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Introduction: Precise risk-based design is essential for accurately identifying and
assessing threats, improving reliability, and ensuring the overall safety of safety-
critical systems. Failure Mode and Effect Analysis (FMEA) is a widely employed
technique for the evaluation of risk of components, systems, services, and
processes. To address subjectivity and ambiguity in decision-makers’
judgments in traditional FMEA, several methodological improvements have
been proposed; however, a state-of-the-art review shows that several
research avenues are still open in this domain. Reducing the variation in
priority ranking within failure analysis remains a mostly underexplored area.
This significant gap serves as the main motivation for investigating whether
the synergy between different aggregation methods and normalization
techniques, when combined with a fuzzy reference-based approach, can
effectively decrease the distinct rankings.

Methodology: This study proposes an improved FMEA methodology that
combines the Fuzzy Analytic Hierarchy Process (Fuzzy AHP), Fuzzy Elimination
Et Choix Traduisant la REalité (Fuzzy ELECTRE Ill), and Entropy methods to derive
a logical ranking of FMEA failure modes, thereby enhancing the effectiveness of
FMEA. The proposed approach employs linguistic variables to set S, O, and D
weights, FMEA using the Entropy and Fuzzy AHP methods, integrates these
weights using Fuzzy ELECTRE Ill, and finally analyzes the priority of the
options. To validate the practical applicability of the proposed framework, a
real-world case study on a safety-critical machine component, the clutch
system, which is a suitable case for risk-based engineering design, is conducted.
Results and discussion: The results are compared with those obtained by the
integration of TOPSIS and VIKOR with FMEA, showing that the proposed method
provides fewer priority rankings while delivering more effective results. Such
clustering provides a more realistic representation of risk, acknowledging that
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minor distinctions between failure modes are often statistically insignificant. This
ensures that resources are not diverted to minor issues at the expense of
catastrophic but rare failure modes.

KEYWORDS

automotive industry, decision support system, failure mode and effects analysis (FMEA),
fuzzy logic, hybrid method, multi-criteria decision analysis (MCDA), multi-criteria
decision-making (MCDM), reliability

1 Introduction

The car clutch is a critical component in passenger safety,
allowing the driver to quickly disengage power in emergencies,
preventing unintended movement and reducing kickback (Acko,
2024b; Moore and Rennell, 1991; Media Q, 2023; Acko, 2024a). A
neglected clutch can cause issues such as slippage or sticking,
increasing the risk of accidents. Ensuring its reliability is crucial
for overall vehicle safety, making risk assessment and system
improvement essential. The safety criticality of this system is
detailed in Section 4.1.

Today’s competitive markets require proactive design during the
development and continuous improvement of existing safety critical
systems such as the clutch system. Failure Mode and Effects Analysis
(FMEA) is a solution that addresses both. By systematically
analyzing potential weaknesses early on, engineers can identify
problems before they impact customers. Additionally, FMEA
allows for periodic reevaluation of existing systems, helping
identify areas susceptible to new problems or those with hidden
weaknesses. The engineering mission of FMEA is to identify and
avoid potential failures in systems or processes before they impact
customers (Stamatis, 2003; Liu et al.,, 2015). To this end, FMEA
assigns three factors to each failure mode: severity (S), occurrence
(0), and detection (D). These factors represent the intensity of the
impact, the probability of occurrence, and the ease of detecting the
failure, respectively. In a typical FMEA assessment, the risk priority
numbers (RPNs) of the failure modes are ranked by the risk factors
(O, S, and D).

Although FMEA is a simple and valuable tool, its traditional
approach using a single RPN score can mask important distinctions
between failures (Ibarra et al., 2024). This is why various variations
are systematically analyzed and implemented to improve the
effectiveness of FMEA, leading to a more nuanced assessment, a
more informed prioritization, and ultimately to more robust and
reliable systems.

To identify which failure mode has a critical role, Wang et al.
(2009) evaluated the risk factors of FMEA using fuzzy linguistic
variables and proposed fuzzy RPN to identify the most critical
failure modes for FMEA problems. However, limitations were
observed across the Multiple Criteria Decision Making (MCDM)
approaches. The traditional prioritization of failure modes for risk
reduction is criticized based on methodological drawbacks, critical
ones being: the identical relative weights of risk factors (Ouyang
et al., 2022), dissimilarity of different sets of risk factors (Liu et al.,
2016), complicated fuzziness of FMEA phenomena by using
numerical values (Resende et al,, 2024), and the mathematical
formula for obtaining RPNs is too simple and lacks a solid
scientific foundation as there is no rationale about why O, S and
D should be multiplied to calculate the RPN (Gargama and
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Chaturvedi, 2011). This disability in facing FMEA problems
shows its weakness doubly when faced with MCDM methods.
MCDM can be explained as the evaluation of the alternatives to
select or rank, using a number of criteria, expressed in qualitative
and/or quantitative measurement units.

Despite the advancements in risk assessment, traditional FMEA
remains hindered by the limitations of the RPN, specifically its equal
treatment of risk factors and its inability to distinguish between
high-severity and high-occurrence risks effectively. While various
MCDM methods have been introduced to mitigate these issues,
many existing hybrid approaches rely solely on either subjective
expert judgments or objective data. They often fail to capture the full
spectrum of uncertainty. Moreover, widely used compensatory
methods, such as TOPSIS and VIKOR, tend to generate highly
dispersed rankings that can obscure the true criticality of failure
modes by allowing low-risk factors to offset severe ones. To address
these issues, the objective of this study is to develop a robust hybrid
methodology that integrates several MCDM methods, aiming to
minimize the variation in priority ranking and ensure a more logical,
stable, and safety-critical categorization of failure modes.

In this study, an integrated method is proposed, which combines
the rational approaches of two different MCDM methods, namely,
Fuzzy AHP and Fuzzy ELECTRE III, to enhance the robustness of
FMEA decision-making. The Fuzzy AHP method captures expert
judgments with imprecision and is used to determine the risk
factors’ weights, and Fuzzy ELECTRE III provides a robust
outranking approach for prioritizing failure modes under
uncertainty. This integrated approach aims to address traditional
FMEA limitations by improving accuracy, reliability, and decision
support in failure mode prioritization and to enhance FMEA
effectiveness by making the following contributions:

1. Contribution 1. Proposing an integrated MCDM method using
the AHP, Entropy, and ELECTRE methods to employ FMEA.

2. Contribution 2. Incorporating the fuzzy numbers in the
integrated method to address subjectivity and imprecision
in decision-making

3. Contribution 3. Reducing the number of failure mode

levels to facilitate

prioritization risk  management

strategic planning.

The following Section delves into conventional FMEA’s
theoretical foundation, limitations, and the state of the art on
variations of FMEA methods. the theoretical
foundations of the new method are introduced. In Section 4, the

In Section 3,

proposed method is implemented in a case study to validate its
functionality using a real-world example, and in Section 5, the
limitations and future research paths are reported, and finally, in
Section 6, a comprehensive conclusion is provided.
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2 Literature review

In order to perform a preliminary analysis of the literature to
illuminate the overall research landscape of the field, several Scopus
queries were conducted in December 2024. The preliminary analysis
reveals the distribution and integration of methodologies within the
field of FMEA. The first search string, (FMEA OR ‘Failure mode and
effects analysis’), produced 8,812 documents (Figure 1), establishing
a baseline for the conventional implementation of FMEA.
Introducing fuzzy logic in the search with string (FMEA OR
‘Failure Mode and Effect Analysis’) AND fuzzy reduced the
1,086 documents (Figure 2), representing
approximately 12.89% of the total FMEA documents. Further
refinement of the search to include MCDM methods alongside
fuzzy logic, using string (FMEA OR ‘Failure Mode and Effects
Analysis’) AND Fuzzy AND (mcdm OR Fuzzy AHP OR topsis

results  to
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OR vikor OR Fuzzy ELECTRE III OR promethee OR maut OR anp
OR dematel OR moora), yielded 290 articles (Figure 3). This subset
represents 3.44% of the fuzzy-enhanced FMEA documents. These
figures indicate a growing interest in integrating fuzzy logic and
MCDM methods with FMEA.

Members of FMEA teams usually originate from a variety of
backgrounds, and as a result, their perspectives may differ
significantly. They may also differ in terms of their levels of
evaluation, practical experience, and knowledge structures.
Because individual rationality and cognition differ, as does the
impact of social ties, experts in the FMEA may have varying
effects on the decision-making process. Furthermore, it is
essential to capture the fuzziness of the experts’ evaluations by
using partial weights of risk factors (Sabripoor et al., 2024).

In order to investigate how the fuzzy process can cope with

uncertainties, including subjective expert evaluations due to
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subjective perspectives, incomplete information, and linguistic
assessments of decision-makers through the FMEA, this study
evaluates a large number of methodologies that have been
reported to model the uncertainties in the decision data collected
from FMEA team members. This study explores how the fuzzy
process can address uncertainties, such as subjective expert
evaluations, incomplete information, and linguistic evaluations of
decision-makers in FMEA. To achieve this, it reviews various
approaches and methodologies used to model these uncertainties
in the decision data provided by the FMEA team members (Bowles
and Peldez, 1995) originally developed a fuzzy logic-based FMEA for
analyzing the structures, reliability and assessment of system
criticality based on the severity of the failure and the probability
of its occurrence to discover the relationships between risk factors
and risk of failure.

Based on the literature review on decision making techniques
and the objective of this research, the widely used MCDM methods
include multi-attribute utility methods (MAUT) (e.g., AHP and
ANP), outranking methods (e.g., ELECTRE) and compromise
methods (e.g., TOPSIS and VIKOR). In addition, Saaty (2008)
uses expert judgment to determine priority scales and suggests
AHP for measurement through pairwise comparisons. Pairwise
comparisons of criteria in the AHP method, a structured
approach to handle complicated decision-making problems, offer
a precise, reliable and practical means to accommodate real-life
circumstances, making it superior to other MCDM methods. AHP
models the decision problem into a hierarchy with a goal, decision
criteria, and alternatives. In contrast, the ANP forms a network
structure that is a more general form of the AHP used in multi-
criteria decision analysis (Saaty, 2005).

He et al. (2012) presented an integrated approach with the
objective of maximizing the level of customer service and
minimizing logistics costs by using a fuzzy AHP-based integer
linear programming model for the multi-criteria transshipment
problem. Kaya and Kahraman (2010) employed a combination of
fuzzy VIKOR and AHP to determine the most suitable renewable
energy policy and select the optimal production site in Istanbul.
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Similarly, Fouladgar et al. (2012) used fuzzy AHP and VIKOR to
propose a decision-making method for the selection of the project
portfolio in investment decisions. They stated that their proposed
method addressed qualitative assessment information without the
need for a numerical conversion. Liu et al. (2016) reported an
integrated multi-attribute decision-making model to classify
failure modes under uncertainty. Mohsen and Fereshteh (2017)
proposed an extension of VIKOR based on entropy measures for the
risk assessment of failure modes. The entropy of measurements
quantifies the average level of uncertainty, which measures the
expected amount of information needed to describe the state of
the variable, considering the distribution of probabilities across all
potential states (Gray, 2011). Furthermore, Wang et al. (2017)
presented an FMEA method employing a house-of-reliability-
based rough VIKOR approach.

The Preference Ranking Organization Method for Enrichment
of Evaluations (PROMETHEE), developed in the early 1980s, is
widely employed in decision making in diverse fields, including
business, governmental institutions, transportation, healthcare, and
education. Rather than prescribing a definitive ‘right’ decision,
PROMETHEE helps decision makers identify the alternative that
best aligns with their goals. It allows structuring the decision-making
process to identify and quantify conflicts and synergies between
alternatives (Behzadian et al., 2010). Another influential approach in
multi-criteria decision-making is the ELECTRE method, developed
by Roy (1968). Unlike PROMETHEE, which ranks alternatives
based on preference, ELECTRE compares alternatives in pairs to
establish dominance. This method suitably addresses uncertainty
and is especially effective in cases that involve both qualitative and
quantitative criteria. ELECTRE III, in particular, employs a fuzzy-
based outranking approach. Chen et al. (2021) proposed an
approach for bid evaluation, called “ELECTRE III-based Multi-
Criteria Group Decision-Making (MCGDM)”, which manages
uncertainty through  “Generalized Comparative Linguistic
Expressions (GCLEs)” for qualitative assessments. Their model
improves expert consensus and

integrates subjective and

objective weighting.
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TABLE 1 Improvements in FMEA through Fuzzy logic and MCDM Approaches integration.

Improvement Reference

Enhanced decision-making Wang et al. (2009)

FMEA.

Explanation

MCDM approaches such as fuzzy AHP (analytic hierarchy process), TOPSIS (technique for order of
preference by similarity to ideal solution), and VIKOR (VIsekriterijumsko KOmpromisno Rangiranje) offer
systematic methods to enhance decision-making by integrating multiple criteria and handling uncertainty in

Handling subjectivity and
ambiguity

Sharma et al. (2005)

MCDM techniques introduce rigor by quantifying and prioritizing criteria (e.g., FMEA risk factors). This
helps mitigate the subjective judgments that can influence traditional FMEA results

Integration of expert knowledge Braglia and Bevilacqua

(2000)

A decision-making support system incorporating fuzzy logic and AHP assists maintenance staff in assessing
failure mode criticality. By using triangular fuzzy numbers (TFNs) instead of crisp inputs in fuzzy models, the
methodology evaluates expert opinions effectively, reducing subjectivity in FMEA.

Optimization of prioritization Liu et al. (2015)

By combining different MCDM approaches, FMEA can achieve optimized prioritization of failure modes
based on comprehensive analyses that consider various perspectives and criteria simultaneously

Enhanced effectiveness Certa et al. (2017)

Beyond implementing fuzzy logic, hybrid methods have gained
significant traction in operations research due to their ability to
combine the strengths of multiple techniques, thus improving the
precision and robustness of decision making (Akhtar et al., 2024;
Boral et al., 2020; Dabous et al., 2021; Ervural and Ayaz, 2023; Xiao
et al,, 2011). For example, hybrid methods are commonly used in
problems with a large number of criteria (Liu et al., 2015), effectively
handling uncertainty (Pelissari et al, 2021; Yang et al, 2011),
reducing the number of criteria (Pawlak and Stowinski, 1994),
and handling constraints under the value-at-risk measure
(Hooshmand et al, 2023), and offer the solution of gray
stochastic MCDM problems (Zhou et al., 2019; Zhou et al,
2019). However, a significant gap remains when comparing the
prevalence of these hybrid methods with the conventional FMEA
approach. This gap highlights the ongoing challenges of ambiguity
and inaccuracy associated with traditional FMEA, as discussed
in Section 2.

2.1 Problem statement and
proposed solution

Although FMEA is an effective risk assessment tool (Brown,
2007), it has limitations. In some cases, the RPN may not adequately
differentiate between failure modes. For instance, consider two
failure modes through the typical RPN (Formula 1).

RPN=SxOxD (1)

Failure mode 1: (S=4,0=3,D =3)
RPN, =8, x0;, xD;, =4x3x3=36

Failure mode 2: (§=9,0=1,D =4)
RPN2=SzXOZXDz=9X1X4=36
Although both failure modes have the same RPN, failure mode
2 has a high severity (9) and a low occurrence (1). This distinction is
not captured by the traditional RPN calculation.

Fattahi and Khalilzadeh (2018) introduced a fuzzy hybrid
method to address this limitation. Their approach replaced

Frontiers in Mechanical Engineering

Studies have demonstrated that integrating MCDM techniques like fuzzy ELECTRE III (Elimination and
choice expressing reality) with FMEA results in more effective identification and mitigation of critical failure
modes compared to using FMEA alone

traditional RPNs with “Fuzzy Weighted Risk Priority Numbers”
(FWRPNS). Furthermore, previous research has explored the use of
Vikor and Fuzzy AHP as weighting factors in FMEA (Liu et al., 2015;
Safari et al., 2016; Jianxing et al., 2021). The integration of MCDM
approaches with FMEA has shown significant potential to enhance
the accuracy of FMEA results. Table 1 shows the approved
improvements gained from the integration of FMEA with fuzzy
logic and MCDM approaches. This is the main motive for
investigating alternative hybrid methods to achieve more
improvements. Therefore, a general research question arises:
Does the combination of other MCDM approaches improve the
FMEA results?

The proposed approach in this article uses fuzzy logic combined
with Fuzzy AHP and entropy methods to weight factors, followed by
the Fuzzy ELECTRE III method for ranking failure modes.
However, several other MCDM methods can be employed to
enhance the FMEA process. Each method has unique strengths
that can address different aspects of decision-making and risk
assessment. Future research will involve studying these
combinations and comparing their effectiveness in various
industrial contexts. The goal of future studies with several
alternative methods implemented in various domains is to
develop a versatile and adaptive FMEA framework that can be
tailored to different types of systems and operational conditions,
ensuring a assessment and

more comprehensive  risk

mitigation strategy.

2.2 Theoretical foundation of
conventional FMEA

Failure mode and effects analysis is the most common tool in the
broad area of failure effects analysis. This tool follows a process
aimed at the systematic and logical study of how a system reacts to
failures (Rausand and Hoyland, 2003). Sometimes, this process
includes criticality analysis, and the name extends to Failure
Mode, Effects, and Criticality Analysis.

Given the wide variety of FMEA-based methods, standardizing
this widely used tool is essential to ensure consistency and reliability
in risk assessment (Booker et al., 2020). The first published standard
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Weighting of Risk Factors using Fuzzy AHP and Entropy
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l

Aggregation of Weighted Risk Factors
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l

Ranking of Failure Modes using Fuzzy ELECTRE III

FIGURE 4
Flowchart of the Fuzzy FMEA and Entropy process.

that describes the detailed approach of the FMEA method was
demonstrated in the US Armed Forces Military Procedures
document MIL-P-1629 (Military, 1949). The revised version of
this standard is MIL-STD-1629A, which was introduced in
1980 and is widely used to systematically evaluate failures by
item failure mode analysis. It assesses the potential impact of
failures on mission success, personnel and system safety, system
performance, maintainability, and maintenance requirements
(Agarwala, 1990; Baig and Prasanthi, 2013). The current study
employs fuzzy logic due to the inherent subjectivity and
ambiguity associated with FMEA assessments. Fuzzy logic allows
experts to incorporate their knowledge and experience when
evaluating failure modes (Pelissari et al., 2021; Radojevic and
Petrovic, 1997).

Traditional FMEA relies on a multiplication operation to
calculate the RPN; the approach is sensitive to changes in factor
assessments and can lead to similar RPN values for significantly
different failure modes. This is why Fuzzy FMEA’s popularity has
sharply increased. Fuzzy logic, introduced by (Zadeh, 1965), is a
mathematical framework to represent uncertainty and partial truth.
In contrast with traditional logic, where variables are true or false,
fuzzy logic allows for degrees of truth between 0 (completely false)
and 1 (completely true). Fuzzy set theory utilizes membership
(MFs) these degrees of
membership. Triangular MFs are commonly used in Fuzzy
FMEA applications (Zha et al., 2023).

Fuzzy FMEA offers several advantages. Fuzzy logic aligns well

functions to represent

with human language, making it easier for experts to provide FMEA
input (Burduk et al., 2024). In addition, fuzzy FMEA can handle
both quantitative data and qualitative information, providing a more
comprehensive evaluation of failure modes (Sabripoor et al., 2024).
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Preference Matrix

Figure 4 outlines the step-by-step process of Fuzzy FMEA, which
consists of failure mode identification, risk factor evaluation,
fuzzification, aggregation,  defuzzification, and
final ranking.

The process starts with identifying potential failure modes
(FMy, FMy, ..., FM,) and evaluating their risk factors: Severity
(S), Occurrence (O), and Detection (D). In the fuzzification

step, these crisp risk factor values are converted into fuzzy

weighting,

numbers (S, O, D) using appropriate membership functions. In
the Fuzzy FMEA process shown in Figure 4, the failure modes
(FM1, FM2, ... , FMn) are identified, leading to a risk
assessment based on risk factors S, O and D. In the next
step (fuzzification), they are transformed into fuzzy
numbers (ws, wo, wp) which are obtained using fuzzy AHP
and entropy, which balance the subjectivity of expert
judgments with an objective weighting mechanism. Next, in
the aggregation step, the risk factors are combined into a fuzzy
Risk Priority Number (RPN) using the weighted sum

(Equation 2) (Liu et al., 2011):

RPN,*ZLUS'SI“FU)O-O,“FLUD'D,‘ (2)

Since RPN; is still a fuzzy number, the defuzzification step
converts it into a single crisp value to enable ranking. The centroid
method is commonly used, defined in Equation 3 (Sodenkamp
et al., 2018).

(©)

Finally, the ranking of failure modes is determined using Fuzzy
ELECTRE III, which constructs a preference matrix based on the
defuzzified RPN values. This ensures a more robust ranking
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compared to conventional FMEA, which often suffers from
ambiguity and inconsistent prioritization.

In the last decade, various efforts have been made to improve
FMEA. Different MCDM methods, FVIKOR, FCOPRAS,
FMOORA, FMABAC, FTOPSIS, FMAIRCA, and Fuzzy AHP, are
widely used to address the drawbacks of simply multiplying the three
RPNs. Some specific improvements are gained by integrating
MCDM with FMEA, which is reported in Table 1. However,
there are other variations of FMEA that, in general, improve the
results, such as:

1. Gupta et al. (2021) proposed a fuzzy FMECA model utilizing
Dempster-Shafer theory and a linear equation to aggregate
expert opinions and calculate risk. However, their approach
relies on a compensatory linear formula that fails to prevent
high-severity risks from being overshadowed by other factors,
and it lacks an objective weighting component (such as
Entropy) to mitigate the subjectivity of expert judgments.

. Boral et al. (2020) proposed an integrated MCDM approach
combining Fuzzy AHP for weighting and Fuzzy MAIRCA for
ranking failure modes. However, they rely solely on subjective
expert judgment (Fuzzy AHP) for weighting without
validating it against objective data (Entropy), and they
utilize MAIRCA, a compensatory method that, unlike
Fuzzy ELECTRE III, may allow low-risk factors to offset
critical high-severity failures.

. Zhuetal. (2020a) proposed a hybrid risk ranking model using
linguistic neutrosophic numbers, regret theory, and
PROMETHEE, with weights derived from a maximizing
deviation model and TOPSIS. However, while they address
psychological behavior, their weighting method lacks the
specific synergy of combining subjective hierarchical
structure (AHP) with objective data (Entropy), and their

adds

(neutrosophic

approach significant computational complexity

sets) without explicitly addressing the
reduction of ranking variation.

. Wang et al. (2020) proposed a novel FMEA method using an
extended matter-element model for ranking and AHP for
deriving risk factor weights. However, their reliance on AHP
alone introduces purely subjective bias into the weights, and
the matter-element model is a correlation-based approach
that lacks the non-compensatory “veto” thresholds provided
by Fuzzy ELECTRE III to ensure safety-critical failures are not
downplayed.

. Huang et al. (2022) proposed a reliability model integrating
probabilistic linguistic term sets with the TODIM method,
utilizing TOPSIS to derive objective weights. However, by
using TOPSIS for weights, they ignore the structural expert
intuition provided by AHP (relying only on objective data),
and the TODIM method focuses on gain/loss psychology
rather than the strict outranking relationships necessary to
distinctively separate close priority rankings.

. Liu et al. (2019) proposed an integrated risk prioritization
approach using interval-valued intuitionistic fuzzy sets and
the MABAC method, with a linear programming model for
optimal weights. However, their method uses MABAC, which
aggregates distances linearly (compensatory), and their
weighting optimization is mathematical rather than a
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hybrid approach that balances the decision-makers’ intent
(Subjective AHP) with the data’s information content
(Objective Entropy).

. Bian et al. (2018) proposed a risk priority model utilizing D
numbers to handle uncertainty and TOPSIS to rank failure
modes. However, TOPSIS is a compensatory distance-based
method that can hide severe risks if other factors are
favorable, and the study fails to incorporate a hybrid
weighting mechanism, leaving the relative importance of
risk factors potentially unbalanced or ill-defined.

. Grunske et al. (2007) proposed a method using probabilistic
fault injection and model checking to identify if failure modes
exceed tolerable hazard rates. However, this is a formal
verification technique rather than an MCDM framework,
meaning it lacks the ability to rank failures based on the
trade-offs of subjective criteria (severity, detection) using
hybrid weights and linguistic variables.

. Liu et al. (2012) proposed a fuzzy FMEA model using
linguistic variables and the extended VIKOR method to
determine risk priorities. However, VIKOR creates a
“compromise” solution that is inherently compensatory,
whereas the Fuzzy ELECTRE III method in this study uses
non-compensatory outranking to ensure that high-severity
failures retain a high priority regardless of other factors.

10. Shi and Yang (2009) proposed an evaluation framework for

software trustworthiness using Fuzzy AHP for weights and

Fuzzy TOPSIS for ranking. However, their approach suffers

from the same limitations as traditional fuzzy FMEA

improvements. It relies exclusively on subjective weights

(FAHP) without an objective Entropy check, and uses

TOPSIS, which fails to provide the granular, non-

compensatory differentiation of rankings offered by Fuzzy

ELECTRE IIL

The articles listed above present various methods for
calculating risk priority. However, the novelty of this paper lies
in the integration of FMEA with Fuzzy AHP and Fuzzy ELECTRE
III. This new approach limits the results to the most feasible

answers. In the next section, the proposed method is
systematically presented.
3 Methodology

This section explains the process of combining the

implementation of fuzzy logic with MCDM within the proposed
hybrid FMEA approach, and then, in detail, the outline of the steps
of the proposed method is explained.

3.1 Methods and tools

To overcome the ambiguity and subjectivity often present in
conventional FMEA, this study combines four distinct mathematical
tools: Fuzzy Logic, Fuzzy Analytic Hierarchy Process (AHP),
Shannon Entropy, and Fuzzy ELECTRE III. The rationale for
selecting these specific methods and their role in the overall
structure is outlined below.
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TABLE 2 Fuzzy evaluation scores for alternative.

Linguistic terms Fuzzy score

Very poor (VP) 0,0,1)

Poor (P) (0,1,3)

Medium poor (MP) (1,3,5)

Fair (F) (3,5,7)

Medium good (MG) (5,7,9)

Good (G) (7,9,10)

Very good (VG) (9,10,10)

Ly (x)
VP P MP F MG G VG
1
> X
i} | 2 3 4 5 5] 7 ) 4 1m0
FIGURE 5

Linguistic terms and corresponding triangular fuzzy numbers
used in the study.

3.1.1 Fuzzy logic

In engineering risk assessment, precise numerical data is often
unavailable, and expert judgments are frequently expressed in
linguistic terms (e.g., “High,” “Low”). To handle this inherent
uncertainty by using degrees of truth rather than rigid binary
sets, Fuzzy logic is employed based on a spectrum of data
derived from Fuzzy set theory.

Unlike traditional binary sets (where the variables must be 0 or
1), fuzzy logic variables may have a truth value between 0 and 1
(Zadeh, 1965). This approach enables the modeling of concepts that
are inherently vague or ambiguous, such as ‘tallness’. Fuzzy logic
provides a robust framework for handling the uncertainty and
imprecision found in many real-world problems. It has been
widely applied in fields such as control systems (Ferdaus et al,
2020), artificial intelligence (Bakhtavar et al., 2021), and decision-
making processes where human-like reasoning is advantageous
(Mardani et al., 2019).

The study implements Triangular Fuzzy Numbers (TFNs)
due to their computational efficiency and ability to represent the
linear uncertainty typical in risk estimation (Klir and Yuan,
1995). In order to implement triangular fuzzy logic, the steps
derived from several sources (e.g., Klir and Yuan, 1995; Kutlu
and Ekmekgioglu, 2012; Lai et al., 1992; Zadeh, 1965) can be
followed. The process begins with the input TFN (al, a2, a3),
followed by Fuzzification, where the membership function in
Equation 4 is applied.
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x={""" )
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The Fuzzy Evaluation Scores Table is conducted based on fuzzy
numbers. A fuzzy number is a special fuzzy set in the universe of
discourse X whose membership function is convex and normal.
Several methods are used to express imprecision by means of fuzzy
numbers. Among these methods, TFNs are more popular compared
to the others because of their simplicity and features. They are useful
in promoting representation and information processing in a fuzzy
environment. Linguistic variables are generated during the
aggregation step and provide the basis for the final ranking and
decision-making process. The sample linguistic variables used for
rating the failure modes are shown in Table 2 and Figure 5.

Finally, defuzzification (Tseng and Tzeng, 2002; Zhang
et al, 1999) converts the aggregated fuzzy values into a crisp
output. Defuzzification uses predefined fuzzy rules to process
fuzzified inputs. In this study, the center of area (COA) method
is used for defuzzification. It is a simple and practical method that
finds the best non-fuzzy performance (BNP) value. The BNP value
of the TFN a = (ay,a,,as3) is the defuzzied value of x,(a) and is
calculated using Equation 5.

50 (@) = las—a) + (@ -a)] + )

This final step leads to the Output Result, providing a crisp
ranking of failure modes. Each formula is displayed outside the
corresponding process block for clarity.

3.1.2 Fuzzy AHP method
While FMEA (Severity,
Occurrence, Detection) as equally important, scientific reality

traditional treats risk factors
dictates that different systems prioritize these factors differently
based on operational context. Fuzzy AHP is selected to capture the
subjective engineering knowledge required to weight these factors.
This approach, which was originally developed by Saaty (1990), is a
structured technique for organizing and analyzing complex
decisions, based on mathematics and psychology (Saaty, 2008;
Sankar and Prabhu, 2001; Vaidya and Kumar, 2006). Fuzzy AHP
facilitates decision making by structuring a hierarchy of criteria,
comparing them pairwise, and calculating weightings that reflect the
relative importance of each criterion (Ahmed and Kilic, 2024;
Ghodsi et al, 2022). The implementation of Fuzzy AHP is
increasing sharply due to the advantages highlighted by
researchers and practitioners (Chan et al., 2008; Wu et al., 2023;
Gonzalez-Urango et al., 2024; Zhu et al., 2021).

The flow chart in Figure 6 illustrates the steps involved in the
Fuzzy AHP method (Buckley et al., 2001). The process begins by
identifying and defining the criteria and sub-criteria. Each formula
used in this process is shown to the right of the corresponding step in
the flow chart.

To evaluate failure modes in fuzzy AHP methods, first, the fuzzy
numbers representing performance scores Ax >0 (for decision
should be satisfying the constraint

makers) determined,
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Define Criteria and Sub-criteria

|

Determine Performance Scores

l
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25:1 )\k =1

Construct Fuzzy Pairwise Comparison Matrix

A = [aij]

l

Compute the Fuzzy Geometric Mean

S|=

T¢:<ai1><ai2><~-><am)

l

Calculate the Fuzzy Weights

l

Defuzzify the Weights

l

W = Fi X (P14 Fo 4o+ 7y)

Normalize subjective weight of criteria

FIGURE 6
Flowchart of the fuzzy AHP method.

Yo Ak =1. Next, the results of the pairwise comparison are
combined to construct the fuzzy pairwise comparison matrix
(A), as shown in Equation 6.

a;j = (aijlaaijbaij?a): i=12,...,n-1, j=23,...,n

K K K
k k k
where a;;; = Zzlka,.jl, aijp = ZAkaijz, aij3 = Z)Lkaija' (6)
k=1 k=1 k=1

Then construct the fuzzy pairwise comparison matrix (A)
(Equation 7).

L . 1 N
an dpp "t dip 12 "

- . Gy Gy v+ dop 1/an, 1 - ay

A= [aij] = . . . = . . (7)
Gn Gy "+ 4 ~ -
nl Un2 nn l/aln 1/“27; T |

Next, the fuzzy geometric mean is calculated for each criterion
by employing the geometric technique. To obtain the fuzzy
geometric mean r; of the fuzzy comparison values between
criteria, Equation 8 is used.

. - - Nt
i = (i X dip XX Gjp)" (8)

The next step involves synthesizing the pairwise comparisons to
derive fuzzy weights for each criterion. These fuzzy weights are
calculated using the average of the fuzzy comparison values
Equation 9. Subsequently, the fuzzy weights are defuzzified using
indicated by the TFN

10 where

¢ can be

Equation
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W = (wjy,w;, w3). Then the subjective weight of criterion i
(wis) can be first defuzzified and normalized using Equation 11.

wf:fix(f1+f2+--~+r"n)*l (9)

%0(@ = 3 1@ -a) + (a-a)] +a, (10)
s_ W

D ViR (11)

By structuring the decision problem hierarchically and using
pairwise comparisons (Equation 6), Fuzzy AHP allows the
engineering team to express relative importance based on their
experience. This step is crucial for incorporating the “human
element” into the mathematical

of engineering expertise

model (Figure 6).

3.1.3 Entropy method

Relying solely on expert judgment (AHP) can introduce
cognitive bias. To counterbalance this, the Entropy method is
integrated to provide objective weights as a decision-making
technique. The entropy method for decision making is a
technique used to evaluate and rank alternatives by measuring
the level of uncertainty or disorder in the decision matrix
(Zeleny and Cochrane, 1982; Zhu Y. et al, 2020). It assigns
weights to criteria based on their entropy values, reflecting their
importance in the decision process (Yoon and Hwang, 1995). In the
current article, the Shannon Entropy (Shannon, 1948) is used.
Figure 7 illustrates the step-by-step outline of this method.
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Define Criteria and Alternatives

l

Normalize the Decision Matrix

l

Calculate Entropy of Each Criterion

l

Calculate the Entropy Weights

FIGURE 7
Flowchart of the entropy method.
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Lij
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Ej = — (55) ity Bij InPyj
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Tij = m
/ 2
k=1 @i

Compute Weighted Normalized Decision Matrix

Vi =370 Wyryj

l

Compute Concordance Matrix

Chi

l

Compute Discordance Matrix

Dy

|

Determine Compliance F' and Absence GG Control Matrices

Equations 22, 23, 24

l

Define Master Matrix £

|

Triantaphyllou (2000)

Eliminate Less Desirable Alternatives

l

Rank the Remaining Alternatives

FIGURE 8
Updated flowchart of the fuzzy ELECTRE Il method.

After identifying the decision criteria and the available
alternatives in the ‘Defining Criteria and Alternatives Step’,
the decision matrix should be normalized to ensure that all
criteria are comparable. Normalization is performed by
Equation 12, where p; indicates the projected outcomes of
criterion j.
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)

Y Z:ilxij
Then the entropy value of each criterion, which indicates the

degree of disorder or uncertainty in the data, is computed using

P

(12)

Equation 13, which calculares the entropy E; of the set of projected
outcomes of criterion j that the result stays between 0 and 1. The
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entropy value indicates the degree of disorder or uncertainty in
the data.

(13)

1 m
Ey=- (ln m)zpij' In P

i=1

In the ‘Calculate the Entropy Weights’ step, which assigns
greater importance to criteria with lower entropy (higher
information content), the weights of the criteria are determined
using the entropy values in Equation 14.

W= (5
Z j:l(l - E]')

Figure 7 illustrates the step-by-step outline of the Shannon

(14)

Entropy method.

3.1.4 Fuzzy ELECTRE Il method

The choice of the ranking method is critical for safety analysis.
Traditional RPN and distance-based MCDM methods
“compensatory,” allowing high performance in one factor to

are

offset dangerously low performance in another critical systems,
where catastrophic severity must never be diluted by other
scores. To ensure a non-compensatory and more reliable
assessment, this study employs the Fuzzy ELECTRE III
(Elimination and Choice Expressing Reality) method. The Fuzzy
ELECTRE III in this article is taken from (Bayyurt, 2013;
Triantaphyllou, 2000) and follows the following steps as also
shown in Figure 8.

First, a vector normalization is performed using the Equation 15
and the weighted normalized decision matrix is constructed using
Equation 16 where Z;-':IW]- =1, forj=1,...,n

uij

rij = ——— (15)
\/kazlaij
Y,' = ZW]*T’,*]’ (16)

1

J

The Concordance Matrix C and the Discordance Matrix D are
calculated in the next step. To obtain the concordance matrix C, we
first define the matching set. For any pair of alternatives Ay and A;
(k, I=1,...
(j=1,2,...

,m and k#1), the set of decision criteria j
,n) is divided into two subsets (Equation 17):

Cu={jl Y2V} (17)

Then the concordance matrix C is structured as follows in
matrix (Equation 18).

CZI

CIZ Cln
- G

C= (18)

Cpi Cos ...

To measure the relative compliance with the matching index, the
concordance index Cj between the alternatives Ay and A; is
calculated with Equation 19 where W indicates the weight of the
criterion j and Cy is the concordance index that measures the
degree to which alternative Ay is at least as good as alternative A; in
the matching criteria.
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Ckl = z W] (19)

j€Cra

The discordance matrix D is formed using the discordance
indices dy; obtained from the decision matrix Y. It is defined by
Equation 20.

max |Yy; - Y4

jeDy
Dy=2"2———— (20)
max Y — Yyl
The discordance index (Equation 21) is constrained by:
0<Dy<1 (21)

The next step is to obtain the Compliance F and Absence G
Control Matrix.

In the decision-making process, matrix control is performed by
adjusting a threshold value. This ensures that an alternative Ay
qualifies on the basis of its matching index only if it meets a
predefined threshold. For example, an alternative Aj is
considered to have successfully passed the matching index
requirement if and only if its concordance index Cji exceeds a
predefined threshold value Cy,.

The elements of the membership matrix F (denoted as Fy;) take
values of 0 or 1. There are no diagonal elements in the matrix, which
means that there is no element in the cases where k=1

(Equation 22).
Fy = {

The threshold value Cy can be defined as the average

if Cu=Cy

otherwise (22)

0,

compliance index, calculated with Equation 23 and, similarly, for
the Absence G Control Matrix the threshold value Dy, is calculated
by Equation 24.

l m m
C= D ; ;ckz (23)
1 m m
D=m(m—1);;szl =

In the next step, the master matrix E (dominance matrix) will be
defined. According to Triantaphyllou (2000) the values of E are also 0 or
1 (Equation 25). Finally, the less desirable alternatives will be eliminated.

1
Ekz={0

It establishes dominance relationships using concordance

if Ckl >C*and Dkl <D*

25
otherwise (25)

(agreement) and discordance (disagreement) indices. Crucially, it
utilizes “veto thresholds” scientific boundaries that prevent a failure
mode from being ranked favorably if a specific risk factor exceeds a
safety limit. This aligns the mathematical ranking process with the
strict safety protocols required in automotive engineering (Figure 8).

3.2 Proposed hybrid approach

Previous studies have highlighted that FMEA is not a reliable
method of assessing risk factors because it does not account for their
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Clarify the goals of risk assessment and analysis to determine risk levels

!

Step 1.2: Develop the Failure Mode List
1
Step 1.3: Evaluate failure modes and assess the relative importance of risk factors using linguistic variable
Step 2 Assemble the FMEA team for linguistic evaluation
1
Step 3: Weigh the objectives
'
Step4/5: Apply a hybrid Fuzzy AHP-Entropy method to determine final weights
’
Step 6: Use Fuzzy ELECTRE III for decision-making
’
Step 7: Implement Corrective Actions and Changes
FIGURE 9

Flow chart of the proposed FMEA approach integrated with Fuzzy AHP, Entropy, and Fuzzy ELECTRE Il

relative importance and treat them equally; in addition, previous
approaches often consider only subjective or objective weights of
risk factors independently, each having its limitations (Section 2). To
address these shortcomings, this study employs a hybrid weighting
mechanism that integrates Fuzzy AHP with the Entropy method.
The reliance on a single source for weighting often leads to skewed
risk assessments. Expert-based methods alone are prone to cognitive
bias, while data-driven methods can lack engineering context. Fuzzy
AHP is utilized to capture the subjective experience of the
engineering team, allowing for the hierarchical structuring of risk
factors and handling the ambiguity inherent in linguistic judgments.
However, to prevent potential bias or inconsistency in human
judgment, the Entropy method is introduced as an objective
counterweight. By calculating weights based on the probabilistic
distribution and information content of the data itself, Entropy
reduces the uncertainty associated with purely subjective
assessments. Consequently, the synergy of these two methods
ensures a balanced weighting scheme that incorporates expert
intuition while being mathematically validated by the data
structure. Decision makers’ opinions are elicited as linguistic
variables within a group MCDM framework using FMEA. These
linguistic variables are then translated into TFNs. Subsequently, a
systematic approach combining weighting and the Fuzzy ELECTRE
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III method is utilized to prioritize the risks associated with failure
modes. Actually, the rationale for this hybrid structure is twofold:

« Balanced Weighting Mechanism: By integrating Fuzzy AHP
with Entropy, the model captures the experiential knowledge
of the engineering team (Subjective) while cross-validating it
against the statistical information content of the data
(Objective). This synergy prevents skewed risk assessments
that
statistical anomalies.

Non-Compensatory Prioritization: Safety-critical systems
require a “safety-first” logic. The use of Fuzzy ELECTRE III
ensures that high-risk failure modes (e.g., those with

might arise from dominant opinions or

catastrophic severity) are not mathematically masked by
favorable scores in other categories, a common flaw in
compensatory methods like RPN or TOPSIS.

The flow chart in Figure 9 presents a systematic approach
divided into several sequential steps, each addressing a crucial
aspect of the analysis. The flowchart details the structured
process, each step contributing to the overall methodology.
The steps and their progression in the figure are outlined
as follows.
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Start FMEA This is the initiation point of the FMEA Step 1: Risk
Assessment and Analysis.

Clarify the Goals: Define the objectives of the risk assessment
to accurately determine the levels of risk.

Develop Failure Mode List: Create a comprehensive list of
potential failure modes that could affect the system.

Assess the
determine their relative importance using linguistic variables.

Evaluate Failure Modes: failure modes and

« Box: The dashed box groups these nodes together, indicating
they are part of the same phase (Step 1) in the process.

Step 2: Team Assembly.

« Node: Assemble the FMEA Team

o Description: Form a team to perform the linguistic evaluation
of failure modes. This team will help ensure the accuracy and
comprehensiveness of the FMEA.

Step 3: Objective Weighing.

« Node: Weigh the Objectives
« Description: Assign weights to the different objectives based
on their importance to the analysis.

Step 4: Hybrid Method Application.

« Node: Apply Hybrid Fuzzy AHP-Entropy Method

o Description: Use a combination of Fuzzy AHP and Entropy
methods to determine the final weights of the objectives. This
hybrid method helps effectively and
prioritizing criteria.

in evaluating

Step 5: Decision Making.

« Node: Use Fuzzy ELECTRE

o Description: Apply the Fuzzy ELECTRE III method for
to handle
uncertainty and provide a final evaluation of the alternatives.

decision-making. This technique is used

Step 6: Corrective Actions.

» Node: Implement Corrective Actions

« Description: Based on the findings and decisions made in the
previous steps, implement corrective actions and changes to
address identified issues.

Return arrow description: After completing the final step, there
is a return arrow from Implement Corrective Actions to Clarify the
Goals. This indicates that the results and actions taken might require
a review of the initial goals or other steps to refine the analysis
and actions.

In summary, the flow chart integrates various methods to
improve the analysis and decision-making process, ensuring a
robust approach to identifying and addressing potential failures
in a system.
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4 Case study

In this section, the implementation of the proposed approach is
presented, and the method is validated by analyzing the Fuzzy
ELECTRE III method and comparing it with other methods of
MCDM in FMEA.

4.1 Real-life case and condition

The case study focuses on a car manufacturer, founded in
1965 and located in Iran. Operations research methods and
MCDM and, in particular, FMEA are widely used in car
manufacturing to optimize production and decision making (Fan
et al, 2022; Yousaf et al, 2023; Deulgaonkar et al., 2021; 2019;
Moreno and Espejo, 2015). Techniques like linear programming
streamline schedules (Wan and Zhan, 2021), reduce waste or
emission (Zhang et al, 2024), and inventory and distribution
(Ramos et al., 2022).

The target of this study is a component of the economy sedan
model, the clutch system of the car (Figure 10). This essential system
is positioned between the engine and the gearbox and is actuated
through the clutch pedal. Therefore, it is an integral part of the car’s
operation, in that it allows the driver to connect the engine to the
gearbox and disconnect while changing gears smoothly, in such a
way that the power is transferred without a single beat missed.

Since the clutch system has this very critical function in relation
to car performance (Pourgol-Mohammad et al., 2017) and safety
(Cho and Han, 2011), its failure or malfunction can result in serious
operational problems or safety hazards. One of the key functions of a
car’s clutch is to enhance safety, as it can serve as a crucial feature in
emergencies. By depressing the clutch pedal, the driver can quickly
disconnect the power from the wheels, helping to regain control or
prevent unintended forward movement in critical situations. In
addition, in the case of mechanical jams, it reduces the risk of
kickback. However, a neglected clutch system can cause serious
problems such as slipping, sticking, or difficulty in engaging the
gears, resulting in reduced efficiency and potential accidents.
Therefore, the presence of a clutch inherently contributes to
vehicle safety (Matthes, 2005). Moreover, the clutch is a crucial
component in ensuring the safety of the vehicle, especially when
driving on mountainous areas or on other curvy roads (Wu et al,,
2022). Recent studies focused on designing specific safety—critical
clutch systems to avoid some types of accidents (Kumar et al., 2022).
Finally, Trieu Minh (2012) unveiled the criticality of the clutch
system in a hybrid electric vehicle for vibration reduction. Given its
significance, it is essential to analyze potential failure risks and
improve system reliability to enhance overall safety.

This system requires a risk analysis to identify probable modes of
failure, estimate their impacts, and finally resolve them to improve
the reliability and safety of the system (Lijesh et al., 2016). It prevents
unexpected failure, assures smoothness in car operation, and hence
is crucial to driver safety and satisfaction (Godina et al., 2021; Yousaf
et al., 2023).

The technical design details associated with this study are
confidential, the restricted the

as technology owner has
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FIGURE 10

manufacture machine part.

Section view A-A

Clutch Disk Under Study (Originally designed by Kia Motors but modified several times by the Iranian company). The figures on the left and center
depict the critical design parameters under investigation, complete with their respective tolerances. The figure on the right showcases an actual post-

TABLE 3 Failure modes linguistic scores according to the risk factors assigned by the FMEA team.

Critical Occurrence Severity Detection
mode
GM1 GM2 GM3 GM4 GM5 GM1 GM2 GM3 GM4 GM5 GM2 GM3 GM4 GM5

cM2 MP P MP MP MP VG G G VG G VP VP VP P VP
cM3 G MG G MG MG G MG G G G F F MP F F
CM4 F F P F F F F MP F F VP MP VP MP VP
CM5 F MP F F F F MG MG F F P MP P P P
CM6 VG MG VG VG VG MG MG MG MG MG MG F MG MG F
CcM7 F F F MG F MP MP MP F F F MP MP MP MP

publication of details about the design parameters. Consequently,
throughout the remainder of this article, all technical parameters will
be referenced using labels only, without a detailed explanation. This
approach is satisfactory for the research project because the objective
of the case study is to implement and validate the proposed process
while ensuring that the focus remains on the process itself and its
performance, rather than on the particular characteristics of the
machine part under consideration.

4.2 Implementation and results

To conduct the case study, the initial steps involve defining the
objectives of the risk assessment to accurately determine the levels of
risk. This includes clarifying the goals, developing a comprehensive
list of failure modes, and evaluating these failure modes to determine
their relative importance using linguistic variables. These activities,
grouped together in Step 1, are carried out within the engineering
department.

Following this, the process moves to Step 2, which focuses on
team assembly. In this phase, a team is formed to perform the
linguistic evaluation of failure modes, ensuring the accuracy and
comprehensiveness of the FMEA. Once the team assembly is
completed, the weighting phase begins. The group is made up of
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TABLE 4 Pairwise comparison matrix.

Risk
factor
o 1.000 | 1.000 | 1.000 @ 0.182 0288 0588 0294 0480  1.667
S 1701 | 3472 | 5495 | 1.000 1.000 1.000 3500 1500 @ 2.083
D 0.600 | 2083 | 3401 0480 0.667 0286 1000 1000  1.000

five experts, which are named GM1, GM2, GM3, GM4 and GM5.
Table 3 shows the ranking results (Figure 9) used as input to the
Subjective Weighting using Fuzzy AHP. The parameters in
Table 3 are: CM1: Appearance. CM2: Parallel—It specifies the
allowable deviation from parallelism between two surfaces.
CM3: Limp—State of weakness or instability, often associated
with physical rotation of the wheel. CM4: Internal diameter
CM5: finish CMé6: Hole CM7:
External diameter.

Surface diameter

Accordingly, in Table 3, experts are asked to express their
These
7 linguistic terms for O, S, and D are assigned mathematical

assessments qualitatively using linguistic  variables.
numbers for the fuzzy process. Thus, the meanings of these
variables are VG (Very Good), G (Good), MG (Medium Good),

MP (Medium Poor), P (Poor), VP (Very Poor), F (Fair).
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TABLE 5 Fuzzy geometric mean matrix.

Risk
factor
o 1.000 | 1.000  1.000 0.567 0.660 = 0.838 0665 0783 = 1.186
S 1.194 | 1514 1765 1.000 1.000 = 1.000 1518 & 1145 1277
D 0.843 | 1277 1504 0783 0.874 0659 1.000 | 1.000 = 1.000
TABLE 6 Calculation of T.
Risk factor (0] S D
O 0.377 0.517 0.993
S 1.812 1.733 2.254
D 0.660 1.116 0.991
T 2.850 3.366 4.237
TABLE 7 Obtained weights and defuzzification.
Risk factor 0] ) D)
W1 0.089 0.154 0.349
w2 0.428 0.515 0.791
W3 0.156 0.331 0.348
DeFuzzy 0.197 0.578 0.278 1.053

4.2.1 Subjective weighting using fuzzy AHP

The subjective weighting process begins with collecting
evaluations from team members and constructing a fuzzy
pairwise comparison matrix for risk factors (Table 4).

The weights are obtained using the following process. The
evaluations of the team members are collected and a fuzzy
pairwise comparison matrix is constructed to calculate the
AHP weights for O, S, and D. Table 4 represents the
pairwise comparison matrix for the three risk factors. This
matrix was derived from five experts who compared these
factors relative to each other in terms of importance and
representation of how much more important one factor is
compared to another, and the T row is the sum of each
column (total for each criterion), used for normalization
and weight calculation. The fuzzy values come from
linguistic (such “More important,”
important,” etc.), which are then transformed into fuzzy
numbers for mathematical processing.

terms as “Less

Next, compute the fuzzy geometric mean according to the
formulas, exponent each of the elements to 1/3 and calculate
rij = (a,»j)% and shown in Table 5.

In Table 6, the COA method is applied to defuzzify fuzzy

numbers using the formula T;=a}a}, +a;’a; +ay’a;’ and
these defuzzified values are normalized in Table 7 to obtain
subjective weights for each risk factor, which W1, W2 and

W3 represent as fuzzy weights of criteria.
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TABLE 8 Goal weight of risk factors with Fuzzy AHP method.

WJS1 0.187
WJS2 0.549
WJS3 0.264

TABLE 9 Aggregated fuzzy failure modes data for O, S, and D.

(0] S D
4.600 6.600 8.400 7.000 9.000 10.000 0.600 1.800 | 3.800
0.800 2.600 4.600 7.800 9.400 10.000 0.000 0.200 1.400
5.800 7.800 9.400 6.600 8.600 9.800 2.600 4.600 | 6.600
2.400 4.200 6.200 2.600 4.600 6.600 0.600 1.800 | 3.400
2.600 4.600 6.600 3.800 5.800 7.800 0.200 1.400 | 3.400
8.200 9.400 9.800 5.000 7.000 9.000 4.200 6.200 = 8.200
3.400 5.400 7.400 1.800 3.800 5.800 1.400 3.400 | 5.400

TABLE 10 Defuzzified Failure Mode values.

o S D)

6.533 8.667 2.067

2.667 9.067 0.533

7.667 8.333 4.600

4.267 4.600 1.933

4.600 5.800 1.667

9.133 7.000 6.200

5.400 3.800 3.400

Furthermore, Table 8 shows the final normalized subjective
weights for each of the three risk factors (WJS1, WJS2, WJS3) for
the risk factors (O, S, D) after applying Fuzzy AHP.

4.2.2 Formation of total rank fuzzy weighted matrix

A fuzzy weighted matrix is then formed based on the evaluations
provided by five experts on seven criteria. The evaluations are
summed across seven options for each of the criteria (O, S, and
D), resulting in a matrix that includes seven items and three options
(see Table 9, and fuzzy failure modes of fuzzy total rank in Table 10).

4.2.3 Objective weighting using entropy method
The objective weights of the risk factors are determined using
the Entropy method. In the entropy method, objective weights for
risk factors (Occurrence, Severity, and Detection) are determined by
quantifying the amount of uncertainty to avoid bias when dealing
with subjective data from experts (Table 11). In Table 11 Ej
represents the entropy for each risk factor, ‘1-Ej’ gives the
complement of the entropy, showing the degree of certainty or
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TABLE 11 Objective weight of risk factors with entropy method.

Risk factor o S D
E; 0.967 0.978 0.900
1-E; 0.033 0.022 0.100
w; 0.212 0.141 0.647

TABLE 12 Final weight gain.

Risk factor

(6] 0.199 0.187 0.212
S 0.345 0.549 0.141
D 0.456 0.264 0.647

TABLE 13 Weighted matrix with ¢ = 0.5 to adjust the relative importance of
the subjective and objective weights.

Risk factor o S D
1 1.300 2.990 0.942
2 0.531 3.128 0.243
3 1.526 2.875 2.098
4 0.849 1.587 0.882
5 0915 2.001 0.760
6 1.818 2415 2.827
7 1.075 1.311 1.550

consensus in expert judgments, and Wj represents the final weight
for each risk factor, which is used in subsequent analyzes.

4.2.4 Combined weight calculation

This step entails the synergistic aggregation of subjective weights
derived from Fuzzy AHP and objective weights calculated via the
Entropy method to determine the final comprehensive weights for
each risk factor. The justification for this composite approach lies in
its ability to mitigate the inherent limitations of using a single
weighting source. While Fuzzy AHP captures the experiential
knowledge of the engineering team, it remains susceptible to
cognitive bias. Conversely, the Entropy method provides a purely
mathematical assessment of data variation but lacks engineering
context. By combining these two distinct inputs using a linear
weighting formula, the methodology ensures that the final
importance of S, O, and D is not solely dictated by human
preference nor blindly driven by data dispersion. The coefficient
¢ is introduced to govern this trade-off. In this study, a value of
¢ =0.5 is selected to establish an equilibrium, treating expert
intuition and objective information content as equally critical
components of the risk assessment. The resulting weights are
presented in Table 12.
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TABLE 14 The effective coordination of the inconsistent matrix
multiplication.

Criticak CM1 CM2 CM3 CM4 CM5 CM6 CM7

mode
CM1 - 1 0 1 1 0 1
CM2 0 - 0 0 0 0 0
CM3 1 1 - 1 1 0 1
CM4 0 0 0 - 0 0 0
CM5 0 0 0 1 - 0 0
CMé6 1 1 1 1 1 - 1
CM7 0 0 0 1 0 0

4.2.5 Application of fuzzy ELECTRE Il method

In this stage, the Fuzzy ELECTRE III method is applied to rank
the failure modes based on their weighted evaluations. The process
consists of multiple steps following the process explained in
Section 3.1.4.

First, the weights obtained from Table 12 are multiplied by the
values in Table 10 (Defuzzy Total Rank Fuzzy Failure Modes) to
calculate the weighted matrix. Where w/; values are the combination
weights of criteria, and ¢ € [0, 1], showing the relative importance
between subjective and objective weight (Table 13). In this paper,
weights are assumed to be equally important using ¢ = 0.5 (Liu et al.,
2015). However, in future studies, the impact of using ¢ = 1 and 0
can be studied by means of sensitivity analysis.

The results of the remaining stages of the ELECTRE method are
obtained through the following steps:.

1. Determine coordinated and uncoordinated sets using the
Fuzzy ELECTRE III method (Equation 26).

Cklz{”)’ijJ’lj}’ Dk’:{jlykjsy’j} (26)

2. Form the coordinated matrix I based on the weights from C.
3. Construct the uncoordinated matrix using Equation 27.
max | yi; — yij
_maxlyy — il

e Te—— (27)
m}jchkaj -yl

kl

4. Calculate the effective coordinated and uncoordinated
matrices. Effective coordinated matrix: Z each item divided
by 1; otherwise, set to 0. Effective uncoordinated matrix: Sum
all items divided by the number of items; set to 0 for each.

5. Multiply the effective coordinated matrix by the effective
uncoordinated matrix (Table 14).

6. Prioritize based on Fuzzy ELECTRE III principles.

As a result of the ELECTRE III analysis, the seven failure mode
options are ranked into five priority levels:

1. The first priority is assigned to CM6.

2. The second priority is shared by CM1 and CM3, which have
equal values.
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TABLE 15 Priority options on the FMEA with a variety of MCDM methods including Fuzzy AHP. ENTROPY, and ELECTRE Ill. (¢ = 0.5).

Priority Ranking with fuzzy ELECTRE Ranking with fuzzy VIKOR Ranking with fuzzy TOPSIS
Priority 1 FM3, FM2 FM6 FM6
Priority 2 FM?7, FM6 FM3 FM3
Priority 3 FMS5, EM1 FM1 FM7
Priority 4 FM4 FM2 FM1
Priority 5 - FM7 FM5
Priority 6 - FM5 FM4
Priority 7 - FM4 FM2

mFM1L

mFM2

mFM3

mFV4

mFM5

uFM6

mFM7

FIGURE 11

Relationship diagram obtained by Fuzzy ELECTRE Ill method. The chart provides a graphical illustration of the results of Table 14.

3. The third priority is shared by CM2, CM5, and CM7, which
also have equal values.

4. The fourth priority is assigned to CM4, which has the
lowest rank.

This ranking provides valuable information for decision makers
about prioritizing failure modes and implementing corrective
actions accordingly.

4.3 Validation of implementation feasibility

To assess the effectiveness of the proposed method, the results are
compared with those obtained using alternative techniques, specifically
Fuzzy TOPSIS and Fuzzy VIKOR. These alternative approaches are
applied to rank the car component under study (Figure 10), using the
same input data as in this article (Table 3) but alternative techniques
proposed by Liu et al. (2015). The results are compared to those
generated by the Fuzzy ELECTRE III method (Table 15; Figure 11).

Table 16 presents the priority rankings calculated using Fuzzy
TOPSIS and Fuzzy VIKOR methods, as presented in Behzadian et al.
(2012), while Table 17 displays the corresponding results derived
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from the Fuzzy VIKOR method, as presented in Opricovic and
Tzeng (2007); the measures S, R and Q of the VIKOR method are
detailed in Table 18.

The comparison highlights how effective coordination of the
inconsistent multiplication of matrices in our proposal compared to
the TOPSIS and VIKOR methodologies. The results of this
comparison are presented in Table 15.

4.3.1 Discussion

The comparative analysis highlights a fundamental divergence
in how risk is prioritized. While traditional MCDM methods
(TOPSIS, VIKOR) rely on “net distance” or “compromise”
calculations, the proposed hybrid ELECTRE III method relies on
“outranking” relations with veto thresholds. As detailed below, this
leads to a superior risk assessment profile by eliminating the ‘illusion
of precision’ often seen in linear rankings and preventing the
masking of high-severity risks.

4.3.1.1 Sensitivity and instability in fuzzy TOPSIS

The results in Table 16 reveal that Fuzzy TOPSIS is highly
sensitive to the weight restriction parameter (¢). For instance,
FM6 jumps from Rank 3 to Rank 1 simply by adjusting the
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TABLE 16 Ranking with a combination of Fuzzy TOPSIS and VIKOR.

Failure mode Proposed Proposed Proposed Traditional Fuzzy TOPSIS Final results
approach approach approach FMEA
(¢=1) (¢=0.5) (¢=0)
Q Rank Q Rank Q Rank RPN Ranking
FM1 0.859 2 0.656 3 0.224 4 7 9 2 126 3 0.853 4 FM6
FM2 0.745 4 0527 4 0.026 6 3100 1 30 6 0914 7 FM3
FM3 0.905 1 0.759 2 0.660 2 8 9 4 288 2 0.786 2 FM7
FM4 0.000 7 0.000 7 0.018 7 4 4 1 16 7 0.903 6 FM1
FM5 0.309 5 0216 6 0.104 5 5 6 1 30 5 0.883 5 FM5
FM6 0.835 3 1.000 1 1.000 1 9 7 6 378 1 0.734 1 FM4
FM7 0.162 6 0.300 5 0.362 3 6 4 3 72 4 0.848 3 FM2

The ranking is shown under the ‘Final Results’ column from the top (Highest rank) to down (Lowest).

TABLE 17 Ranking the conventional alternative approach for FMEA using Fuzzy VIKOR.

Failure mode FM1 FM2 FM3 FM4 FM5 FM6 FM7

BY S 5 4 6 1 2 7 3

BY R 6 4 5 1 2 7 3

BY Q 5 4 6 1 2 7 3
Result

Ranking from right (highest rank) to left (lowest) FM6 ‘ FM3 FM1 FM2 FM7 ‘ FM5 ‘ FM4

The ranking is shown under the results row from the right (Highest rank) to the left (Lowest). The S, R, and Q measures are detailed in Table 18.

TABLE 18 Interpretation and ranking impact of VIKOR measures.

Ranking measures for  Interpretation Ranking impact
alternatives
S Group utility measure Measures the overall deviation of each failure mode from the ideal solution = Failure modes with lower S values rank
across all criteria. Lower S means the failure mode is closer to the best possible = higher (better)
performance
R Regret measure Focuses on the worst performance of each failure mode across all criteria. ~ Failure modes with lower R values rank
Lower R indicates a failure mode with more balanced performance higher (more stable risk profile)
Q Final VIKOR index Combines S and R to provide a compromise ranking, balancing overall utility = Failure modes with lower Q values rank
and worst-case performance. Lower Q means a failure mode is more critical =~ highest in the final ranking

balance between subjective and objective weights. This volatilityisa ~ While FM6 is identified as the highest risk, the method
significant drawback in safety-critical engineering; it suggests that  produces inconsistent rankings for secondary risks (FM1 and
the ranking is driven more by mathematical assumptions than by the ~ FM3) depending on whether the Group Utility (S) or Individual
inherent risk of the component. Furthermore, TOPSIS assigns a ~ Regret (R) is prioritized. This ambiguity compels decision-
unique rank to every failure mode based on Euclidean distance. This ~ makers to rely on the composite index (Q), which attempts a
creates artificial distinctions between failure modes that are  mathematical compromise but may obscure the specific
practically identical in risk profile, potentially leading to  nature of the risk (e.g., high severity vs. high occurrence).

misallocated maintenance resources. Unlike the proposed ELECTRE III method, which
establishes clear dominance, VIKOR’s compromise approach
4.3.1.2 Inconsistency in fuzzy VIKOR measures forces a trade-off that may not always align with the strict

The analysis of Fuzzy VIKOR (Table 17) reveals a limitation ~ “safety-first” constraints required for critical automotive
regarding ranking stability across its internal measures. components.
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4.3.1.3 Logical clustering via fuzzy AHP-entropy-fuzzy
ELECTRE IlI

The results obtained by the proposed hybrid method (Table 15)
demonstrate a superior logical structure compared to the
comparative methods. While TOPSIS and VIKOR force a strict
linear ranking (1 through 7) based on minute decimal differences,
the Fuzzy ELECTRE III method clusters the failure modes into four
distinct priority levels. For instance, FM3 and FM2 are grouped
together in the highest priority level. This “clustered ranking” is
methodologically more robust for risk assessment because it
the
distinguishing between a “Rank 2” and “Rank 3” risk often

acknowledges inherent uncertainty of expert inputs;
implies a precision that simply does not exist in linguistic data.
Furthermore, the method demonstrates distinct safety advantages
through its non-compensatory nature. Unlike TOPSIS, which allows
high detection scores to mask severe risks, ELECTRE III utilizes veto
thresholds to ensure critical failure modes are not demoted.
Additionally, the method validates its accuracy by converging
with other methods on low-risk items; like VIKOR and TOPSIS,
it correctly identifies FM4 as the lowest priority (Priority 4),
confirming that the model is calibrated correctly while providing
more actionable, safety-critical insights at the top of the
ranking order.

The proposed Hybrid Fuzzy ELECTRE III method sorted the
FMs into four distinct priorities (see the first column and rows
from Priority 1 to 4 in Table 15; Figure 11). Instead, the two other
methods identify seven distinct priorities. This reduction in the
number of distinct priorities and the formation of equal priority
classes can simplify strategies needed to enhance the reliability of
the final products. However, this inference requires validation
through additional case studies to test the hypothesis in
future research.

The differences in priority rankings highlight how the choice of
the MCDM method impacts the outcome. Different methodologies
lead to different prioritization, which can influence the risk
management activities that follow.

Methodological differences have a crucial impact on the results
of different approaches. For example, the impact on aggregation and
normalization is as follows:

o The different aggregation methods and normalization
techniques used by VIKOR (linear normalization) and
TOPSIS (vector normalization) contribute to the variations
in rankings.

o ELECTRE’s preference-based approach further differentiates
its results from those obtained using VIKOR and TOPSIS.

4.3.1.4 Comparison of variations

The result of the comparative analysis suggests the
importance of selecting an appropriate MCDM method
based on the specific needs and characteristics of the risk
Each method provides
perspective on prioritizing failure modes, with Fuzzy
ELECTRE III, Fuzzy VIKOR, and Fuzzy TOPSIS each
offering  distinct

evaluation context. a unique

advantages and insights into risk
assessment. However, according to Table 15 the Fuzzy
ELECTRE III method is beneficial in FMEA, as it enables

analysis based on relevant parameters and helps to reduce
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priorities. For instance, in our case study with seven
Fuzzy ELECTRE III
priorities 11. This allows for a more focused analysis and a

options, identifies four distinct

better understanding of the sensitivity of the parameters.

4.3.1.5 Differences in the MCDM methods

The MCDM methods argued in this paper (i.e., Fuzzy TOPSIS,
Fuzzy VIKOR, Fuzzy ELECTRE III) have different approaches in
raking failure modes. Fuzzy TOPSIS is generally sensitive to
distances from the Positive and Negative Ideal Solutions. Lower
distance values from the former and greater distance values from the
latter lead to higher ranks. This feature makes TOPSIS suitable for
ranking failure modes that are clearly distinguishable and well-
separated. Instead, Fuzzy VIKOR focuses on finding a compromise
solution by achieving a balance between the Utility Measure and the
Regret Measure, which in turn leads to the final ranking of failure
modes. This approach makes fuzzy VIKOR sensitive to the worst-
performing criterion, i.e., if a failure mode performs poorly in one
criterion, it will be ranked lower even if it performs very well in other
criteria. Consequently, this perspective makes Fuzzy VIKOR
suitable for cases where an acceptable trade-off is preferred to
selecting the absolute best option. Unlike the two mentioned
methods, ELECTRE III puts the failure modes in pairwise
comparisons and uses concordance (agreement) and discordance
(disagreement) indices to determine the dominance relationships
between them. Relying on this outranking approach makes
ELECTRE III less sensitive to small differences and suitable for
situations where there are multiple trade-offs and strong
interactions among criteria.

4.3.1.6 Advantages of the proposed hybrid approach

The proposed hybrid framework offers three distinct advantages
over prevalent Fuzzy MCDM approaches such as Fuzzy TOPSIS and
Fuzzy VIKOR. First, the synergistic weighting mechanism solves the
dilemma of “Expert Bias” vs. “Data Blindness.” While most existing
methods rely on a single source of weights, this approach cross-
validates subjective expert intuition (Fuzzy AHP) with objective
information content (Entropy), ensuring a risk profile that is both
practically grounded and mathematically rigorous. Second, and
most critically for safety engineering, the use of Fuzzy ELECTRE
III introduces non-compensatory logic. In standard distance-based
methods (TOPSIS) or compromise methods (VIKOR), a failure
mode with catastrophic severity can be downgraded if it has a very
low occurrence rate (mathematical compensation). The proposed
method employs “veto thresholds,” ensuring that high-severity risks
retain their critical status regardless of other mitigating factors.
Finally, the method avoids the “fallacy of hyper-precision.” Instead
of forcing a strict ordinal ranking (e.g., Rank 1 to Rank 7) based on
negligible decimal differences, this approach sorts failure modes into
logical priority clusters (e.g., Priority Level 1, 2, 3). This
categorization provides a more realistic representation of
uncertain data and facilitates clearer resource allocation strategies

for maintenance teams.

4.3.1.7 Disadvantages of proposed hybrid approach
Despite its methodological robustness, the proposed hybrid

approach introduces a higher degree of operational complexity

RPN or

compared to traditional distance-based methods

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1732819

Aghazadeh Ardebili et al.

(TOPSIS). The primary disadvantage lies in the cognitive load
Unlike
calculations, Fuzzy ELECTRE III requires the precise definition

required for parameter calibration. direct linear
of preference, indifference, and veto thresholds. These thresholds
are sensitive; incorrect calibration by the decision-maker can lead to
incoherent rankings or an inability to distinguish between options
(too many “indifferent” relations). Furthermore, the method relies
on pairwise comparisons, which creates a non-linear increase in
computational effort as the number of failure modes grows.
Consequently, while this approach is superior for critical
components (like the clutch system), it may require specialized
software automation to be scalable for system-wide analyses

involving hundreds of failure modes.

5 Limitations and future studies

While the proposed hybrid framework offers significant
improvements in handling uncertainty and risk prioritization,
three key limitations must be acknowledged to guide
future research.

First, regarding scalability and computational intensity, the
reliance on Fuzzy ELECTRE III requires complex pairwise
comparisons. As the number of failure modes (n) increases,
the number grows (n x n),

potentially making manual calculation unfeasible for complex

of comparisons structurally
systems with hundreds of failure modes. Future research should
focus on developing automated decision support software or
integrating Machine Learning (ML) algorithms to learn from
expert inputs and automate the generation of preference and
veto thresholds, thereby reducing the cognitive load on the
engineering team.

Second, the method assumes static risk behaviors. The current
model treats the failure modes as fixed snapshots in time. However,
in real-world automotive manufacturing, risk profiles change
dynamically based on machine wear, supplier quality, and
environmental conditions. A promising avenue for future
research is the development of a Dynamic FMEA (D-FMEA)
framework, potentially integrated with Digital Twin technology,
where the Entropy weights are updated in real-time based on live
sensor data from the production line.

Third, the sensitivity of threshold parameters in ELECTRE
III remains a critical factor. While this study utilized expert
consensus to define indifference and veto thresholds, these
values are inherently subjective. Future studies could employ
Data Envelopment Analysis (DEA) or evolutionary algorithms
to mathematically optimize these thresholds, ensuring the most
robust ranking separation without excessive manual trial-
and-error.

6 Conclusion

Precise risk-based design is the cornerstone of safety-critical
engineering. This study addressed the fundamental deficiencies of
the traditional RPN and
approaches—specifically their inability to manage conflicting risk

conventional fuzzy
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factors and their tendency to allow high-detection scores to mask
high-severity risks.

The primary contribution of this work is the development of a
robust hybrid methodology that synergizes Subjective (Fuzzy AHP)
and Objective (Entropy) weighting with a Non-Compensatory
(Fuzzy ELECTRE III) ranking engine. By moving away from
simple multiplicative formulas and distance-based methods (e.g.,
TOPSIS), this approach introduces a safety-first logic: it prevents the
compensation of critical severity risks by other factors, a feature that
is indispensable for automotive safety components like the
clutch system.

The empirical validation on the clutch system demonstrated that
the proposed method reduces the noise inherent in traditional
rankings. While comparative methods (TOPSIS and VIKOR)
produced highly dispersed, linear rankings (Ranks 1-7) based on
mathematical minutiae, the proposed method successfully grouped
failure modes into four logical priority clusters. This clustering
provides a more realistic representation of risk, acknowledging
that minor distinctions between failure modes are often
statistically insignificant.

For engineering managers, this framework offers a strategic tool
for resource allocation. By reducing the number of priority levels,
decision-makers can focus maintenance efforts on the “Priority 1”
cluster with greater confidence, knowing that these risks have been
vetted against strict safety thresholds. The transition from a
“Compensatory” model to an “Outranking” model ensures that
resources are not diverted to minor issues at the expense of
catastrophic but rare failure modes, ultimately supporting a
“Zero Defect” manufacturing philosophy.
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