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Topological mechanical metamaterials have garnered significant attention 
for their ability to exhibit robust, defect-immune wave propagation and 
mechanical behaviors, inspired by topological protection mechanisms in 
condensed matter physics. In this study, we present a novel mechanical 
metamaterial design that introduces rotational geometric parameters within 
the unit cell to explicitly break spatial inversion symmetry. By precisely tuning 
the rotation angle of structural elements in the unit cell, we induce 
asymmetric valley states with opposite Berry curvatures, thereby realizing 
the valley Hall effect in a mechanical framework. This purely geometric 
approach avoids reliance on material composition gradients or external 
fields, offering intrinsic control over valley polarization through structural 
design alone. Numerical simulations and mechanical analyses demonstrate 
that the proposed metamaterial supports topologically protected interface 
states at the boundary between regions of distinct valley topologies. These 
interface states exhibit unidirectional propagation, confirming their 
topological protection. This work provides a universal geometric strategy 
to engineer topological phenomena in structural systems. The realized 
topologically protected interface states hold promise for applications in 
high-precision sensors, energy harvesting devices, and vibration isolation 
systems.
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1 Introduction

In recent decades, metamaterials have garnered extensive research attention in the 
fields of mechanics and physics (Li et al., 2020; Jiao et al., 2023; Ni et al., 2023; Chen C. 
et al., 2025; Du et al., 2025; Chen et al., 2024c; Dong et al., 2024; Akbari-Farahani and 
Ebrahimi-Nejad, 2024; Ni and Shi, 2023; Chen et al., 2023). This is primarily attributed 
to their unique capability of achieving novel mechanical properties through rational 
design of structural architectures, rather than relying solely on the inherent composition 
of base materials.

Natural materials are inherently constrained in their acoustic and elastic wave 
propagation characteristics, as such capabilities are fundamentally limited by their 
intrinsic lattice structures and continuous physical properties. In sharp contrast, 
artificially engineered metamaterials—crafted with high-precision design and 
fabrication—can markedly enhance the flexibility of manipulating and controlling 
acoustic and elastic waves, breaking through the inherent restrictions of 
natural materials.
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Researchers have now developed numerous types of 
metamaterials exhibiting extraordinary physical properties, such 
as negative effective density, negative elastic modulus, and 
negative refractive index. These anomalous characteristics are 
fundamentally rooted in theoretical frameworks including local 
resonance (Santoro et al., 2023; Wang et al., 2025), Bragg 
scattering (Jia et al., 2025; Rao et al., 2024), transformation 
acoustics (Cao et al., 2025; Pendry et al., 2006), topological bands 
(Chu et al., 2024), and non-Hermitian physics (Cao et al., 2022), 
enabling the realization of remarkable physical phenomena 
including but not limited to: (1) diffraction-limited acoustic 
focusing, (2) broadband noise dissipation, and (3) resonant 
vibration isolation.

Traditional metamaterials achieve equivalent parameters 
such as negative refractive index and negative modulus 
through specific structural designs (e.g., resonant units). 
These properties are highly sensitive to defects and 
disorder—any structural damage or manufacturing deviations 
can cause these characteristics to significantly weaken or 
disappear. In other words, traditional metamaterials 
macroscopically mimic material parameters not found in 
nature, and their functionality relies on structural perfection. 
In contrast, the extraordinary properties of topological 
metamaterials originate not from the emulation of specific 
parameters, but rather from the global topological 
characteristics inherent in their structural band structures. As 
a result, wave propagation in topological metamaterials (such as 
waves at the boundaries) is globally protected. Even in the 
presence of internal defects, manufacturing imperfections, or 
sharp bends in the path, the waves can propagate along the 
boundary—they are not only dissipationless and unidirectional 
but also unaffected by these disturbances or local perturbations. 
Inspired by topological insulators in quantum physics (Haldane, 
1988; Klitzing et al., 1980; Den, 1982), researchers have 
developed three major categories of topological metamaterials 
within classical physics domains such as acoustics 
and mechanics.

The first approach draws on topological insulators based 
on the Quantum Hall Effect (QHE) (Susstrunk and Huber, 
2015). By breaking time-reversal symmetry through globally 
rotating the coupled pendulum array, a topologically non- 
trivial phase is induced. The results demonstrate that 
vibrational energy propagates unidirectionally along the 
lattice boundary with remarkable robustness—even in the 
presence of defects or disordered structures, the energy 
bypasses obstacles without backscattering and continues to 
propagate. A hexagonal lattice structure designed by Nash 
et al. incorporates gyroscopes at its nodal points (Nash 
et al., 2015), utilizing their rotational effects to break time- 
reversal symmetry, thereby enabling the development of 
topological metamaterials based on the Quantum Hall 
Effect. The second way, inspired by Bernevig and Zhang 
(2006), does not need to break time-reversal symmetry. The 
fundamental principle of this class of metamaterials is similar 
to the spin-orbit coupling mechanism observed in QSHE. 
Chen et al. (2024a) designed a Kekule lattice-based elastic 
topological resonator with tunable coupling strip widths 
using the quantum spin Hall effect, achieved robust edge 

state transmission through topological phase transitions, 
and realized frequency-space separation by integrating the 
topological rainbow effect—providing a novel mechanism 
for efficient elastic wave manipulation and the development 
of programmable sensors. Zhang et al. developed a 
groundbreaking methodology by employing a flow-free 
metamaterial lattice with deliberately broken structural 
symmetry (Zhang et al., 2017), successfully constructing 
acoustic pseudo-spin multipole states. Through systematic 
investigation, the research team demonstrated that 
implementing symmetry-breaking operations in a 
honeycomb lattice and regulating the interaction strength 
between resonant units within the lattice can achieve band 
inversion between pseudo-spin dipole and quadrupole states. 
This mechanism serves as a pivotal factor in driving 
topological phase transitions. Chen et al. (2025c) for the 
first time introduces topological Wannier cycles into full- 
polarization micromechanical metamaterials, realizes 
broadband robust elastic dislocation states via helical 
dislocation structures, enhances energy harvesting and 
frequency identification capabilities using mode conversion 
and coupling systems, and provides a new paradigm for full- 
polarization elastic wave manipulation. Chen et al. (2018)
developed an innovative approach to realize a mechanical 
quantum spin Hall insulator and successfully modeled this 
quantum phenomenon using a simplified mass-spring Kagome 
lattice structure. By employing the Brillouin zone folding 
technique, the model constructed a lattice system featuring 
double Dirac cones, opening new research dimensions and 
methodological pathways for exploring the mechanical 
quantum spin Hall Effect. Chen et al. (2025b) establishes an 
electro-acoustic analogy model to achieve second-order to 
quadrupole topological transition in acoustic metamaterials, 
investigates multi-dimensional localized states in dislocation 
structures, and provides a robust framework for acoustic 
topological manipulation with promising applications in 
sensing, signal processing, and energy harvesting. Mousavi 
et al. (2015) proposed the design of a dual-scale phononic 
crystal plate featuring a triangular lattice of air holes, which 
achieved degenerate Dirac cones for both symmetric and 
antisymmetric Lamb wave modes. Subsequently, by breaking 
spatial mirror symmetry, strong spin-orbit coupling was 
introduced, leading to a topological phase transition and the 
formation of a complete phononic bandgap. Chen et al. 
(2024b) innovatively combines topological insulators with 
the rainbow trapping effect, designs surface wave photonic 
crystals based on concrete-filled steel tubes (CFST), achieves 
robust transmission, frequency-spatial separation, and energy 
concentration of low-frequency surface waves, and provides a 
new scheme with both theoretical value and application 
potential for surface wave manipulation in fields such as 
reconfigurable seismic metamaterials, sensing, and energy 
harvesting.

The third method for achieving topologically protected edge 
states, based on the quantum valley Hall effect (QVHE) (Dong et al., 
2024; Chen et al., 2023; Liu et al., 2019), is relatively more 
straightforward. This approach relies solely on breaking spatial 
inversion symmetry. QVHE-based topological metamaterials 
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preserve time-reversal symmetry, simplifying geometric 
complexity. Lu et al. (2016) developed a novel mechanism for 
breaking mirror symmetry, successfully constructing an acoustic 
analogue of the topological semimetal-insulator phase 
transition. By precisely adjusting the rotation angles of 
anisotropic scatterers within the phononic crystal, it is able to 
control the shape of the frequency bandgap and phase domain 
walls. Li et al. (2019) put forward a creative design framework for 
elastic metamaterials, termed “valley anisotropy,” which can be 
achieved via an asymmetric structural scheme integrating bio- 
inspired hard helical scatterers and a compliant material matrix. 
The research team verified that Berry curvature—a crucial 
topological indicator—can be accurately regulated by 
modifying the geometric parameters. This regulation 
mechanism enables the topological manipulation of transverse 
elastic waves, thereby allowing for the control of energy 
propagation behaviors, including the redirection and 
termination of energy flow. Zhang et al. (2022) present a 
valley phononic crystal, which consists of a hexagonal 
aluminum plate equipped with six support rods arranged in a 
chiral configuration. By tuning the lengths of these support rods 
within the chiral unit cell, a novel complete bandgap is induced 
at the Dirac point, and this bandgap formation is accompanied 
by the appearance of topological edge modes. The authors 
analyzed the dispersion characteristics of the chiral system 
and applied them to interface waveguides, thereby enabling 
the implementation of customizable propagation path 
designs. In addition, the team also provides evidence for the 
existence of the valley Hall effect in the proposed chiral system.

The programmable metamaterials have been proposed for the 
manipulation of elastic and electromagnetic waves (Qi et al., 2022; 
Xiu et al., 2022; On et al., 2024; Abadal et al., 2020; Yi et al., 2023; 
Darabi et al., 2020; Zhang et al., 2019). Darabi et al. (2020) proposed 
breaking time-reversal symmetry through time modulation, 

inducing synthetic angular momentum bias and opening a 
topological bandgap with protected edge states. The 
reconfigurable topological metamaterials enable robust acoustic 
wave transmission and are applicable to devices such as acoustic 
emitters and mechanical logic circuits. These systems outperform 
their electronic counterparts under harsh operating conditions. 
Zhang et al. (2019) innovatively proposed using programmable 
ferrofluid distributions within the unit cells of elastic lattices to 
break inversion symmetry and create tunable bandgaps. This 
approach allows for easy reconfiguration of propagation paths 
by controlling the ferrofluid distribution. Numerical 
simulations and experimental tests demonstrate the ability to 
guide bending waves along different interface paths, 
highlighting the potential applications of this programmable 
elastic valley-Hall insulator.

By introducing a difference in elastic stiffness, the Dirac cone 
can be opened, resulting in the formation of a topologically 
nontrivial bandgap. With the assistance of a programmable 
external electric field, the elastic stiffness distribution within each 
unit cell can be independently modified. This allows for the creation 
of topologically protected interface paths with arbitrary, 
programmable shapes in the elastic lattice, leveraging the valley 
degrees of freedom. Then, the distinct localized interface state is 
discussed. Finally, the paper discusses the application of 
programmable topological interface states in the domain of 
haptic feedback.

2 Model and theory

2.1 Topological structures

As shown in Figure 1c, the proposed model consists of 
periodically arranged hexagonal unit cell. Each unit cell consists 

FIGURE 1 
(a) Illustration of the metamaterial with lattice vector a1 � (a/2,

��
3
√

a/2) and a2 � (-a
2,

��
3
√

a/2); (b) unit cell structure, the green hexagons represents 
the thin aluminum plate, while the orange parts represent the fan-shaped structures made of lead material; (c) the section view of the unit cell, the heights 
of the aluminum hexagonal thin plate and the lead fan-shaped structure are ha and hl, respectively; (d) The Brillouin zone of the unit cell; (e) The mesh 
distribution in the unit cell, the minimum element in the unit cell is 0.012 mm, the maximum element is 1.2 mm, and the model adopts Quadratic 
serendipity and triangular prism elements.
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of two parts as seen in Figure 1b. One part is the Aluminum 
hexagonal thin plate as shown in the green part of the picture. 
The other part consists of three raised fan-shaped structures 
made of Lead material, which are present on both the front and 
back sides of the hexagonal aluminum plate as shown in 
the orange part of the picture. The central star-shaped part 
with a length c of 13.27 mm and a width b of 6 mm is cut out, 
as indicated by the white color. The red dotted lines outline 
the unit cell with in-plane lattice constant of a � 30mm. 
When expressed using lattice vectors, the unit cell can be 
described as a1 = (0, a) and a2=(-a/2, 

�
3
√
a/2). As shown in 

Figure 1c, the thickness of the aluminum hexagonal thin plate 
and the height of the lead fan-shaped structure are hl � 1mm
and ha � 5mm, respectively. The elastic modulus of the 
aluminum hexagonal thin plate is E = 73 GPa, with a 
density of ρ = 2,590 kg/m3 and a Poisson’s ratio of ] = 0.23. 
The elastic modulus of Lead fan-shaped structure is E = 16 GPa. 
The density and Poisson’s ratio are ρ = 11340 kg/m3 and ] = 
0.42, respectively.

2.2 Theory

The propagation of elastic waves through the structure is 
governed (Huo et al., 2021): 

ρü � ∇ λ∇u( ) + ∇ μ u∇ + ∇u( )􏼂 􏼃 (1)

where ρ represents the material density and u is the displacement 
vector, λ and μ are lame constant.

The dynamic problem in periodic structures is addressed using 
Bloch-Floquet wave theory (Kittel and McEuen, 2018). The 
boundary condition can be expressed as in Equation 2: 

u r, t( ) � uk r( )ei k·r+ωt( ) (2)

where k is the Bloch vector, r is spatial position, ω is the eigen 
frequency. Applying the Bloch-Floquet boundary condition, the 
dynamic problem in Equation 1 can be simplified to the 
following eigenvalue problem in Equation 3: 

K − ω2M( 􏼁u � 0 (3)

where the M and K represent the mass matrix and stiffness matrix of 
the model, respectively. Then, COMSOL Multiphysics is used to 
calculate the band structure by scanning the first Brillouin zone with 
respect to the wavevector k, followed by the analysis of elastic wave 
propagation properties.

3 Valley-protected elastic wave 
properties

3.1 Dispersion analysis and band inversion

As depicted in Figure 2, the unit cell exhibits three distinct 
configurations, corresponding to those in Figure 2a the state with 
zero rotation angle, where the structure maintains symmetry; (b) the 
case with a positive rotation angle, indicating that the internal 
circular sector of the hexagon has undergone clockwise rotation 
relative to state (a); and (c) the case with a negative rotation angle, 
where the internal circular sector has rotated counterclockwise 
relative to state (a). Then, a parameter Δφ is defined to 
characterize the angular deviation relative to the symmetric 
configuration.

When Δφ � 0, the model simultaneously satisfies both time- 
reversal and spatial inversion symmetry. Subsequently, the band 
structure is calculated and presented in Figure 3a. It can be seen that 
the 4th and 5th branches degenerate at K point, which is known as 
Dirac degeneracy. To explore the topological properties of the model 
at this point, a perturbation with Δφ � 1° is introduced to break the 
spatial symmetry of the unit cell. As shown in Figure 3b, after the 
symmetry is broken, the Dirac degeneracy is lifted and forming 
a bandgap.

To elucidate the topological properties of elastic waves, the 
band inversion process at the degenerate point is presented. 
Figure 4 visually depicts how the topological phase evolves as 
Δφ changes continuously. It can be distinctly observed that as 
Δφ continuously increases, the bandgap first closes and 
then reopens.

The eigenstates of the two bands above and below the bandgap 
are denoted as ψ+ and ψ-, respectively, with the sign indicating the 
direction of the eigenmode. When Δφ < 0, eigenstates ψ+ is located 

FIGURE 2 
Illustration of the unit cell structure with (a) φ = 0, (b) φ > 0 and (c) φ < 0.
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above ψ-, whereas for Δφ > 0, the positions are reversed. This 
indicates that a topological phase transition takes place when the 
symmetry is broken. Combined with the dispersion curves in 
Figure 3, we can infer that the breaking of symmetry leads to 
non-trivial topological states.

Based on the kp perturbation theory (Chen et al., 2018), when 
the system satisfies the condition of perturbation energy 
difference ΔE ≠ 0, it indicates that the equivalent model 
corresponds to a non-degenerate or weakly degenerate system 
obtained after perturbation treatment. For such perturbative 
treated systems, the effective Hamiltonian can be expressed as 
in Equations 4, 5: 

ΔHψ � Δωψ (4)

ΔH � vDδkxσx + vDδkyσy +mv2
Dσz (5)

where σx, σy and σz are the Pauli matrices, vD is the Dirac velocity, 
m � (ωψ+ -ωψ- )/2v2

D is the Dirac mass. δk represents the deviation 

FIGURE 3 
Band structure corresponds to the unit cell with (a) Δφ � 0 (solid lines) and (b) Δφ ≠ 0.

FIGURE 4 
The phase transition at the K point under the continuous variation 
of Δφ.

FIGURE 5 
(a) Schematic diagram of the 1D supercell structure, the 
geometrical parameter on the two side of the interface is opposite; 
(b,c) Band structure of the model with perturbation parameter 
Δφ � 15° and Δφ � -15°; (d) The modal displacement corresponds 
to the interface state represented by the red solid line in (b); (e) The 
modal displacement corresponds to the interface state represented by 
the blue solid line in (c); (f,g) the edge state corresponds to the green 
dashed line and red solid line in (c).
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from the Dirac point. The Berry curvature can be expressed as in 
Equation 6

Ω δk( ) �
1
2
m]D δk2 +m2]2

D( 􏼁
−3/2 (6)

The Valley Chern number is calculated in Equation 7

Cv �
1

2π
􏽚Ω δk( )dS (7)

The Berry curvature plays a central role in the analysis of 
topological properties, with its physical significance lying in 
quantifying the local curvature of the wave-function in 
momentum space. This physical quantity serves as a key basis 
for determining topological invariants (such as the valley Chern 
number) and identifying topologically protected states, directly 
guiding the research direction of a system’s topological 
properties. From the perspective of spatial distribution 
characteristics, the Berry curvature exhibits opposite signs in 
the upper and lower regions of the Brillouin zone (positive in the 
upper region and negative in the lower region). This feature 
provides the foundation for integration over partitioned 
regions. Taking the distribution corresponding to the blue 

line as seen in Figure 3b, integration over the upper and 
lower regions yields the numerical results Ck � 0.5 and 
Ck′ � -0.5, respectively. Based on the definition of the valley 
Chern number, Cv � Ck-Ck′, the calculation gives a nonzero 
integer value of Cv � 1 According to the criterion for topological 
phase transitions, this result unambiguously confirms the 
occurrence of a valley-dependent topological phase transition 
in the system.

3.2 1D topological protected interface 
state analysis

To verify the existence of topologically protected interface 
states within the bandgap induced by symmetry breaking at the K 
point in this metamaterial, this study further investigates the 
dispersion characteristics of a supercell consisting of 20 unit 
cells. As illustrated in Figure 5, the interface is defined at the 
boundary between two types of structural units. The supercell 
model employs free boundary conditions at both ends, with Bloch 
periodic boundary conditions applied along the kx as shown 
in Figure 5A.

FIGURE 6 
(a,b) Schematic of the Z-shaped interface path with different perturbation parameters; (c,d) Displacement field distribution of the model in (a,b) 
respectively.
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As shown in Figures 5b,c, the edge-bulk band structure of the 
1D supercell correspond to Δφ � 15° and Δφ � -15°, respectively, 
are calculated. As shown in Figure 5b, when Δφ � 15°, a 
dispersion branch associated with the interface state appears 
within the bandgap. Figure 5d illustrates the eigenmode on this 
dispersion branch at f � 1797Hz. The displacement distribution 
is concentrated near the interface. When Δφ � -15°, a dispersion 
branch related to the interface state, along with two dispersion 
branches associated with boundary states, appears within the 
bandgap, as illustrated by the blue solid line, red solid line and 
green dashed line in Figure 5c, respectively. Figure 5e shows the 
eigenmode corresponding the dashed line in Figure 5c at 
f � 1779Hz. The displacement distribution is localized near 
the interface. Figure 5f and (g) present the eigenmodes on the 
green dashed and red solid branches at f � 1775Hz and 
f � 1770Hz, respectively. The modal displacement is 
primarily localized at the two ends of the 1D supercell. 
Obviously, the numerical simulation results show that the 
proposed model exhibits topological interface states, which 
can be realized by introducing a geometry perturbation with 
Δφ ≠ 0.

3.3 2D topological protected local 
interface state

Figure 6 illustrates the numerical results of elastic wave 
propagation in the frequency domain for interfaces with distinct 
topological phases. As shown in Figures 6a,b, perturbation 
parameters for the models are Δφ � 15°. In both models, the 
interface path is configured in a Z-shape. The interface divides 
the model into two regions, R1 and R2. As is shown in Figure 5a, the 
perturbation parameters in R1 is Δφ � -15° and the perturbation 
parameters in R2 is Δφ � 15°. The perturbation parameter 
distribution in Figure 6b is opposite. Figure 6c,d illustrate the 
frequency-domain displacement field corresponding to point 
excitations at locations A and B in Figures 6a,b, respectively. It 
can be observed that under point excitation, the interface state is 
confined to a localized region and does not propagate into the inner 
of region R1 and R2. It should be pointed out that the displacement 
on both sides in Figure 6d are caused by the edge state in Figures 
5f,g. Then we set a local protrusion structure in the middle of the 
Z-shaped path, which can be equivalent to a local defect of the path. 
Figures 7c,d and Figure 8 show the displacement field distribution 

FIGURE 7 
(a,b) Schematic of the Z-shaped interface path with bends local defects; (c,d) Displacement field distribution of the model in (a,b) respectively.
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after introducing this local defect. The amplitude of the point excitation 
is 15 μm, and as can be seen from the figure, the vibration amplitude 
remains approximately 15 μm along the entire path up to the end. It 
can be can be concluded that the topologically protected interface states 
exhibit significant robustness against the defect—elastic waves can still 
penetrate the defect and propagate continuously.

4 Conclusion

This paper presents a topological metamaterial design based on 
the introduction of geometrical rotation parameter, which 
subsequently breaks the spatial inversion symmetry. The 
topological band inversion can be realized by continuously 
changing the geometrical rotation parameter Δφ. The physical 
mechanism of the topological phase transition is characterized by 
the kp perturbation theory. Both the theoretical and numerical 
analysis indicate that the introduction of a geometrical rotation 
can break the spatial reversion symmetry, thereby facilitating the 
design of a topologically nontrivial state. Also, the interface state 
characteristics of the metamaterial within the Dirac bandgap are 
investigated through numerical simulation. The interface states of the 
metamaterial are localized in a small region near the interface and can 

propagate along the interface. This localized characteristic enables 
the realization of complex local vibration patterns within the plane.
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