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In order to solve the problems of physical model simplification error, insufficient
fusion of multi-source monitoring data, and low accuracy of life prediction in
traditional CNC machine tool life prediction methods, this study proposes a CNC
machine tool remaining useful life (RUL) prediction method that combines digital
twin (DT) technology with long short-term memory (LSTM) network. This study
constructed a multi physics domain mapping model for CNC machine tools
based on DT technology. A multimodal data preprocessing module was
introduced into the DT model to extract key degradation features of the
machine tool, and an improved LSTM network was developed. By inputting
the high-dimensional degraded features output by the DT model into the
LSTM network, accurate RUL prediction of CNC machine tools has been
achieved. The results show that the proposed model performs well in all core
indicators: during the accelerated degradation stage, the prediction accuracy is
96.1%, the average absolute error is only 8.9 h, and the maximum deviation is only
15 h, while maintaining a 100% physical constraint compliance rate and an
effective prediction speed of 22 ms. In addition, as the proportion of the
system increases, the indicators of the model rapidly improve; When the
system proportion reaches 40%, the accuracy exceeds 40%, the recall rate
approaches 42%, and the FO0.5 score significantly improves. These findings
indicate that the proposed method can effectively reduce equipment
downtime losses, improve production efficiency, and provide a new
technological approach for predictive maintenance of CNC machine tools.

digital twin, long short-term memory, numerical control machine tool, life prediction,
maintenance

1 Introduction

As an essential component of high-end equipment manufacturing, the operational
status of numerical control (NC) machine tools directly determines product processing
accuracy and production efficiency (Hu et al., 2024). Traditional periodic maintenance
models fail to effectively predict the remaining useful life (RUL) of components, often
leading to issues of over-maintenance or under-maintenance. Therefore, achieving accurate
RUL prediction for NC machine tools has become a research focus in the realm of
intelligent manufacturing (Pantelidakis and Mykoniatis, 2024). In recent times, with the
advancement of industrial internet technology, digital twin (DT) technology has introduced
an innovative solution to bridge the gap between physical models and actual operating
conditions—by constructing real-time mappings between physical entities and virtual
models, DT enables dynamic perception and simulation of equipment states throughout
their entire lifecycle. Meanwhile, long short-term memory (LSTM), a typical model in the
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field of deep learning, offers unique advantages in processing long-
term sequential degradation data, effectively capturing nonlinear
characteristics during equipment degradation processes (Uribe
et al., 2024).

Addressing the issue of model consistency challenges when
applying DT technology to NC machine tools due to their
complex structures and working conditions, Pei et al. proposed a
four-layer modeling framework incorporating a requirement layer.
They collected and processed multi-source data, developed real-time
cutting algorithms, and validated model characteristics using
methods such as the Fuzzy Analytic Hierarchy Process (FAHP).
Additionally, they employed CNN-LSTM Attention to detect tool
wear. The effectiveness of the framework was verified through a case
study on an NC lathe, providing references for model construction
and state detection in DT- and LSTM-based machine tool life
prediction (Pei et al., 2025). To tackle the problem of insufficient
modeling accuracy in traditional methods caused by the suboptimal
matching between thermal error measurement points and predictive
models in NC machine tools, Sa et al. introduced an integrated
optimization approach for measurement point layout and error
modeling under DT. Combining LSTM with dual-stage attention
mechanisms and convolutional neural network (CNN)-based error
modeling, the method achieved high-precision thermal error
prediction, as demonstrated in experiments. When applied to
grinding machine DT, it improved machining accuracy, offering
insights into modeling and optimization for DT- and LSTM-based
machine tool life prediction (Sa et al., 2024a). Addressing the high
costs, excessive material consumption, and safety risks associated
with servo system parameter design experiments on actual NC
machine tools, Xie et al. utilized a programmable logic controller
provided by Siemens, which integrated modeling, simulation,
programming, debugging, and communication functions, to
construct a DT experimental platform. Using a single-axis servo
system as an example, they optimized parameters. The results
showed that the platform reduced costs, enhanced parameter
design accuracy and efficiency, and simulated real machine tool
dynamics, providing ideas for LSTM-based life prediction of NC
machine tools (Xie et al., 2024). To resolve the issue of smooth
motion benefits disappearing due to servo drivers’ inability to
respond to differential characteristics in NC machine tools, along
with machining contour errors influenced by servo errors,
Kombarov et al. investigated the correlation between servo errors
and interpolation acceleration. They established a predictive model
based on experimental data and tested it on platforms such as DT
models. The introduced acceleration and jerk FFW control
approach  was compensate for differential
characteristic impacts, offering error control references for DT-

confirmed to

and LSTM-based machine tool life prediction research (Kombarov
et al., 2025).

Tackling the challenge of swiftly constructing consistent multi-
DT models for with
electromechanical-hydraulic control coupling (e.g., NC machine

domain mechatronic  equipment
tools), Wei Y et al. synthesized existing methods to propose
multi-domain, multi-level DT models, along with construction
guidelines and processes. They used Simscape to build a multi-
domain DT model of an NC machine tool, verifying the feasibility of
the approach and providing reliable model construction references

for DT- and LSTM-based machine tool life prediction (Wei et al.,
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2024). In response to the lack of systematic development methods
for DT in machine tool commissioning, despite the need to leverage
DT to accelerate this process under advancing information
technology, Norberger et al. conducted a systematic analysis of
scientific publications in the DT field of NC production systems.
Their aim was to identify systematic development methods and
introduce new application progress, offering methodological
references for DT construction and application in subsequent
LSTM-based NC machine tool life
(Norberger et al,, 2024). To address the dynamic adjustment of

prediction research
maintenance and fault warning requirements in structural reliability
assessments for reusable spacecraft mission planning, Gao et al.
proposed a dynamic reliability prediction approach based on a DT
framework. Using dynamic Bayesian networks to integrate
uncertainty and update models, numerical case studies verified
that the method could calibrate crack predictions, reduce
uncertainty, and extend service life (Gao et al., 2023). To tackle
the issue of machining accuracy being affected by dynamic and static
errors in NC machine tools, along with the need for real-time
machining quality estimation to achieve closed-loop control, Sa
et al. proposed a DT synchronous evolution method that correlates
these two types of errors. They constructed an intrinsic model
incorporating static errors, collected multi-scenario data, and
analyzed dynamic errors. Integrating the method into a DT
platform validated its effectiveness, providing error correlation
and data processing ideas for DT- and LSTM-based machine tool
life prediction (Sa et al., 2024b).

In summary, regarding the life prediction of NC machine tools,
existing research integrating DT technology with deep learning still
faces limitations. DT models predominantly focus on geometric
modeling and static performance simulation, lacking real-time
mapping capabilities for the dynamic degradation processes of
equipment and failing to incorporate life prediction
functionalities. Additionally, the fusion of data-driven models
and DT models merely utilizes monitoring data output by DT
models as inputs, without achieving deep integration at the
feature level. This results in models being unable to leverage
DT’s physical prior knowledge to correct prediction biases in
data-driven models. Therefore, this study proposes a coupled
framework integrating DT models with LSTM technology. First,
a thermal-mechanical-vibration coupling model is embedded within
the DT model, and a multimodal feature fusion algorithm based on
an attention mechanism is designed to innovatively fuse physical
simulation data output by the DT model with actual monitoring
data at the feature level. Second, an improved LSTM prediction
model is constructed by introducing gated recurrent units (GRUs)
and attention mechanisms, optimizing the forget and input gate
structures of LSTM to reduce noise interference in long-term
sequential data. The research aims to support the formulation of
predictive maintenance strategies, enabling life prediction and
equipment operation and maintenance management.

The research is structured in the following way: The first section
elaborates on the research background, significance, and prospects
of life prediction for NC machine tools. The second section focuses
on explaining the algorithm flow of the NC machine tool life
prediction method designed in this study, which is based on DT
models and LSTM technology. This section also constitutes the core
focus and innovation of the research. The third section provides a

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1727068

Wang

10.3389/fmech.2025.1727068

Real time adjustment

of servo PID
; Adjustment decision <
center
:
Real time PID
€ regulation _i Workbench
" Interpolation control Polarizex, current m Bearings, nuts, water suppl
temperature sensor

FIGURE 1
Physical model of traditional NC machine tools.

detailed analysis of experimental data results derived from the
research methods outlined in the second section. The fourth
section draws conclusions based on the experimental results,
discussing the limitations of the current design and directions for
further in-depth research in the future.

2 Methods and materials

The study proposes an approach for predicting the RUL of NC
machine tools by integrating DT technology with LSTM networks.
First, a multi-physics domain mapping model for NC machine tools
is constructed based on DT technology. Second, a multi-modal data
preprocessing module is innovatively embedded within the DT
model. Finally, an improved LSTM network is developed, utilizing
high-dimensional degradation features output by the DT model as
inputs to achieve accurate RUL prediction for NC machine tools.

2.1 Construction of RUL model for NC
machine tools based on DT

The degradation process of NC machine tools is the result of
multi-physics field coupling effects. For instance, when the spindle
rotates at high speeds, frictional heat is generated, leading to an
increase in temperature and subsequent thermal deformation. This
thermal deformation, in turn, alters the contact force between the
spindle and the cutting tool, thereby exacerbating bearing wear and
degradation (Wang et al., 2024; Peterson et al., 2025). Traditional
physical models typically simplify this process using a “single-field
modeling + linear superposition” approach, which fails to accurately
reflect the impact of multi-field coupling on equipment degradation.
Meanwhile, purely data-driven models lack constraints from
physical prior knowledge, making them prone to discrepancies
between predicted results and actual degradation patterns when
monitoring data contains noise or is incomplete (Tao et al., 2024).
The traditional physical model of NC machine tools is illustrated
in Figure 1.

Frontiers in Mechanical Engineering

In Figure 1, traditional physical models and purely data-
driven models, lacking physical prior constraints, are prone to
prediction results that deviate from actual degradation patterns
when encountering noisy or incomplete monitoring data, failing
to adequately meet the demands of equipment state analysis
under complex operating conditions. The complex structure of
NC machine tools, featuring multi-component collaboration
and multi-sensor monitoring as depicted in Figure 1, also
indirectly demonstrates the difficulty traditional methods face
in comprehensively and accurately characterizing their
degradation processes.

Based on this, the study constructs a DT model for NC machine
tools, achieving dynamic mapping between the physical entity and
virtual model, as well as degradation state perception, through the
following three core modules: (1) a numerical simulation model
incorporating thermal-mechanical-vibration coupling; (2) a real-
time data synchronization module enabling 10 Hz-level data
interaction between the physical equipment and virtual model via
industrial Ethernet; and (3) a degradation state assessment module
that extracts key degradation indicators of the equipment based on
multi-physics field simulation results.

The specific steps for researching and implementing multi
physics field coupling simulation are as follows: Firstly, geometric
modeling: Three-dimensional geometric model of the spindle
bearing guide rail is established, and tetrahedral elements are
used for mesh division; Secondly, multi field coupling setup: The
thermal field module adopts a ‘solid heat transfer’ physical field,
introduces the heat conduction equation and boundary conditions,
and real-time calls temperature sensor data to update the
environmental temperature boundary; The force field module
adopts the physical field of ‘structural mechanics’, based on Hertz
contact theory and thermal stress calculation equation, and takes the
cutting force collected by the piezoelectric force gauge as the external
load input; The vibration field module adopts the physical field of
‘acoustic structural interaction’, and combines the temperature
distribution calculated by the vibration equation with the stress
distribution calculated by the force field to achieve bidirectional
coupling of the three fields of heat force vibration.
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FIGURE 2

DT model of NC machine tool.

This DT model not only provides more accurate degradation
process simulation than traditional physical models but also
supplies physical constraints for subsequent LSTM prediction
models, avoiding the “data-driven black box” issue (Zohdi, ,
2025). The DT model of the NC machine tool is illustrated
in Figure 2.

In Figure 2, the multi-physics domain coupling model is
first divided into a thermal field model, a mechanical field
model, and a thermal-mechanical-vibration coupling model.
The thermal field distribution of the spindle system in NC
machine tools adheres to Fourier’s law of heat conduction,
accounting for frictional heat generated by spindle rotation,
cutting heat, and convective heat dissipation. Its three-
dimensional heat

unsteady-state conduction process is

presented in Equation 1.

oT
pc—=V-(kVT) +gq,

3% - 1

In Equation 1, p is the density of the spindle material (kg/m?), ¢
is the specific heat capacity of the spindle material (J/(kg-K)), and T
is the temperature field distribution (K); ¢ is time (s); k is the thermal
conductivity of the material (W/(m-K)); g, is the intensity of the
internal heat source (W/m?), mainly including the frictional heat g,
of the bearing and the loss heat g, of the spindle motor, that is,
Qv =qwn + g2 The calculation of the frictional heat g,; of the
bearing is based on the Palmgren formula, considering the effects
of radial load F,, axial load F,, and rotational speed #, as shown in
Equation 2.

1073P0n

v @)

qn =

In Equation 2, Py is the total friction power of the bearing (kW),

and f) is the friction coefficient; V' is the volume of the bearing (m?);

n is the spindle speed (r/min). The thermal loss g,, of the spindle

motor is composed of copper loss, iron loss, and mechanical loss, as
shown in Equation 3.
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In Equation 3, P;, is the input power of the motor (kW), which is
collected in real-time through a current sensor; 7 is the motor efficiency;
V. is the volume of the motor stator (m’). The boundary conditions of
the thermal field model include convective heat dissipation boundary
and adiabatic boundary, as shown in Equation 4.

9T -ty
on
oT

P

)
0

In Equation 4, h is the convective heat transfer coefficient (W/
(m*K)); T T is the ambient temperature (K), collected in real-time
through a temperature sensor; n is the direction of the boundary
normal vector. The force field of the spindle system mainly includes
cutting force and bearing support force. Based on Hertz contact
theory, the contact stress oy between the ball and the raceway is
presented in Equation 5.

F,E
oy = 0.418

(©)

eq

In Equation 5, F, is the axial cutting force (N), which is collected
in real-time by a piezoelectric force gauge; E is the equivalent
modulus of elasticity (Pa); Req is the equivalent curvature radius
(m)a Req = lflleRR?Z’
curvature radius; b is the contact width (m), b =2

R, is the ball radius, and R, is the raceway

2F. R
= and L

is the effective contact length of the bearing (m). The influence of

cutting force on spindle deformation is solved using finite element
method. Based on the principle of virtual work, the static
equilibrium equation of the spindle is presented in Equation 6.

Ké =F (6)

In Equation 6, K is the stiffness matrix of the main axis (N/m),
which is obtained through modal analysis using ANSYS software; &
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Dynamic update of DT model.

is the displacement vector of the main axis (m); F is the external
force vector (N), including cutting force F,, gravity G, and bearing
preload F. The coupling between the thermal field and the force
field is achieved through thermal stress caused by temperature, and
the calculation of thermal stress oy is presented in Equation 7.

or = aEAT (7)

In Equation 7, « is the thermal expansion coefficient (1/K) of the
spindle material; AT is the temperature change (K), ie,
AT =T -T,. The vibration field model is based on the dynamic
characteristics of the spindle after thermal mechanical coupling, as
shown in Equation 8.

Mi + Cx + K(T)x = F(t) (8)

In Equation 8, M is the mass matrix of the spindle system (kg); C
is the damping matrix (N-s/m), using the Rayleigh damping model,
C = auM + B K; K(T) is the stiffness matrix (N/m) that varies
with temperature, K(T) = K, (1 + pAT), K| is the stiffness matrix at
room temperature, and y is the temperature coefficient of stiffness;
x, X, and X are the vibration displacement, velocity, and acceleration
vectors (m, m/s, m/s’), respectively; F(t) is the dynamic excitation
force vector (N), including cutting force fluctuations and bearing
unbalance forces (Qu et al., 2025). This study is based on a multi
physics domain coupling model, defining key degradation indicators
for NC machine tools, including: bearing wear amount W,
calculated based on the Archard wear model; The thermal
deformation of the spindle, dr, is calculated based on the thermal
expansion formula; The effective value of vibration RMS is
calculated based on the vibration acceleration signal. The above
is presented in Equation 9.

W = kaFNVt
H
6T = LaAT

)
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In Equation 9, k, is the wear coefficient, Fy is the normal
contact force (N), v is the sliding velocity (m/s), t is the operating
time (s), and H is the material hardness (HV); L is the effective
length of the spindle (m); a; is the i th vibration acceleration
sampling value (m/s’), and N is the number of sampling points.
The dynamic update of the DT model is achieved through a closed-
loop process of “data collection error compensation model
correction”, as shown in Figure 3.

As shown in Figure 3, after preprocessing, the multimodal
degradation indicators output by the DT model are employed as
input features for the LSTM model, tackling the challenge of singular
feature extraction in traditional data-driven models. Additionally,
the multi-physics domain coupling relationships within the DT
model serve as regularization terms for the LSTM model,
preventing physically implausible prediction results. Using a
closed-loop process of ‘data collection error compensation model
update’, the bearing wear output from COMSOL simulation is
compared with the actual measured wear every 50 h (measured
using a laser displacement sensor KEYENCE LK-G80 with an
accuracy of +0.1 um). If the error exceeds 5%, the friction
coefficient and stiffness temperature coefficient in COMSOL are
adjusted through Python scripts until the error between the
simulation value and the measured value is less than 3%,
completing the dynamic correction of the model.

2.2 Life prediction of NC machine tools
integrating DT and LSTM

Although the DT model can provide accurate degradation state
assessments, it cannot directly predict the future RUL—this is
exhibits
characteristics such as nonlinearity and randomness, necessitating

because the degradation process of equipment
the use of data-driven models to capture these complex patterns
(Information et al., 2024; Dimic et al., 2024). The traditional LSTM
model has the following deficiencies when processing long-term

sequential degradation data: unreasonable weight allocation for
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multimodal data, making it susceptible to interference from
redundant features; noise in long-term sequential data can lead
to gradient vanishing in the model, affecting prediction accuracy;
and the lack of physical constraints may result in outputs that do not
align with the actual degradation mechanisms. Therefore, by
integrating DT technology with LSTM, a DT-LSTM life model
for NC machine tools has been proposed, centered around a
three-tier architecture of “feature fusion-sequential prediction-
physical constraints™: first, weight allocation for DT multimodal
features is achieved through an attention mechanism; then, an
improved LSTM network is constructed to capture sequential
degradation patterns; finally, a physical constraint regularization
term is introduced to optimize the prediction results.

To solve the problem of uneven weight allocation of multi-
modal features (wear, thermal deformation, vibration) in DT output,
spatial attention mechanism is introduced (Kibira et al., 2024). Let
the feature matrix output by DT be
X = [DIy, DIs,, DIgys,] € RPP (T is the time step, D = 3 is
the feature dimension), and the attention weight « is calculated
as shown in Equation 10.

{M:tanh(W1X+b1) (10)
a = softmax (W, M + b,)

In Equation 10, W; € RP*P)W, e RP*P are the weight
matrices, b, and b, are bias vectors, and « € R™P is the
attention weight, satisfying ¥ a; 4 = 1. The fused feature vector
X € RPP focuses on key degraded features (such as wear), as
presented in Equation 11.

Xattrd = Od » Xoa (11)

In Equation 11, X4 is the fusion value of the ¢ th time step
and the d th dimensional feature.

To address the gradient vanishing problem in traditional LSTM
models, the update gate mechanism of GRU is introduced while
retaining the forget gate functionality of LSTM, thereby constructing
a hybrid LSTM-GRU structure, as specifically illustrated in Figure 4.

Frontiers in Mechanical Engineering

In the hybrid LSTM-GRU architecture studied, LSTM controls
information flow through forget gates, input gates, and output gates,
and is good at capturing long sequence dependencies, but lacks
stability in long-term gradient propagation; GRU is simplified into
update and reset gates, with fewer parameters and higher training
efficiency. The update gate can dynamically balance the weight of
historical and current information. The degradation data of CNC
machine tools is a 1800 h long sequence (36 time steps), which has
the problem of early weak features being easily lost and mid-term
gradients being easily attenuated. The hybrid architecture combines
the advantages of both: the forget gate of LSTM preserves key
historical degradation features (such as small changes in initial
stage vibrations), while the update gate of GRU dynamically
adjusts the information fusion ratio to avoid gradient vanishing
caused by too small gradient products. Theoretically, it is more
suitable for long sequence nonlinear degradation data than a single
LSTM/GRU. The theoretical basis for solving the gradient vanishing
problem with this hybrid structure is that traditional LSTM controls
the retention of historical information through a forget gate.
However, when processing 1800 h long sequence degraded data
of machine tools, as the time step increases, the weight of the forget
gate tends to accumulate and approach 0, resulting in the loss of
early key degraded information (such as small vibration changes in
the initial stage); The update gate of GRU can dynamically adjust the
fusion weight of historical information and current information,
complementing the LSTM forget gate. When the weight of the
LSTM forget gate is too low, the GRU update gate can enhance the
retention of historical information and avoid gradient loss due to too
small weight product during backpropagation. In addition, the
attention mechanism assigns weights to multimodal features
(wear, thermal deformation, vibration) to focus the model on
vibration features that are more sensitive to degradation, further
reducing the interference of irrelevant features on gradient
calculation. The steps of attention mechanism is clarified as
follows: set the feature matrix output by DT, and calculate the
attention mechanism steps: @ Feature mapping: map the feature

frontiersin.org
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Life prediction process of NC machine tool combining DT and LSTM technology.

matrix output by DT to intermediate features through the weight
matrix; @ Weight calculation: Compress intermediate features into
one-dimensional attention weights through a weight matrix; ®
Feature fusion: Weighted fusion of features in the time step
dimension, focusing on time step features that are more sensitive
to degradation. As shown in Figure 4, the calculations of forget gate
[+ update gate z;, candidate memory unit C;,and output gate o; are
presented in Equation 12.

ft = O'(Wf [ht—]: Xatt,t] + bf)
z = 0 (W, [h-1, Xawey] + b2)

C, = tanh (WC [ht—b Xatt,t] +~b0)
C=fioC.,+(1-z)0C

(12)

In Equation 12, ¢ is the Sigmoid activation function, @ is the
product of elements, h;_; is the previous hidden state, C;_; is the
previous memory unit, and Wy, W_, W, are the weight matrices.
The hidden state h; and the final RUL prediction value j, are
presented in Equation 13.

oy = U(Wo [ht—lx Xatt,t] + bo)
h; = 0, ® tanh (C;) (13)
Y, =W,h +b,

In Equation 13, W,, W, are the weight matrices, and y, is the
RUL prediction value (h) at the ¢ th time step. To avoid predicting
results that violate physical laws (such as negative RUL and excessive
wear), a physical constraint term R is introduced to optimize the loss
function, as shown in Equation 14.

R=X max(O, W pred — Wmax) + A, max(O, Opred = omux) (14)

In Equation 14, Wpeq and oeq are the wear and stress values
predicted by LSTM, and A; and A, are the constraint weights
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(Preethi and Mamatha, 2023). The integration of physical
constraint forms and loss functions is clarified as follows:
Physical constraints are based on the basic laws of CNC machine
tool operation, and define two hard constraints: @ Wear amount
constraint: predicted wear amount < maximum wear amount; @
Stress constraint: predicted stress < yield strength); The design of the
physical constraint regularization term is: L_phy = lambda; x max
(0, W_pred - W_max)+lambda, x max (0, 0 _pred - o _2), where
lambda,; = 10 and lambda, = 5 (determined through cross validation
to balance prediction error and constraint compliance); The total
loss function integrates MSE with physical constraints: L_total =
MSE (y_true, y_pred)+L_phy, where MSE (y_true, y_pred) is the
mean square error between the predicted RUL and the true RUL, y_
true is the measured RUL, and y_pred is the model predicted RUL.
Using Mean Squared Error (MSE) combined with physical
constraints, the total loss function L is presented in Equation 15.

1 N
L:NZ(yt—j/t)2+R (15)
t=1

In Equation 15, y; is the actual RUL value (h), and N is the
number of samples. Based on the above research, the life prediction
process of NC machine tools using DT and LSTM technologies is
presented in Figure 5.

As shown in Figure 5, at the physical layer, multi-source data is
collected through sensors, and a “physical + data” dual-driven DT is
constructed via the DT construction layer to accomplish data
acquisition and DT modeling. Subsequently, the data is processed
to construct sequential features. Then, the process moves to the
LSTM model phase, where an LSTM model is established and
trained, followed by iterative validation and optimization to
achieve predictive applications and decision-making, clearly
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demonstrating the complete workflow from data acquisition to life
prediction applications.

The integration core of DT model and LSTM network is the
closed-loop coupling of “physical simulation feature extraction —
multimodal feature fusion — temporal prediction — physical
constraint optimization”. The specific workflow and data flow are
as follows: DT model feature output stage: based on the constructed
“thermal mechanical vibration” multi physics field coupling DT
model, output one set of standardized degradation features every
50 h, and output the physical credibility score of each feature.
Feature preprocessing and fusion stage: Data cleaning removes
abnormal features with a credibility<0.6 from DT output, and
uses linear interpolation to fill in missing data; Attention feature
fusion: By using spatial attention mechanism, weights are assigned
to the cleaned 3D features, and a 1D temporal feature vector is
generated after fusion. LSTM temporal prediction stage: The fused
feature vectors are divided into a training set in a 7:3 ratio and input
into an improved LSTM network (LSTM-GRU hybrid structure).
Training process: After each round of training, the LSTM outputs
the predicted RUL and physical constraint terms. If the predicted
value violates physical laws, a loss function penalty is triggered, and
the network weights are adjusted by backpropagation; Feedback
correction: Every 100 h, the RUL value predicted by LSTM is fed
back to the DT model to update the degradation trend simulation
parameters of DT, so that the features output by DT in the next
round are more in line with the actual degradation law.

The interface details between DT and LSTM are as follows: @D
Data transmission format: The DT model completes a multi physics
field simulation every 50 h, outputs standardized degradation
features and feature reliability scores (0-1), and stores them in the
MySQL 8.0 database; @ Data reading: LSTM reads database data at
regular intervals (every 50 h) through Python’s pandas library
(version 2.1.0), filters out abnormal features with a credibility<0.6,
and uses linear interpolation to fill missing values (missing
rate  <0.5%); @ Data
normalization on the read features (normalization range [0,1]); @
Feedback mechanism: LSTM feeds back the predicted RUL to the DT
model every 100 h to update the degradation trend simulation

preprocessing: Perform Min Max

parameters of DT. The algorithm pseudocode is as follows.

Input: Physical equipment sensor data (temperature,

vibration, force, current), material parameters,
equipment rated parameters
Output: RUL prediction value of CNC machine tool (h)
1. Initialize DT model
1.7 Build a

(spindle,

three-dimensional geometric model

bearings, guide rails) with a mesh
resolution of ©.1 mm (tetrahedral elements)
1.2 Configure multiple physical field parameters:
- Thermal field: k = 51 W/(m-K), C =465 J/(kg-K),
residual threshold 1e-6
- Force field: E=208GPa, y=0.3, residual threshold
Te-6
- Vibration field: Rayleigh damping (a = 0.01, B =
0.001), residual threshold 1e-6
1.3 Embedded multimodal data preprocessing module
(denoising, normalization, credibility rating)

2. Dynamically update DT model and extract features
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While the device is running:
2.1 Collecting Sensor Data (Sampling Frequency:
Temperature/Current 1Hz, Vibration 1 kHz, Force 180 Hz)
2.2 Synchronize toDT virtual model and performmulti
physics field coupling simulation (up to 500 iterations)
2.3 Extract standardized degradation features X =
[W, 8 _T, RMS], calculate reliability score
2.41fscore=0.6:StoreXinthedatabase; Otherwise:
discard the set of features
2.5 Every 100 h: Receive RUL prediction values from
LSTM feedback and correct DT simulation parameters
2.6 When the cumulative number of features is >36
(corresponding to 1800 h) : proceed to step 3
3. Attention mechanism feature fusion
3.1 Read 36 sets of features from the database and
construct a feature matrix X e R" (36 x 3)
3.2 Calculate attention weight a = softmax (W 2x
tanh (W1x X "T+b 1)+b 2)
3.3 Weighted fusion yields X_att e R" (1 x 3)
4. Training a Hybrid LSTM-GRU Model
4.1 Divide the dataset into 70% training set, 15%
validation set, and 15% test set
4.2 Initialize model hyperparameters: Learning
rate ©.001, batch size = 32, epochs = 200
4.3 Definition of loss function: L_total = MSE
(y_true, y_pred)+lambda 1 x max (0,
max)+lambda 2 x max (0, o _pred - o _2)

W_pre-W_

4.4 Train themodel using Adamoptimizer and enable
early stop strategy (patience = 20)
5. RUL prediction and output

5.7 Input X_att into the trainedmodel toobtain the
RUL prediction value y_pred

5.2 Verify whether y_pred satisfies physical
constraints (W_pred <0.1 mm, o _pred <835 MPa)

5.3 If satisfied: output y_pred; Otherwise:
trigger loss function penalty and re predict

Algorithm 1. RUL prediction algorithm for CNC machine tools based on
DT-LSTM.

3 Results

To confirm the validity of the approach introduced in the
research, an experiment was specifically conducted for this
purpose. The design parameters and experimental data were
examined to validate the benefits and practicality of the
proposed method.

3.1 Performance analysis of the life
prediction model for NC machine tools

Sensors were deployed on a vertical machining center during
the experiment (two PT100 temperature sensors were attached
to the spindle bearing housing, two PCB352C33 vibration
sensors were fixed to the front end of the spindle and the
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TABLE 1 Experimental hardware configuration.

Experimental
dimension

Configuration

10.3389/fmech.2025.1727068

Specific parameters

Experimental subject NC machine tool model

Operating conditions

Vertical machining center VMC850

Spindle speed: 1,000-8,000 r/min; cutting load: 500-2000 N; experimental period: 1800 h

Monitoring system Sensor type and quantity

Temperature sensor (PT100, 2 channels), vibration sensor (PCB 352C33, 2 channels), force sensor (Kistler

9257B, 1 channel), current sensor (LEM LA55-P, 1 channel)

Software tool Data acquisition software

DT simulation software

NI LabVIEW 2023

COMSOL Multiphysics 6.2+Python 3.9 (data interface)

Deep learning
framework

PyTorch 2.0 + CUDA 12.1

Data management tools

Computing hardware

MySQL 8.0

CPU: Intel Xeon Gold 6,338 (28 cores); GPU: NVIDIA A100(40 GB VRAM); memory: 128 GB DDR4

feed guide rail, one Kistler 9257B force sensor was installed on
the workbench, and one LEM LA55-P current sensor was
connected in series to the power supply circuit of the spindle
motor). The sensors were connected to an industrial computer
via an NI ¢cDAQ-9178 data acquisition card, and a 1000Mbps
Ethernet network was established using an industrial switch to
facilitate data exchange between devices. The DT simulation
server (NVIDIA A100) and the LSTM training server (RTX
4090) were debugged, and it was confirmed that the GPU
computing power was functioning normally (with computing
power test values reaching >90% of the theoretical value under
the CUDA 12.1 environment). The experimental configuration
is detailed in Table 1.

The key details of the DT model are as follows. Mesh
division details: The three-dimensional geometric model of
the spindle, bearings, and guide rails is divided into
tetrahedral elements, with a mesh resolution of 0.1 mm; the
mesh quality inspection pass rate is >95%, and the distortion
rate is <5%. Multi physics field coupling convergence criterion:
The residual convergence threshold for thermal field, force
field, and vibration field is set to le-6, and the upper limit of
iteration is 500 times; The boundary conditions of the thermal
field and force field are updated synchronously every
@ Material
parameters: The spindle material is 40CrNiMoA, with a
thermal conductivity of 51W/(m - K) and a specific heat
capacity of 465J/(kg - K); the bearing material is GCr15, with
an elastic modulus of 208 GPa and a Poisson’s ratio of 0.3; @

100 iterations. Parameter selection criteria:

Friction coefficient: The rolling friction coefficient of the
bearing is 0.0012, and a correction coefficient (f o (T) = f (X
(1 + 0.002 A T)) is introduced considering the influence of
temperature; ® Heat source intensity: The proportion of
copper and iron losses in the spindle motor is determined
based on motor efficiency testing experiments.

The hyperparameter settings for the research model are as
follows: The hyperparameters for model training are determined
through grid search, as follows: @ Optimizer: Adam optimizer, § | =
0.9, B 2 = 0.999, € = le-8; @ Learning rate: Initial learning rate of
0.001, using cosine annealing strategy (Tmax = 50, eta-min = le-5);
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® Batch size: 32; ® Training epochs: 200; ® Early Stopping
Strategy: Monitor the MSE of the validation set, stop training if
there is no decrease for 20 consecutive rounds, and restore the
optimal weights; ® Regularization: Weight decay = le-4 to suppress
overfitting.

Operating conditions were set as follows: A spindle speed
gradient and a cutting load gradient were established, with the
feed rate fixed at 1,000 mm/min, the ambient temperature
controlled at 25 + 2 C, and an experimental duration of
1815 h. Standardized degradation indicators were recorded
every 50 h. For dataset planning, the data was divided into a
training set (1,275 h, encompassing full operating condition
data) and a test set (540 h, matching high-frequency operating
conditions in actual production: 6,000 r/min, 1500 N) at a ratio
of 7:3. A 5-fold cross-validation method was employed to
prevent model overfitting. For real-time data acquisition, the
NI LabVIEW 2023 software was used to control sensor data
collection, with sampling frequencies set at 1 Hz for
temperature/current, 1 kHz for vibration, and 100 Hz for
force. The data was stored in a MySQL 8.0 database, and a
data backup (including both raw and preprocessed data) was
generated every hour. Data preprocessing involved denoising
(wavelet threshold denoising for vibration signals and moving
average filtering for temperature signals) and filling in missing
values (using linear interpolation for missing rates <0.5%),
providing clean input data for the DT model.

Figure 6 presents a comparison of the algorithm running times
under different confidence levels and support degrees. In Figure 6a,
under varying confidence levels, the PSO-SVM algorithm generally
exhibited the longest running times, mostly ranging from 80 to
100 m. The traditional LSTM algorithm followed, with running
times approximately between 40 and 70 m, while the improved DT-
LSTM algorithm had the shortest running times, mostly between
20 and 40 m. This indicated a significant efficiency advantage of the
improved algorithm. In Figure 6b, under different support degrees,
the PSO-SVM algorithm took the longest time, often exceeding
3,000 m, while the traditional LSTM algorithm had running times
around 2000-4,000 m. The improved DT-LSTM algorithm again
showed the shortest running times, mostly between 1,000 and
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Comparison of algorithm running time under different confidence and support levels. (a) Running time of each algorithm at different confidence
levels. (b) The running time of each algorithm under different support levels.
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The training accuracy curve of the studied LSTM and traditional CNN. (a) Accuracy curves of models trained on various networks. (b) Training loss

curves of models trained on various networks.

3,000 m. Overall, it can be concluded that the improved DT-LSTM
algorithm had shorter running times and superior computational
efficiency under different confidence levels and support degrees.
Figure 7 depicts the training accuracy curves of the proposed
LSTM network and traditional CNN in this study. Figure 7a shows
the training accuracy curves of different network models. After
approximately 200 training steps, the accuracy of the proposed
network rapidly improved and stabilized at around 0.9. Compared
with the proposed network, the accuracy of traditional CNN
improved more slowly and stabilized at a lower value,
indicating that the convergence speed of the proposed network
was faster and the accuracy was higher. Figure 7b shows the
training loss curve, where the loss value of the proposed network
rapidly decreased to near zero, while the loss of traditional CNN
decreased more slowly and stabilized at a higher value. This
indicated that the proposed network was more effective in
improving accuracy and reducing losses during the training

3.2 Analysis of life prediction results for NC
machine tools

The improved DT-LSTM (the research method), traditional
LSTM, PSO-SVM, and DT-ELM (Ensemble delta test - extreme
learning machine) models were run separately on the test set, and
relevant metrics were recorded. Table 2 presents the performance
evaluation of existing methods and the research method, with
evaluation metrics including Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), prediction accuracy, and the maximum
deviation during the accelerated degradation phase. The experiment
selected Transformer and CNN-LSTM as strong baselines. The
Transformer model processed long sequence degradation data
(such as 1800 h time series) through self attention mechanism,
with a prediction accuracy of 91.5% (higher than traditional LSTM);
The CNN-LSTM model extracted local features (such as high-
frequency shock components of vibration signals) through CNN

process, demonstrating superior training performance  and captured temporal trends through LSTM. The MAE (15.7 h)
compared to traditional CNNZs. was lower than traditional LSTM. The improved DT-LSTM model
Frontiers in Mechanical Engineering 10 frontiersin.org
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TABLE 2 Performance evaluation of existing and research methods.

Model type MAE/ RMSE/ Prediction Maximum deviation during accelerated degradation
accuracy/% stage/h
PSO-SVM 48.6 65.2 78.2 95
Traditional LSTM 324 458 85.9 62
DT-ELM 25.7 36.3 89.3 40
Transformer model 18.2 25.6 91.5 32
CNN-LSTM 157 213 928 28
Improved DT- 8.9 12,5 96.1 15
LSTM
0.010
0.009

—— Bearing wear growth rate (h ')
0.008 + —* Growth rate of spindle thermal deformation (h ')
Vibration effective value growth rate (h ')

200 400 600 800 1000 1200 1400 1600 1800
Time/h

FIGURE 8
The process of standardized degradation index growth rate.

demonstrated the best performance across all core metrics: its ~ compared to 1,200 h), and the vibration effective value reached
prediction accuracy reached 96.1%, which was 10.2% higher than ~ 0.01 h™' (a 233% increase). Moreover, the growth rate of the
that of the traditional LSTM; its MAE was only 8.9 h, 81.7% lower  vibration effective value consistently remained higher than those
than that of the PSO-SVM; and its maximum deviation during the  of bearing wear and spindle thermal deformation during the same
accelerated degradation phase was merely 15 h. Meanwhile, it  periods, indicating that vibration signals were more sensitive to
maintained a 100% compliance rate with physical constraints and  equipment degradation and could serve as a priority early
a highly efficient prediction speed of 22 m, balancing accuracy,  warning indicator.
stability, and real-time performance, ensuring compatibility with the To confirm the superior performance of the introduced model,
predictive maintenance demands specific to NC machine tools. the comparison model was a basic model that did not incorporate
Figure 8 illustrates the growth rate process of standardized  physical constraints and an attention mechanism. The system
degradation indicators for the research model. It can be observed  proportion referred to the proportion of fusion between multi
that all three types of indicators exhibited a phased increasing trend: ~ physics coupling data and actual monitoring data in the DT
from 50 to 300 h, it was the initial stable phase, with the lowest — model, with a range of 0-1. The higher the ratio, the greater the
growth rates and gentle increases. Bearing wear rose from 0.0006 h'  proportion of physics coupling data in the fusion data. In Figure 9a,
to 0.0011 h', and the vibration effective value increased from  the comparison model (DT-LSTM) was selected as the standard
0.0008 h™* to 0.0013 h™'. From 300 to 1,200 h, the system entered ~ benchmark. During the period of system proportion change, the
a slow degradation phase, with steady increases in growth rates.  precision, recall, and F0.5 indicators of the comparative model
Bearing wear reached 0.0025 h' (a 127% increase compared to  showed a gradually increasing trend, with lower peak values. For
300 h), and the vibration effective value reached 0.003 h™ (a 131%  example, when the system proportion was 20%, the accuracy was
increase). After 1,200 h, the system entered an accelerated  about 18%. In Figure 9b, as the system proportion increased, the
degradation phase, with a significant surge in growth rates. By  system proportion indicator of the model rapidly increased. When
1800 h, bearing wear reached 0.008 h' (a 220% increase the system proportion reached 40%, the precision exceeded 40%, the
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Comparison of RUL prediction results of different bearings. (a) Bearing 1. (b) Bearing 2. (c) Bearing 3.

recall rate approached 42%, and the F0.5 indicator also showed
significant growth. The proposed model far exceeded the
comparative model in terms of precision, recall ability, and
overall evaluation. The proposed model exhibited stronger
adaptability in data feature extraction and prediction.

Bearingl-3 all used the same acceleration degradation test
conditions: speed of 8000r/min, radial load of 2000N, and
ambient temperature of 35 °C. Figure 10 shows a comparison of
predicted RUL results for different bearings, with the horizontal axis
representing time (in Period (1 period = 15 h)) and the vertical axis
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representing RUL (where 0-1 represents the proportion of
remaining life). In Figure 10a, the predicted RUL of Bearing
1 was similar to the true RUL trend in the early stages. In the
later stage, due to increased bearing wear and noise interference, the
predicted values showed greater fluctuations, with significant
deviations between periods 91 and 121. In Figure 10b, the
predicted RUL of Bearing 2 was usually very similar to the true
value. Despite minor fluctuations, the model accurately tracked the
true trend of lifespan decay, reflecting a certain degree of
effectiveness. In Figure 10c, the predicted RUL of Bearing 3 was
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slightly higher than the true value in the early stages, but gradually
became consistent with the true value in the middle and late stages,
indicating that the model had different adaptability to different
degradation stages. Overall, the predictive model could roughly
capture the decay pattern of bearing life.

The research model was validated based on the vertical
machining center (VMC850), and its core advantage (multi
physics coupling DT + physical constraint LSTM) had certain
transferability, but key parameters needed to be adjusted
according to the structural differences of different types of NC
machine tools: NC lathe: compared with the vertical machining
center, the main force on the lathe spindle was radial cutting force
(the machining center is axial + radial composite force), and the
boundary conditions of the force field module in the DT model
needed to be adjusted, while modifying the attention weight of
LSTM; NC milling machine: The feed system of the milling machine
was a three-axis linkage, and a new “force vibration” coupling
submodule for the feed axis needed to be added to the DT
model to supplement the wear of the feed guide rail as a
degradation feature, in order to avoid increasing generalization
errors due to missing features; Longmen type machining center:
Its large span (>2 m) led to uneven temperature field distribution. It
was necessary to increase the number of temperature sensors in the
DT model and optimize the boundary conditions of the heat
conduction Otherwise, the thermal deformation
characteristic error of the LSTM input would increase by 15%-20%.

equation.

4 Discussion and conclusion

The study proposed a life prediction method for NC machine
tools that integrates DT technology with an improved LSTM
network. Specifically, a thermo-mechanical-vibration coupled DT
model was constructed to achieve dynamic synchronization between
the physical equipment and its virtual counterpart, enabling the
extraction of multi-modal standardized degradation indicators.
Subsequently, an attention mechanism and physical constraint
regularization were introduced to develop an improved LSTM
model for RUL prediction. Experimental findings demonstrated
that the training accuracy curve of the proposed network rapidly
increased and stabilized at around 0.9 after approximately
200 training steps. In contrast, the comparison network exhibited
slower accuracy improvement and ultimately stabilized at a lower
value, indicating faster convergence and higher accuracy in the
proposed network. Regarding the training loss curve, the loss value
of the proposed network quickly decreased to near zero, while the
comparison network showed slower loss reduction and a higher final
loss value. The improved DT-LSTM model outperformed other
models across all core metrics: its prediction accuracy reached
96.1%, a 10.2% improvement over the traditional LSTM; its MAE
was only 8.9 h, an 81.7% reduction compared to the PSO-SVM; and
during the accelerated degradation phase, its maximum deviation
was merely 15 h. Additionally, it maintained a 100% compliance rate
with physical constraints and achieved an efficient prediction speed
of 22 m, balancing accuracy, stability, and real-time performance to
fully meet the predictive maintenance requirements of NC machine
tools. It was evident that the improved LSTM model enhanced
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prediction accuracy and reliability for long-term degradation data
through the incorporation of an attention mechanism and physical
constraints. However, the study still had limitations. For instance,
the multi-physics coupling calculations in the DT model relied on
software with limited customization capabilities, restricting
flexibility in model parameter adjustments. Future research
directions can develop lightweight DT coupled simulation
modules to reduce dependence on commercial software and
improve parameter adjustment efficiency.
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