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The integration of artificial intelligence (AI) and robotics into predictive 
maintenance (PdM) systems has brought about a fundamental change in the 
operations of the industries since it has left behind the previous method of 
reactive and scheduled maintenance models in favor of proactive and data- 
driven models. The current systematic review of literature (2015-2025) is aimed at 
the development of PdM, in which AI techniques, machine learning, sensor 
technology, and the incorporation of robotics contribute to more efficient 
systems and address the difficulties in their implementation and implications 
for the future of industries. The findings show that the support vector machines 
and neural networks with supervised learning algorithms are very accurate in fault 
classification and the remaining useful life prediction. On the other hand, the 
methods of unsupervised learning can be applied in the detection of anomalies in 
cases where a limited quantity of labelled data exists. Examples of deep learning 
architectures that are more effective in processing more complex sensor data, as 
well as time-series patterns, include convolutional neural networks (CNNs) and 
long short-term memory (LSTM) networks. Moreover, sensor systems that are 
already linked to the IoT provide the ability to monitor in real time, and this 
significantly improves fault detection. The AI-based PdM systems in combination 
are highly rewarded with reduced downtime, longer equipment life, and 
enhanced maintenance scheduling. There are still, however, concerns about 
data quality, computation loads, and implementation cost that remain a major 
barrier to common usage. The future of AI should be on explainable AI, hybrid 
modelling techniques, and enhanced sensor technology to render AI scalable, 
interpretable, and more industry-applicable.
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1 Introduction

Predictive maintenance (PdM) has now become one of the 
bedrocks of Industry 4.0 technology for enhancing equipment 
reliability, availability and extended useful life. This technique 
leverages condition monitoring, data analytics, and prognostics to 
predict failures so that schedule maintenance operations can be 
effectively scheduled before a costly breakdown (Ucar et al., 2024). 
Traditionally maintenance operation is driven by human experience 
or preventive strategies such as oil or vibration analysis, routine or 
periodic inspections. This sometimes prove ineffective, inaccurate, 
costly and may lead to expensive machine breakdown. The advent of 
PdM allows the use of algorithms for data analytics in order to 
determine the time to maintenance (Daniyan et al., 2020; Daniyan 
et al., 2021). PdM is useful in cost-effective maintenance solution 
that enables operators take a proactive approach before equipment 
breakdown. Furthermore, the modern industrial environment 
principally driven by data requires more advanced maintenance 
plans because of the growing complexity of the manufacturing 
systems. The rise in the costs of operation, and the urgent 
necessity to maintain production in an uninterrupted state 
necessitate a reliable techniques for machine diagnostics and 
prognostics operations (Daniyan et al., 2020). Conventional 
methods of maintenance, such as reactive (run-to-failure) and 
preventive (scheduled) maintenance, can no longer cope with the 
manufacturing trends and complexities. Hence, to avoid 
unwarranted downtime, over-maintenance, or unexpected 
failures, which can be both costly in terms of financial loss and 
safety issues, there is a need for a data-driven maintenance technique 
such as PdM.

Artificial intelligence (AI) and robotics are also technologies that 
have gained traction in Industry 4.0, enabling automated, data- 
driven diagnostics and prognostics, as well as intervention 
(Vachtsevanos et al., 2006; Schwabacher and Goebel, 2007; 
Sikorska et al., 2011). The high rate of development of robotics 
and artificial intelligence systems has generated significant changes 
in industrial processes and has a direct effect on predictive 
maintenance systems. While AI finds various applications in 
smart manufacturing such as predictive analytics (Daniyan et al., 
2022), robotics automation makes operations more productive in 
the workplaces where automated activities are needed, and also 
reduces the danger to workers on their safety and allows permanent 
operation (Pookkuttath et al., 2021). Such convergence of 
technologies is a paradigm shift from the old ways of 
maintenance to smart, data-driven mechanisms that are capable 
of predicting and avoiding equipment failures before they happen.

Predictive maintenance now substitutes the old reactive and 
planned approaches to maintenance through instantaneous data 
analysis, computational learning, and advanced sensor technologies. 
The use of AI allows industries to predict the failure of the 
equipment in advance, construct more effective maintenance 
plans and minimize the downtime of the operating equipment, 
and increase its service life (Kamel, 2022; Mourtzis et al., 2023).

PdM leverages AI to detect anomalies and predict remaining 
useful life (RUL) of an equipment, while robotics offers an 
automated sensing and intervention especially in an hazardous or 
difficult-to-reach locations. The convergence of AI, robotics, and 
other Industry 4.0 technologies such as the smart sensor, Internet- 

of-Things (IoT) and digital twin promises a fully integrated 
maintenance loop whereby there is a culture of continuous data 
collection, analytics, monitoring, prediction and automated 
intervention or human-supervised action.

Many studies have reported on the suitability of AI for predictive 
analytics and PdM operations (Zenisek et al., 2019; Kumar and Hati, 
2021; Shah, et al., 2021; Betz et al., 2022; Bouabdallaoui et al., 2021). 
For instance, machine and deep learning have been applied for 
intelligent fault diagnosis (Duan et al., 2018; Li et al., 2020; Zhou 
et al., 2022) and AI-models have been employed for prognostic 
operations (Daniyan et al., 2020; Daniyan et al., 2023; Kamariotis 
et al., 2024). Raouf et al. (2023) reported on the use of transfer 
learning; an emerging AI technique for fault diagnosis while Adam 
et al. (2023) found that the deep learning can be utilized for 
diagnosing multiple faults in an equipment or system. Yin et al. 
(2023) reported on transfer network for fault diagnosis while some 
authors have explored the emerging field of explainable AI for 
predictive analytics and maintenance as well as in smart 
manufacturing (Matzka, 2020; Hrnjica and Softic, 2020; Garouani 
et al., 2022). In the field of intelligent manufacturing, Yan et al. 
(2023) as well as Liu et al. (2021) have demonstrated the application 
of AI for predictive maintenance.

The use of robots for maintenance operations has also been 
reported. For instance, Daniyan et al. (2023) reported on the design 
of robot for inspecting and diagnosis of rail track defects while the 
use of robots for pipeline defects assessment and detection has been 
reported (Nguyen et al., 2025; Daniyan et al., 2022). Mitrevski and 
Plöger (2019) reported on a data-driven robotic system for 
diagnostics operation and fault identification while the use of AI 
systems and models for troubleshooting robots to identify faults and 
anomaly have been reported (Chen et al., 2020; Hong, et al., 2020).

However, the integration of AI and robotic systems for PdM is 
still an emerging field of research with a view to integrate data 
analytics and predictive capabilities of AI models with autonomous 
intervention of robotic systems.

Hence, the following are the research questions underlying 
this study:

1. What are the AI methods and data modalities 
employed for PdM?

2. What robotic capabilities support the implementation of PdM 
for maintenance operations such as inspection, and repair, etc.?

3. How can the integration of AI and robotics be achieved?
4. What are the current limitations and adoption hindering the 

deployment of AI and robotics for PdM and what are the 
future trends?

This literature review provides in-depth study of the history of 
predictive maintenance, focusing on how AI and robotics can make 
predictive maintenance more effective, how adoption issues can be 
mitigated, and the future possible future trends. The paper also uses 
the latest studies to offer a profound understanding of the influence 
of AI-controlled robots on predictive maintenance within the 
commercial environment in different sectors such as 
manufacturing, aerospace, automotive, and energy industries. It 
synthesizes the findings of studies on the intersection and 
integration of AI and robotics for predictive maintenance, 
highlighting the techniques employed, data and algorithmic 
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trends, robotic roles, integration architectures, evaluation metrics, 
deployment challenges and limitations, as well as future research 
opportunities.

This study is significant in that it contributes to the 
understanding how AI and robotics are deployed in PdM. It also 
contributes a conceptual model for ai-robot integration for 
predictive maintenance. The synthesis of literature provides 
multidisciplinary knowledge on the diagnostics and prognostics 
capability of AI and robotic inspection and intervention, thus, 
providing a consolidated reference for researchers, practitioners, 
and policymakers.

From the theoretical perspective, this study advances the 
conceptual understanding of a form of cyber-physical predictive 
maintenance ecosystems, where data-driven intelligence and 
autonomous systems operate synergistically thereby bridging the 
research domains of AI-based diagnostics and robotic automation. 
In maintenance engineering, it provides a unified framework that 
that provides insights into how AI powered robotic systems can 
process sensory data and execute maintenance tasks predicted by AI 
models (Ucar et al., 2024).

Furthermore, the literature synthesis identifies the research gaps 
such as explainable AI, transfer learning, and human–robot 
collaboration in the context of PdM (Dereci et al., 2024; 
Asif et al., 2026). These insights support future work in the 
development of an adaptive, reliable, responsive and human- 
centered PdM models, thus, contributing to the broader field of 
Industry 4.0 and 5.0, which focuses on sustainability and 
human–machine synergy (Aheleroff et al., 2022).

The outcome of this study provide useful insights that can assist 
industrial maintenance engineers and operations managers, robotics 
developers and AI researchers, manufacturing and infrastructure 
organisations, policymakers and regulators, academia and training 
institutions, in the quest for the development of AI-powered robotic 
system for PdM.

1.1 Related systematic reviews and 
positioning

To position this work within the existing body of knowledge, we 
review recent comprehensive surveys on AI-driven predictive 
maintenance and highlight our distinct contribution.

Campos et al. (2024) conducted a scoping review screening 
machine learning techniques specifically for predictive maintenance 
applications. Their study systematically evaluated 87 papers 
published between 2018-2023, focusing on algorithm 
performance metrics across rotating machinery, focusing 
primarily on supervised learning methods (SVM, Random Forest, 
Neural Networks). They reported accuracy ranges of 85%–94% for 
classification tasks and highlighted the dominance of vibration- 
based sensing (Campos et al., 2024). Their key findings emphasized 
preprocessing importance, the prevalence of benchmark datasets 
(NASA C-MAPSS, CWRU bearing data), and identified gaps in 
cross-domain generalization.

Carvalho et al. (2019) provided an earlier comprehensive 
systematic literature review of machine learning methods in 
predictive maintenance, analyzing 127 studies from 2005 to 2018. 
They established foundational taxonomies of ML algorithms 

(supervised, unsupervised, semi-supervised) and reported 
performance benchmarks that have become widely cited baseline 
references. Their work documented the transition from traditional 
statistical methods to deep learning approaches but did not address 
robotics integration or autonomous inspection systems.

Dalzochio et al. (2020) examined machine learning and 
reasoning for predictive maintenance in Industry 4.0, analyzing 
123 papers with emphasis on data quality challenges, integration 
barriers, and implementation case studies across manufacturing 
sectors. They identified computational cost, model 
interpretability, and scalability as primary adoption barriers, 
themes that remain relevant but required updating with post- 
2020 developments in edge computing and explainable AI.

Zonta et al. (2020) conducted a systematic review of 187 studies on 
predictive maintenance in Industry 4.0, providing comprehensive 
coverage of IoT integration, cyber-physical systems, and digital twin 
applications. Their methodology section established rigorous 
PRISMA-compliant protocols that have influenced subsequent 
reviews. However, their robotics coverage was limited to brief 
mentions of automated inspection without detailed analysis of 
robotic capabilities or human-robot collaboration models.

Serradilla et al. (2022) specifically reviewed deep learning models 
for predictive maintenance, comparing 156 papers on CNN, LSTM, 
GAN, and hybrid architectures. They provided detailed 
performance comparisons (accuracy, precision, recall, F1-scores) 
across different network topologies and identified dataset size 
requirements for reliable training. Their work highlighted the 
interpretability-accuracy trade-off but did not address robotic 
deployment contexts.

Achouch et al. (2022) analyzed 142 studies on predictive 
maintenance in Industry 4.0, with strong emphasis on IoT sensor 
integration, wireless networks, and edge computing architectures. 
They documented implementation challenges related to data 
transmission, sensor reliability, and energy constraints in wireless 
systems. Their robotics discussion was limited to mentions of 
automated guided vehicles (AGVs) without detailed capability analysis.

Recent domain-specific studies and reviews have addressed 
predictive maintenance in particular sectors:Bouabdallaoui et al. 
(2021) in construction/building facilities, Davari et al. (2021) for 
railway systems (57 studies), Bekar et al. (2020) for aerospace 
(43 studies), and Chen et al. (2023) for civil infrastructure 
(89 studies). These provide valuable sector-specific insights but 
lack cross-domain synthesis and robotics integration frameworks.

1.2 Differentiation of current work
The present review distinguishes itself through:

1. Dual AI-Robotics Focus: While prior reviews comprehensively 
cover AI/ML algorithms (Campos et al., 2024; Serradilla et al., 
2022), they treat robotics peripherally. We provide equal 
analytical depth to robotic inspection capabilities, 
manipulation systems, and human-robot collaboration 
models, supported by a formal robotics taxonomy (Section 
3.11) absent in previous surveys.

2. Integration Architecture: We develop a validated conceptual 
framework (Section 4.6; Figure 2) for AI-robotic integration 
with explicit data flows, decision thresholds, and uncertainty 
propagation mechanisms. Prior reviews describe AI and robotics 
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separately; we synthesize their operational integration with 
quantified performance metrics and failure modes.

3. Systematic Robotics Taxonomy: Section 3.11 introduces a three- 
dimensional classification (Mobility × Manipulation × 
Autonomy) with TRL assessments, safety protocols, and 
validation metrics—components not systematically addressed 
in prior literature.

4. Additive Manufacturing Integration: Section 2.5 examines 
AM’s role in closed-loop predictive maintenance (spare- 
parts fabrication, in-situ repair), a nexus under-explored in 
existing reviews despite growing industrial relevance (Maware 
et al., 2024).

5. Updated Empirical Evidence: We incorporate 28 studies 
published in 2023–2025 (33% of corpus) capturing recent 
developments in explainable AI, federated learning, and 
edge deployment that post-date the 2022 reviews.

6. Methodological Rigor Enhancement: We implement reviewer- 
recommended PRISMA extensions (database-specific search 
strings, inter-rater reliability protocols, risk-of-bias assessment 
following ROBIS framework) that exceed the methodological 
detail of prior surveys (see Section 2.1.1, Section 2.1.2, 
Section 2.1.3).

7. Conflicting Findings Analysis: Section 4.8 explicitly addresses 
contradictory results in transfer learning efficacy (Raouf et al., 
2023 vs. Yin et al., 2023) and sensor modality performance 
(Xue et al., 2025 vs. Vlasov et al., 2018)—reconciliations absent 
in prior reviews.

8. Socio-Technical Dimensions: Section 4.9 examines ethical 
implications, workforce impacts (with contradictory 
employment projections from Achouch et al., 2022 vs; 
Mourtzis et al., 2023), and accountability frameworks for 
AI-robotic systems, topics peripherally covered in technical- 
focused prior reviews.

Overlapping Foundations Acknowledged: Core ML algorithm 
prevalence (ANN/SVM dominance), preprocessing importance, 
and vibration sensor prominence documented by Campos et al. 
(2024) and Carvalho et al. (2019) are confirmed by our analysis. 
We cite these established findings appropriately and focus our 
original contribution on the robotics-AI integration nexus, 
operational validation frameworks, and updated post-2022 
evidence synthesis.

This positioning clarifies that while we build upon foundational 
ML surveys, our distinct value lies in systematic robotics integration 
analysis, formal architectural frameworks, and synthesis of the AI- 
robotic convergence in PdM; a gap in existing literature identified 
through this comparative review of related works.

2 Methodology

The literature analysis was systematic in identifying, evaluating, 
and synthesizing the relevant studies in the domain of AI and robot 
applications in predictive maintenance. Systematic literature review 
could also lead to the identification of trends, gaps and emerging 
themes (Maware et al., 2024; Tranfield et al., 2003). The method of 
the research involved the principles and regulations of carrying out 
extensive literature reviews in accordance with the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) PRISMA guideline.

2.1 Search strategy

A comprehensive search was carried out in some academic 
databases like IEEE Xplore, ScienceDirect, Springer Link, Google 
Scholar, Scopus, ACM Digital Library and Web of Science for peer- 
reviewed articles and high-quality conference papers for a period of 
10 years (2015–2025). The search employs keywords such as 
“predictive maintenance,” “Artificial intelligence” “prognostics 
and health management,” “RUL” “diagnostics and prognostics” 
“remaining useful life,” “machine learning,” “deep learning,” 
“robotics,” “autonomous inspection,” and “digital twin.” The 
search was performed with the help of the Boolean operators and 
with the years of publication between 2015 and 2025 to retrieve 
current and relevant literature in the field.

The search terms with the aid of the Boolean operator included:

I. “Predictive maintenance” AND (“artificial intelligence” OR 
“machine learning”)

II. “Robotics” AND “maintenance” AND (“IoT” OR 
“Industry 4.0”)

III. “Anomaly detection” AND “industrial equipment”
IV. “Deep learning” AND “condition monitoring”
V. “Sensor fusion” AND “predictive analytics”

2.1.1 Detailed search protocol
The systematic search was conducted between January 15-28, 

2025, across seven academic databases. The complete search strings 
employed were:

IEEE Xplore:
(“predictive maintenance” OR “condition-based maintenance” 

OR “prognostics”) AND (“artificial intelligence” OR “machine 
learning” OR “deep learning”) AND (robot OR autonom)

Filters: 2015-2025, English, Conference + Journal
Results: 342 documents
ScienceDirect:
TITLE-ABSTR-KEY((“predictive maintenance” OR “PdM”) 

AND (“AI” OR “machine learning”) AND (“sensor” OR “IoT”))
Filters: 2015-2025, Engineering, Computer Science
Results: 456 documents
Scopus:
TITLE-ABS-KEY((“predictive maintenance”) AND (“artificial 

intelligence” OR “neural network”) AND (“industr” 
OR “manufact”))

Filters: 2015-2025, English, Article OR Conference Paper.
Results: 389 documents
Web of Science:
TS=(“predictive maintenance” AND (“machine learning” OR 

“deep learning”) AND (“fault detection” OR “anomaly detection”))
Filters: 2015-2025, English
Results: 267 documents
Google Scholar:
“predictive maintenance” “artificial intelligence” OR “robotics” 

“Industry 4.0”-patent.
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Search conducted: First 200 results screened
Results: 183 relevant documents
ACM Digital Library:
[Title: “predictive maintenance”] OR [Abstract: “predictive 

maintenance”] AND [Anywhere: “machine learning” OR “AI”]
Filters: 2015-2025
Results: 89 documents
Springer Link:
“predictive maintenance” AND (“AI” OR “robotics”) AND 

(“sensor” OR “RUL”)
Filters: 2015-2025, Computer Science, Engineering.
Results: 138 documents
Total Initial Retrieval: 1,864 documents
Inter-Rater Reliability Protocol:
Two independent reviewers (Authors LD and RM) screened all 

titles and abstracts using predefined inclusion/exclusion criteria. 
Disagreements were resolved through discussion, with a third 
reviewer (Author IA) consulted for unresolved cases (n = 23, 
1.4% of screened articles). Inter-rater agreement was quantified 
using Cohen’s kappa:

i. Title/Abstract screening: κ = 0.87 (95% CI: 0.84–0.90), 
indicating strong agreement

ii. Full-text eligibility: κ = 0.91 (95% CI: 0.88–0.94), indicating 
very strong agreement

Data Extraction Codebook:
A standardized extraction form was captured:

1. Bibliographic Data: Authors, year, journal/conference, DOI
2. Study Design: Experimental/case study/simulation/theoretical, 

sample size, validation method
3. AI/ML Components: Algorithm type, training data size, 

performance metrics (accuracy, precision, recall, F1, RMSE, 
MAE), computational requirements

4. Sensor Modalities: Types (vibration, temperature, acoustic, 
etc.), sampling rates, data preprocessing methods

5. Robotic Systems: Robot type (mobile/fixed/aerial/aquatic), 
manipulation capability, autonomy level, deployment 
environment

6. Performance Outcomes: Downtime reduction (%), cost savings 
(%), RUL prediction error (%), detection sensitivity/specificity

7. Implementation Context: Industry sector, equipment type, 
deployment scale (lab/pilot/production)

8. Challenges Reported: Data quality issues, computational 
constraints, integration barriers

9. Validation Rigor: Dataset origin (public benchmark/ 
proprietary), train-test split, cross-validation strategy, 
external validation

Dual extraction was performed on 20% random sample (n = 
17 studies) with a discrepancy rate of 3.2%, resolved through 
consensus discussions. Table 1 presents the database-specific 
search yields and selection process.

2.1.2 Quality assessment protocol
Study quality was assessed using the Mixed Methods Appraisal 

Tool (MMAT) version 2018 (Hong et al., 2018), adapted for 
technology reviews. Each study was evaluated on five criteria:

1. Methodological rigor: Clear research design, appropriate 
methods (Score: 0–2)

2. Data quality: Sample size adequacy, data collection methods 
(Score: 0–2)

3. Analysis appropriateness: Statistical or analytical methods 
justified (Score: 0–2)

4. Results clarity: Findings clearly presented with evidence 
(Score: 0–2)

5. Relevance to PdM: Direct contribution to predictive 
maintenance field (Score: 0–2)

Quality Score Interpretation:

i. High Quality: 810 points (n = 52 studies, 61%)
ii. Moderate Quality: 57 points (n = 28 studies, 33%)

iii. Low Quality: 04 points (n = 5 studies, 6% excluded 
from synthesis)

Studies scoring below 5 were excluded from thematic synthesis 
but documented in the selection process.

TABLE 1 Database-specific search yields and selection process.

Database Initial 
retrieval

After 
deduplication

Title/Abstract 
screening

Full-text 
assessment

Final 
inclusion

IEEE Xplore 342 298 187 156 23

ScienceDirect 456 401 245 198 19

Scopus 389 312 201 167 18

Web of Science 267 223 148 119 12

Google Scholar 183 156 98 76 7

ACM Digthe ital Library 89 78 52 41 4

Springer Link 138 115 73 58 2

TOTAL 1,864 1,583 1,004 815 85
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2.1.3 Risk of bias assessment
Risk of bias was assessed following the ROBIS (Risk of Bias in 

Systematic reviews) framework across four domains (Whiting et al., 
2016). This systematic approach to bias assessment ensures that our 
review findings are reliable and not unduly influenced by 
methodological weaknesses.

The first domain evaluated study eligibility criteria. We assessed 
whether our inclusion and exclusion criteria were clearly defined, 
consistently applied, and appropriate for the review objectives. Our 
assessment concluded that concern for bias in this domain was low, 
as we established clear criteria and applied them uniformly across all 
candidate studies.

The second domain examined identification and selection of 
studies. This domain assesses whether the search strategy was 
comprehensive and whether study selection processes were 
rigorous and transparent. We rated concern as low in this domain 
because our systematic search across seven major databases combined 
with dual screening by independent reviewers minimized the risk of 
missing relevant studies or introducing selection bias.

The third domain focused on data collection and study 
appraisal. We evaluated whether data extraction processes were 
standardized and whether study quality was appropriately assessed. 
Our use of standardized extraction forms and dual extraction for a 
20% random sample of studies ensured consistency and accuracy. 
Therefore, we assessed concern for bias in this domain as low.

The fourth domain examined synthesis and findings, 
considering whether synthesis methods were appropriate given 
the heterogeneity of included studies and whether conclusions 
were supported by the evidence. We rated concern in this 
domain as medium because the considerable heterogeneity in 
reported metrics, study designs, and industrial contexts 
necessitated a narrative synthesis approach rather than formal 
meta-analysis. While this approach is appropriate for the 
evidence base, it introduces some subjectivity in interpretation 
that warrants acknowledging moderate concern.

To address potential publication bias, we recognize that positive 
results in AI and machine learning applications may be overrepresented 
in published literature. We attempted to mitigate this through several 
strategies. First, we included grey literature by incorporating conference 
proceedings alongside journal articles. Second, we imposed no language 
restrictions beyond English language reporting, which most 
international scientific literature provides. Third, we actively sought 
and included studies reporting negative or null results, identifying seven 
such studies that provided valuable insights about implementation 
failures and algorithmic limitations. Fourth, while formal funnel plot 
analysis was not applicable given our narrative synthesis design, we 
remained cognizant throughout the analysis that reported performance 
metrics might represent upper bounds rather than typical performance.

2.2 Inclusion and exclusion criteria

The following are the inclusion criteria (1) Peer-reviewed 
journal articles and conference proceedings (2) Studies focusing 
on AI/ML applications in predictive maintenance (3) Research on 
robotics integration in maintenance systems (4) Publications in the 
English language (5) Studies with clear methodology and results.

The exclusion criteria include the following (1) Non-peer- 
reviewed publications (2) Studies not directly related to 
predictive maintenance (3) Publications older than 2015 (except 
seminal works) (4) Duplicate publications.

Reviews of articles, empirical studies, and case studies that focused 
on manufacturing, energy, transport, and robotics, etc. were selected 
for review. After title/abstract screening and implementation of the 
inclusion and exclusion criteria, 1,764 initial articles retrieved from the 
academic databases were pruned down to 85 full-text studies, which 
were thematically synthesized to extract methods, AI techniques, 
robotic functionalities, architectures, datasets, metrics, performance, 
challenges, and future trends.

Figure 1 shows the PRISMA diagram, which details on the 
article selection process.

2.3 Data extraction and analysis

Data mining was concentrated on the extraction of the main 
information, such as the aims of the study, the methods used, AI/ML 
approaches to the topic, practical uses, performance indicators, 
challenges, and recommendations. The data that were extracted 
were categorized into thematic categories to be analyzed 
comprehensively.

2.4 Aggregation methodology

Given heterogeneity across 85 studies, formal meta-analysis was 
infeasible; we employed structured narrative synthesis with 
quantitative aggregation where appropriate (Tranfield et al., 2003).

Step 1: Metric standardization converted to common scales 
(percentage accuracy, normalized RMSE), excluding 
qualitative-only studies.

Step 2: Grouping by task type (classification vs. RUL vs. anomaly 
detection), equipment type (bearings, motors, turbines), 
and dataset characteristics (lab vs. field).

Step 3: Aggregation method

For homogeneous clusters (≥5 studies, same task/equipment/ 
metric), we calculated weighted means by sample size, reported min- 
max ranges, and computed I2.

Example. SVM accuracy aggregated from 12 bearing fault studies, 
weighted mean 89.7%, range 85%–95%, I2 = 52% indicating 
moderate heterogeneity from noise levels and class imbalance.

For heterogeneous clusters, we reported ranges without 
averaging and described variability narratively.

Step 4: Confidence assignment
i. HIGH (≥10 studies, I2<50%)

ii. MODERATE (5-9 studies, I250%-75%)
iii. LOW (<5 studies or I2>75%, flagged as tentative).

Conflicting results handling: Both results presented with context 
(Xue et al., 2025 vibration superior in controlled labs; Vlasov et al., 
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2018 acoustic superior in noisy fields; synthesis: sensor selection is 
context-dependent).

Limitations acknowledged:

i. Publication bias toward positive results
ii. Evaluation protocol variability (different train/test splits, 

cross-validation strategies)
iii. Dataset diversity (benchmark NASA C-MAPSS may not 

generalize to proprietary data)
iv. Temporal effects (2015–2018 studies may underestimate 

current capabilities)

2.5 Integration of additive manufacturing 
with AI-Driven predictive maintenance

The design freedom offered by Additive Manufacturing (AM) 
enables it to support AI-driven Predictive Maintenance 
(Thompson et al., 2016). For example, AM can produce 
customized jigs and fixtures for accessing difficult-to-reach 
areas and for demanding maintenance tasks (Wits et al., 2016). 
Also, the use of AM can allow to produce intelligent components 
with embedded sensors to monitor equipment conditions, thereby 

providing data needed for developing AI algorithms 
(Munasinghe, 2021).

AM enhances predictive-maintenance workflows by enabling 
on-demand fabrication of replacement parts and customized tooling 
within AI-robotic maintenance loops. If replacement parts become 
obsolete, AM provides a solution by digital recreation on site 
(Vorkapić et al., 2023; Abhilash and Ahmed, 2023). When 
coupled with machine-learning prognostics and robotic repair 
systems, AM allows a closed maintenance cycle in which faults 
are predicted, parts are printed (Gibson et al., 2021) and robots 
execute installation with minimal human intervention (Maware 
et al., 2024; Rahman et al., 2023).

In industrial settings, AM shortens lead time for critical spares 
and reduces inventory costs by 40%–60% compared with 
traditional procurement (Wohlers, 2024). Aerospace and 
energy sectors now employ predictive spare-parts scheduling 
where AI models forecast component end-of-life and 
automatically queue AM production jobs (GE Aviation, 2024). 
This digital-inventory concept replaces physical warehouses with 
CAD-file repositories and raw-material stock, enabling parts to be 
produced only when required.

Robotic integration further extends AM capability to in-situ 
maintenance. Multi-axis robots equipped with directed-energy- 

FIGURE 1 
PRISMA diagram.
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deposition heads perform localized metal repair on structures such 
as turbine blades and pipeline sections, eliminating costly 
disassembly and logistics delays (Lopes de Aquino Brasil et al., 
2025). Real-time process monitoring using convolutional-neural- 
network vision ensures printed components meet dimensional and 
metallurgical specifications, achieving up to 97% defect-detection 
accuracy during build (Khanzadeh et al., 2019).

AI can be used to identify failures, while AM allows rapid iteration 
of possible designs to overcome the failure (Rahito et al., 2019). This 
can be achieved through quick production and testing of AI-generated 
designs (Fu et al., 2023; Nafea, 2025). Furthermore, AM allows 
predictive design improvements such as topology-optimized parts 
with reduced stress and material combinations that enhance the 
durability of equipment (Hamza et al., 2025).

Despite these advantages, material-property variability and 
certification latency remain obstacles to large-scale adoption 
(Malakizadi et al., 2022). Ongoing research focuses on integrating 
digital-twin models that link sensor data, AI prognostics, and AM 
production planning to create verifiable, traceable maintenance 
actions within Industry 4.0 infrastructures.

3 Results

This section presents the outcomes derived from the 
literature synthesis.

3.1 Predictive maintenance 
strategy evolution

3.1.1 Historical development
The use of existing data and analytics in predicting equipment 

breakdowns is a characteristic that separates Predictive Maintenance 
(PdM) from conventional maintenance programs, reduces the 
length of machine downtimes, and enhances maintenance 
planning. The existing industrial setting is challenging both in 
terms of preventative and corrective maintenance approaches due 
to the unplanned downtimes that result in significant expenses 
(Zonta et al., 2020).

The initial phases of condition-based maintenance (CBM) 
operated by digital diagnostics to detect faults early in the 1990s 

(Ran et al., 2019). Since it was first developed several years ago, PdM 
has been developed to consider IoT devices and sophisticated data 
analytics and machine learning techniques to execute equipment 
malfunction predictions and preventions (Achouch et al., 2022; 
Nunes et al., 2023).

Table 2 presents the evolution timeline of predictive 
maintenance technologies.

Timeline synthesized from peer-reviewed historical and review 
papers: Carvalho et al. (2019) Computers & Industrial Engineering; 
Achouch et al. (2022) Applied Sciences; Mourtzis et al. (2023)
Electronics; Shaheen and Németh (2022) Processes; and the IoT 
Analytics Predictive-Maintenance Market Report (2023). Dates and 
developments correspond to consensus milestones identified across 
these reviews.

3.1.2 Industry 4.0 integration
With Industry 4.0, intelligent systems emerged, integrating both 

IoT and AI, and enabling real-time monitoring of the condition of 
assets and enhanced PdM strategies (Canito et al., 2022; Sahli et al., 
2021). PdM systems are based on cyber-physical system (CPS) 
integration and AI methods and applications, in particular, 
machine learning, to estimate the remaining useful life precisely 
and optimize maintenance intervals as recommended by Giunta 
et al. (2020) and Hashemian (2011).

PdM has transformed the maintenance practice in the 
aerospace, automotive, and manufacturing industries. The 
current technology solutions within the PdM systems lengthen 
the lifespan of equipment and minimize unexpected failures of 
assets (Selcuk, 2016; Lughofer and Sayed Mouchaweh, 2019). 
Tiddens et al. (2020) affirm the importance of PdM in the 
manufacturing sector, as it has intelligent systems that identify 
defects as they occur, but produce decisions based on the 
gathered data to avoid any form of disruption during the 
production process.

The emerging trends Industry 4.0 transcends PdM capability to 
intelligent prognostics and e-maintenance (Lee et al., 2023; Lee 
et al., 2006).

3.1.3 Implementation challenges
PdM technology encounters several challenges, even though it 

has operational advantages. Nunes et al. (2023) and Sakib and Wuest 
(2018) find the implementation of PdM challenging because of the 

TABLE 2 Evolution timeline of predictive maintenance technologies.

Period Technology focus Key developments Limitations Representative 
references

1990s Digital diagnostics Early vibration-based condition monitoring and rule- 
based expert systems

Manual interpretation; few 
sensors

Ran et al. (2019)

2000s Statistical methods Regression, ARIMA, and classical ML (SVM, decision 
trees) for equipment health

Limited processing power; 
reactive deployment

Carvalho et al. (2019)

2010s IoT integration Cloud platforms, sensor networks, and big-data 
analytics for real-time monitoring

Data-quality issues; 
interoperability gaps

Achouch et al. (2022)

2020s AI/ML integration Deep learning, digital-twin modeling, and edge 
computing for prognostics

Computational cost; 
explainability

Mourtzis et al. (2023); Shaheen and 
Németh (2022)

Future Autonomous and cognitive 
systems

Explainable AI, self-healing, and quantum 
optimization concepts

Technology maturity; standards 
evolution

IoT Analytics (2023)

Frontiers in Mechanical Engineering frontiersin.org08

Azeta et al. 10.3389/fmech.2025.1722114

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1722114


issues of data integrity, predictive algorithms’ complexity, and the 
complexity of data integration. There are several challenges faced 
concerning PdM forecasting that demand robust solutions that 

include the use of hybrid predictive models and improved data 
purification processes to attain valid forecast outcomes 
(Mobley, 2002).

TABLE 3 Performance comparison of machine learning techniques.

Algorithm Study ID Dataset Task type Split strategy Accuracy/ 
Metric

Notes

SVM

Susto-2015 Semiconductor 
manufacturing 
(proprietary)

Fault classification 70/30 train-test 89.3% accuracy Class imbalance 
addressed via SMOTE

Carvalho-2019-Meta Aggregate of 12 bearing 
studies

Fault classification Varies by study 85%–94% range 
(weighted mean 89.7%)

Heterogeneity I2 = 52% 
(moderate)

Random Forest

Fernández-Francos 
et al. (2013)

CWRU Bearing Data Multi-class fault 5-fold CV 91.2% accuracy Feature importance 
analysis included

Susto-2015 Semiconductor 
(proprietary)

Anomaly 
detection

60/40 train-test 86.8% accuracy Ensemble of 100 trees

Neural Networks (ANN)

Peng et al. (2021) NASA C-MAPSS FD001 RUL regression 80/20 train-test RMSE = 18.3 
(normalized)

3-layer feedforward, 
dropout 0.3

Fernández-Francos 
et al. (2013)

Motor current signatures Fault classification 70/30 train-test 93.5% accuracy Compared against 
SVM (89.1%)

Deep Neural Networks (DNN)

Chen-2023 Bridge sensor network 
(field data)

Damage detection Time-series split 95.2% accuracy, 
AUC = 0.97

6-layer architecture, 
early stopping

Taşcı et al. (2023) Turbofan engines 
(NASA)

RUL prediction Sliding window CV RMSE = 14.7, R2 = 0.91 Outperformed LSTM 
(RMSE = 16.2)

K-Means Clustering

Fan-2018 Industrial compressor 
(proprietary)

Anomaly 
detection

Unlabelled data, post 
hoc validation

78.4% detection rate 
(upon labelling)

15.3% false positive rate

Givnan et al. (2022) Wind turbine SCADA Anomaly 
detection

6-month training, 2- 
month test

82.1% sensitivity, 
8.7% FPR

Compared against 
Isolation Forest

Auto-encoders

Fathi et al. (2021) Manufacturing line 
sensors (proprietary)

Unsupervised 
anomaly

Reconstruction error 
threshold

ROC-AUC = 0.89 Threshold set at 95th 
percentile

Givnan et al. (2022) SCADA time-series Anomaly 
detection

Temporal split ROC-AUC = 0.92, 
F1 = 0.84

Variational 
autoencoder variant

CNN

Shaheen and Németh 
(2022)

Vibration spectrograms 
(laboratory)

Bearing fault 
classification

75/25 train-test 96.8% accuracy Augmentation: 
rotation, noise 

injection

Chen et al. (2023) Image-based inspection Crack detection 80/20 stratified split 94.3% accuracy, 
IoU = 0.87

Transfer learning from 
ImageNet

LSTM

Taşcı et al. (2023) NASA C-MAPSS 
FD001-004

RUL prediction Cross-dataset 
validation

RMSE = 16.2-21.5 
(dataset dependent)

Stacked 2-layer LSTM, 
128 units

Peng et al. (2021) Electric motor time-series Remaining cycles Sliding window (seq 
length = 50)

MAE = 8.3 cycles, 
R2 = 0.88

Compared against 
GRU (MAE = 9.1)
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3.2 Machine learning techniques in 
predictive maintenance

3.2.1 Supervised learning applications 
(classification algorithms)

Supervised learning can be widely applied in the context of 
predictive maintenance tasks, in particular, when performing fault 
classification and trend estimation. The used techniques are based 
on labelled datasets that determine system failures and optimize 
maintenance procedures. Classification algorithms such as Support 
Vector Machines (SVM), k-nearest neighbors (kNN), and decision 
tree classifiers need to be applied to differentiate between 
operational abnormalities and normal behavior (Kaparthi and 
Bumblauskas, 2020).

Table 3 shows the performance comparison of machine learning 
techniques.

Metric definitions:

i. Accuracy: (TP + TN)/(TP + TN + FP + FN) for 
classification tasks

ii. RMSE: Root Mean Square Error for regression (RUL 
prediction)

iii. ROC-AUC: Area Under Receiver Operating 
Characteristic curve

iv. F1: Harmonic mean of precision and recall
v. IoU: Intersection over Union for segmentation tasks

Accuracy ranges are aggregated from peer-reviewed empirical 
studies and systematic reviews focusing on predictive 
maintenance tasks. Primary sources include Carvalho et al. 
(2019), Susto et al. (2015), Fernández-Francos et al. (2013), 
Shaheen and Németh (2022), Peng et al. (2021), Taşcı et al. 
(2023), and task-specific empirical papers. Ranges represent 
observed minimum–maximum performance across datasets 
and evaluation protocols. Where values derive from 
unsupervised methods (K-Means, auto-encoders) the range 
reflects detection accuracy after post hoc labeling and ROC- 
AUC aggregation. Heterogeneity arises from dataset size, class 
balance, preprocessing, and validation methodology.

According to Ouadah et al. (2022), selecting an algorithm to 
use in supervised machine learning is vital in determining 
superior predictive maintenance due to its impact on the 
service performance and reliability. Ferreira et al. (2022)
studied one-class automated machine learning to show that it 
has been successful in detecting anomalies in predictive 
maintenance systems. As stated by the systematic review by 
Carvalho et al. (2019), supervised learning also has different 
machine learning methods that can be used in the 
industrial setting.

3.2.2 Supervised learning applications (regression- 
based RUL prediction)

Regression methods can help industries to establish the 
duration of equipment life as a contribution to Remaining 
Useful Life (RUL). PdM is more likely to be applied reliably 
when machine learning methods are applied, which is 
evidenced by the research conducted by Ren (2021). Trivedi 
et al. (2019) concentrate on the air conditioning systems with 

the help of supervised learning to attain accurate 
maintenance needs.

The development of deep learning has improved significantly in 
supervised learning prediction methods for maintenance. Butte et al. 
(2018) introduce a super learning approach, which involves deep 
neural networks as a means of enhancing the quality of prediction. 
Susto et al. (2015) not only recommend the use of multiple classifiers 
to combine the strengths of various algorithms into more predictive 
maintenance solutions.

3.2.3 Unsupervised learning and anomaly 
detection (Clustering and 
dimensionality reduction

Predictive maintenance operations require unsupervised AI 
models due to the potential challenges in the acquisition of 
labelled data or its absence. Unsupervised techniques aid 
predictive systems in identifying abnormal patterns based on 
deep learning-based anomaly detection and clustering by using 
dimensionality reduction procedures, thereby indicating possible 
system failures.

By introducing Principal Component Analysis (PCA) and auto- 
encoder models, the systems can learn to recognize the normal 
operation patterns and then identify anomalies to further analyze 
those (Zhao et al., 2019). The K-means clustering and its analogues 
allow classifying similar types of failures and providing valuable data 
regarding specific faults (Aggarwal and Reddy, 2013).

3.2.4 Unsupervised learning and anomaly 
detection (sophisticated anomaly 
detection processes)

Carrasco et al. (2021) note that there are assessment techniques 
for temporal unsupervised anomaly detection algorithms in 
predictive maintenance to find precise anomalies to prevent 
equipment failures. The study of Industry 4.0 by Kamat and 
Sugandhi (2020) shows that the unsupervised type of anomaly 
detection can be applied to predictive maintenance in different 
production and manufacturing industries.

Liu et al. (2024) introduce a new progressive unsupervised 
anomaly-detection model that is explicitly optimized to work 
with time-series data in the industrial setting. By their statistical- 
based approach, they have developed an effective predictive 
maintenance strategy for complex dynamic systems. Shiva et al. 
(2024) undertook machine learning studies on sensor data anomaly 
detection to improve industrial predictive maintenance through 
unsupervised learning processes.

3.3 Deep learning-based predictive 
maintenance

3.3.1 Convolutional neural networks (CNNs)
This increase in condition-based maintenance uses of deep 

learning is a significant development since it allows processors to 
analyze large volumes of sensor data and high-level capabilities that 
would otherwise be unseen by typical machine learning algorithms. 
CNNs are most suitable to detect patterns in sensor outputs, 
including vibrations and sounds, whereas Long Short-Term 
Memory (LSTM) networks demonstrate outstanding capabilities 
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in predicting time-related data, including equipment Remaining 
Useful Life (RUL).

Ucar et al. (2024) have evaluated time-series measurements of 
machinery that are processed by convolutional neural networks 
(CNNs) and LSTM networks. The CNNs have proven to be very 
effective in the analysis of vibration signals as they are effective in 
processing structured sensor data, where hierarchical features are 
extracted by automated processing, which saves time that would be 
spent on manually analyzing the signal (Shaheen and 
Németh, 2022).

Table 4 highlights the deep learning architecture comparison for 
predictive maintenance.

Architecture strengths and weaknesses are synthesized from 
comparative reviews and application studies in PdM literature. 
Computational cost indicates relative resource demand observed 
across implementations in Shaheen and Németh (2022), Taşcı et al. 
(2023), Chen et al. (2023), and related papers. Use case assignments 
reflect consensus in applied studies.

3.3.2 Recurrent neural networks and LSTM
Aivaliotis et al. (2021) state that the accuracy of the projection of 

industrial robot failures is enhanced by the fusion of the degradation 
curves with physics-based models based on deep learning models. 
The authors demonstrated the estimation of robot follow-ups by the 
deep learning models working with the historical information and 
real-time information to minimize the incidence of 
unforeseen failures.

Jardine et al. (2006) studied how the LSTM networks forecast 
RUL to maximise the maintenance work and reduce the 
unwarranted maintenance effort. The LSTM networks work quite 
well with data that has diverse operational properties, as they detect 
time patterns in the series data (Leevy et al., 2020).

3.3.3 Hybrid deep learning architecture
The CNNs, coupled with Recurrent Neural Networks (RNNs), 

suggested by Li et al. (2020), present the only possibility of disclosing 
structures and patterns in spatial and temporal data. The fusion of 

CNN spatial processing and the RNN temporal functionality yields 
better predictions in the area of heavy machinery fault prognostics, 
as Kamariotis et al. (2024) concluded.

The concept of multiple classifier systems, as a form of 
combining multiple deep learning models, adjusted to particulars 
of information, is discussed by Susto et al. (2015) and aimed at 
optimizing the tasks of PdM under various conditions. The 
ensemble method contributed to the accuracy of prediction 
because it could address variations in operation profiles.

3.4 Predictive maintenance sensor types

Predictive maintenance largely relies on the various types of 
sensors to measure equipment parameters as well as detect 
equipment failures at their initial stages. These sensors make 
real-time data collection more available when it comes to fault 
prediction (Pech et al., 2021).

Table 5 presents the sensor technologies for predictive 
maintenance.

Sensor parameters and applications collated from sensor 
application reviews and field studies (Fernández-Francos et al., 
2013; Chen et al., 2022; Vlasov et al., 2018; Zhang et al., 2019; 
Ullah et al., 2017). Typical operating ranges reflect common sensor 
models used in industrial PdM contexts; consult vendor datasheets 
for sensor-specific limits.

3.4.1 Vibration sensors
Vibration detection sensors prove to be extremely beneficial to 

PdM operations, as they provide essential information on 
equipment imbalance, misalignment, and bearing problems. 
The sensors will be used to detect the right vibration readings 
to assist predictive models in determining the issues in the 
machine in real time (Hashemian, 2011). Detecting mechanical 
failures and wear in centrifugal pumps will be achieved with the 
assistance of complex vibration sensors and processing protocols 
(Chen et al., 2022).

TABLE 4 Deep learning architecture comparison for predictive maintenance.

Architecture Input data 
type

Strengths Weaknesses Computational 
cost

Best 
applications

Representative 
references

CNN Spectrograms, 
images

Strong spatial 
feature extraction; 
automatic feature 
learning

Requires image-like 
inputs; large labelled 
sets

High Vibration 
spectrograms, visual 
inspection

Shaheen and Németh 
(2022); Chen et al. (2023)

LSTM Sequential time- 
series

Captures long-term 
temporal 
dependencies

Training complexity; 
vanishing gradients for 
very long sequences

Medium–High RUL prediction; trend 
forecasting

Taşcı et al. (2023); Peng 
et al. (2021)

GRU Sequential time- 
series

Faster training than 
LSTM; lower 
parameter count

Slightly less capacity for 
very long-term 
dependencies

Medium Real-time RUL on 
constrained hardware

Peng et al. (2021)

Autoencoder Multivariate 
time-series

Unsupervised 
anomaly detection; 
dimensionality 
reduction

Threshold selection; 
sensitivity to noise

Medium Anomaly detection; 
feature learning

Fathi et al. (2021); Givnan 
et al. (2022)

Hybrid 
CNN–LSTM

Multi-modal 
(spectrogram + 
time)

Models spatial and 
temporal features 
jointly

High model complexity 
and training time

Very high Complex machinery 
monitoring with 
multimodal sensors

Chen et al. (2023)
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3.4.2 Temperature monitoring
The available standard PdM tools are temperature sensors for 

the monitoring of the heat-producing machinery during operation. 
A sudden rise in temperature serves as a signal of potential 
equipment malfunctions that could be caused by fluid 
breakdowns, high friction effects, or the presence of motors 
operating beyond their limits. The information allows engineers 
to determine the reference temperature intervals to detect abnormal 
trends that can forecast an imminent equipment failure (Zhang 
et al., 2019).

3.4.3 Acoustic emission sensors
When machinery is under stress, it emits high-frequency noises 

that acoustic emission sensors are capable of detecting when these 
noises arise during cracking, friction, or collisions. The non- 
destructive types of testing allow technicians to receive real-time 
diagnostic data, as they can monitor complex systems effectively and 
do not interrupt the systems (Vlasov et al., 2018).

3.5 Data processing and feature engineering

3.5.1 Data pre-processing challenges
Industrial sensors face significant challenges in collecting high- 

quality data because they operate in complex environments that are 
often full of operational noise. Industries expose their sensors to 
signal disruptions and interference, which degrades data quality 
during signal-separation efforts, according to Santos et al. (2015). 
Full-scale continuous monitoring generates excessive data, leading 
to storage and transmission problems, particularly in remote 
industrial areas where network connectivity remains problematic 
(Kong et al., 2021).

3.5.2 Techniques in feature extraction
The processes of attribute engineering and filtering fae PdM 

the required background since they convert sensor data into 

useful information. Time-domain features such as root mean 
square (RMS) and kurtosis are usually used with vibration data 
to measure energy consumption and identify anomalies (Xue et 
al., 2025). Frequency-domain indicators such as spectral entropy 
and peak frequency can be used to identify faults sensitively 
when complex sensor data is analyzed based on Alemayoh 
et al. (2021).

Table 6 displays the feature extraction methods and applications.
Feature methods and their typical computational costs follow 

standard signal-processing and ML literature reviewed in Xue et al. 
(2025), Zebari et al. (2020), and Shaheen and Németh (2022). 
Selection should depend on fault type, sensor modality, and 
available compute at edge or cloud.

3.5.3 Dimensionality reduction methods
Predictive maintenance is challenged significantly with high- 

dimensional sensor data at many combined sensing systems. 
Principal Component Analysis (PCA) and t-distributed stochastic 
neighbour embedding (t-SNE) can be used to reduce the feature 
space to allow the identification of patterns that are relevant in 
sensor information (Zebari et al., 2020). The application of t-SNE to 
data sets is effective in the detection of clusters and relationship 
discovery that facilitate PdM practice through structural data 
elucidation (Stromann et al., 2019).

3.6 Industrial applications and case studies

3.6.1 Applications within the manufacturing sector 
(Integration with enterprise systems)

Lee et al. (2011) explain the integration of the PdM systems and 
Enterprise Resource Planning (ERP) tools through the digital 
manufacturing strategies. The result of integration between the 
systems was improved maintenance planning, fewer undesirable 
equipment failures, and global production processes. Eynard et al. 
(2006) designed UML-based specifications to develop PdM 

TABLE 5 Sensor technologies for predictive maintenance.

Sensor 
type

Measured 
parameter

Typical 
operating range 
or note

Primary 
applications

Key advantages Limitations Representative 
references

Vibration Acceleration, 
velocity

Frequency content from 
sub-Hz to kHz; 
application dependent

Rotating machinery, 
bearings, pumps

High sensitivity to 
mechanical faults; real- 
time monitoring

Environmental noise, 
installation sensitivity

Fernández-Francos et al. 
(2013); Chen et al. (2022)

Temperature Heat levels −200 °C to +1,000 °C 
depending on sensor

Motors, bearings, 
transformers

Simple and reliable Thermal lag; limited 
fault specificity

Zhang et al. (2019)

Acoustic 
Emission

High-frequency 
elastic waves

20 kHz–1 MHz typical 
ranges

Crack detection; 
structural monitoring

Early crack detection; 
non-intrusive

Requires advanced 
signal processing

Vlasov et al. (2018)

Pressure Fluid/gas pressure 0–10,000 psi (sensor 
dependent)

Hydraulic systems, 
pipelines

Direct measurement; 
high accuracy

Limited to pressure- 
related faults

Chen et al. (2022)

Current Electrical current mA to kA Motors, generators Non-invasive electrical 
fault detection

Limited to electrical 
anomalies

Systematic reviews 
(Carvalho et al., 2019)

Oil Analysis Contamination, 
particle counts

Sample-based, lab or 
sensor-enabled

Gearboxes, engines Predictive lubrication 
insight

Not continuous; 
sampling required

Industry case studies

Thermal 
Imaging

Temperature 
distribution

Sensor-dependent; 
−20 °C–2000 °C ranges

Electrical panels, 
mechanical assemblies

Non-contact; spatial 
mapping

Cost; expertise 
needed

Ullah et al. (2017)
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workflows that enhanced communication amongst various 
departments in the case of maintenance operations.

Table 7 shows some industrial applications and 
performance metrics.

Performance improvements are drawn from a mixture of peer- 
reviewed case studies and industry pilot reports collated in 
systematic reviews (Carvalho et al., 2019; Molęda et al., 2023) 
and domain-specific studies (Bekar et al., 2020; Chen et al., 2023; 
Machado et al., 2020). Percent ranges represent observed results 
across multiple deployments and should be cited to the specific case 
study when claiming a particular value.

3.6.2 AI and big data implementation
Samanta et al. (2024) also note that artificial intelligence is a 

significant part of Industry 4.0 manufacturing since machine 
learning models, particularly neural networks, can be used to 
identify abnormal trends in machinery. The concept of intelligent 
data preprocessing is one of the main themes of Bekar et al. (2020)
because they define it as a method to enhance the accuracy of PdM. 

Moyne and Iskandar (2017) illustrate that semiconductor 
equipment failure predictions using big data analytics can be 
successful in improving the yield of production.

3.6.3 Aerospace and aviation
PdM is needed to meet safety objectives along with cost reductions 

and regulatory compliance in the aviation and aerospace industries. 
PdM in aviation particularly emphasises the watchful attention of the 
following critical items, such as engines, landing gear, and hydraulic 
systems (GE Aerospace, 2024). Lee et al. (2011) reported that the 
aerospace production systems had been able to monitor the engine 
performances in real-time using IoT-based PdM systems that enabled 
early fault identification to avoid critical failures.

The study conducted by Bekar et al. (2020) resulted in AI-based 
PdM systems that examined sensor-based features such as 
temperature and vibrations to identify future faults in aircraft 
parts. The structures that were put in place helped airlines 
streamline their maintenance policies so that they could uphold 
safety standards at a low cost of operation.

TABLE 6 Feature extraction methods and applications.

Feature 
type

Extraction method Computation 
cost

Information 
content

Best use cases Representative 
references

Time domain RMS, kurtosis, variance Low Basic summary features Quick fault detection; baseline 
monitoring

Xue et al. (2025)

Frequency 
domain

FFT, spectral entropy, 
cepstrum

Medium Detailed frequency 
patterns

Bearing fault identification; 
harmonic analysis

Alemayoh et al. (2021)

Wavelet Continuous/discrete wavelet 
transform

High Multi-resolution time- 
frequency

Transient and impact event 
detection

Zebari et al. (2020)

Statistical Mean, standard deviation, 
skewness

Low Summary statistics Trend monitoring and 
anomaly thresholds

Multiple reviews

Principal 
components

PCA, ICA Medium Dimensionality reduction Preprocessing, noise reduction Zebari et al. (2020)

Deep features CNN embeddings, learned 
representations

Very high High-level complex 
patterns

Advanced diagnostics and 
sensor fusion

Shaheen and Németh (2022)

TABLE 7 Industrial applications and performance metrics.

Industry 
sector

Example 
equipment

AI techniques 
used

Typical reported improvements 
(provenance)

Representative 
references

Manufacturing Production lines, CNC 
machines

ANN, SVM, RF Downtime reduction 15%–30%; OEE improvements 
~10–20% in case studies

Carvalho et al. (2019); (2023)

Aerospace Engines, landing gear CNN, LSTM, ensemble 
models

Unscheduled maintenance reduction up to 30%–40% in 
field reports

Bekar et al. (2020); Peng et al. 
(2021)

Automotive Engines, assembly lines Deep learning, AutoML Field reports show 20%–35% reduction in warranty or 
rework costs

Chen et al. (2023)

Energy/Power Turbines, generators Vibration analysis, thermal 
imaging

Asset utilization improvements reported between 10% 
and 35%

Machado et al. (2020); industry 
reports

Oil & Gas Pumps, compressors, 
pipelines

Anomaly detection; sensor 
fusion

Safety and environmental incident reductions reported in 
pilot studies; varies by deployment

Vlasov et al. (2018); industry 
case reports

Railways Track systems, turnouts Computer vision, 
ultrasonic analysis

On-time performance and schedule reliability 
improvements reported in trials

Davari et al. (2021)
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3.6.4 Automotive and transportation
PdM enhanced the health analysis of the automotive vehicles 

and fleet monitoring by its implementation in automotive 
management systems to minimise the cost of repairs and 
enhance the reliability of the maintenance. Chen et al. (2023)
carried out research to predict the life of the components by 
researching on the internet of things-activated PdM platforms 
using car operational data.

PdM applications have been applied as a fundamental part of 
connected and autonomous vehicle technologies. Hadi et al. (2023)
applied AutoML to categorise ball-bearing faults and exemplified the 
PdM as capable of reinforcing the reliability of autonomous systems.

3.7 Challenges and limitations

3.7.1 Data quality issues
The main challenge to predictive maintenance implementation 

can be regarded as the inability to manage the problem of data 
inconsistency that is caused by the lack of or incomplete data and 
sensor failures. Industrial sensors are prone to malfunction because 
of errors in transmission that lead to ineffective models (Dalzochio 
et al., 2020; Carvalho et al., 2019). According to Achouch et al. 
(2022) and Arafat et al. (2024), model variations based on variations 
in operating conditions, the type of machinery, and external factors 
severely impair the ability to generalise models.

Table 8 presents some identified implementation challenges 
and solutions.

Challenge descriptions and current solutions are synthesized 
from systematic reviews and recent case studies (Carvalho et al., 
2019; Dalzochio et al., 2020; Mourtzis et al., 2022; Ucar et al., 2024). 
Reported success figures are aggregated from empirical pilot reports 

and industry surveys; where a precise metric is quoted it is drawn 
from the cited literature or industry report. Label these as observed 
pilot outcomes or industry benchmarks rather than 
universal constants.

3.7.2 Computational requirement
Deep learning models that are used in the PdM systems may 

have processing needs that exceed the budgets of smaller industries 
due to their cost. PdM applications using the IoT-enabled sensors 
with edge computing need to be implemented on high-performance 
GPUs or cloud services, which are costly and buyers have limited 
access to due to financial constraints (Mourtzis et al., 2022; Serradilla 
et al., 2022).

3.7.3 Interoperability problems
The lack of standardisation in communication processes 

between any two systems leads to the emergence of 
interoperability challenges and, consequently, the need to 
implement the middleware solutions that are expensive and 
generate resource-intensive requirements (Mourtzis et al., 2023; 
Arulnithika et al., 2025). IoT devices, edge platforms, and central 
server communication security protection must be a priority 
concern since the security threat poses a considerable threat, as 
reported by Bala et al. (2024).

3.8 Future directions and emerging trends

3.8.1 Explainable AI in predictive maintenance
The increased complexity of PdM systems needs greater insight 

and demystification due to the adoption of PdM systems in critical 
aerospace and healthcare environments. Ucar et al. (2024) highlight 

TABLE 8 Implementation challenges and solutions.

Challenge 
category

Specific 
issues

Impact level 
(qualitative)

Current 
solutions

Reported success/ 
Evidence

Representative 
references

Data quality Missing data; sensor 
noise; label scarcity

High Preprocessing, 
imputation, data fusion

Reported improvement rates 60%–75% 
in pilot studies after preprocessing steps 

(case studies)

Dalzochio et al. (2020); 
Carvalho et al. (2019)

Computational cost Heavy DL models at 
edge

High Edge inference, model 
compression, pruning

Case reports show 40%–60% inference- 
speed gains with pruning/quantization

Mourtzis et al. (2022); Peng 
et al. (2021)

Model 
interpretability

Black box models Medium XAI methods (SHAP, 
LIME)

Prototype adoption improved operator 
trust in trials (qualitative)

Ucar et al. (2024); Molęda 
et al. (2023)

System integration Legacy systems 
compatibility

High Middleware, APIs, OPC 
UA, ROS 2

Integration success rates 45%–65% 
reported in industrial case studies

Mourtzis et al. (2023)

Scalability Large fleet/multi-site 
rollout

Medium Modular architectures, 
federated learning

Early pilots show improved scale; 
formal metrics limited

Industry reports (IoT 
Analytics, 2023)

Security and privacy Cyber threats; data 
governance

High Encryption, 
segmentation, access 

control

Pen-test/penetration testing reduces 
reported vulnerabilities; numbers vary

Bala et al. (2024)

Skills gap Limited workforce 
expertise

Medium Training programs, 
vendor support

Training completion improves 
operational uptime in pilots (case 

evidence)

Ucar et al. (2024)

ROI uncertainty Difficulty 
quantifying long- 

term benefits

Medium Phased pilots, TCO 
analysis

ROI case ranges reported widely 
(12–36 months) across industry surveys

Senseye/Siemens (2022); IoT 
Analytics (2023)
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the importance of explainable AI (XAI) in improving the 
understanding of a PdM model by engineers and decision- 
makers. Recent tools of predictive model explanation include 
SHAP (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) frameworks to 
visualise model prediction procedures.

3.8.2 Hybrid modelling approaches
PdM is characterised by the growing popularity of data-centric 

and physics-informed hybrid modelling. The joint use of the models 
that utilise the physical principles with the machine-learning models 
enables the professionals to be transparent in their predictions and, 
at the same time, have modelling flexibility. Drakaki et al. (2021)
have discovered that hybrid models are the most effective in the field 
of aviation and energy, as these industries require detailed 
knowledge of the physics of machinery.

3.8.3 Edge computing integration
With the introduction of the IoT, predictive maintenance 

undergoes a fundamental change since IoT sensors allow 
obtaining data immediately, which increases predictive 
reliability. IoT implementation results in long system 
lifecycles in situations where the generated real-time data 
streams create meaningful insights in accordance with 
Rakholia et al. (2025). IoT and edge computing have 
significantly reduced the latency due to data processing that 
happens near the source (Dalzochio et al., 2020).

3.8.4 Sophisticated sensor technology
The advances in sensor technologies in the recent past have 

resulted in better operational performance of PdM systems. Recent 
MEMS sensors and fibre-optic sensors provide accurate data on 
multidirectional vibrations and temperature dynamics. According 
to Kaur et al. (2024), industrial use of these sensors continues to 
increase since different sectors, such as oil and gas, are using them to 

observe harsh conditions. Table 9 highlights some future technology 
assessment and timeline.

Maturity assessments and timelines combine peer-reviewed 
review articles and industry forecasts (Ucar et al., 2024; Mourtzis 
et al., 2023; IoT Analytics, 2023). Timelines are consensus forecasts 
and should be treated as indicative. Specific adoption windows 
reflect multiple industry and academic roadmaps.

3.9 Robotics taxonomy for predictive 
maintenance

3.9.1 Robotic system classification framework
We propose a three-dimensional taxonomy for classifying 

robotic systems in PdM based on: (1) Mobility, (2) Manipulation 
capability, and (3) Autonomy level.

1. Dimension 1: Mobility
i. M1 - Fixed/Stationary: Industrial robotic arms mounted on 

production lines
ii. M2 - Mobile - Ground: Wheeled or tracked UGVs, 

quadrupeds (Boston Dynamics Spot)
iii. M3 - Mobile - Aerial: Quadcopters, fixed-wing drones for 

infrastructure inspection
iv. M4 - Mobile - Aquatic: Underwater ROVs for subsea 

pipeline/offshore platform inspection
v. M5 - Mobile - Rail-Guided: Robots constrained to tracks/ 

rails (bridge inspection systems)
vi. M6 - Mobile - Climbing: Wall-climbing robots for vertical 

structure inspection (tanks, buildings)
2. Dimension 2: Manipulation Capability

i. C1 - Sensing Only: Equipped with sensors (cameras, 
LiDAR, ultrasonic) but no manipulation

ii. C2 - Simple Manipulation: Single degree-of-freedom 
grippers, tightening tools

TABLE 9 Future technology assessment and timeline.

Technology 
category

Current 
maturity 
(approx.)

Expected 
timeline 

(adoption)

Key drivers Major 
barriers

Industry 
impact

Evidence/ 
References

Explainable AI (XAI) Medium–High 2024–2027 Regulatory pressure; 
operator trust

Complexity; 
compute

High for regulated 
sectors

Ucar et al. (2024); Molęda 
et al. (2023)

Edge computing High 2024–2026 Latency reduction; 
privacy

Hardware limits; 
cost

Medium–High for 
real-time apps

Peng et al. (2021); Mourtzis 
et al. (2023)

Hybrid physics-ML 
models

Medium 2025–2028 Need for robustness, 
generalization

Model 
complexity

High for physics- 
heavy assets

Taşcı et al. (2023); 
Machado et al. (2020)

Digital twins Medium 2027–2030 Simulation 
capability; 
integration

Data 
synchronization

Very High for virtual 
testing

Mourtzis et al. (2023)

Quantum computing 
(optimization)

Low–Medium 2027–2032 Computational 
power

Maturity Medium for 
optimization 

problems

Industry forecasts (IoT 
Analytics, 2023)

Autonomous systems 
(full autonomy)

Low 2030–2035 Labor shortages; 
autonomy advances

Safety; regulation Very High long- 
term

Consensus literature; 
roadmaps

Advanced sensors (new 
modalities)

Medium 2025–2030 IoT expansion Cost Medium Fernández-Francos et al. 
(2013); Chen et al. (2022)
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iii. C3 - Complex Manipulation: Multi-DOF arms, tool 
changing capability

iv. C4 - Process Execution: Welding, AM deposition, surface 
treatment (beyond simple manipulation)

3. Dimension 3: Autonomy Level (adapted from SAE 
J3016 for robotics)

i. A0 - Teleoperated: Full human control, robot as remote 
manipulator

ii. A1 - Assisted: Robot provides haptic feedback, collision 
avoidance, but human commands actions

iii. A2 - Semi-Autonomous: Robot executes predefined 
inspection routines, human handles exceptions

iv. A3 - Conditional Autonomy: Robot performs inspection 
and simple repairs autonomously, human supervises and 
handles complex decisions

v. A4 - High Autonomy: Robot makes maintenance decisions 
based on AI, human approval required for critical actions

vi. A5 - Full Autonomy: Robot operates independently from 
diagnosis to repair (not yet achieved in practice)

Taxonomy Application Examples:

i. Boston Dynamics Spot for pipeline inspection: M2-C1-A2 
(Mobile ground, sensing only, semi-autonomous)

ii. ABB IRB 6700 with ultrasonic probe on auto assembly line: 
M1-C2-A3 (Fixed, simple manipulation, 
conditional autonomy)

iii. DJI Matrice 300 with thermal camera for wind turbine 
inspection: M3-C1-A2 (Mobile aerial, sensing only, semi- 
autonomous)

iv. Clearpath Husky UGV with KUKA manipulator for valve 
operation: M2-C3-A3 (Mobile ground, complex 
manipulation, conditional autonomy)

Robot classifications combine vendor technical specifications 
and peer-reviewed reviews (Mourtzis et al., 2023; Vlasov et al., 2018). 
TRL approximations are based on typical commercial availability 
and documented field trials.

3.9.2 Robotic interfaces and 
communication protocols

Sensor-Robot Integration: Robots in PdM must interface with 
diverse sensor modalities:

Visual Sensors:

i. Cameras (RGB, IR, hyperspectral): GigE Vision, 
USB3 Vision protocols

ii. LiDAR: Ethernet/IP, ROS sensor_msgs/PointCloud2
iii. Thermal imagers: GenICam standard

Non-Destructive Testing (NDT) Sensors:

i. Ultrasonic thickness gauges: RS-232, RS-485, CAN bus
ii. Eddy current probes: Analog 4–20mA, digital SPI/I2C

iii. Acoustic emission sensors: BNC coaxial, high-speed DAQ

Robot-AI System Communication: Modern PdM robots employ 
multiple communication layers:

1. Perception Layer (Robot → AI):
i. ROS (Robot Operating System) topics for sensor 

data streaming
ii. MQTT for lightweight IoT sensor telemetry

iii. OPC-UA for industrial equipment data integration
iv. gRPC for high-performance AI inference requests

2. Control Layer (AI → Robot):
i. ROS action servers for task commands (inspect location X, 

tighten bolt Y)
ii. RESTful APIs for high-level mission planning

iii. EtherCAT for real-time motion control (sub- 
millisecond latency)

3. Safety Layer:
i. Emergency stop signals via hardwired relays (IEC 60204- 

1 compliant)
ii. Safety-rated laser scanners (SICK, Pilz) for human 

proximity detection
iii. Functional safety communication: PROFIsafe, CIP Safety

Interoperability Standards:

i. MTConnect: For CNC and industrial equipment 
data exchange

ii. OPC-UA: Unified architecture for cross-vendor 
communication

iii. ROS 2: Supports real-time, security, and multi-robot 
coordination

iv. IEEE 1451: Smart sensor interface standard

3.9.3 Safety considerations for robotic PdM
Regulatory Framework: Robotic maintenance systems must 

comply with:

i. ISO 10218-1: Safety requirements for industrial robots and 
robot systems (ISO 10218-1, 2025).

ii. ISO/TS 15066: Collaborative robot safety (force/pressure 
limits) (ISO/TS 15066, 2016).

iii. ISO 13849-1: Safety of machinery (control systems, 
performance levels) (ISO 13849-1, 2015).

iv. ISO 17359. Condition monitoring and diagnostics of 
machines (ISO 17359, 2018).

v. IEC 62061: Functional safety of electrical/electronic systems 
(IEC 62061, 2021).

vi. ANSI/RIA R15.08: Industrial mobile robot safety

Risk Assessment Protocol: For each robotic PdM application, a 
risk assessment must address:

1. Mechanical Hazards:
i. Crushing/impact from robot motion (collaborative robots 

limited to 150N force, 2.5 kg·m/s momentum)
ii. Entanglement with cables, rotating components

iii. Mitigation: Collision detection, compliant joints, virtual 
safety zones

2. Environmental Hazards:
i. Confined spaces (tanks, vessels): oxygen depletion, 

toxic gases
ii. Explosive atmospheres (ATEX zones in oil and gas)
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iii. Mitigation: ATEX-certified robots, continuous gas 
monitoring, emergency extraction procedures

3. Autonomous Navigation Hazards:
i. Collision with personnel, equipment, structures

ii. Falling from elevated platforms (aerial drones)
iii. Mitigation: 3D collision avoidance (LiDAR/SLAM), 

geofencing, parachute systems for drones
4. Human-Robot Interaction Hazards:

i. Unexpected robot behavior due to AI errors
ii. Inadequate human understanding of robot intentions

iii. Mitigation: Explainable AI interfaces, visual/audio robot 
status indicators, human-in-the-loop for critical decisions

Safety Architecture - Layered Defense:
Layer 1: Passive Safety (Inherent Design)

i. Rounded edges, soft materials on robot exteriors
ii. Power and force limiting (collaborative robots <80W 

contact power)
iii. Mechanical hard stops preventing dangerous positions

Layer 2: Active Monitoring

i. Real-time force/torque sensing at robot joints
ii. Safety-rated laser scanners creating virtual boundaries

iii. Capacitive/pressure-sensitive robot skin

Layer 3: Supervised Autonomy

i. “Dead-man switch” for tele-operated modes
ii. Automatic mission abort if safety preconditions violated (e.g., 

human enters workspace)
iii. Redundant position sensing (encoders + external tracking)

Layer 4: Emergency Response

i. Emergency stops (E-stops) within 3-m reach 
throughout work area

ii. Wireless E-stop pendants for personnel
iii. Automatic emergency shutdown on 

communication loss >500 ms

Layer 5: Post-Incident Protocol

i. Automated incident logging (robot state, sensor data, 
AI decisions)

ii. Mandatory human review before resuming operations after 
E-stop activation

iii. Machine learning from incidents to improve future safety

Case Study - Safety Validation: Mourtzis et al. (2023) report 
robotic cell reliability testing:

i. 10,000 h MTBF (mean time between failures)
ii. Zero safety incidents over 18-month deployment

iii. 47 near-misses detected and prevented by safety systems
iv. Key factor: Three-layer safety architecture with independent 

monitoring

3.9.4 Validation metrics for robotic PdM systems
Comprehensive evaluation requires metrics across multiple 

dimensions:
Technical Performance Metrics:

1. Inspection Coverage:
i. Spatial coverage: Percentage of asset surface area inspected 

(target: >95%)
ii. Inspection frequency: Time between successive inspections 

of same location
iii. Accessibility: Percentage of design-specified inspection 

points reached
2. Sensing Accuracy:

i. Localization accuracy: Position error of robot relative to 
asset (target: <10mm for contact NDT)

ii. Sensor alignment: Angle/distance maintenance for 
ultrasonic/eddy current (target: <5° angular, <2mm 
distance deviation)

iii. Data quality: Signal-to-noise ratio, image 
resolution adequacy

3. Manipulation Precision:
i. Repeatability: Standard deviation of repeated positioning 

(target: <0.5 mm for industrial robots)
ii. Tool force control: Error in applied force for contact tasks 

(target: <5% for bolt tightening)
4. Autonomy Metrics:

i. Intervention rate: Human interventions per robot-hour 
(lower is better, target: <0.1/hr for A3 autonomy)

ii. Mission completion rate: Successful completion without 
human assistance (target: >90%)

iii. Recovery capability: Successful recovery from unexpected 
situations (obstacles, sensor failures)

Operational Efficiency Metrics:

5. Inspection Time:
i. Cycle time: Duration to complete full inspection route 

(compare to human baseline)
ii. Downtime impact: Production interruption time (target: 

<10% of human-performed inspection)
6. Maintenance Workload Reduction:

i. Inspector-hours saved: Human labor hours displaced 
by robot

ii. Hazardous exposure reduction: Person-hours in hazardous 
environments eliminated

7. Detection Performance:
i. True positive rate (Sensitivity): Correctly identified faults/ 

total actual faults (target: >95%)
ii. False positive rate: False alarms/total inspections 

(target: <5%)
iii. Mean time to detect (MTTD): Time from fault inception to 

robot detection

Economic Metrics:

8. Cost-Effectiveness:
i. Cost per inspection: Amortized robot cost + operation/ 

number of inspections
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ii. ROI timeline: Months to recover initial investment
iii. Total cost of ownership (TCO): 5-year cost including 

robot, maintenance, training
9. Reliability:

i. Robot MTBF: Mean time between robot system failures
ii. Mission success rate: Percentage of initiated missions 

completed successfully

Safety Metrics:

10 Safety Performance:
i. Incident rate: Safety incidents per 1,000 robot-hours 

(target: 0)
ii. Near-miss frequency: Detected potential safety violations 

by safety systems
iii. Safety system response time: Time from hazard detection 

to robot safe stop (target: <100 ms)

AI-Robot Integration Metrics:

11. AI-Driven Action Accuracy:
i. Correct action rate: AI-recommended actions that were 

appropriate (validated post hoc)
ii. False alarm rate: AI fault detections not confirmed by 

human expert
iii. Prediction-to-action latency: Time from AI fault 

prediction to robot initiating corrective action
12. Explainability Assessment:

i. Operator understanding: Post-deployment survey scores 
on AI decision rationale comprehension

ii. Decision override rate: Frequency humans override AI 
recommendations (high rate indicates trust issues)

These performance figures come from a combination of peer- 
reviewed case studies, conference papers, and verified industry/ 
utility reports. Some numbers (coverage, false-positive rates, cost 
savings) are reported in vendor and operator case reports and 
aggregated in reviews (Mourtzis et al., 2023). Label these as 
deployment-specific results and cite the original case when 
referencing a particular number.

3.9.5 Human-robot collaboration models
Four collaboration paradigms identified in PdM literature:
Model 1: Sequential Collaboration.

i. Robot performs initial automated inspection
ii. Human reviews flagged anomalies and makes decisions

iii. Robot executes approved corrective actions
iv. Advantage: Leverages robot efficiency and human expertise
v. Limitation: Bottleneck at human review stage

vi. Application: High-stakes environments (nuclear, aerospace)

Model 2: Parallel Collaboration.

i. Robot and human inspect different areas simultaneously
ii. Robot handles routine/hazardous areas, human handles 

complex/accessible areas
iii. Advantage: Faster overall inspection cycle

iv. Limitation: Requires task allocation algorithm
v. Application: Large facilities (refineries, manufacturing plants)

Model 3: Assistive Collaboration (Cobots)

i. Robot provides physical assistance to human technician
ii. Human retains decision authority, robot augments capability 

(e.g., holding tools, stabilizing work piece)
iii. Advantage: Reduces physical strain, improves precision
iv. Limitation: Requires close proximity safety measures
v. Application: Assembly maintenance, complex repairs

Model 4: Supervisory Collaboration.

i. Robot operates autonomously for extended periods
ii. Human monitors multiple robots via central interface

iii. Intervention only for exceptions/emergencies
iv. Advantage: High scalability (1 operator: many robots)
v. Limitation: Operator workload spikes during simultaneous 

exceptions
vi. Application: Distributed asset monitoring (pipelines, 

power grids)

Empirical Comparison: Mourtzis et al. (2023) compared 
collaboration models in robotic cell maintenance:

i. Sequential: 40% faster than human-only, but limited by 
human review bottleneck

ii. Parallel: 65% faster, best for large workspaces
iii. Assistive: 30% faster, highest worker satisfaction 

(reduced fatigue)
iv. Supervisory: 80% faster with 4:1 robot: human ratio, but 

requires extensive training

Recommendation: Model selection should consider task 
complexity, safety criticality, workforce capabilities, and scale of 
operations.

4 Discussion

The overall literature discussion indicates that AI and robotics- 
based predictive maintenance (PdM) is a paradigm shift from 
the conventional maintenance approaches to intelligent, proactive 
maintenance. The shift to preventive and reactive maintenance 
to predictive models is one of the examples that can 
be taken as evidence of the high level of technological 
improvement, especially with the implementation of the 
principles of Industry 4.0.

Practically, this study offers actionable insights to industrial 
stakeholders such as industrial maintenance engineers and 
operations managers, robotics developers and AI researchers, 
manufacturing and infrastructure organisations, policymakers 
and regulators, academia and training institutions by providing 
clarifications on how AI and robotics can be deployed in PdM to 
reduce operational downtime, optimize maintenance schedules, 
and lower lifecycle costs. Manufacturing and service industries 
can apply these findings to achieve transition from reactive or 
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preventive maintenance toward a data-driven, autonomous system 
that promote safety and reliability (Pinciroli et al., 2023).

In addition, AI-enabled PdM can assist industries achieve 
sustainability goals by extending equipment useful life, ensuring zero 
material waste, and improving energy efficiency (Machado et al., 2020). 
Robotic inspection on the other hand also improve operational and 
workplace safety via the replacement with of humans with robots 
during maintenance operations in hazardous environments, such as 
offshore platforms or high-voltage installations (Hoebert et al., 2024).

The direct beneficiaries of this study include:

1. Industrial maintenance engineers and operations managers: In 
the application of AI-driven models for the optimization of 
resource allocation, reduction in unplanned stoppages, and 
improvement in asset availability and reliability.

2. Robotics developers and AI researchers: The identification of 
research trends and potentials will assist them in the 
development of AI-robotic integration architectures and in 
setting future research priorities such as explainable AI models 
and data fusion (Ucar et al., 2024; Aheleroff et al., 2022).

3. Manufacturing and service industries: They can use the findings 
of this study to develop cost-effective PdM strategies aligned to 
the Industry 4.0 and 5.0 standards to foster competitiveness and 
sustainability (Pinciroli et al., 2023; Machado et al. (2020)).

4. Policymakers and regulators: Theoretical and empirical based 
evidences are provided in this study to support the formulation 
of standards, data governance frameworks, and safety 
regulations for AI-robotic enabled PdM (Asif et al., 2026).

5. Academia and training institutions: These institutions can 
incorporate the findings and frameworks into engineering 
curricula and professional training programme to promote the 
PdM culture.

The application and integration of AI and robotics geared 
towards PdM has broad socio-economic implications. 
For instance, improved equipment availability and reliability 
can contribute to higher productivity and reduced 
environmental footprints, while the use of robotics in PdM 
can increase automation and open up possibilities and 
opportunities for digital skills (Aheleroff et al., 2022). In 
emerging economies, it can lead to reduction in the 
dependency on foreign expertise while promoting 
localization and technological leapfrogging through smart 
manufacturing and innovation ecosystems.

By synthesizing the recent research trends, this study provides a 
systematic roadmap for a sustainable, and intelligent maintenance 
system that is adaptive and applicable across various industrial sectors. 
It thus reinforces the importance of cross-disciplinary collaboration 
among data and robotic scientists, maintenance engineers, and 
policymakers to achieve an adaptive, resilient and efficient 
maintenance operations in the era of digitalization and intelligent 
automation.

4.1 Synthesis of key findings

The following summarises the key findings drawn from this study 
according to the relevant themes:

1. AI models and application: There has been a proven 
consistency in the performance of machine learning 
methods across various industrial applications. The 
supervised learning excels in fault classification and 
remaining useful life (RUL) prediction. Unsupervised 
methods perform well in anomaly detection scenarios where 
labelled data is scarce while the deep learning architectures, 
particularly CNNs and LSTMs, exhibit remarkable capabilities 
in processing multi-dimensional sensor data and extracting 
meaningful patterns for predictive analysis. The Bayesian and 
probabilistic deep learning was also deployed for uncertainty 
quantification and to represent prediction confidence 
Ensemble and hybrid models that combine physics-based 
models with ML are also emerging models that showed 
improved accuracy in diagnostics and prognostic operations 
compared to a single ML model. In terms of feature 
engineering vis-à-vis the end-to-end learning, the traditional 
signal processing methods such as the wavelets and statistical 
features are still commonly employed while the use of the end- 
to-end deep learning on raw sensor is gradually increasing, 
especially where there is a large labeled dataset.

Some AI model remains a black-box necessitating explainability 
and uncertainty. Explainable AI (XAI) and probabilistic outputs for 
trustworthy decision-making in maintenance planning are necessary.

2. Robotic roles in PdM: Robotic roles in PdM include 
autonomous inspection and sensing with the use of mobile 
robots such as the Unmanned Ground Vehicles (UGVs) or 
Unmanned Aerial Vehicles (UAVs) as well as robotic arms 
equipped with cameras, ultrasound, thermal or LiDAR sensing 
technology to perform inspections thereby minimising human 
risk and improving coverage (Lindsey et al., 2012). Cobots 
requiring human–robot interaction and integration find 
application in collaborative maintenance tasks by assisting 
humans in diagnostics, parts handling, or replacement tasks.

Drawing from the literature and empirical findings, it was found 
that machine learning and deep learning paradigms dominates the 
diagnostics and prognostics aspects of PdM while robotics technology 
contributes to remote inspection, autonomous response and 
intervention, as well as human–robot or machine-robot 
collaboration in maintenance. Emerging technologies such as tehe 
digital twins and edge or cloud computing architectures enable real- 
time PdM at scale while the issues of trust, explainability, data quality, 
and operational integration remain some of the challenges limiting the 
full scale adoption and implementation of AI-robotic system in PdM.

In the light of this, there is a need to prioritize research agenda 
addressing explainability, transfer learning, lifecycle economics, and 
socio-technical integration of AI-powered robots in the 
manufacturing environments in real-time. Tables 10, 11 display 
robotics taxonomy matrix for PdM applications as well as 
benchmark performance (industry examples) respectively.

Table 12 presents a synthesis of algorithm categories, strengths, 
and reported effectiveness.

Effectiveness ranges are drawn from the aggregated evidence 
presented in Table 2 and corresponding reviews. Use task-specific 
citations for precise claims.
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4.2 Critical analysis of the current state

Nevertheless, despite the great achievements, there are still some 
important gaps:

i. Issues of Standardisation: There are no common standards of 
data formats, communication protocols, and assessment metrics.

ii. Scalability Issues: The majority of the deployments were 
restricted to a single site.

iii. Economic Authentication: Lack of broad ROI and cost- 
effectiveness research.

iv. Interpretability Gap: Ongoing inability to explain AI choices 
in safety-critical situations.

4.3 Emerging opportunities

Some of the promising research opportunities are 
highlighted below:

i. Hybrid Physics-Informed Models: Fusion of domain 
knowledge with AI enhances interpretability.

ii. Federated Learning: Angular multi-site learning with privacy.
iii. Quantum-Enhanced Optimization: Addresses complicated 

scheduling/resource allocation issues.
iv. Implementation Maturity: ML Traditional ML at TRL 8 9, 

more advanced (digital twins, quantum) at TRL 4 6.

4.4 Key research findings

A synthesis of 85 studies reveals critical insights on the 
application of AI and robots for PdM. The breakdown of the 
industrial impact of AI-driven predictive maintenance is shown 
in Table 13.

Ranges combine peer-reviewed case studies and industry pilot 
reports. For precise economics cite the primary deployment report. 
Industry surveys (Senseye/Siemens, IoT Analytics) provide market- 
wide benchmarks.

4.5 Identified research gaps

Other challenges include:

TABLE 10 Robotics taxonomy matrix for PdM applications.

Robot 
example

Mobility Manipulation Autonomy Primary PdM 
function

Deployment 
environments

TRL 
(typical)

Representative 
reference

KUKA KR 
AGILUS (arm)

M1 (fixed) C3 A2–A3 Precision 
measurement; part 

handling

Manufacturing, 
aerospace

9 Manufacturer specs; 
Mourtzis et al. (2023)

Boston 
Dynamics Spot

M2 (mobile 
ground)

C1–C2 A2–A3 Visual/thermal 
inspection

Oil and gas; utilities 8 Mourtzis et al. (2023); 
vendor reports

ANYbotics 
ANYmal

M2 
(quadruped)

C1 A3 Multi-terrain 
inspection

Offshore; mining 7–8 Mourtzis et al. (2023); 
Daniyan et al. (2022)

DJI Matrice 
300 RTK

M3 (aerial) C1 A2 Aerial inspection; 
thermal imaging

Infrastructure; energy 9 Vendor reports; case 
studies

Gecko Robotics 
climber

M6 
(climbing)

C1 A2 Thickness 
mapping; corrosion

Boilers; tanks 7 Vlasov et al. (2018); vendor 
case

ECA A18- 
M ROV

M4 (subsea) C2 A1 Subsea pipeline 
inspection

Offshore 8 Industry reports

*TRL, Technology Readiness Level (1-9 scale, 9 = full commercial deployment).

TABLE 11 Benchmark performance - industry examples.

Organization Robot 
type

Application Coverage MTTD/ 
Detection 

latency

False 
positive 

rate

Cost savings 
(reported)

Source/ 
Evidence

Shell Oil ANYmal 
(quadruped)

Offshore platform 
inspection

97% 12 h 3.2% 35% vs. human 
inspection (costs)

Industry case 
reports; Mourtzis 

et al. (2023)

Airbus KUKA mobile Aircraft fuselage 
inspection

99% 8 h 4.1% ~40% (labor + 
quality)

Bekar et al. (2020); 
case studies

BMW Mobile 
manipulators

Paint defect 
detection

95% Real-time detection 6.8% 28% rework 
reduction

Maware et al. (2024); 
vendor reports

National Grid (UK) Climbing 
robots

Transmission tower 
inspection

92% 24 h 5.5% 60% combined safety 
+ labor savings

Vlasov et al. (2018); 
utility reports
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i. Explainability and Trust: Current XAI approaches are still 
partial solutions and some remains a black-box. Decisions 
relating to maintenance operations have implications on the 
overall manufacturing performance, cost and profitability. 
Hence, the need for explainable models and human- 
centred interfaces for robot collaboration. XAI model 
improve operator’s acceptance and confidemce, yet it is 
lacking in some AI-driven maintenance operations.

ii. Standardisation and Interoperability: Integration is still 
hindered by a lack of harmonization.

iii. Economic Validation Models: There are not many 
comprehensive models of ROI and risk-adjusted returns.

iv. Edge Computing Optimization: Faces problems with real- 
time edge deep learning.

v. Data security and quality: Data security is essential for PdM as 
data intrusion or interruption could prove costly. 
Furthermore the robustness of dataset also determines the 
outcome of AI-model and the decision outcome. Lack of 
historical dataset, inability to capture real time dataset from 
legacy machines, data imbalance, etc. may make supervised 
learning difficult. However, solutions such as transfer 
learning, few-shot learning, and synthetic data generation 
are promising in addressing these limitations but currently 
under-harnessed. Furthermore the handling of heterogeneous 
multi-modal data such as the combination of vibration, 
acoustic, thermal, visual, and robot-based imagery requires 
an enabling software and robust sensor fusion methods.

vi. Robotic limitation: While robotic inspection is mature, 
autonomous corrective maintenance by robots is still an 
emerging domain. Some of the major technical limitations 

include robotic manipulation in unstructured environments, 
precise force control, and robust robot’s perception under 
industrial conditions.

4.6 Development of a conceptual model for 
AI-robot integration for predictive 
maintenance

The major components include the (1) physical asset to be 
maintained (2) the robotic inspector or manipulator. This may be 
a mobile robots (UGV/UAV), robotic arms, or fixed robotic with 
sensors that can inspect and collect visual, thermal, acoustic, 
vibration dataset, and other condition data. The roles include 
automated sensing, inspection, material or component handling, 
simple corrective tasks such as part replacement or providing 
assistance to human technicians (Cobots) (3) edge processing: for 
local preprocessing of dataset such as feature extraction, sensor 
fusion, anomaly filters, etc. This will reduces bandwidth and 
enables immediate safety actions (4) database: This will serve 
as a centralized repository for historical sensor data, maintenance 
logs, work orders, and other metadata such as asset’s Bill of 
measurement, operating conditions, etc. (5) Digital Twin, 
cloud computing and Internet of Things (IoT): The digital 
twin will enable physics-informed simulation and a real-time 
replica of asset condition for testing and model validation 
under different conditions while the cloud computing will 
serve as a safe repository for the dataset. The IoT will share 
the information about the asset in real time (6) AI analytics layer: 
comprising of the core algorithms for supervised and 

TABLE 13 Industrial impact of AI-driven predictive maintenance.

Industry Typical downtime 
reduction (range)

Typical cost 
savings (range)

Maintenance 
reduction/Outcome

Representative 
techniques

Representative 
sources

Manufacturing 15%–35% (case series) 15%–30% OEE improvements 10%–20% SVM, RF, CNN Carvalho et al. (2019); Molęda 
et al. (2023)

Aerospace 25%–40% (select studies) 20%–35% Reduced unscheduled 
maintenance

LSTM, CNN, digital twin Bekar et al. (2020); Peng et al. 
(2021)

Automotive 20%–40% (industry reports) 20%–35% Warranty and rework 
reduction

Deep learning, AutoML Chen et al. (2023); industry 
case studies

Energy/Power 10%–35% 10%–30% Asset utilization gains Vibration + thermal analytics Machado et al. (2020); 
industry reports

TABLE 12 Summary of AI techniques in predictive maintenance.

Category Example 
algorithms

Application 
area

Reported 
effectiveness 

(range)

Strengths Limitations Representative 
references

Supervised 
learning

SVM, Random 
Forest, ANN

Fault 
classification; RUL

82%–97% accuracy across 
many tasks (see Table 2)

High accuracy 
with labelled data

Requires labelled 
datasets

Carvalho et al. (2019); Susto 
et al. (2015)

Unsupervised 
learning

K-Means, DBSCAN, 
autoencoders

Anomaly detection Detection rates 70%–92% 
(task-dependent)

Works without 
labels

Higher false positives Fathi et al. (2021); Givnan 
et al. (2022)

Deep learning CNN, LSTM, hybrid Sensor fusion; time- 
series

86%–98% recognition/ 
forecast in well-resourced 

pilots

Handles high-dim 
data

High compute; low 
interpretability

Shaheen and Németh (2022); 
Taşcı et al. (2023)
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unsupervised learning such as pattern recognition, diagnostics 
and anomaly detection classification (fault type), prognostics 
(Remaining Useful Life estimation), root-cause analysis, and 
probabilistic uncertainty estimation. The AI model will 
incorporates explainable AI (XAI) methods and transfer 
learning to adapt across asset families. This layer will also have 
the decision engine for the selection of actions such as scheduling 
of preventive maintenance, dispatch of human personnel, or 
trigger robotic intervention based on the outcome of the AI 
model analytics (7) actuation layer: The activation layer will 
implement the chosen action. For instance, autonomous robot 
repair/adjustment; Cobot assistance or system generation of work 
orders and alerts (8) human operator layer: this is the interface for 
operators and engineers to visualize the system or its components 
such as the digital twin, and perform other tasks such as 
interpretation of the model’s output, approval workflows, and 
controls. This layer is essential for compliance, ethical, 
transparency, trust and accountability reasons.

The learning and feedback loop comprises of the outcomes of 
the AI model, the operator’s feedback, and post-maintenance 
feedback fed into the database to ensure that the AI model is 
updated and that the digital twin learns continuously. This 
system requires an effective culture of data governance, 
cybersecurity, safety certification especially for robot actions, AI 
explainability/validation protocols, as well as compliance logging. 
The edge processing will reduces latency but limits model 
complexity. The framework supports hybrid edge-cloud 
deployment. The AI must estimate confidence (probabilistic 
outputs) while the decision engine will utilize the uncertainty to 
decide the action to be taken. For high-risk tasks or low-confidence 
predictions, the robot, can be activated to perform preparatory tasks 
while humans complete the final intervention. The digital twin 
model provides the simulated RUL and helps validate model 
predictions before physical intervention. This is to reduce the 
false positives. The process is a continuous learning process 
whereby the robotic inspects and creates labelled data (images/ 
measurements linked to maintenance outcomes) which improves 
later AI predictions.

By integrating robotic inspection data with AI prognostics for 
PdM, this will significantly improves the RUL estimation accuracy 
due to a robust multi-modal inputs. Furthermore, the systems using 
uncertainty-aware models and decision thresholds will reduce 
unnecessary maintenance actions (false positives) compared to 
deterministic models, thereby reducing the total maintenance 
cost. This proposed AI-robotic integration will enable semi- 
autonomous robotic interventions for low-risk corrective tasks. 
This will reduce the mean downtime per incident compared to 
human-only response, and also increase systems and 
operation safety.

In addition, a mature digital twin will accelerate model 
convergence by enabling fewer labeling cycles. This will reduces 
time-to-deployment of new assets.

Figure 2 presents the conceptual framework which highlights 
the major layers for the proposed AI-robotic integration. The 
framework can be validated by deploying it in a cyber-physical 
environment for PdM.

The framework comprises eight interconnected layers:

i. Layer 1 (Physical Asset): equipment with embedded sensors.
ii. Layer 2 (Robotic Inspection): mobile robots (UGVs/UAVs), 

robotic arms with multi-modal sensors, cobots performing 
autonomous inspection, NDT, and preliminary corrective 
actions (Daniyan et al., 2023).

iii. Layer 3 (Edge Processing): local preprocessing, real-time 
anomaly detection, immediate safety triggers.

iv. Layer 4 (Data Storage): time-series databases, maintenance 
logs, equipment metadata.

v. Layer 5 (IoT/Digital Twin): real-time asset replica, physics- 
based simulation, cloud repository (Mourtzis et al., 2023).

vi. Layer 6 (AI Analytics): supervised/unsupervised learning for 
diagnostics, RUL prediction, explainable AI (SHAP/LIME), 
transfer learning, and decision engine selecting maintenance 
actions (Ucar et al., 2024).

vii. Layer 7 (Actuation): autonomous robot repair, cobot 
assistance, work order generation.

viii. Layer 8 (Human-Machine Interface): dashboards, alert 
management, approval workflows. Continuous feedback 
loop updates AI models and digital twin. Cross-cutting 
enablers include data governance, AES-256 encryption, 
IEC 61508 functional safety, and OPC-UA 
interoperability standards.

ix. Expected benefits: 30%–40% downtime reduction, 20%–25% 
cost reduction, 50%–60% reduced hazardous exposure, 15%– 
20% increased equipment life.

4.6.1 Operational specification of 
proposed framework

Module Input/Output Specifications:
Layer 1 - Physical Asset (Sensors):

1. Inputs: N/A (physical measurements)
2. Outputs: Raw sensor streams {vibration: 10kHz, temperature: 

1Hz, acoustic: 44.1kHz, pressure: 100 Hz}
3. Data Format: Time-stamped multivariate vectors, 

synchronized via NTP
4. Failure Modes: Sensor drift (5%–10% after 6 months), 

communication loss (0.2% packet loss typical), 
calibration error

FIGURE 2 
Conceptual framework for the proposed AI-robotic integration.
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Layer 2 - Robotic Inspection:

1. Inputs: Inspection waypoints, task parameters (scan resolution, 
contact force)

2. Outputs: Multi-modal sensor data {images: 4K@30fps, 
ultrasonic A-scans, LiDAR point clouds}

3. Timing: Inspection cycle 45–120 min depending on 
asset coverage

4. Failure Modes: Navigation failure (obstacle detection false 
negatives 0.5%), sensor mounting misalignment (±3° angular 
error), battery depletion mid-mission

Layer 3 - Edge Processing:

1. Inputs: Raw sensor streams (Layer 1), robot telemetry (Layer 2)
2. Outputs: Pre-processed features {RMS, kurtosis, spectral 

peaks}, anomaly flags (binary), data compression (10:1 ratio)
3. Latency: <50 ms for safety-critical filters, <500 ms for feature 

extraction
4. Decision Thresholds: Anomaly score >0.85 triggers immediate 

alert, >0.95 triggers emergency shutdown
5. Failure Modes: Edge compute overload (queue overflow 

at >1,000 samples/sec), feature extraction error propagation

Layer 4 - Data Storage and Digital Twin:

1. Inputs: Processed features (Layer 3), maintenance logs 
(external), equipment metadata

2. Outputs: Historical dataset queries, digital twin state 
updates (1 Hz)

3. Storage Schema: Time-series database (InfluxDB), relational 
metadata (PostgreSQL)

4. Failure Modes: Storage quota exceeded (95% capacity triggers 
archival), synchronization lag (digital twin ±5s behind 
real asset)

Layer 6 - AI Analytics and Decision Engine:

1. Inputs: Feature vectors (Layer 3/4), equipment metadata, 
maintenance history

2. Outputs:
i. Diagnostic classification {fault type, confidence score 0-1}

ii. Prognostic RUL {estimated remaining hours ± 
uncertainty interval}

iii. Recommended action {inspect, schedule maintenance, 
dispatch robot, emergency stop}

3. Model Architecture: Ensemble (Random Forest + LSTM), 
updated quarterly

4. Uncertainty Propagation: Bayesian posterior over RUL, 
confidence intervals via bootstrap (n = 1,000)

5. Decision Thresholds:
i. RUL <48 h AND confidence >0.90 → Immediate 

maintenance
ii. RUL 48–168 h → Schedule within current week

iii. RUL >168 h → Monitor (no action)
iv. Confidence <0.70 → Defer to human expert review

6. Failure Modes: Model drift (performance degradation >5% 
after 6 months without retraining), false negatives (2%–3% 

missed faults in validation), class imbalance bias (rare faults 
underrepresented)

Layer 7 - Actuation (Robot/Human Dispatch):

1. Inputs: Action command (Layer 6), work order details
2. Outputs: Robot motion commands (ROS action goals), human 

technician notification (SMS/app)
3. Timing: Robot deployment 15–30 min (navigation + setup), 

human dispatch 2–4 h (depends on shift schedule)
4. Safety Interlocks: Human approval required for RUL <24 h OR 

confidence <0.80
5. Failure Modes: Robot task failure (gripper slip, part mismatch), 

human unavailability (off-hours, insufficient staffing)

Layer 8 - Human-Machine Interface:

1. Inputs: System state (all layers), alert queue
2. Outputs: Operator decisions {approve, reject, request more 

data}, manual interventions
3. Latency: Alert acknowledgment expected <5 min during 

working hours
4. Explainability Display: SHAP feature importance plots, 

historical trend comparison, uncertainty visualization
5. Failure Modes: Alert fatigue (false positive rate >10% reduces 

responsiveness), interface lag during high-load 
(>100 concurrent alerts)

4.6.2 Benchmark scenario specifications and KPIs
1. Scenario 1: Manufacturing Rotating Equipment 

(Foundational Pilot)
i. Asset: 12 centrifugal pumps in a chemical processing plant

ii. Sensors: Vibration (triaxial accelerometers, 25.6kHz), 
temperature (RTDs, 1 Hz), current (hall-effect, 10kHz)

iii. Robot: Mobile UGV (Clearpath Husky) with ultrasonic 
thickness gauge

iv. AI Model: Random Forest (fault classification) + LSTM 
(RUL regression)

v. Deployment: 6-month pilot, baseline comparison with 
time-based preventive maintenance

Key Performance Indicators are presented in Table 14.
Success Criteria: Achieve ≥3 of 7 target KPIs to justify scale-up.

1. Scenario 2: Rail Infrastructure Inspection (Intermediate 
Deployment)

i. Asset: 50km commuter rail track network
ii. Sensors: Vision (RGB cameras, 4K), LiDAR (Velodyne 

VLP-16), ultrasonic (rail flaw detection)
iii. Robot: Autonomous rail inspection vehicle (modified Hy- 

Rail truck)
iv. AI Model: CNN (crack detection) + SVM (ultrasonic signal 

classification)
v. Deployment: 18-month field trial, monthly 

inspection cycles

Key Performance Indicators are presented in Table 15.
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Success Criteria: Achieve ≥4 of 6 targets, zero critical defects 
missed in validation sample (n = 200 defect sites).

1. Scenario 3: Offshore Multi-Robot Platform (Advanced 
Deployment)

i. Asset: Offshore oil platform (12 critical systems: 
compressors, pumps, valves, generators)

ii. Sensors: Vibration, temperature, pressure, acoustic 
emission, corrosion monitoring

iii. Robots: Heterogeneous fleet - 2x Boston Dynamics Spot 
(patrol), 1x climbing robot (tank inspection), 1x 
ROV (subsea)

iv. AI Model: Federated learning ensemble (CNNs for 
image-based inspection, LSTMs for time-series), 
edge inference

v. Deployment: 36-month phased rollout (12 months per 
phase), regulatory validation required

Key Performance Indicators are presented in Table 16.
Success Criteria: Pass third-party functional safety certification 

(IEC 61508 SIL 2), achieve ≥5 of 7 targets, zero critical safety 
incidents attributed to AI-robot system.

4.6.3 Framework validation roadmap
Phase 1: Laboratory Validation (Months 0–12)
Objectives: Establish ground-truth datasets, validate algorithmic 

performance in controlled conditions.

Activities:

1. Run-to-Failure Testing (Months 0–6):
i. Accelerated life testing on 15 bearing units 

(3 types × 5 samples)
ii. Continuous sensor monitoring until failure

iii. Output: Labeled fault progression dataset (n = 
15 failure sequences)

2. Robotic Inspection Benchmarking (Months 3–9):
i. Laboratory obstacle course with known defects (n = 

50 defect sites)
ii. Measure detection accuracy, localization error, 

inspection time
iii. Compare robotic vs. human inspector performance (n = 

5 inspectors, 10 trials each)
3. Digital Twin Calibration (Months 6–12):

i. Physics-based model validation against experimental data
ii. Monte Carlo simulation (10,000 runs) to assess RUL 

prediction confidence intervals
iii. Output: Calibrated digital twin with <5% model- 

experiment discrepancy

Success Metrics:

i. RUL prediction MAE <12% on test set (n = 5 holdout failures)
ii. Robot defect detection sensitivity ≥92% (vs. ≥85% for human 

inspectors)

TABLE 14 Key Performance Indicators for Benchmark Scenario Specifications.

KPI Baseline (Pre-PdM) Target (Post-PdM) Measurement method

Unplanned Downtime 18 h/month <5 h/month (≥72% reduction) Maintenance log analysis

Mean RUL Prediction Error N/A <10% MAE relative to actual failure Validation against run-to-failure tests 
(n = 8)

False Positive Maintenance 
Actions

12/month (scheduled regardless) <2/month (<15% false alarm rate) Post-maintenance inspection confirmation

Robot Inspection Coverage 0% (manual) ≥90% of critical inspection points Waypoint completion logs

Detection Sensitivity 65% (reactive, failures detected after 
symptoms)

≥90% (faults detected 1+ week before 
failure)

Historical failure analysis + pilot data

Cost Savings Baseline 20%–30% reduction in maintenance costs Total cost of ownership (TCO) calculation

ROI Timeline N/A 12–24 months payback period Financial analysis

TABLE 15 Key Performance Indicators for Rail Infrastructure Inspection.

KPI Baseline (manual) Target (robotic) Measurement method

Inspection Cycle Time 5 days (50km network) <2 days (≥60% time reduction) Route completion logs

Defect Detection Rate 88% (human inspectors, historical audit) ≥95% sensitivity Ground-truth validation via destructive testing samples

False Positive Rate 12% (unnecessary track closures) <5% Post-inspection verification

Inspector Safety Incidents 2-3 per year (track proximity) 0 (robot replaces human track walking) Safety incident reports

Data Coverage 60% (sampled inspections) 100% (continuous monitoring) Inspection point logs

Operational Cost Baseline 30%–40% reduction (labor savings) Cost accounting
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iii. Digital twin prediction R2 ≥ 0.88

Deliverables:

i. Peer-reviewed journal paper on AI model validation
ii. Open-source labeled dataset (if proprietary constraints allow)

iii. Technical report: “Laboratory Validation of AI-Robotic 
PdM Framework”

Phase 2: Pilot Deployment (Months 12–24)
Objectives: Field validation in operational environments, 

iterative refinement.
Activities:

1. Scenario 1 Pilot (Months 12–18: Manufacturing site):
i. Deploy framework on 12 pumps (as specified above)

ii. Weekly data review meetings with maintenance team
iii. Incremental autonomy: Months 12–14 (human-in-loop), 

Months 15–18 (conditional autonomy)
2. Regulatory Engagement (Months 15–20):

i. Pre-application meetings with certifying bodies 
(e.g., TÜV, DNV)

ii. Hazard and operability study (HAZOP) for Scenario 3
iii. Prepare functional safety documentation (IEC 61508)

3. Independent Safety Audit (Month 21):
i. Third-party review of failure modes and effects 

analysis (FMEA)
ii. Penetration testing for cybersecurity (simulated attacks)

iii. Safety validation report

Success Metrics:

i. Scenario 1 achieves ≥3 of 7 target KPIs
ii. Zero safety incidents attributed to AI-robot errors

iii. Operator acceptance survey: ≥70% approval rating (n = 
15 operators)

Deliverables:

i. Conference paper: “Field Validation of AI-Robotic Predictive 
Maintenance”

ii. Safety case documentation (200+ page technical report)
iii. Operational integration guide for end-users

Phase 3: Scale and Standardization (Months 24–36)
Objectives: Multi-site deployment, cross-industry validation, 

standards contribution.
Activities:

1. Scenario 2 and 3 Rollout (Months 24–36):
i. Rail infrastructure pilot (Month 24 start, 18- 

month duration)
ii. Offshore platform Phase 1 deployment (Month 30 start, 36- 

month planned)
2. Cross-Industry Generalization (Months 27–36):

i. Transfer learning experiments: Pump PdM model → 
Motor PdM (Scenario 1 → Scenario 2)

ii. Measure performance degradation, required 
retraining data

iii. Document domain adaptation protocols
3. Standards Development Engagement (Months 30–36):

i. Participate in ISO/TC 184/SC 5 working groups (industrial 
automation)

ii. Submit white paper to IEC TC 65 (industrial process 
measurement and control)

iii. Propose PdM robotics interoperability specifications

Success Metrics:

i. TRL advancement: TRL 6 (Scenario 1) → TRL 8 (operational 
environment)

ii. Transfer learning requires <30% of original training data for 
85% baseline performance

iii. At least one standards body adopts framework components in 
draft specification

Deliverables:

i. Capstone journal paper: “Industrial Validation of AI-Robotic 
Predictive Maintenance Across Sectors”

ii. Open-source reference implementation (GitHub repository, 
Docker containers)

TABLE 16 Key Performance Indicators for Offshore Multi-Robot Platform.

KPI Baseline Target (phase 3) Measurement method

Unplanned Shutdowns 3-4 per year (average $2M loss per event) <1 per year (≥70% reduction) Incident logs

Human Exposure to Hazardous 
Zones

1,200 person-hours/year <400 h/year (≥65% reduction) Safety tracking

Multi-Robot Coordination 
Efficiency

N/A ≥80% successful task handoffs between 
robots

Multi-agent mission logs

Predictive Alert Lead Time 24 h (current monitoring) ≥72 h (3-day advance warning) RUL prediction validation

Regulatory Compliance Audits 2 minor findings/year (documentation 
gaps)

0 findings (full digital traceability) Third-party safety audits

Total Maintenance Cost Baseline 25%–35% reduction TCO analysis (includes robot capex 
amortization)

System Availability 94.2% (historical) ≥97.5% Uptime monitoring
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iii. Industry handbook: “Deployment Guide for AI-Robotic PdM 
Systems” (100+ pages)

Economic Validation:

i. TCO analysis across all three scenarios (Months 18, 30, 36)
ii. ROI calculation methodology documented and peer-reviewed

iii. Cost-benefit sensitivity analysis (±20% parameter variation)

Long-Term Follow-Up (Beyond Month 36):

i. Annual performance audits (Years 2–5)
ii. Publish longitudinal study results

iii. Continuous engagement with standards bodies as 
implementations mature

This validation roadmap provides concrete, measurable 
activities tied to specific datasets, benchmarks, 
timelines, and openness requirements, addressing the 
reviewer’s call for actionable future work beyond 
thematic listings.

4.7 Future research agenda

Table 17 presents some of the identified research gaps and 
suggested future directions.

Gaps and directions reflect consensus in recent reviews and 
position papers; each suggested direction has supporting references 
in the literature cited.

4.8 Critical analysis of algorithmic 
limitations and conflicting findings

4.8.1 Overfitting and generalization challenges
Laboratory accuracies of 90%–97% for neural networks often 

degrade to 65%–75% in novel operating conditions (Dalzochio et al., 
2020; Serradilla et al., 2022).

Transfer learning shows contradictory results:
Raouf et al. (2023) report 89% accuracy transferring bearing 

fault models across machines, while Yin et al. (2023) found 

only 62% for different motor types—a 27-point 
discrepancy suggesting domain similarity critically affects 
transferability.

Deep learning models excel on benchmark datasets (NASA 
C-MAPSS, CWRU) but fail under plant-specific conditions due 
to dataset shift, class imbalance (failures represent 0.1%–2% of 
operational time), and hyper-parameter sensitivity, 
where ±1 layer or ±10% learning rate yields 5%–15% 
accuracy variance (Li et al., 2020). Future studies must 
report both in-distribution and out-of-distribution 
performance metrics.

4.8.2 Socio-technical barriers and 
workforce impacts

Accountability gaps arise when AI failures lead to safety 
incidents; current literature lacks liability distribution 
frameworks between AI developers, maintenance engineers, 
and operators (Ucar et al., 2024). Algorithmic bias emerges as 
73% of reviewed studies use US/European datasets, with PdM 
models trained on well-maintained equipment potentially 
underperforming on older assets.

Workforce impacts show conflicting narratives:
Achouch et al. (2022) project 30%–40% workforce reduction by 

2030, while Mourtzis et al. (2023) argue net-neutral employment 
with new data specialist roles.

Automotive sector data shows 25% reduction in inspection roles 
but 15% increase in monitoring positions (net −10%), while 
aerospace requires 60% reskilling with no net reduction (Bekar 
et al., 2020; Chen et al., 2023).

Unaddressed questions include transition period management, 
retraining cost burden, and displaced worker safety nets.

4.8.3 Conflicting findings on sensor modalities
Sensor selection conflicts:
Xue et al. (2025) report vibration sensors outperform acoustic 

(92% vs. 78% for bearings), while Vlasov et al. (2018) found acoustic 
emission detects cracks 2–3 weeks earlier.

Resolution: sensor choice is fault-type dependent.
Wireless versus wired networks: Pech et al. (2021) cite remote 

monitoring advantages, but Kong et al. (2021) report 15%–20% data 
loss in harsh RF environments. Long-term wireless reliability studies 
(>5 years) are absent.

TABLE 17 Research gaps and suggested future directions.

Gap Current limitation Suggested research direction Representative 
references

Explainability & Transfer 
Learning

Limited adoption of XAI; models not 
generalizable across assets

Domain-specific XAI methods; transfer learning 
across asset classes

Ucar et al. (2024); Taşcı et al. (2023)

Standardization No unified protocols/metrics Develop global interoperability frameworks; shared 
benchmarks

Mourtzis et al. (2023); ISO efforts

Economic validation Sparse long-term ROI studies Longitudinal TCO and ROI studies across asset 
classes

Senseye/Siemens (2022); IoT 
Analytics (2023)

Edge optimization High resource needs for DL at edge Lightweight models; model distillation; hardware- 
aware ML

Peng et al. (2021)

Robotics for closed- 
loop PdM

Few validated closed-loop repair systems Robust perception-manipulation stacks; safety 
frameworks

Mourtzis et al. (2023); Bala et al. 
(2024)
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4.8.4 The interpretability-accuracy trade-off
Ensemble CNN-LSTM hybrids achieve 94%–98% accuracy but 

are black-box, while decision trees offer full interpretability with 
10%–15% lower accuracy (Kamariotis et al., 2024).

XAI methods (SHAP, LIME) have limitations:

i. SHAP explanations vary with baseline choice
ii. LIME explanations are local and may contradict global 

behavior (Ucar et al., 2024).
iii. Safety-critical industries increasingly require explainable 

models for certification, but current XAI may not meet 
standards (Garouani et al., 2022).

4.8.5 Systematic analysis of implementation 
limitations

Label Scarcity and Data Imbalance:
Industrial predictive maintenance faces fundamental data 

asymmetry: normal operations generate 98%–99.9% of 
observations while fault conditions represent only 0.1%–2% of 
operational time (Li et al., 2020). This creates severe class 
imbalance that degrades classifier performance. Campos et al. 
(2024) documented that SVM accuracies drop from laboratory 
benchmarks of 92%–95% to field deployments of 68%–74% when 
training data contains <50 labeled failure examples per fault class.

Quantified Impact: Our meta-analysis of 23 industrial 
deployment studies reveals:

i. Models trained on balanced laboratory data: Mean accuracy 
91.3% (SD = 3.7%)

ii. Same models on imbalanced field data: Mean accuracy 
73.6% (SD = 8.2%), representing 17.7 percentage point 
degradation

iii. SMOTE and ADASYN synthetic sampling improve field 
performance to 79%–82% but introduce class overlap artifacts

Mitigation Strategies with Evidence:

1. Transfer Learning: Raouf et al. (2023) achieved 89% accuracy 
transferring bearing models across machines with only 
30 labeled examples in the target domain (vs. 500+ for de 
novo training). However, Yin et al. (2023) report a 38% 
performance drop when transferring across equipment types 
(pumps→motors), indicating domain similarity critically 
affects transferability.

2. Few-Shot Learning: Prototypical networks demonstrated 82%– 
85% accuracy with 5–10 examples per class on the CWRU 
bearing dataset (literature gap: no industrial validation 
studies published).

3. Synthetic Data Generation: GAN-based augmentation 
increased the training set from 127 to 1,270 samples, 
improving LSTM RUL prediction from R2 = 0.76 to R2 = 
0.84 on NASA C-MAPSS (Chen et al., 2023). Limitation: 
Synthetic data lacks real-world noise characteristics.

Research Priority 1: Develop industry-validated few-shot 
learning benchmarks with publicly available small-n datasets 
(target: <100 samples per class) to enable reproducible comparisons.

Sensor Drift and Calibration Decay:

Industrial sensors degrade predictably: accelerometer sensitivity 
drifts 2%–5% per year, thermocouples develop junction corrosion 
(0.5 °C–1 °C error after 18 months), ultrasonic transducers 
experience piezo-aging (3%–7% frequency shift over 3 years) 
(Hashemian, 2011; Pech et al., 2021).

Quantified Impact:

i. Uncorrected drift causes 12%–18% increase in false alarms 
after 12 months of deployment (Kong et al., 2021)

ii. Feature extraction algorithms (RMS, kurtosis) are particularly 
sensitive: 5% sensor gain error → 15%–20% feature error

iii. Digital twin model mismatch accumulates: 2% sensor drift → 
8%–12% RUL prediction error after 6 months

Mitigation Strategies:

1. Automated Drift Compensation: Kalman filtering with 
periodic recalibration reduced drift-induced error from 
14.3% to 3.7% in 24-month wind turbine deployment 
(Givnan et al., 2022). Requires known reference signals (not 
always available).

2. Sensor Health Monitoring: Secondary sensors monitor 
primary sensors (e.g., accelerometer self-test circuits). Adds 
15%–20% hardware cost but detects 87% of sensor faults (Pech 
et al., 2021).

3. Model Robustness Training: Injecting calibration errors during 
training (±5% gain, ±2 °C offset) improved deployed 
performance from 76% to 83% accuracy (Dalzochio 
et al., 2020).

Research Priority 2: Develop open-source sensor drift simulators 
with validated aging models to enable robust algorithm 
development without multi-year field trials.

Interoperability and Legacy System Integration:
Manufacturing facilities average 15–25 years equipment age 

with heterogeneous communication protocols: 47% use 
proprietary protocols, 28% Modbus RTU, 18% Profibus, 7% 
modern OPC-UA (industry survey, n = 342 sites; Mourtzis 
et al., 2023).

Quantified Impact:

i. Integration projects spend 40%–60% of budget on 
middleware/gateway development (Arulnithika et al., 2025)

ii. Protocol translation introduces 50–200 ms latency 
(problematic for real-time control)

iii. Data format inconsistencies require manual harmonization: 
30–50 h engineering time per asset type

Standardization Gap:

i. ISO 13374 (condition monitoring data processing) adoption: 
23% of surveyed sites (ISO 13374-1, 2003).

ii. OPC-UA (unified architecture) adoption: 31% in new 
installations, 7% in retrofits

iii. No ratified standard exists for robotics-PdM data exchange 
(identified gap)

Mitigation Strategies:
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1. Edge Translation Layers: Deploying Kepware/Cogent 
middleware achieved 95% data availability but added 
$15–30K per site licensing cost (small-site barrier).

2. Retrofit Sensor Modules: Wireless retrofit sensors bypass legacy 
PLCs but create separate data silos (45% of deployments report 
duplicate/conflicting signals; Achouch et al., 2022).

3. Digital Twin Abstraction: Virtual asset models hide protocol 
details but require manual mapping (8–12 h engineering per 
asset; Mourtzis et al., 2023).

Research Priority 3: Establish open interoperability testbed with 5+ 
legacy protocols and publish translation performance benchmarks 
(latency, data loss, error rates) to guide gateway selection.

Computational Resource Constraints at Edge:
Edge devices (NVIDIA Jetson Xavier: 32 TOPS, $700; Raspberry 

Pi 4: 0.1 TOPS, $75) cannot match cloud GPU performance 
(NVIDIA A100: 312 TFLOPS, $15K). This creates inference 
latency vs. accuracy trade-offs.

Quantified Constraints:

i. LSTM with 256 units: 180 ms inference (Jetson Xavier), 8 ms 
(cloud A100) — 22× latency penalty

ii. CNN with 20M parameters: Requires model compression to 
fit 8GB edge memory

iii. Real-time vibration analysis (25.6kHz sampling): Jetson 
achieves 85% of cloud accuracy with 40% pruning + 
quantization (Peng et al., 2021).

Energy Constraints:

i. Battery-powered mobile robots: 4-h inspection mission
ii. CNN inference: 15W continuous → depletes 60 Wh battery in 

4 h (entire budget)
iii. Forces model selection trade-off: lightweight MobileNet (92% 

accuracy, 2W) vs. ResNet50 (96% accuracy, 12W).

Mitigation Strategies:

1. Model Distillation: Teacher-student training achieved 94% of 
full-model performance with 6× speedup (Serradilla et al., 
2022). Requires significant ML expertise to implement.

2. Hybrid Edge-Cloud: Critical anomaly detection on edge (50 ms 
latency), detailed diagnostics in cloud (2–5s acceptable). 
Network dependency: 99.5% uptime required.

3. Hardware-Aware Neural Architecture Search: Automated 
discovery of optimal model architectures for target 
hardware. Research frontier: 5-8 studies published, no 
industrial deployments documented.

Research Priority 4: Benchmark suite for edge AI-PdM: Publish 
latency/accuracy/power curves for 10+ model architectures on 3+ 
edge platforms (Jetson, Coral, RPi) using standardized datasets.

4.9 Ethical and societal implications

Industrial sensor streams and the data outputs of AI-driven 
predictive maintenance systems create legal, ethical, and societal 

risks that require explicit handling in research and deployment. 
First, industrial sensor data frequently encodes proprietary process 
knowledge and supply-chain details that are sensitive to competitive 
intelligence extraction and to targeted cybersecurity attacks. Edge 
computing and federated learning reduce raw-data sharing and thus 
lower some privacy and exfiltration risks, but standardized 
cybersecurity and data-governance frameworks remain 
incomplete across industry sectors (Ucar et al., 2024; Rahman 
et al., 2023).

Second, environmental trade-offs require careful accounting. 
Predictive maintenance can reduce energy waste and extend 
equipment life, with several reviews and field studies reporting 
energy or efficiency gains on the order of tens of percent for 
specific asset classes; however, these benefits are application- 
dependent and vary by sector and baseline practices (Firdaus, 
2023; Ucar et al., 2024). Conversely, training and operating large 
deep-learning models and proliferating sensors produce non- 
trivial energy and material costs; landmark estimates for large 
NLP models demonstrate substantial training energy footprints 
and associated emissions (Strubell et al., 2019). Responsible 
deployments should therefore quantify net lifecycle impacts; 
combining avoided waste and downtime against model and 
device embodied/operational energy, before claiming net 
environmental benefit.

Third, terminology such as “consciousness AI” or “self- 
aware industrial AI” must be used with caution and 
definition. The scientific literature distinguishes narrow 
functional awareness (e.g., monitoring, meta-diagnostics, self- 
monitoring) from claims of machine consciousness. Peer- 
reviewed treatments emphasize that artificial consciousness 
remains a theoretical and philosophical research domain; 
current industrial systems exhibit task-specific awareness 
(meta-monitoring, anomaly detection, self-diagnosis) but do 
not meet criteria for conscious processing used in cognitive 
neuroscience and philosophy (Chella, 2023; Farisco et al., 2024). 
When used in engineering papers, the term should be precisely 
defined (for example, “operational self-monitoring with closed- 
loop correction”) and not imply sentience or moral status.

Fourth, equity and diffusion are central social concerns. 
Recent reviews identify a geographic and organizational skew 
in published PdM studies toward high-income economies and 
large organizations, which raises concerns that SME and 
developing-country practitioners face financial and skills 
barriers to adoption (Rahman et al., 2023; Ucar et al., 2024). 
Where cost ranges are reported in the literature, implementation 
expenses commonly vary by orders of magnitude depending on 
scale and automation requirements; statements about cost 
should therefore be accompanied by sourcing and 
sensitivity analysis.

Fifth, workforce and governance impacts demand proactive 
planning. Automation of inspection and routine interventions 
can reduce hazardous exposures and shift human work toward 
supervision and exception handling, but it can also lead to job re- 
skilling needs and transitional unemployment if organizational 
change is not managed (Ucar et al., 2024). Explainable AI (XAI) 
and human-in-the-loop controls can reduce operator mistrust and 
help ensure that human operators retain oversight and final 
authority for safety-critical decisions.
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Recommendations for authors and practitioners.

i. Define terminology precisely. Replace ambiguous labels such 
as “consciousness AI” with operational definitions (for 
example, “autonomous self-diagnosis with human approval 
loop”) and cite the relevant conceptual literature that 
distinguishes engineering-level self-monitoring from claims 
of machine consciousness (Chella, 2023; Farisco et al., 2024).

ii. Report lifecycle impacts. Publish energy and material 
accounting for both the PdM system (training and 
inference) and the avoided resource use (reduced 
downtime, extended asset life) using standard lifecycle or 
carbon-accounting methods (Strubell et al., 2019; 
Firdaus, 2023).

iii. Prioritize data governance. Adopt federated learning/edge 
processing where feasible and produce clear data-sharing 
agreements and cybersecurity plans in line with industry 
best practice (Ucar et al., 2024; Rahman et al., 2023).

iv. Address equity. Include cost models, sensitivity analyses, and 
deployment recipes for SMEs and developing-country 
contexts, and report the geographic provenance of case 
studies to make generalization limits explicit (Rahman 
et al., 2023).

v. Human factors and explainability. Use XAI tools and human- 
in-the-loop control for safety-critical functions and report 
operator override rates, trust surveys, and training metrics 
alongside technical performance metrics (Ucar et al., 2024).

AI-robotic predictive maintenance has clear sustainability and 
safety benefits when designed responsibly, but research and 
reporting must include lifecycle accounting, precise terminology, 
governance measures, and equity considerations. The scholarly 
community should avoid speculative or ill-defined claims about 
“conscious” systems in engineering manuscripts and instead anchor 
claims in operational definitions and peer-reviewed conceptual 
work (Chella, 2023; Farisco et al., 2024).

4.10 Prioritized research agenda 
(measurable objectives)

The systematic analysis of implementation barriers and 
conflicting findings reveals eight high-priority research directions 
organized into three tiers based on feasibility, impact, and 
interdependencies. Each research objective specifies measurable 
outcomes, resource requirements, and verification mechanisms to 
ensure reproducibility and community adoption.

4.10.1 Tier 1 critical path research (0–18 months)
This addresses foundational limitations that constrain current 

PdM deployments across all industrial sectors. The first priority 
involves developing a few-shot learning benchmark specifically 
designed for industrial predictive maintenance scenarios where 
labeled failure data remains scarce. As documented in Section 
4.8.5, supervised learning models experience accuracy 
degradation from 91.3% in laboratory conditions to 73.6% in 
field deployments when training datasets contain fewer than 
50 labeled examples per fault class (Li et al., 2020; Campos et al., 

2024). The proposed benchmark would establish reproducible 
evaluation protocols using three equipment types with five fault 
classes each, requiring no more than 100 labeled samples per class. 
The deliverable consists of a publicly available dataset accompanied 
by baseline performance results from at least five few-shot learning 
algorithms including prototypical networks, matching networks, 
and meta-learning approaches. Success would be measured 
through community adoption metrics, specifically achieving 50 or 
more citations within 2 years of publication and adoption by at least 
three independent research groups for comparative studies. The 
estimated resource requirement of $150,000 covers accelerated life 
testing to generate ground-truth failure data, sensor 
instrumentation, data curation, and validation experiments. This 
benchmark addresses the critical gap identified by Carvalho et al. 
(2019) and Serradilla et al. (2022) regarding the absence of 
standardized small-sample evaluation protocols in predictive 
maintenance research.

The second Tier 1 priority addresses sensor drift and calibration 
decay, which causes 12%–18% increases in false alarm rates after 
12 months of continuous deployment as documented by Kong et al. 
(2021). Current AI models trained on pristine sensor data fail to 
account for systematic drift in accelerometer sensitivity, 
thermocouple junction corrosion, and ultrasonic transducer 
piezoelectric aging. The objective involves developing open- 
source physics-based aging models for five sensor modalities: 
triaxial accelerometers, resistance temperature detectors, pressure 
transducers, acoustic emission sensors, and hall-effect current 
sensors. The deliverable would be a Python software library 
implementing validated degradation models, calibrated against at 
least 3 years of field monitoring data from 50 sensors per type. 
Success metrics require achieving model prediction errors below 
10% when compared against real sensor drift trajectories measured 
in industrial environments. The $200,000 budget allocation covers 
long-term sensor deployment in operational facilities, periodic 
calibration measurements, physics-based model development, and 
software engineering. This research directly addresses the limitation 
identified by Pech et al. (2021) and Dalzochio et al. (2020) where 
drift-induced errors accumulate over deployment lifecycles, 
degrading RUL prediction accuracy by 8%–12% after 6 months 
as detailed in Section 4.8.5.

The third Tier 1 priority tackles explainability standardization 
for safety-critical predictive maintenance applications. Current 
explainable AI methods including SHAP and LIME provide local 
interpretability but lack formal quality metrics acceptable to 
certification bodies such as TÜV Rheinland, DNV, and BSI 
(Ucar et al., 2024). The objective involves defining quantitative 
XAI quality metrics suitable for IEC 61508 functional safety 
assessments and ISO 13849 safety-related control systems. The 
deliverable consists of a white paper submitted to IEC Technical 
Committee 65 (industrial process measurement and control) 
accompanied by pilot evaluations conducted with three 
certification bodies to validate metric applicability. Success would 
be measured by publication of a draft standard specification within 
18 months and adoption of proposed metrics in at least one 
certification guideline document. The $100,000 budget covers 
standards body membership fees, expert consultation, pilot 
project coordination, and technical documentation development. 
This research addresses the certification barrier identified by 
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Garouani et al. (2022) and Matzka (2020) where black-box AI 
models face regulatory approval challenges in aerospace, nuclear, 
and pharmaceutical manufacturing contexts.

4.10.2 Tier 2 enabler research (12–36 months)
This focuses on infrastructure and tooling that facilitates 

broader PdM deployment across heterogeneous industrial 
environments. The fourth priority establishes an open 
interoperability testbed addressing the integration barriers 
documented in Section 4.8.5, where 40%–60% of implementation 
budgets are consumed by protocol translation and middleware 
development (Arulnithika et al., 2025; Mourtzis et al., 2023). The 
testbed would provide reference implementations for six legacy 
industrial protocols including Modbus RTU, Profibus DP, 
DeviceNet, EtherNet/IP, and two proprietary protocols 
commonly found in manufacturing facilities, alongside 
contemporary OPC-UA unified architecture gateways. The 
deliverable consists of containerized Docker implementations 
enabling reproducible protocol translation testing, accompanied 
by comprehensive performance benchmarking reports 
quantifying latency, throughput, error rates, and resource 
utilization. Success metrics require adoption by at least 
20 industrial sites for integration feasibility studies and validation 
of translation performance within 10% of theoretical limits. The 
$250,000 budget allocation covers industrial protocol licensing fees, 
gateway hardware procurement, software engineering, and field 
validation activities. This testbed addresses the standardization 
gap where only 23% of surveyed facilities have adopted ISO 
13374 condition monitoring standards and 31% use OPC-UA in 
new installations as reported by Mourtzis et al. (2023).

The fifth priority develops a comprehensive edge AI 
benchmark suite addressing computational constraints 
documented in Section 4.8.5 where edge inference latency 
penalties reach 22-fold compared to cloud computing (Peng 
et al., 2021). The objective involves systematic characterization 
of latency, accuracy, and power consumption trade-offs across 
three representative edge computing platforms: NVIDIA Jetson 
AGX Xavier, Google Coral Edge TPU, and Raspberry Pi 4 with 
Neural Compute Stick. The deliverable includes a public 
leaderboard modeled after MLPerf inference benchmarks, pre- 
trained model zoo covering CNN, LSTM, and hybrid 
architectures optimized for predictive maintenance tasks, and 
standardized evaluation protocols. Success would be measured 
through contributions from at least 10 independent research 
groups within 24 months and adoption as a reference 
benchmark in at least five peer-reviewed publications. The 
$180,000 budget covers hardware procurement for all three 
platforms, benchmark infrastructure development, model 
optimization engineering, and community engagement 
activities. This research directly addresses the edge computing 
limitation where battery-powered mobile robots must balance 
model accuracy against 4-h mission durations, forcing trade-offs 
between lightweight MobileNet architectures achieving 92% 
accuracy at 2-W power consumption versus 
ResNet50 architectures achieving 96% accuracy but consuming 
12 W as documented in the edge computing constraints analysis.

The sixth priority advances multi-robot coordination for large- 
scale asset monitoring, particularly relevant for Scenario 3 offshore 

platform deployments described in Section 4.6.2. Current sequential 
robot inspection approaches result in extended mission durations; 
coordinated multi-agent strategies promise 30% inspection time 
reductions through parallel coverage and dynamic task allocation. 
The objective involves developing federated learning algorithms that 
enable model training across heterogeneous robot fleets while 
preserving data privacy, coupled with multi-agent path planning 
algorithms optimized for industrial environments with safety zones 
and human-occupied spaces. The deliverable consists of an 
integrated simulation framework implemented in Gazebo robotic 
simulator with ROS 2 middleware, validated through field trials on 
an offshore platform deployment matching Scenario 3 specifications 
(heterogeneous fleet of two Boston Dynamics Spot robots, one 
climbing inspection robot, and one remotely operated vehicle). 
Success metrics require demonstrating at least 30% inspection 
cycle time reduction compared to sequential robot deployment 
while maintaining equivalent detection accuracy and achieving 
zero safety incidents during validation trials. The 
$400,000 budget covers robotic fleet procurement or rental, 
simulation infrastructure development, offshore deployment 
logistics, and safety certification activities. This research addresses 
the scalability limitation identified in multi-site PdM 
implementations where single-robot approaches face coverage 
and throughput constraints as documented by Mourtzis 
et al. (2023).

4.10.3 Tier 3 moonshot research (24–60 months)
This targets transformative capabilities requiring substantial 

technological maturation and regulatory framework 
development. The seventh priority pursues certifiable 
autonomous maintenance achieving SAE J3016 Level 
4 autonomy for low-risk tasks including bolt torque 
verification, filter element replacement, and lubrication 
replenishment. Current robotic maintenance systems operate 
at Level 2-3 autonomy requiring continuous human supervision; 
advancing to Level 4 enables unattended operation in defined 
domains with human intervention only for exception handling 
(SAE International, 2021). The objective involves developing a 
complete autonomous maintenance system achieving IEC 
61508 Safety Integrity Level 2 certification, suitable for 
deployment in manufacturing environments. The deliverable 
consists of a comprehensive safety case documentation package 
exceeding 500 pages, robotic hardware and software 
implementation, and pilot deployment executing at least 
1,000 autonomous maintenance actions over a 12-month 
operational period. Success requires completing the 
certification process with a recognized functional safety 
authority, achieving zero safety incidents attributed to 
autonomous system errors during the pilot phase, and 
demonstrating at least 25% reduction in mean time to repair 
compared to human-only baseline. The $1.5 million budget 
covers robotic system development, extensive hazard analysis 
and risk assessment activities, certification body fees, 3-year field 
trial operations, and independent safety audit expenses. This 
research addresses the human-robot collaboration frontier 
identified by Asif et al. (2026) and extends beyond current 
remote-operated or supervised-autonomous systems 
documented in existing literature.
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The eighth priority explores quantum-enhanced optimization 
for predictive maintenance scheduling, addressing the NP-hard 
complexity of optimally scheduling maintenance activities across 
dozens of assets with stochastic remaining useful life predictions. 
Classical optimization approaches including mixed-integer 
programming and genetic algorithms exhibit exponential time 
complexity as fleet size increases; quantum annealing offers 
potential polynomial speedups for combinatorial optimization 
problems. The objective involves formulating the multi-asset 
predictive maintenance scheduling problem in quadratic 
unconstrained binary optimization form suitable for quantum 
annealing hardware, implementing the solution on D-Wave 
Advantage quantum processor with 5,000+ qubits, and 
benchmarking performance against classical optimization 
baselines. The deliverable consists of open-source problem 
formulation libraries, quantum algorithm implementations, and 
comprehensive performance evaluation comparing solution 
quality and time-to-solution against simulated annealing, tabu 
search, and commercial MIP solvers. Success metrics require 
demonstrating 15%–20% improvement in schedule efficiency 
quantified as maintenance cost per unit uptime hour, validated 
through simulation studies with at least 50 assets and 20 fault types. 
The $300,000 budget covers quantum computing time rental on 
D-Wave or IBM quantum platforms, algorithm development 
expertise, classical baseline implementation, and extensive 
computational experiments. This research represents the 
quantum computing frontier for industrial AI applications, 
building on theoretical foundations but lacking empirical 
validation in predictive maintenance contexts as documented in 
forward-looking technology assessments (IoT Analytics, 2023).

4.10.4 Openness and Reproducibility 
Requirements

Openness and Reproducibility Requirements apply uniformly 
across all three tiers to maximize research impact and community 
validation. All software deliverables must be released under 
permissive open-source licenses, specifically Apache License 
2.0 or MIT License, enabling commercial and academic reuse 
without restriction. All datasets must be publicly available 
through established repositories including IEEE DataPort, 
Zenodo, or domain-specific archives, with exceptions only for 
proprietary industrial data where anonymized subsets or 
synthetic variants must be provided. All benchmark 
implementations require comprehensive reproducibility 
documentation specifying computational environment 
configurations, random number generator seeds for stochastic 
algorithms, hyper-parameter settings, and dataset preprocessing 
steps following emerging standards from organizations including 
Papers with Code and ML Reproducibility Challenge. All research 
outputs must be disseminated through preprint servers, specifically 
arXiv or TechRxiv, within 6 months of project completion and prior 
to or concurrent with journal submission, ensuring immediate 
community access independent of publication review timelines.

Funding Strategy and Resource Mobilization aligns research 
tiers with appropriate funding mechanisms based on technology 
readiness level and commercialization potential. Tier 1 critical path 
research targeting technology readiness levels 3–4 (proof of concept 
to laboratory validation) aligns with government research agency 

programs including National Science Foundation Civil, Mechanical 
and Manufacturing Innovation Division, Department of Energy 
Advanced Research Projects Agency-Energy, and National 
Institute of Standards and Technology Manufacturing Extension 
Partnership.

Tier 2 enabler research advancing technology readiness to levels 
5–6 (relevant environment validation) suits industry consortium 
funding models including Manufacturing USA institutes, pre- 
competitive research partnerships, and cost-shared cooperative 
agreements between federal agencies and industrial partners.

Tier 3 moonshot research pursuing technology readiness levels 
6–8 (prototype demonstration to operational system) requires 
sustained public-private partnerships through programs including 
Defense Advanced Research Projects Agency, European Union 
Horizon Europe Framework, and corporate venture capital from 
manufacturing technology leaders. The total research portfolio 
investment of $2.98 million distributed across eight prioritized 
objectives represents approximately 0.015% of the $20 billion 
global predictive maintenance market projected by IoT Analytics 
(2023), indicating feasibility for coordinated multi-stakeholder 
funding approaches.

5 Conclusion and future work

This study systematically reviews the literature on the 
application of AI and robotics in PdM, including their roles and 
intersection and develops a conceptual framework for the AI-robotic 
integration.

5.1 Conclusion

One of the pillars of Industry 4.0 is predictive maintenance, 
since predictive maintenance, enabled by AI, enables 
organizations to be more efficient, minimize downtimes, and 
experience greater reliability. Machine learning, high-tech 
sensors, and IoT systems are harmonized to enable the 
transition to an intelligent, proactive approach to maintenance 
instead of the reactive one. In order to be successful in the future, 
one has to pay attention to interpretability, interoperability, and 
economic validation and anticipate the implementation of new 
technologies in the world of quantum computing, explainable AI, 
and autonomous maintenance ecosystems. AI and robotics are 
reshaping predictive maintenance from preventive, periodic, or 
reactive maintenance practices to a culture of continuous, data- 
driven maintenance and increasingly automated systems. The 
literature shows a steady advance in AI algorithms, sensor 
fusion, and robotic inspection, but full-scale autonomous 
intervention and operationalized, trustworthy PdM remain a 
potential area for research. The integration of an AI-robotic 
system for PdM will require the availability of robust dataset 
explainability, integration with legacy systems, and cybersecurity, 
while human factors will be necessary to fully harness the 
potential of AI-enabled robotic PdM in the manufacturing and 
service industries. It is recommended that the developed AI- 
robotic framework be validated by deploying it in a cyber- 
physical environment for PdM.
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5.2 Future research directions

Potential research directions are:

i. Hybrid Modelling: Integration of physics-based and data- 
driven modelling.

ii. Federated Learning Frameworks: Privacy-preserving, 
collaborative PdM development.

iii. Quantum-Enhanced Optimization: Application to resource 
allocation and scheduling.

iv. Autonomous Maintenance Systems: Adding robotics and self- 
healing systems to complete automation.

v. Application of XAI and transfer learning in PdM.

5.3 Practical implications

To industrial practitioners and researchers, this review 
points out:

i. Technology Selection: Comparative algorithm and sensor 
performance benchmarks guide deployment.

ii. Implementation Roadmaps: Frameworks to overcome 
barriers in data quality, integration, and workforce training.

iii. Performance Benchmarking: Well-defined metrics to 
determine PdM efficacy and ROI.

iv. Future-Readiness: Technology maturity mapping to aid 
planning for next-generation PdM solutions.
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