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Valley-protected topological
Interface states in metastructures
with internal geometric rotation

Ying Wang*, Shuang Yu, Chengcan Jiang and Jing Hu

School of Intelligent Equipment, Suzhou Vocational Institute of Industrial Technology, Suzhou, China

Topological mechanical metamaterials have garnered significant attention
for their ability to exhibit robust, defect-immune wave propagation and
mechanical behaviors, inspired by topological protection mechanisms in
condensed matter physics. In this study, we present a novel mechanical
metamaterial design that introduces rotational geometric parameters within
the unit cell to explicitly break spatial inversion symmetry. By precisely tuning
the rotation angle of structural elements in the unit cell, we induce
asymmetric valley states with opposite Berry curvatures, thereby realizing
the valley Hall effect in a mechanical framework. This purely geometric
approach avoids reliance on material composition gradients or external
fields, offering intrinsic control over valley polarization through structural
design alone. Numerical simulations and mechanical analyses demonstrate
that the proposed metamaterial supports topologically protected interface
states at the boundary between regions of distinct valley topologies. These
interface states exhibit unidirectional propagation, confirming their
topological protection. This work provides a universal geometric strategy
to engineer topological phenomena in structural systems. The realized
topologically protected interface states hold promise for applications in
high-precision sensors, energy harvesting devices, and vibration isolation
systems.
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1 Introduction

In recent decades, metamaterials have garnered extensive research attention in the
fields of mechanics and physics (Li et al., 20205 Jiao et al., 2023; Ni et al., 2023; Chen C.
et al.,, 2025; Du et al., 2025; Chen et al., 2024¢; Dong et al., 2024; Akbari-Farahani and
Ebrahimi-Nejad, 2024; Ni and Shi, 2023; Chen et al., 2023). This is primarily attributed
to their unique capability of achieving novel mechanical properties through rational
design of structural architectures, rather than relying solely on the inherent composition
of base materials.

Natural materials are inherently constrained in their acoustic and elastic wave
propagation characteristics, as such capabilities are fundamentally limited by their
intrinsic lattice structures and continuous physical properties. In sharp contrast,
artificially engineered metamaterials—crafted with high-precision design and
fabrication—can markedly enhance the flexibility of manipulating and controlling
acoustic and elastic waves, breaking through the inherent restrictions of
natural materials.
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Researchers have now developed numerous types of
metamaterials exhibiting extraordinary physical properties, such
as negative effective density, negative elastic modulus, and
negative refractive index. These anomalous characteristics are
fundamentally rooted in theoretical frameworks including local
2025), Bragg

scattering (Jia et al, 2025; Rao et al, 2024), transformation

resonance (Santoro et al, 2023; Wang et al,

acoustics (Cao et al,, 2025; Pendry et al., 2006), topological bands
(Chu et al., 2024), and non-Hermitian physics (Cao et al,, 2022),
enabling the realization of remarkable physical phenomena
including but not limited to: (1) diffraction-limited acoustic
focusing, (2) broadband noise dissipation, and (3) resonant
vibration isolation.

Traditional metamaterials achieve equivalent parameters
such as negative refractive index and negative modulus
through specific structural designs (e.g., resonant units).
These highly to defects
disorder—any structural damage or manufacturing deviations

properties are sensitive and
can cause these characteristics to significantly weaken or

disappear. In other words, traditional metamaterials
macroscopically mimic material parameters not found in
nature, and their functionality relies on structural perfection.
In contrast, the extraordinary properties of topological
metamaterials originate not from the emulation of specific
parameters, but rather from the global topological
characteristics inherent in their structural band structures. As
aresult, wave propagation in topological metamaterials (such as
waves at the boundaries) is globally protected. Even in the
presence of internal defects, manufacturing imperfections, or
sharp bends in the path, the waves can propagate along the
boundary—they are not only dissipationless and unidirectional
but also unaffected by these disturbances or local perturbations.
Inspired by topological insulators in quantum physics (Haldane,
1988; Klitzing et al., 1980; Den, 1982), researchers have
developed three major categories of topological metamaterials
within  classical physics domains such as acoustics
and mechanics.

The first approach draws on topological insulators based
on the Quantum Hall Effect (QHE) (Susstrunk and Huber,
2015). By breaking time-reversal symmetry through globally
rotating the coupled pendulum array, a topologically non-
trivial phase is induced. The results demonstrate that
vibrational energy propagates unidirectionally along the
lattice boundary with remarkable robustness—even in the
presence of defects or disordered structures, the energy
bypasses obstacles without backscattering and continues to
propagate. A hexagonal lattice structure designed by Nash
et al. incorporates gyroscopes at its nodal points (Nash
et al., 2015), utilizing their rotational effects to break time-
reversal symmetry, thereby enabling the development of
topological metamaterials based on the Quantum Hall
Effect. The second way, inspired by Bernevig and Zhang
(2006), does not need to break time-reversal symmetry. The
fundamental principle of this class of metamaterials is similar
to the spin-orbit coupling mechanism observed in QSHE.
Chen et al. (2024a) designed a Kekule lattice-based elastic
topological resonator with tunable coupling strip widths

using the quantum spin Hall effect, achieved robust edge
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state transmission through topological phase transitions,
and realized frequency-space separation by integrating the
topological rainbow effect—providing a novel mechanism
for efficient elastic wave manipulation and the development
of programmable sensors. Zhang et al. developed a
groundbreaking methodology by employing a flow-free
metamaterial lattice with deliberately broken structural
symmetry (Zhang et al., 2017), successfully constructing
acoustic pseudo-spin multipole states. Through systematic
that

operations in a

investigation, the research team demonstrated

implementing  symmetry-breaking
honeycomb lattice and regulating the interaction strength
between resonant units within the lattice can achieve band
inversion between pseudo-spin dipole and quadrupole states.
This mechanism serves as a pivotal factor in driving
topological phase transitions. Chen et al. (2025c) for the
first time introduces topological Wannier cycles into full-
polarization ~ micromechanical = metamaterials, realizes
broadband

dislocation

robust elastic dislocation states via helical

structures, enhances energy harvesting and
frequency identification capabilities using mode conversion
and coupling systems, and provides a new paradigm for full-
polarization elastic wave manipulation. Chen et al. (2018)
developed an innovative approach to realize a mechanical
quantum spin Hall insulator and successfully modeled this
quantum phenomenon using a simplified mass-spring Kagome
lattice structure. By employing the Brillouin zone folding
technique, the model constructed a lattice system featuring
double Dirac cones, opening new research dimensions and
methodological pathways for exploring the mechanical
quantum spin Hall Effect. Chen et al. (2025b) establishes an
electro-acoustic analogy model to achieve second-order to
quadrupole topological transition in acoustic metamaterials,
investigates multi-dimensional localized states in dislocation
structures, and provides a robust framework for acoustic
topological manipulation with promising applications in
sensing, signal processing, and energy harvesting. Mousavi
et al. (2015) proposed the design of a dual-scale phononic
crystal plate featuring a triangular lattice of air holes, which
achieved degenerate Dirac cones for both symmetric and
antisymmetric Lamb wave modes. Subsequently, by breaking
spatial mirror symmetry, strong spin-orbit coupling was
introduced, leading to a topological phase transition and the
formation of a complete phononic bandgap. Chen et al.
(2024b) innovatively combines topological insulators with
the rainbow trapping effect, designs surface wave photonic
crystals based on concrete-filled steel tubes (CFST), achieves
robust transmission, frequency-spatial separation, and energy
concentration of low-frequency surface waves, and provides a
new scheme with both theoretical value and application
potential for surface wave manipulation in fields such as
reconfigurable seismic metamaterials, sensing, and energy
harvesting.

The third method for achieving topologically protected edge
states, based on the quantum valley Hall effect (QVHE) (Dong et al.,
2024; Chen et al, 2023; Liu et al, 2019), is relatively more
straightforward. This approach relies solely on breaking spatial
inversion symmetry. QVHE-based topological metamaterials
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FIGURE 1

(a) Illustration of the metamaterial with lattice vector a; = (a/2,V3a/2) and a, = (-5, V3a/2); (b) unit cell structure, the green hexagons represents
the thin aluminum plate, while the orange parts represent the fan-shaped structures made of lead material; (c) the section view of the unit cell, the heights
of the aluminum hexagonal thin plate and the lead fan-shaped structure are h, and h,, respectively; (d) The Brillouin zone of the unit cell; () The mesh
distribution in the unit cell, the minimum element in the unit cell is 0.012 mm, the maximum element is 1.2 mm, and the model adopts Quadratic

serendipity and triangular prism elements.

preserve time-reversal simplifying  geometric

complexity. Lu et al. (2016) developed a novel mechanism for

symmetry,

breaking mirror symmetry, successfully constructing an acoustic
of the topological
transition. By precisely adjusting the rotation angles of

analogue semimetal-insulator phase
anisotropic scatterers within the phononic crystal, it is able to
control the shape of the frequency bandgap and phase domain
walls. Lietal. (2019) put forward a creative design framework for
elastic metamaterials, termed “valley anisotropy,” which can be
achieved via an asymmetric structural scheme integrating bio-
inspired hard helical scatterers and a compliant material matrix.
The research team verified that Berry curvature—a crucial
be

parameters.

topological indicator—can accurately regulated by
the This

mechanism enables the topological manipulation of transverse

modifying geometric regulation
elastic waves, thereby allowing for the control of energy
propagation the redirection and

termination of energy flow. Zhang et al. (2022) present a

behaviors, including
valley phononic crystal, which consists of a hexagonal
aluminum plate equipped with six support rods arranged in a
chiral configuration. By tuning the lengths of these support rods
within the chiral unit cell, a novel complete bandgap is induced
at the Dirac point, and this bandgap formation is accompanied
by the appearance of topological edge modes. The authors
analyzed the dispersion characteristics of the chiral system
and applied them to interface waveguides, thereby enabling
the of
designs. In addition, the team also provides evidence for the

implementation customizable propagation path
existence of the valley Hall effect in the proposed chiral system.

The programmable metamaterials have been proposed for the
manipulation of elastic and electromagnetic waves (Qi et al., 2022;
Xiu et al., 2022; On et al., 2024; Abadal et al., 2020; Yi et al., 2023;
Darabi et al., 2020; Zhang et al., 2019). Darabi et al. (2020) proposed

breaking time-reversal symmetry through time modulation,
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inducing synthetic angular momentum bias and opening a
The
reconfigurable topological metamaterials enable robust acoustic

topological ~bandgap with protected edge states.
wave transmission and are applicable to devices such as acoustic
emitters and mechanical logic circuits. These systems outperform
their electronic counterparts under harsh operating conditions.
Zhang et al. (2019) innovatively proposed using programmable
ferrofluid distributions within the unit cells of elastic lattices to
break inversion symmetry and create tunable bandgaps. This
approach allows for easy reconfiguration of propagation paths
by controlling the ferrofluid distribution. Numerical
simulations and experimental tests demonstrate the ability to
guide bending waves along different interface paths,
highlighting the potential applications of this programmable
elastic valley-Hall insulator.

By introducing a difference in elastic stiffness, the Dirac cone
can be opened, resulting in the formation of a topologically
nontrivial bandgap. With the assistance of a programmable
external electric field, the elastic stiffness distribution within each
unit cell can be independently modified. This allows for the creation
of topologically protected

programmable shapes in the elastic lattice, leveraging the valley

interface paths with arbitrary,

degrees of freedom. Then, the distinct localized interface state is

discussed. Finally, the paper discusses the application of

programmable topological interface states in the domain of
haptic feedback.

2 Model and theory
2.1 Topological structures

As shown in Figure lc, the proposed model consists of
periodically arranged hexagonal unit cell. Each unit cell consists

frontiersin.org
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¢=0

FIGURE 2
lllustration of the unit cell structure with (@) ¢ = 0, (b) ¢ > 0 and (c) ¢ < 0.

of two parts as seen in Figure 1b. One part is the Aluminum
hexagonal thin plate as shown in the green part of the picture.
The other part consists of three raised fan-shaped structures
made of Lead material, which are present on both the front and
back sides of the hexagonal aluminum plate as shown in
the orange part of the picture. The central star-shaped part
with a length ¢ of 13.27 mm and a width b of 6 mm is cut out,
as indicated by the white color. The red dotted lines outline
the unit cell with in-plane lattice constant of a = 30mm.
When expressed using lattice vectors, the unit cell can be
described as a; = (0, a) and a,=(-a/2, V/3a/2). As shown in
Figure lc, the thickness of the aluminum hexagonal thin plate
and the height of the lead fan-shaped structure are h; = lmm
and h, = 5mm, respectively. The elastic modulus of the
73 GPa, with a
density of p = 2,590 kg/m’ and a Poisson’s ratio of v = 0.23.

aluminum hexagonal thin plate is E =
The elastic modulus of Lead fan-shaped structure is E = 16 GPa.
The density and Poisson’s ratio are p = 11340 kg/m’ and v =
0.42, respectively.

2.2 Theory

The propagation of elastic waves through the structure is
governed (Huo et al.,, 2021):

pii = V(AVu) + V [y (uV + Vu)] (1)

where p represents the material density and u is the displacement
vector, A and p are lame constant.

The dynamic problem in periodic structures is addressed using
Bloch-Floquet wave theory (Kittel and McEuen, 2018). The
boundary condition can be expressed as in Equation 2:

kr+ot)

2

u(r,t) = u (r)e’

where k is the Bloch vector, r is spatial position, w is the eigen
frequency. Applying the Bloch-Floquet boundary condition, the
dynamic problem in Equation 1 can be simplified to the
following eigenvalue problem in Equation 3:

(K-w’M)u=0 (3)
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where the M and K represent the mass matrix and stiffness matrix of
the model, respectively. Then, COMSOL Multiphysics is used to
calculate the band structure by scanning the first Brillouin zone with
respect to the wavevector k, followed by the analysis of elastic wave
propagation properties.

3 Valley-protected elastic wave
properties

3.1 Dispersion analysis and band inversion

As depicted in Figure 2, the unit cell exhibits three distinct
configurations, corresponding to those in Figure 2a the state with
zero rotation angle, where the structure maintains symmetry; (b) the
case with a positive rotation angle, indicating that the internal
circular sector of the hexagon has undergone clockwise rotation
relative to state (a); and (c) the case with a negative rotation angle,
where the internal circular sector has rotated counterclockwise
relative to state (a). Then, a parameter A¢ is defined to
characterize the angular deviation relative to the symmetric
configuration.

When Ag =0, the model simultaneously satisfies both time-
reversal and spatial inversion symmetry. Subsequently, the band
structure is calculated and presented in Figure 3a. It can be seen that
the 4th and 5th branches degenerate at K point, which is known as
Dirac degeneracy. To explore the topological properties of the model
at this point, a perturbation with Ag = 1° is introduced to break the
spatial symmetry of the unit cell. As shown in Figure 3b, after the
symmetry is broken, the Dirac degeneracy is lifted and forming
a bandgap.

To elucidate the topological properties of elastic waves, the
band inversion process at the degenerate point is presented.
Figure 4 visually depicts how the topological phase evolves as
A¢ changes continuously. It can be distinctly observed that as
A¢ continuously increases, the bandgap first closes and
then reopens.

The eigenstates of the two bands above and below the bandgap
are denoted as y* and y~, respectively, with the sign indicating the
direction of the eigenmode. When Ag <0, eigenstates y* is located

frontiersin.org
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The phase transition at the K point under the continuous variation
of Ag.

above y~, whereas for A¢>0, the positions are reversed. This
indicates that a topological phase transition takes place when the
symmetry is broken. Combined with the dispersion curves in
Figure 3, we can infer that the breaking of symmetry leads to
non-trivial topological states.

Based on the kp perturbation theory (Chen et al., 2018), when
the system satisfies the condition of perturbation energy
difference AE # 0, it indicates that the equivalent model
corresponds to a non-degenerate or weakly degenerate system
obtained after perturbation treatment. For such perturbative
treated systems, the effective Hamiltonian can be expressed as
in Equations 4, 5:

AHy = Awy (4)

(5)

2
AH = vpok.0, + vpbk,0, + mvpo,

where o, gy and o, are the Pauli matrices, vp, is the Dirac velocity,
m = (wy-wy- )/2v2 is the Dirac mass. Jk represents the deviation
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FIGURE 5

(a) Schematic diagram of the 1D supercell structure, the
geometrical parameter on the two side of the interface is opposite;
(b,c) Band structure of the model with perturbation parameter

Ag = 15°and Ag = -15°; (d) The modal displacement corresponds

to the interface state represented by the red solid line in (b); (e) The
modal displacement corresponds to the interface state represented by
the blue solid line in (c); (f,g) the edge state corresponds to the green
dashed line and red solid line in (c).
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FIGURE 6
(a,b) Schematic of the Z-shaped interface path with different perturbation parameters; (c,d) Displacement field distribution of the model in (a,b)

respectively.

from the Dirac point. The Berry curvature can be expressed as in  line as seen in Figure 3b, integration over the upper and
Equation 6 lower regions yields the numerical results Ci=0.5 and
1 Cyr = -0.5, respectively. Based on the definition of the valley
Q(8k) = M (8Kk? +mzvﬁ,)73/2 (6)  Chern number, C, = Cy-Cy, the calculation gives a nonzero
integer value of C, = 1 According to the criterion for topological
The Valley Chern number is calculated in Equation 7 phase transitions, this result unambiguously confirms the
1 occurrence of a valley-dependent topological phase transition
C, = EJ Q(6k)ds (7)  in the system.

The Berry curvature plays a central role in the analysis of
topological properties, with its physical significance lying in 3.2 1D topological protected interface
quantifying the local curvature of the wave-function in State analysis
momentum space. This physical quantity serves as a key basis
for determining topological invariants (such as the valley Chern To verify the existence of topologically protected interface
number) and identifying topologically protected states, directly  states within the bandgap induced by symmetry breaking at the K
guiding the research direction of a system’s topological point in this metamaterial, this study further investigates the
properties. From the perspective of spatial distribution  dispersion characteristics of a supercell consisting of 20 unit
characteristics, the Berry curvature exhibits opposite signs in  cells. As illustrated in Figure 5, the interface is defined at the
the upper and lower regions of the Brillouin zone (positive in the ~ boundary between two types of structural units. The supercell
upper region and negative in the lower region). This feature =~ model employs free boundary conditions at both ends, with Bloch
provides the foundation for integration over partitioned periodic boundary conditions applied along the k, as shown
regions. Taking the distribution corresponding to the blue in Figure 5A.

Frontiers in Mechanical Engineering 06 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1728504

Wang et al.

10.3389/fmech.2025.1728504

FIGURE 7
(a,b) Schematic of the Z-shaped interface path with bends local defects;

Asshown in Figures 5b,c, the edge-bulk band structure of the
1D supercell correspond to Agp = 15°and A = -15°, respectively,
are calculated. As shown in Figure 5b, when Ag =15° a
dispersion branch associated with the interface state appears
within the bandgap. Figure 5d illustrates the eigenmode on this
dispersion branch at f = 1797Hz. The displacement distribution
is concentrated near the interface. When A¢ = -15°, a dispersion
branch related to the interface state, along with two dispersion
branches associated with boundary states, appears within the
bandgap, as illustrated by the blue solid line, red solid line and
green dashed line in Figure 5¢, respectively. Figure 5¢ shows the
eigenmode corresponding the dashed line in Figure 5c¢ at
f =1779Hz. The displacement distribution is localized near
the interface. Figure 5f and (g) present the eigenmodes on the
green dashed and red solid branches at f =1775Hz and
f = 1770Hz,
primarily localized at the two ends of the 1D supercell.
Obviously, the numerical simulation results show that the
proposed model exhibits topological interface states, which
can be realized by introducing a geometry perturbation with
Ag #0.

respectively. The modal displacement is

Frontiers in Mechanical Engineering

(c,d) Displacement field distribution of the model in (a,b) respectively.
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3.3 2D topological protected local
interface state

Figure 6 illustrates the numerical results of elastic wave
propagation in the frequency domain for interfaces with distinct
topological phases. As shown in Figures 6a,b, perturbation
parameters for the models are A¢ =15° In both models, the
interface path is configured in a Z-shape. The interface divides
the model into two regions, R1 and R2. As is shown in Figure 53, the
perturbation parameters in R1 is Ag = -15° and the perturbation
parameters in R2 is A¢ =15°. The perturbation parameter
distribution in Figure 6b is opposite. Figure 6¢,d illustrate the
frequency-domain displacement field corresponding to point
excitations at locations A and B in Figures 6a,b, respectively. It
can be observed that under point excitation, the interface state is
confined to a localized region and does not propagate into the inner
of region R1 and R2. It should be pointed out that the displacement
on both sides in Figure 6d are caused by the edge state in Figures
5f,g. Then we set a local protrusion structure in the middle of the
Z-shaped path, which can be equivalent to a local defect of the path.
Figures 7c,d and Figure 8 show the displacement field distribution
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FIGURE 8
(a,b) Schematic of the Z-shaped interface path with local defects of discontinuous angles; (c,d) Displacement field distribution of the model in (a,b)
respectively.

after introducing this local defect. The amplitude of the point excitation
is 15 um, and as can be seen from the figure, the vibration amplitude
remains approximately 15 pm along the entire path up to the end. It
can be can be concluded that the topologically protected interface states
exhibit significant robustness against the defect—elastic waves can still
penetrate the defect and propagate continuously.

4 Conclusion

This paper presents a topological metamaterial design based on
the introduction of geometrical rotation parameter, which
symmetry. The
topological band inversion can be realized by continuously
changing the geometrical rotation parameter A¢. The physical
mechanism of the topological phase transition is characterized by
the kp perturbation theory. Both the theoretical and numerical

subsequently breaks the spatial inversion

analysis indicate that the introduction of a geometrical rotation
can break the spatial reversion symmetry, thereby facilitating the
design of a topologically nontrivial state. Also, the interface state
characteristics of the metamaterial within the Dirac bandgap are
investigated through numerical simulation. The interface states of the
metamaterial are localized in a small region near the interface and can

Frontiers in Mechanical Engineering

propagate along the interface. This localized characteristic enables
the realization of complex local vibration patterns within the plane.
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