation methods and normalization 
techniques used by VIKOR (linear normalization) and 
TOPSIS (vector normalization) contribute to the variations 
in rankings.

• ELECTRE’s preference-based approach further differentiates 
its results from those obtained using VIKOR and TOPSIS.

4.3.1.4 Comparison of variations
The result of the comparative analysis suggests the 

importance of selecting an appropriate MCDM method 
based on the specific needs and characteristics of the risk 
evaluation context. Each method provides a unique 
perspective on prioritizing failure modes, with Fuzzy 
ELECTRE III, Fuzzy VIKOR, and Fuzzy TOPSIS each 
offering distinct advantages and insights into risk 
assessment. However, according to Table 15 the Fuzzy 
ELECTRE III method is beneficial in FMEA, as it enables 
analysis based on relevant parameters and helps to reduce 

priorities. For instance, in our case study with seven 
options, Fuzzy ELECTRE III identifies four distinct 
priorities 11. This allows for a more focused analysis and a 
better understanding of the sensitivity of the parameters.

4.3.1.5 Differences in the MCDM methods
The MCDM methods argued in this paper (i.e., Fuzzy TOPSIS, 

Fuzzy VIKOR, Fuzzy ELECTRE III) have different approaches in 
raking failure modes. Fuzzy TOPSIS is generally sensitive to 
distances from the Positive and Negative Ideal Solutions. Lower 
distance values from the former and greater distance values from the 
latter lead to higher ranks. This feature makes TOPSIS suitable for 
ranking failure modes that are clearly distinguishable and well- 
separated. Instead, Fuzzy VIKOR focuses on finding a compromise 
solution by achieving a balance between the Utility Measure and the 
Regret Measure, which in turn leads to the final ranking of failure 
modes. This approach makes fuzzy VIKOR sensitive to the worst- 
performing criterion, i.e., if a failure mode performs poorly in one 
criterion, it will be ranked lower even if it performs very well in other 
criteria. Consequently, this perspective makes Fuzzy VIKOR 
suitable for cases where an acceptable trade-off is preferred to 
selecting the absolute best option. Unlike the two mentioned 
methods, ELECTRE III puts the failure modes in pairwise 
comparisons and uses concordance (agreement) and discordance 
(disagreement) indices to determine the dominance relationships 
between them. Relying on this outranking approach makes 
ELECTRE III less sensitive to small differences and suitable for 
situations where there are multiple trade-offs and strong 
interactions among criteria.

4.3.1.6 Advantages of the proposed hybrid approach
The proposed hybrid framework offers three distinct advantages 

over prevalent Fuzzy MCDM approaches such as Fuzzy TOPSIS and 
Fuzzy VIKOR. First, the synergistic weighting mechanism solves the 
dilemma of “Expert Bias” vs. “Data Blindness.” While most existing 
methods rely on a single source of weights, this approach cross- 
validates subjective expert intuition (Fuzzy AHP) with objective 
information content (Entropy), ensuring a risk profile that is both 
practically grounded and mathematically rigorous. Second, and 
most critically for safety engineering, the use of Fuzzy ELECTRE 
III introduces non-compensatory logic. In standard distance-based 
methods (TOPSIS) or compromise methods (VIKOR), a failure 
mode with catastrophic severity can be downgraded if it has a very 
low occurrence rate (mathematical compensation). The proposed 
method employs “veto thresholds,” ensuring that high-severity risks 
retain their critical status regardless of other mitigating factors. 
Finally, the method avoids the “fallacy of hyper-precision.” Instead 
of forcing a strict ordinal ranking (e.g., Rank 1 to Rank 7) based on 
negligible decimal differences, this approach sorts failure modes into 
logical priority clusters (e.g., Priority Level 1, 2, 3). This 
categorization provides a more realistic representation of 
uncertain data and facilitates clearer resource allocation strategies 
for maintenance teams.

4.3.1.7 Disadvantages of proposed hybrid approach
Despite its methodological robustness, the proposed hybrid 

approach introduces a higher degree of operational complexity 
compared to traditional RPN or distance-based methods 
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(TOPSIS). The primary disadvantage lies in the cognitive load 
required for parameter calibration. Unlike direct linear 
calculations, Fuzzy ELECTRE III requires the precise definition 
of preference, indifference, and veto thresholds. These thresholds 
are sensitive; incorrect calibration by the decision-maker can lead to 
incoherent rankings or an inability to distinguish between options 
(too many “indifferent” relations). Furthermore, the method relies 
on pairwise comparisons, which creates a non-linear increase in 
computational effort as the number of failure modes grows. 
Consequently, while this approach is superior for critical 
components (like the clutch system), it may require specialized 
software automation to be scalable for system-wide analyses 
involving hundreds of failure modes.

5 Limitations and future studies

While the proposed hybrid framework offers significant 
improvements in handling uncertainty and risk prioritization, 
three key limitations must be acknowledged to guide 
future research.

First, regarding scalability and computational intensity, the 
reliance on Fuzzy ELECTRE III requires complex pairwise 
comparisons. As the number of failure modes (n) increases, 
the number of comparisons grows structurally (n × n), 
potentially making manual calculation unfeasible for complex 
systems with hundreds of failure modes. Future research should 
focus on developing automated decision support software or 
integrating Machine Learning (ML) algorithms to learn from 
expert inputs and automate the generation of preference and 
veto thresholds, thereby reducing the cognitive load on the 
engineering team.

Second, the method assumes static risk behaviors. The current 
model treats the failure modes as fixed snapshots in time. However, 
in real-world automotive manufacturing, risk profiles change 
dynamically based on machine wear, supplier quality, and 
environmental conditions. A promising avenue for future 
research is the development of a Dynamic FMEA (D-FMEA) 
framework, potentially integrated with Digital Twin technology, 
where the Entropy weights are updated in real-time based on live 
sensor data from the production line.

Third, the sensitivity of threshold parameters in ELECTRE 
III remains a critical factor. While this study utilized expert 
consensus to define indifference and veto thresholds, these 
values are inherently subjective. Future studies could employ 
Data Envelopment Analysis (DEA) or evolutionary algorithms 
to mathematically optimize these thresholds, ensuring the most 
robust ranking separation without excessive manual trial- 
and-error.

6 Conclusion

Precise risk-based design is the cornerstone of safety-critical 
engineering. This study addressed the fundamental deficiencies of 
the traditional RPN and conventional fuzzy 
approaches—specifically their inability to manage conflicting risk 

factors and their tendency to allow high-detection scores to mask 
high-severity risks.

The primary contribution of this work is the development of a 
robust hybrid methodology that synergizes Subjective (Fuzzy AHP) 
and Objective (Entropy) weighting with a Non-Compensatory 
(Fuzzy ELECTRE III) ranking engine. By moving away from 
simple multiplicative formulas and distance-based methods (e.g., 
TOPSIS), this approach introduces a safety-first logic: it prevents the 
compensation of critical severity risks by other factors, a feature that 
is indispensable for automotive safety components like the 
clutch system.

The empirical validation on the clutch system demonstrated that 
the proposed method reduces the noise inherent in traditional 
rankings. While comparative methods (TOPSIS and VIKOR) 
produced highly dispersed, linear rankings (Ranks 1–7) based on 
mathematical minutiae, the proposed method successfully grouped 
failure modes into four logical priority clusters. This clustering 
provides a more realistic representation of risk, acknowledging 
that minor distinctions between failure modes are often 
statistically insignificant.

For engineering managers, this framework offers a strategic tool 
for resource allocation. By reducing the number of priority levels, 
decision-makers can focus maintenance efforts on the “Priority 1” 
cluster with greater confidence, knowing that these risks have been 
vetted against strict safety thresholds. The transition from a 
“Compensatory” model to an “Outranking” model ensures that 
resources are not diverted to minor issues at the expense of 
catastrophic but rare failure modes, ultimately supporting a 
“Zero Defect” manufacturing philosophy.
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