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In order to solve the problems of physical model simplification error, insufficient 
fusion of multi-source monitoring data, and low accuracy of life prediction in 
traditional CNC machine tool life prediction methods, this study proposes a CNC 
machine tool remaining useful life (RUL) prediction method that combines digital 
twin (DT) technology with long short-term memory (LSTM) network. This study 
constructed a multi physics domain mapping model for CNC machine tools 
based on DT technology. A multimodal data preprocessing module was 
introduced into the DT model to extract key degradation features of the 
machine tool, and an improved LSTM network was developed. By inputting 
the high-dimensional degraded features output by the DT model into the 
LSTM network, accurate RUL prediction of CNC machine tools has been 
achieved. The results show that the proposed model performs well in all core 
indicators: during the accelerated degradation stage, the prediction accuracy is 
96.1%, the average absolute error is only 8.9 h, and the maximum deviation is only 
15 h, while maintaining a 100% physical constraint compliance rate and an 
effective prediction speed of 22 ms. In addition, as the proportion of the 
system increases, the indicators of the model rapidly improve; When the 
system proportion reaches 40%, the accuracy exceeds 40%, the recall rate 
approaches 42%, and the F0.5 score significantly improves. These findings 
indicate that the proposed method can effectively reduce equipment 
downtime losses, improve production efficiency, and provide a new 
technological approach for predictive maintenance of CNC machine tools.
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1 Introduction

As an essential component of high-end equipment manufacturing, the operational 
status of numerical control (NC) machine tools directly determines product processing 
accuracy and production efficiency (Hu et al., 2024). Traditional periodic maintenance 
models fail to effectively predict the remaining useful life (RUL) of components, often 
leading to issues of over-maintenance or under-maintenance. Therefore, achieving accurate 
RUL prediction for NC machine tools has become a research focus in the realm of 
intelligent manufacturing (Pantelidakis and Mykoniatis, 2024). In recent times, with the 
advancement of industrial internet technology, digital twin (DT) technology has introduced 
an innovative solution to bridge the gap between physical models and actual operating 
conditions—by constructing real-time mappings between physical entities and virtual 
models, DT enables dynamic perception and simulation of equipment states throughout 
their entire lifecycle. Meanwhile, long short-term memory (LSTM), a typical model in the 
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field of deep learning, offers unique advantages in processing long- 
term sequential degradation data, effectively capturing nonlinear 
characteristics during equipment degradation processes (Uribe 
et al., 2024).

Addressing the issue of model consistency challenges when 
applying DT technology to NC machine tools due to their 
complex structures and working conditions, Pei et al. proposed a 
four-layer modeling framework incorporating a requirement layer. 
They collected and processed multi-source data, developed real-time 
cutting algorithms, and validated model characteristics using 
methods such as the Fuzzy Analytic Hierarchy Process (FAHP). 
Additionally, they employed CNN-LSTM Attention to detect tool 
wear. The effectiveness of the framework was verified through a case 
study on an NC lathe, providing references for model construction 
and state detection in DT- and LSTM-based machine tool life 
prediction (Pei et al., 2025). To tackle the problem of insufficient 
modeling accuracy in traditional methods caused by the suboptimal 
matching between thermal error measurement points and predictive 
models in NC machine tools, Sa et al. introduced an integrated 
optimization approach for measurement point layout and error 
modeling under DT. Combining LSTM with dual-stage attention 
mechanisms and convolutional neural network (CNN)-based error 
modeling, the method achieved high-precision thermal error 
prediction, as demonstrated in experiments. When applied to 
grinding machine DT, it improved machining accuracy, offering 
insights into modeling and optimization for DT- and LSTM-based 
machine tool life prediction (Sa et al., 2024a). Addressing the high 
costs, excessive material consumption, and safety risks associated 
with servo system parameter design experiments on actual NC 
machine tools, Xie et al. utilized a programmable logic controller 
provided by Siemens, which integrated modeling, simulation, 
programming, debugging, and communication functions, to 
construct a DT experimental platform. Using a single-axis servo 
system as an example, they optimized parameters. The results 
showed that the platform reduced costs, enhanced parameter 
design accuracy and efficiency, and simulated real machine tool 
dynamics, providing ideas for LSTM-based life prediction of NC 
machine tools (Xie et al., 2024). To resolve the issue of smooth 
motion benefits disappearing due to servo drivers’ inability to 
respond to differential characteristics in NC machine tools, along 
with machining contour errors influenced by servo errors, 
Kombarov et al. investigated the correlation between servo errors 
and interpolation acceleration. They established a predictive model 
based on experimental data and tested it on platforms such as DT 
models. The introduced acceleration and jerk FFW control 
approach was confirmed to compensate for differential 
characteristic impacts, offering error control references for DT- 
and LSTM-based machine tool life prediction research (Kombarov 
et al., 2025).

Tackling the challenge of swiftly constructing consistent multi- 
domain DT models for mechatronic equipment with 
electromechanical-hydraulic control coupling (e.g., NC machine 
tools), Wei Y et al. synthesized existing methods to propose 
multi-domain, multi-level DT models, along with construction 
guidelines and processes. They used Simscape to build a multi- 
domain DT model of an NC machine tool, verifying the feasibility of 
the approach and providing reliable model construction references 
for DT- and LSTM-based machine tool life prediction (Wei et al., 

2024). In response to the lack of systematic development methods 
for DT in machine tool commissioning, despite the need to leverage 
DT to accelerate this process under advancing information 
technology, Norberger et al. conducted a systematic analysis of 
scientific publications in the DT field of NC production systems. 
Their aim was to identify systematic development methods and 
introduce new application progress, offering methodological 
references for DT construction and application in subsequent 
LSTM-based NC machine tool life prediction research 
(Norberger et al., 2024). To address the dynamic adjustment of 
maintenance and fault warning requirements in structural reliability 
assessments for reusable spacecraft mission planning, Gao et al. 
proposed a dynamic reliability prediction approach based on a DT 
framework. Using dynamic Bayesian networks to integrate 
uncertainty and update models, numerical case studies verified 
that the method could calibrate crack predictions, reduce 
uncertainty, and extend service life (Gao et al., 2023). To tackle 
the issue of machining accuracy being affected by dynamic and static 
errors in NC machine tools, along with the need for real-time 
machining quality estimation to achieve closed-loop control, Sa 
et al. proposed a DT synchronous evolution method that correlates 
these two types of errors. They constructed an intrinsic model 
incorporating static errors, collected multi-scenario data, and 
analyzed dynamic errors. Integrating the method into a DT 
platform validated its effectiveness, providing error correlation 
and data processing ideas for DT- and LSTM-based machine tool 
life prediction (Sa et al., 2024b).

In summary, regarding the life prediction of NC machine tools, 
existing research integrating DT technology with deep learning still 
faces limitations. DT models predominantly focus on geometric 
modeling and static performance simulation, lacking real-time 
mapping capabilities for the dynamic degradation processes of 
equipment and failing to incorporate life prediction 
functionalities. Additionally, the fusion of data-driven models 
and DT models merely utilizes monitoring data output by DT 
models as inputs, without achieving deep integration at the 
feature level. This results in models being unable to leverage 
DT’s physical prior knowledge to correct prediction biases in 
data-driven models. Therefore, this study proposes a coupled 
framework integrating DT models with LSTM technology. First, 
a thermal-mechanical-vibration coupling model is embedded within 
the DT model, and a multimodal feature fusion algorithm based on 
an attention mechanism is designed to innovatively fuse physical 
simulation data output by the DT model with actual monitoring 
data at the feature level. Second, an improved LSTM prediction 
model is constructed by introducing gated recurrent units (GRUs) 
and attention mechanisms, optimizing the forget and input gate 
structures of LSTM to reduce noise interference in long-term 
sequential data. The research aims to support the formulation of 
predictive maintenance strategies, enabling life prediction and 
equipment operation and maintenance management.

The research is structured in the following way: The first section 
elaborates on the research background, significance, and prospects 
of life prediction for NC machine tools. The second section focuses 
on explaining the algorithm flow of the NC machine tool life 
prediction method designed in this study, which is based on DT 
models and LSTM technology. This section also constitutes the core 
focus and innovation of the research. The third section provides a 
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detailed analysis of experimental data results derived from the 
research methods outlined in the second section. The fourth 
section draws conclusions based on the experimental results, 
discussing the limitations of the current design and directions for 
further in-depth research in the future.

2 Methods and materials

The study proposes an approach for predicting the RUL of NC 
machine tools by integrating DT technology with LSTM networks. 
First, a multi-physics domain mapping model for NC machine tools 
is constructed based on DT technology. Second, a multi-modal data 
preprocessing module is innovatively embedded within the DT 
model. Finally, an improved LSTM network is developed, utilizing 
high-dimensional degradation features output by the DT model as 
inputs to achieve accurate RUL prediction for NC machine tools.

2.1 Construction of RUL model for NC 
machine tools based on DT

The degradation process of NC machine tools is the result of 
multi-physics field coupling effects. For instance, when the spindle 
rotates at high speeds, frictional heat is generated, leading to an 
increase in temperature and subsequent thermal deformation. This 
thermal deformation, in turn, alters the contact force between the 
spindle and the cutting tool, thereby exacerbating bearing wear and 
degradation (Wang et al., 2024; Peterson et al., 2025). Traditional 
physical models typically simplify this process using a “single-field 
modeling + linear superposition” approach, which fails to accurately 
reflect the impact of multi-field coupling on equipment degradation. 
Meanwhile, purely data-driven models lack constraints from 
physical prior knowledge, making them prone to discrepancies 
between predicted results and actual degradation patterns when 
monitoring data contains noise or is incomplete (Tao et al., 2024). 
The traditional physical model of NC machine tools is illustrated 
in Figure 1.

In Figure 1, traditional physical models and purely data- 
driven models, lacking physical prior constraints, are prone to 
prediction results that deviate from actual degradation patterns 
when encountering noisy or incomplete monitoring data, failing 
to adequately meet the demands of equipment state analysis 
under complex operating conditions. The complex structure of 
NC machine tools, featuring multi-component collaboration 
and multi-sensor monitoring as depicted in Figure 1, also 
indirectly demonstrates the difficulty traditional methods face 
in comprehensively and accurately characterizing their 
degradation processes.

Based on this, the study constructs a DT model for NC machine 
tools, achieving dynamic mapping between the physical entity and 
virtual model, as well as degradation state perception, through the 
following three core modules: (1) a numerical simulation model 
incorporating thermal-mechanical-vibration coupling; (2) a real- 
time data synchronization module enabling 10 Hz-level data 
interaction between the physical equipment and virtual model via 
industrial Ethernet; and (3) a degradation state assessment module 
that extracts key degradation indicators of the equipment based on 
multi-physics field simulation results.

The specific steps for researching and implementing multi 
physics field coupling simulation are as follows: Firstly, geometric 
modeling: Three-dimensional geometric model of the spindle 
bearing guide rail is established, and tetrahedral elements are 
used for mesh division; Secondly, multi field coupling setup: The 
thermal field module adopts a ‘solid heat transfer’ physical field, 
introduces the heat conduction equation and boundary conditions, 
and real-time calls temperature sensor data to update the 
environmental temperature boundary; The force field module 
adopts the physical field of ‘structural mechanics’, based on Hertz 
contact theory and thermal stress calculation equation, and takes the 
cutting force collected by the piezoelectric force gauge as the external 
load input; The vibration field module adopts the physical field of 
‘acoustic structural interaction’, and combines the temperature 
distribution calculated by the vibration equation with the stress 
distribution calculated by the force field to achieve bidirectional 
coupling of the three fields of heat force vibration.

FIGURE 1 
Physical model of traditional NC machine tools.
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This DT model not only provides more accurate degradation 
process simulation than traditional physical models but also 
supplies physical constraints for subsequent LSTM prediction 
models, avoiding the “data-driven black box” issue (Zohdi, , 
2025). The DT model of the NC machine tool is illustrated 
in Figure 2.

In Figure 2, the multi-physics domain coupling model is 
first divided into a thermal field model, a mechanical field 
model, and a thermal-mechanical-vibration coupling model. 
The thermal field distribution of the spindle system in NC 
machine tools adheres to Fourier’s law of heat conduction, 
accounting for frictional heat generated by spindle rotation, 
cutting heat, and convective heat dissipation. Its three- 
dimensional unsteady-state heat conduction process is 
presented in Equation 1. 

ρc
∂T
∂t
� ∇ · k∇T( ) + qv (1)

In Equation 1, ρ is the density of the spindle material (kg/m3), c
is the specific heat capacity of the spindle material (J/(kg·K)), and T
is the temperature field distribution (K); t is time (s); k is the thermal 
conductivity of the material (W/(m·K)); qv is the intensity of the 
internal heat source (W/m3), mainly including the frictional heat qv1
of the bearing and the loss heat qv2 of the spindle motor, that is, 
qv � qv1 + qv2. The calculation of the frictional heat qv1 of the 
bearing is based on the Palmgren formula, considering the effects 
of radial load Fr, axial load Fa, and rotational speed n, as shown in 
Equation 2. 

qv1 �
10−3P0n

V
(2)

In Equation 2, P0 is the total friction power of the bearing (kW), 
and f0 is the friction coefficient; V is the volume of the bearing (m3); 
n is the spindle speed (r/min). The thermal loss qv2 of the spindle 
motor is composed of copper loss, iron loss, and mechanical loss, as 
shown in Equation 3. 

qv2 �
Pin 1 − η( 􏼁

Vm

(3)

In Equation 3, Pin is the input power of the motor (kW), which is 
collected in real-time through a current sensor; η is the motor efficiency; 
Vm is the volume of the motor stator (m3). The boundary conditions of 
the thermal field model include convective heat dissipation boundary 
and adiabatic boundary, as shown in Equation 4. 

−k
∂T
∂n
� h T−T0( )

∂T
∂n
� 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

In Equation 4, h is the convective heat transfer coefficient (W/ 
(m2·K)); T T0 is the ambient temperature (K), collected in real-time 
through a temperature sensor; n is the direction of the boundary 
normal vector. The force field of the spindle system mainly includes 
cutting force and bearing support force. Based on Hertz contact 
theory, the contact stress σH between the ball and the raceway is 
presented in Equation 5. 

σH � 0.418

����
FzE

Reqb

􏽳

(5)

In Equation 5, Fz is the axial cutting force (N), which is collected 
in real-time by a piezoelectric force gauge; E is the equivalent 
modulus of elasticity (Pa); Req is the equivalent curvature radius 
(m), Req � R1R2

R1+R2
, R1 is the ball radius, and R2 is the raceway 

curvature radius; b is the contact width (m), b � 2
�����
2FzReq

πEL

􏽱

, and L
is the effective contact length of the bearing (m). The influence of 
cutting force on spindle deformation is solved using finite element 
method. Based on the principle of virtual work, the static 
equilibrium equation of the spindle is presented in Equation 6. 

Kδ � F (6)

In Equation 6, K is the stiffness matrix of the main axis (N/m), 
which is obtained through modal analysis using ANSYS software; δ

FIGURE 2 
DT model of NC machine tool.
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is the displacement vector of the main axis (m); F is the external 
force vector (N), including cutting force Fc, gravity G, and bearing 
preload Fp. The coupling between the thermal field and the force 
field is achieved through thermal stress caused by temperature, and 
the calculation of thermal stress σT is presented in Equation 7. 

σT � αEΔT (7)

In Equation 7, α is the thermal expansion coefficient (1/K) of the 
spindle material; ΔT is the temperature change (K), i.e., 
ΔT � T−T0. The vibration field model is based on the dynamic 
characteristics of the spindle after thermal mechanical coupling, as 
shown in Equation 8. 

Mẍ + Cẋ + K T( )x � F t( ) (8)

In Equation 8, M is the mass matrix of the spindle system (kg); C
is the damping matrix (N·s/m), using the Rayleigh damping model, 
C � αMM + βKK; K(T) is the stiffness matrix (N/m) that varies 
with temperature, K(T) � K0(1 + γΔT), K0 is the stiffness matrix at 
room temperature, and γ is the temperature coefficient of stiffness; 
x, ẋ, and ẍ are the vibration displacement, velocity, and acceleration 
vectors (m, m/s, m/s2), respectively; F(t) is the dynamic excitation 
force vector (N), including cutting force fluctuations and bearing 
unbalance forces (Qu et al., 2025). This study is based on a multi 
physics domain coupling model, defining key degradation indicators 
for NC machine tools, including: bearing wear amount W, 
calculated based on the Archard wear model; The thermal 
deformation of the spindle, δT, is calculated based on the thermal 
expansion formula; The effective value of vibration RMS is 
calculated based on the vibration acceleration signal. The above 
is presented in Equation 9. 

W � ka
FNvt

H

δT � LαΔT

RMS �

������

1
N
􏽘

N

i�1
a2
i

􏽶
􏽴

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In Equation 9, ka is the wear coefficient, FN is the normal 
contact force (N), v is the sliding velocity (m/s), t is the operating 
time (s), and H is the material hardness (HV); L is the effective 
length of the spindle (m); ai is the i th vibration acceleration 
sampling value (m/s2), and N is the number of sampling points. 
The dynamic update of the DT model is achieved through a closed- 
loop process of “data collection error compensation model 
correction”, as shown in Figure 3.

As shown in Figure 3, after preprocessing, the multimodal 
degradation indicators output by the DT model are employed as 
input features for the LSTM model, tackling the challenge of singular 
feature extraction in traditional data-driven models. Additionally, 
the multi-physics domain coupling relationships within the DT 
model serve as regularization terms for the LSTM model, 
preventing physically implausible prediction results. Using a 
closed-loop process of ‘data collection error compensation model 
update’, the bearing wear output from COMSOL simulation is 
compared with the actual measured wear every 50 h (measured 
using a laser displacement sensor KEYENCE LK-G80 with an 
accuracy of ±0.1 μm). If the error exceeds 5%, the friction 
coefficient and stiffness temperature coefficient in COMSOL are 
adjusted through Python scripts until the error between the 
simulation value and the measured value is less than 3%, 
completing the dynamic correction of the model.

2.2 Life prediction of NC machine tools 
integrating DT and LSTM

Although the DT model can provide accurate degradation state 
assessments, it cannot directly predict the future RUL—this is 
because the degradation process of equipment exhibits 
characteristics such as nonlinearity and randomness, necessitating 
the use of data-driven models to capture these complex patterns 
(Information et al., 2024; Dimic et al., 2024). The traditional LSTM 
model has the following deficiencies when processing long-term 
sequential degradation data: unreasonable weight allocation for 

FIGURE 3 
Dynamic update of DT model.
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multimodal data, making it susceptible to interference from 
redundant features; noise in long-term sequential data can lead 
to gradient vanishing in the model, affecting prediction accuracy; 
and the lack of physical constraints may result in outputs that do not 
align with the actual degradation mechanisms. Therefore, by 
integrating DT technology with LSTM, a DT-LSTM life model 
for NC machine tools has been proposed, centered around a 
three-tier architecture of “feature fusion-sequential prediction- 
physical constraints”: first, weight allocation for DT multimodal 
features is achieved through an attention mechanism; then, an 
improved LSTM network is constructed to capture sequential 
degradation patterns; finally, a physical constraint regularization 
term is introduced to optimize the prediction results.

To solve the problem of uneven weight allocation of multi- 
modal features (wear, thermal deformation, vibration) in DT output, 
spatial attention mechanism is introduced (Kibira et al., 2024). Let 
the feature matrix output by DT be 
X � [DIW,DIδT, DIRMSa] ∈ RT×D (T is the time step, D = 3 is 
the feature dimension), and the attention weight α is calculated 
as shown in Equation 10. 

M � tanh W1X + b1( )

α � softmax W2M + b2( )
􏼨 (10)

In Equation 10, W1 ∈ RD×D,W2 ∈ RD×D are the weight 
matrices, b1 and b2 are bias vectors, and α ∈ RT×D is the 
attention weight, satisfying 􏽐D

d�1αt,d � 1. The fused feature vector 
Xatt ∈ RT×D focuses on key degraded features (such as wear), as 
presented in Equation 11. 

Xatt,t,d � αt,d ·Xt,d (11)

In Equation 11, Xatt,t,d is the fusion value of the t th time step 
and the d th dimensional feature.

To address the gradient vanishing problem in traditional LSTM 
models, the update gate mechanism of GRU is introduced while 
retaining the forget gate functionality of LSTM, thereby constructing 
a hybrid LSTM-GRU structure, as specifically illustrated in Figure 4.

In the hybrid LSTM-GRU architecture studied, LSTM controls 
information flow through forget gates, input gates, and output gates, 
and is good at capturing long sequence dependencies, but lacks 
stability in long-term gradient propagation; GRU is simplified into 
update and reset gates, with fewer parameters and higher training 
efficiency. The update gate can dynamically balance the weight of 
historical and current information. The degradation data of CNC 
machine tools is a 1800 h long sequence (36 time steps), which has 
the problem of early weak features being easily lost and mid-term 
gradients being easily attenuated. The hybrid architecture combines 
the advantages of both: the forget gate of LSTM preserves key 
historical degradation features (such as small changes in initial 
stage vibrations), while the update gate of GRU dynamically 
adjusts the information fusion ratio to avoid gradient vanishing 
caused by too small gradient products. Theoretically, it is more 
suitable for long sequence nonlinear degradation data than a single 
LSTM/GRU. The theoretical basis for solving the gradient vanishing 
problem with this hybrid structure is that traditional LSTM controls 
the retention of historical information through a forget gate. 
However, when processing 1800 h long sequence degraded data 
of machine tools, as the time step increases, the weight of the forget 
gate tends to accumulate and approach 0, resulting in the loss of 
early key degraded information (such as small vibration changes in 
the initial stage); The update gate of GRU can dynamically adjust the 
fusion weight of historical information and current information, 
complementing the LSTM forget gate. When the weight of the 
LSTM forget gate is too low, the GRU update gate can enhance the 
retention of historical information and avoid gradient loss due to too 
small weight product during backpropagation. In addition, the 
attention mechanism assigns weights to multimodal features 
(wear, thermal deformation, vibration) to focus the model on 
vibration features that are more sensitive to degradation, further 
reducing the interference of irrelevant features on gradient 
calculation. The steps of attention mechanism is clarified as 
follows: set the feature matrix output by DT, and calculate the 
attention mechanism steps: ① Feature mapping: map the feature 

FIGURE 4 
The interaction relationship between the core gating units of LSTM-GRU structure.
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matrix output by DT to intermediate features through the weight 
matrix; ② Weight calculation: Compress intermediate features into 
one-dimensional attention weights through a weight matrix; ③ 
Feature fusion: Weighted fusion of features in the time step 
dimension, focusing on time step features that are more sensitive 
to degradation. As shown in Figure 4, the calculations of forget gate 
ft, update gate zt, candidate memory unit C̃t, and output gate ot are 
presented in Equation 12. 

ft � σ Wf ht−1, Xatt,t􏼂 􏼃 + bf􏼐 􏼑

zt � σ Wz ht−1, Xatt,t􏼂 􏼃 + bz( 􏼁

C̃t � tanh Wc ht−1, Xatt,t􏼂 􏼃 + bc( 􏼁

Ct � ft ⊙ Ct−1 + 1 − zt( ) ⊙ C̃t

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

In Equation 12, σ is the Sigmoid activation function, ⊙ is the 
product of elements, ht−1 is the previous hidden state, Ct−1 is the 
previous memory unit, and Wf、Wz、Wc are the weight matrices. 
The hidden state ht and the final RUL prediction value ŷt are 
presented in Equation 13. 

ot � σ Wo ht−1, Xatt,t􏼂 􏼃 + bo( 􏼁

ht � ot ⊙ tanh Ct( )

ŷ
t �Wyht + by

⎧⎪⎨

⎪⎩
(13)

In Equation 13, Wo,Wy are the weight matrices, and ŷt is the 
RUL prediction value (h) at the t th time step. To avoid predicting 
results that violate physical laws (such as negative RUL and excessive 
wear), a physical constraint term R is introduced to optimize the loss 
function, as shown in Equation 14. 

R � λ1 max 0,Wpred −Wmax􏼐 􏼑 + λ2 max 0, σpred − σmax􏼐 􏼑 (14)

In Equation 14, Wpred and σpred are the wear and stress values 
predicted by LSTM, and λ1 and λ2 are the constraint weights 

(Preethi and Mamatha, 2023). The integration of physical 
constraint forms and loss functions is clarified as follows: 
Physical constraints are based on the basic laws of CNC machine 
tool operation, and define two hard constraints: ① Wear amount 
constraint: predicted wear amount ≤ maximum wear amount; ② 
Stress constraint: predicted stress ≤ yield strength); The design of the 
physical constraint regularization term is: L_phy = lambda1 x max 
(0, W_pred - W_max)+lambda2 x max (0, σ _pred - σ _2), where 
lambda1 = 10 and lambda2 = 5 (determined through cross validation 
to balance prediction error and constraint compliance); The total 
loss function integrates MSE with physical constraints: L_total = 
MSE (y_true, y_pred)+L_phy, where MSE (y_true, y_pred) is the 
mean square error between the predicted RUL and the true RUL, y_ 
true is the measured RUL, and y_pred is the model predicted RUL.

Using Mean Squared Error (MSE) combined with physical 
constraints, the total loss function L is presented in Equation 15. 

L �
1
N
􏽘

N

t�1
yt − ŷt( 􏼁

2
+ R (15)

In Equation 15, yt is the actual RUL value (h), and N is the 
number of samples. Based on the above research, the life prediction 
process of NC machine tools using DT and LSTM technologies is 
presented in Figure 5.

As shown in Figure 5, at the physical layer, multi-source data is 
collected through sensors, and a “physical + data” dual-driven DT is 
constructed via the DT construction layer to accomplish data 
acquisition and DT modeling. Subsequently, the data is processed 
to construct sequential features. Then, the process moves to the 
LSTM model phase, where an LSTM model is established and 
trained, followed by iterative validation and optimization to 
achieve predictive applications and decision-making, clearly 

FIGURE 5 
Life prediction process of NC machine tool combining DT and LSTM technology.
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demonstrating the complete workflow from data acquisition to life 
prediction applications.

The integration core of DT model and LSTM network is the 
closed-loop coupling of “physical simulation feature extraction → 
multimodal feature fusion → temporal prediction → physical 
constraint optimization”. The specific workflow and data flow are 
as follows: DT model feature output stage: based on the constructed 
“thermal mechanical vibration” multi physics field coupling DT 
model, output one set of standardized degradation features every 
50 h, and output the physical credibility score of each feature. 
Feature preprocessing and fusion stage: Data cleaning removes 
abnormal features with a credibility<0.6 from DT output, and 
uses linear interpolation to fill in missing data; Attention feature 
fusion: By using spatial attention mechanism, weights are assigned 
to the cleaned 3D features, and a 1D temporal feature vector is 
generated after fusion. LSTM temporal prediction stage: The fused 
feature vectors are divided into a training set in a 7:3 ratio and input 
into an improved LSTM network (LSTM-GRU hybrid structure). 
Training process: After each round of training, the LSTM outputs 
the predicted RUL and physical constraint terms. If the predicted 
value violates physical laws, a loss function penalty is triggered, and 
the network weights are adjusted by backpropagation; Feedback 
correction: Every 100 h, the RUL value predicted by LSTM is fed 
back to the DT model to update the degradation trend simulation 
parameters of DT, so that the features output by DT in the next 
round are more in line with the actual degradation law.

The interface details between DT and LSTM are as follows: ① 
Data transmission format: The DT model completes a multi physics 
field simulation every 50 h, outputs standardized degradation 
features and feature reliability scores (0–1), and stores them in the 
MySQL 8.0 database; ② Data reading: LSTM reads database data at 
regular intervals (every 50 h) through Python’s pandas library 
(version 2.1.0), filters out abnormal features with a credibility<0.6, 
and uses linear interpolation to fill missing values (missing 
rate ≤0.5%); ③ Data preprocessing: Perform Min Max 
normalization on the read features (normalization range [0,1]); ④ 
Feedback mechanism: LSTM feeds back the predicted RUL to the DT 
model every 100 h to update the degradation trend simulation 
parameters of DT. The algorithm pseudocode is as follows.

Input: Physical equipment sensor data (temperature, 
vibration, force, current), material parameters, 
equipment rated parameters
Output: RUL prediction value of CNC machine tool (h) 
1. Initialize DT model
1.1 Build a three-dimensional geometric model 
(spindle, bearings, guide rails) with a mesh 
resolution of 0.1 mm (tetrahedral elements)
1.2 Configure multiple physical field parameters:
- Thermal field: k = 51 W/(m · K), C = 465 J/(kg · K), 
residual threshold 1e-6

- Force field: E = 208 GPa, μ = 0.3, residual threshold 
1e-6

- Vibration field: Rayleigh damping (α = 0.01, β = 
0.001), residual threshold 1e-6

1.3 Embedded multimodal data preprocessing module 
(denoising, normalization, credibility rating) 

2. Dynamically update DT model and extract features

While the device is running:
2.1 Collecting Sensor Data (Sampling Frequency: 

Temperature/Current 1 Hz, Vibration 1 kHz, Force 100 Hz)
2.2 Synchronize to DT virtual model and perform multi 

physics field coupling simulation (up to 500 iterations)
2.3 Extract standardized degradation features X = 

[W, δ _T, RMS], calculate reliability score
2.4 If score ≥0.6: Store X in the database; Otherwise: 

discard the set of features
2.5 Every 100 h: Receive RUL prediction values from 

LSTM feedback and correct DT simulation parameters
2.6 When the cumulative number of features is ≥36 

(corresponding to 1800 h): proceed to step 3 
3. Attention mechanism feature fusion

3.1 Read 36 sets of features from the database and 
construct a feature matrix X ∈ R ̂(36 × 3)

3.2 Calculate attention weight α = softmax (W 2× 
tanh (W 1× X ̂T + b 1)+b 2)

3.3 Weighted fusion yields X_att ∈ R ̂(1 × 3) 
4. Training a Hybrid LSTM-GRU Model

4.1 Divide the dataset into 70% training set, 15% 
validation set, and 15% test set

4.2 Initialize model hyperparameters: Learning 
rate 0.001, batch size = 32,epochs = 200

4.3 Definition of loss function: L_total = MSE 
(y_true, y_pred)+lambda 1 x max (0, W_pre-W_ 

max)+lambda 2 x max (0, σ _pred - σ _2)
4.4 Train the model using Adam optimizer and enable 

early stop strategy (patience = 20) 
5. RUL prediction and output

5.1 Input X_att into the trained model to obtain the 
RUL prediction value y_pred

5.2 Verify whether y_pred satisfies physical 
constraints (W_pred ≤0.1 mm, σ _pred ≤835 MPa)

5.3 If satisfied: output y_pred; Otherwise: 
trigger loss function penalty and re predict

Algorithm 1. RUL prediction algorithm for CNC machine tools based on 

DT-LSTM.

3 Results

To confirm the validity of the approach introduced in the 
research, an experiment was specifically conducted for this 
purpose. The design parameters and experimental data were 
examined to validate the benefits and practicality of the 
proposed method.

3.1 Performance analysis of the life 
prediction model for NC machine tools

Sensors were deployed on a vertical machining center during 
the experiment (two PT100 temperature sensors were attached 
to the spindle bearing housing, two PCB352C33 vibration 
sensors were fixed to the front end of the spindle and the 
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feed guide rail, one Kistler 9257B force sensor was installed on 
the workbench, and one LEM LA55-P current sensor was 
connected in series to the power supply circuit of the spindle 
motor). The sensors were connected to an industrial computer 
via an NI cDAQ-9178 data acquisition card, and a 1000Mbps 
Ethernet network was established using an industrial switch to 
facilitate data exchange between devices. The DT simulation 
server (NVIDIA A100) and the LSTM training server (RTX 
4090) were debugged, and it was confirmed that the GPU 
computing power was functioning normally (with computing 
power test values reaching ≥90% of the theoretical value under 
the CUDA 12.1 environment). The experimental configuration 
is detailed in Table 1.

The key details of the DT model are as follows. Mesh 
division details: The three-dimensional geometric model of 
the spindle, bearings, and guide rails is divided into 
tetrahedral elements, with a mesh resolution of 0.1 mm; the 
mesh quality inspection pass rate is ≥95%, and the distortion 
rate is ≤5%. Multi physics field coupling convergence criterion: 
The residual convergence threshold for thermal field, force 
field, and vibration field is set to 1e-6, and the upper limit of 
iteration is 500 times; The boundary conditions of the thermal 
field and force field are updated synchronously every 
100 iterations. Parameter selection criteria: ① Material 
parameters: The spindle material is 40CrNiMoA, with a 
thermal conductivity of 51W/(m · K) and a specific heat 
capacity of 465J/(kg · K); the bearing material is GCr15, with 
an elastic modulus of 208 GPa and a Poisson’s ratio of 0.3; ② 
Friction coefficient: The rolling friction coefficient of the 
bearing is 0.0012, and a correction coefficient (f 0 (T) = f 0× 
(1 + 0.002 Δ T)) is introduced considering the influence of 
temperature; ③ Heat source intensity: The proportion of 
copper and iron losses in the spindle motor is determined 
based on motor efficiency testing experiments.

The hyperparameter settings for the research model are as 
follows: The hyperparameters for model training are determined 
through grid search, as follows: ① Optimizer: Adam optimizer, β 1 = 
0.9, β 2 = 0.999, ε = 1e-8; ② Learning rate: Initial learning rate of 
0.001, using cosine annealing strategy (Tmax = 50, eta-min = 1e-5); 

③ Batch size: 32; ④ Training epochs: 200; ⑤ Early Stopping 
Strategy: Monitor the MSE of the validation set, stop training if 
there is no decrease for 20 consecutive rounds, and restore the 
optimal weights; ⑥ Regularization: Weight decay = 1e-4 to suppress 
overfitting.

Operating conditions were set as follows: A spindle speed 
gradient and a cutting load gradient were established, with the 
feed rate fixed at 1,000 mm/min, the ambient temperature 
controlled at 25 ± 2 C, and an experimental duration of 
1815 h. Standardized degradation indicators were recorded 
every 50 h. For dataset planning, the data was divided into a 
training set (1,275 h, encompassing full operating condition 
data) and a test set (540 h, matching high-frequency operating 
conditions in actual production: 6,000 r/min, 1500 N) at a ratio 
of 7:3. A 5-fold cross-validation method was employed to 
prevent model overfitting. For real-time data acquisition, the 
NI LabVIEW 2023 software was used to control sensor data 
collection, with sampling frequencies set at 1 Hz for 
temperature/current, 1 kHz for vibration, and 100 Hz for 
force. The data was stored in a MySQL 8.0 database, and a 
data backup (including both raw and preprocessed data) was 
generated every hour. Data preprocessing involved denoising 
(wavelet threshold denoising for vibration signals and moving 
average filtering for temperature signals) and filling in missing 
values (using linear interpolation for missing rates ≤0.5%), 
providing clean input data for the DT model.

Figure 6 presents a comparison of the algorithm running times 
under different confidence levels and support degrees. In Figure 6a, 
under varying confidence levels, the PSO-SVM algorithm generally 
exhibited the longest running times, mostly ranging from 80 to 
100 m. The traditional LSTM algorithm followed, with running 
times approximately between 40 and 70 m, while the improved DT- 
LSTM algorithm had the shortest running times, mostly between 
20 and 40 m. This indicated a significant efficiency advantage of the 
improved algorithm. In Figure 6b, under different support degrees, 
the PSO-SVM algorithm took the longest time, often exceeding 
3,000 m, while the traditional LSTM algorithm had running times 
around 2000–4,000 m. The improved DT-LSTM algorithm again 
showed the shortest running times, mostly between 1,000 and 

TABLE 1 Experimental hardware configuration.

Experimental 
dimension

Configuration Specific parameters

Experimental subject NC machine tool model Vertical machining center VMC850

Operating conditions Spindle speed: 1,000–8,000 r/min; cutting load: 500–2000 N; experimental period: 1800 h

Monitoring system Sensor type and quantity Temperature sensor (PT100, 2 channels), vibration sensor (PCB 352C33, 2 channels), force sensor (Kistler 
9257B, 1 channel), current sensor (LEM LA55-P, 1 channel)

Software tool Data acquisition software NI LabVIEW 2023

DT simulation software COMSOL Multiphysics 6.2+Python 3.9 (data interface)

Deep learning 
framework

PyTorch 2.0 + CUDA 12.1

Data management tools MySQL 8.0

Computing hardware CPU: Intel Xeon Gold 6,338 (28 cores); GPU: NVIDIA A100(40 GB VRAM); memory: 128 GB DDR4
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3,000 m. Overall, it can be concluded that the improved DT-LSTM 
algorithm had shorter running times and superior computational 
efficiency under different confidence levels and support degrees.

Figure 7 depicts the training accuracy curves of the proposed 
LSTM network and traditional CNN in this study. Figure 7a shows 
the training accuracy curves of different network models. After 
approximately 200 training steps, the accuracy of the proposed 
network rapidly improved and stabilized at around 0.9. Compared 
with the proposed network, the accuracy of traditional CNN 
improved more slowly and stabilized at a lower value, 
indicating that the convergence speed of the proposed network 
was faster and the accuracy was higher. Figure 7b shows the 
training loss curve, where the loss value of the proposed network 
rapidly decreased to near zero, while the loss of traditional CNN 
decreased more slowly and stabilized at a higher value. This 
indicated that the proposed network was more effective in 
improving accuracy and reducing losses during the training 
process, demonstrating superior training performance 
compared to traditional CNNs.

3.2 Analysis of life prediction results for NC 
machine tools

The improved DT-LSTM (the research method), traditional 
LSTM, PSO-SVM, and DT-ELM (Ensemble delta test - extreme 
learning machine) models were run separately on the test set, and 
relevant metrics were recorded. Table 2 presents the performance 
evaluation of existing methods and the research method, with 
evaluation metrics including Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), prediction accuracy, and the maximum 
deviation during the accelerated degradation phase. The experiment 
selected Transformer and CNN-LSTM as strong baselines. The 
Transformer model processed long sequence degradation data 
(such as 1800 h time series) through self attention mechanism, 
with a prediction accuracy of 91.5% (higher than traditional LSTM); 
The CNN-LSTM model extracted local features (such as high- 
frequency shock components of vibration signals) through CNN 
and captured temporal trends through LSTM. The MAE (15.7 h) 
was lower than traditional LSTM. The improved DT-LSTM model 

FIGURE 6 
Comparison of algorithm running time under different confidence and support levels. (a) Running time of each algorithm at different confidence 
levels. (b) The running time of each algorithm under different support levels.

FIGURE 7 
The training accuracy curve of the studied LSTM and traditional CNN. (a) Accuracy curves of models trained on various networks. (b) Training loss 
curves of models trained on various networks.
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demonstrated the best performance across all core metrics: its 
prediction accuracy reached 96.1%, which was 10.2% higher than 
that of the traditional LSTM; its MAE was only 8.9 h, 81.7% lower 
than that of the PSO-SVM; and its maximum deviation during the 
accelerated degradation phase was merely 15 h. Meanwhile, it 
maintained a 100% compliance rate with physical constraints and 
a highly efficient prediction speed of 22 m, balancing accuracy, 
stability, and real-time performance, ensuring compatibility with the 
predictive maintenance demands specific to NC machine tools.

Figure 8 illustrates the growth rate process of standardized 
degradation indicators for the research model. It can be observed 
that all three types of indicators exhibited a phased increasing trend: 
from 50 to 300 h, it was the initial stable phase, with the lowest 
growth rates and gentle increases. Bearing wear rose from 0.0006 h-1 

to 0.0011 h-1, and the vibration effective value increased from 
0.0008 h-1 to 0.0013 h-1. From 300 to 1,200 h, the system entered 
a slow degradation phase, with steady increases in growth rates. 
Bearing wear reached 0.0025 h-1 (a 127% increase compared to 
300 h), and the vibration effective value reached 0.003 h-1 (a 131% 
increase). After 1,200 h, the system entered an accelerated 
degradation phase, with a significant surge in growth rates. By 
1800 h, bearing wear reached 0.008 h-1 (a 220% increase 

compared to 1,200 h), and the vibration effective value reached 
0.01 h-1 (a 233% increase). Moreover, the growth rate of the 
vibration effective value consistently remained higher than those 
of bearing wear and spindle thermal deformation during the same 
periods, indicating that vibration signals were more sensitive to 
equipment degradation and could serve as a priority early 
warning indicator.

To confirm the superior performance of the introduced model, 
the comparison model was a basic model that did not incorporate 
physical constraints and an attention mechanism. The system 
proportion referred to the proportion of fusion between multi 
physics coupling data and actual monitoring data in the DT 
model, with a range of 0–1. The higher the ratio, the greater the 
proportion of physics coupling data in the fusion data. In Figure 9a, 
the comparison model (DT-LSTM) was selected as the standard 
benchmark. During the period of system proportion change, the 
precision, recall, and F0.5 indicators of the comparative model 
showed a gradually increasing trend, with lower peak values. For 
example, when the system proportion was 20%, the accuracy was 
about 18%. In Figure 9b, as the system proportion increased, the 
system proportion indicator of the model rapidly increased. When 
the system proportion reached 40%, the precision exceeded 40%, the 

TABLE 2 Performance evaluation of existing and research methods.

Model type MAE/ 
h

RMSE/ 
h

Prediction 
accuracy/%

Maximum deviation during accelerated degradation 
stage/h

PSO-SVM 48.6 65.2 78.2 95

Traditional LSTM 32.4 45.8 85.9 62

DT-ELM 25.7 36.3 89.3 40

Transformer model 18.2 25.6 91.5 32

CNN-LSTM 15.7 21.3 92.8 28

Improved DT- 
LSTM

8.9 12.5 96.1 15

FIGURE 8 
The process of standardized degradation index growth rate.
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recall rate approached 42%, and the F0.5 indicator also showed 
significant growth. The proposed model far exceeded the 
comparative model in terms of precision, recall ability, and 
overall evaluation. The proposed model exhibited stronger 
adaptability in data feature extraction and prediction.

Bearing1-3 all used the same acceleration degradation test 
conditions: speed of 8000r/min, radial load of 2000N, and 
ambient temperature of 35 °C. Figure 10 shows a comparison of 
predicted RUL results for different bearings, with the horizontal axis 
representing time (in Period (1 period = 15 h)) and the vertical axis 

representing RUL (where 0-1 represents the proportion of 
remaining life). In Figure 10a, the predicted RUL of Bearing 
1 was similar to the true RUL trend in the early stages. In the 
later stage, due to increased bearing wear and noise interference, the 
predicted values showed greater fluctuations, with significant 
deviations between periods 91 and 121. In Figure 10b, the 
predicted RUL of Bearing 2 was usually very similar to the true 
value. Despite minor fluctuations, the model accurately tracked the 
true trend of lifespan decay, reflecting a certain degree of 
effectiveness. In Figure 10c, the predicted RUL of Bearing 3 was 

FIGURE 9 
Accuracy, recall, and F0.5 metrics of different models in system proportion changes. (a) Comparison model. (b) Proposed model.

FIGURE 10 
Comparison of RUL prediction results of different bearings. (a) Bearing 1. (b) Bearing 2. (c) Bearing 3.
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slightly higher than the true value in the early stages, but gradually 
became consistent with the true value in the middle and late stages, 
indicating that the model had different adaptability to different 
degradation stages. Overall, the predictive model could roughly 
capture the decay pattern of bearing life.

The research model was validated based on the vertical 
machining center (VMC850), and its core advantage (multi 
physics coupling DT + physical constraint LSTM) had certain 
transferability, but key parameters needed to be adjusted 
according to the structural differences of different types of NC 
machine tools: NC lathe: compared with the vertical machining 
center, the main force on the lathe spindle was radial cutting force 
(the machining center is axial + radial composite force), and the 
boundary conditions of the force field module in the DT model 
needed to be adjusted, while modifying the attention weight of 
LSTM; NC milling machine: The feed system of the milling machine 
was a three-axis linkage, and a new “force vibration” coupling 
submodule for the feed axis needed to be added to the DT 
model to supplement the wear of the feed guide rail as a 
degradation feature, in order to avoid increasing generalization 
errors due to missing features; Longmen type machining center: 
Its large span (>2 m) led to uneven temperature field distribution. It 
was necessary to increase the number of temperature sensors in the 
DT model and optimize the boundary conditions of the heat 
conduction equation. Otherwise, the thermal deformation 
characteristic error of the LSTM input would increase by 15%–20%.

4 Discussion and conclusion

The study proposed a life prediction method for NC machine 
tools that integrates DT technology with an improved LSTM 
network. Specifically, a thermo-mechanical-vibration coupled DT 
model was constructed to achieve dynamic synchronization between 
the physical equipment and its virtual counterpart, enabling the 
extraction of multi-modal standardized degradation indicators. 
Subsequently, an attention mechanism and physical constraint 
regularization were introduced to develop an improved LSTM 
model for RUL prediction. Experimental findings demonstrated 
that the training accuracy curve of the proposed network rapidly 
increased and stabilized at around 0.9 after approximately 
200 training steps. In contrast, the comparison network exhibited 
slower accuracy improvement and ultimately stabilized at a lower 
value, indicating faster convergence and higher accuracy in the 
proposed network. Regarding the training loss curve, the loss value 
of the proposed network quickly decreased to near zero, while the 
comparison network showed slower loss reduction and a higher final 
loss value. The improved DT-LSTM model outperformed other 
models across all core metrics: its prediction accuracy reached 
96.1%, a 10.2% improvement over the traditional LSTM; its MAE 
was only 8.9 h, an 81.7% reduction compared to the PSO-SVM; and 
during the accelerated degradation phase, its maximum deviation 
was merely 15 h. Additionally, it maintained a 100% compliance rate 
with physical constraints and achieved an efficient prediction speed 
of 22 m, balancing accuracy, stability, and real-time performance to 
fully meet the predictive maintenance requirements of NC machine 
tools. It was evident that the improved LSTM model enhanced 

prediction accuracy and reliability for long-term degradation data 
through the incorporation of an attention mechanism and physical 
constraints. However, the study still had limitations. For instance, 
the multi-physics coupling calculations in the DT model relied on 
software with limited customization capabilities, restricting 
flexibility in model parameter adjustments. Future research 
directions can develop lightweight DT coupled simulation 
modules to reduce dependence on commercial software and 
improve parameter adjustment efficiency.
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