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The integration of artificial intelligence (Al) and robotics into predictive
maintenance (PdM) systems has brought about a fundamental change in the
operations of the industries since it has left behind the previous method of
reactive and scheduled maintenance models in favor of proactive and data-
driven models. The current systematic review of literature (2015-2025) is aimed at
the development of PdM, in which Al techniques, machine learning, sensor
technology, and the incorporation of robotics contribute to more efficient
systems and address the difficulties in their implementation and implications
for the future of industries. The findings show that the support vector machines
and neural networks with supervised learning algorithms are very accurate in fault
classification and the remaining useful life prediction. On the other hand, the
methods of unsupervised learning can be applied in the detection of anomalies in
cases where a limited quantity of labelled data exists. Examples of deep learning
architectures that are more effective in processing more complex sensor data, as
well as time-series patterns, include convolutional neural networks (CNNs) and
long short-term memory (LSTM) networks. Moreover, sensor systems that are
already linked to the loT provide the ability to monitor in real time, and this
significantly improves fault detection. The Al-based PdM systems in combination
are highly rewarded with reduced downtime, longer equipment life, and
enhanced maintenance scheduling. There are still, however, concerns about
data quality, computation loads, and implementation cost that remain a major
barrier to common usage. The future of Al should be on explainable Al, hybrid
modelling techniques, and enhanced sensor technology to render Al scalable,
interpretable, and more industry-applicable.
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1 Introduction

Predictive maintenance (PdM) has now become one of the
bedrocks of Industry 4.0 technology for enhancing equipment
reliability, availability and extended useful life. This technique
leverages condition monitoring, data analytics, and prognostics to
predict failures so that schedule maintenance operations can be
effectively scheduled before a costly breakdown (Ucar et al., 2024).
Traditionally maintenance operation is driven by human experience
or preventive strategies such as oil or vibration analysis, routine or
periodic inspections. This sometimes prove ineffective, inaccurate,
costly and may lead to expensive machine breakdown. The advent of
PdM allows the use of algorithms for data analytics in order to
determine the time to maintenance (Daniyan et al., 2020; Daniyan
et al,, 2021). PAM is useful in cost-effective maintenance solution
that enables operators take a proactive approach before equipment
breakdown. Furthermore, the modern industrial environment
principally driven by data requires more advanced maintenance
plans because of the growing complexity of the manufacturing
systems. The rise in the costs of operation, and the urgent
necessity to maintain production in an uninterrupted state
necessitate a reliable techniques for machine diagnostics and
prognostics operations (Daniyan et al, 2020). Conventional
methods of maintenance, such as reactive (run-to-failure) and
preventive (scheduled) maintenance, can no longer cope with the
trends Hence, to avoid

manufacturing and complexities.

unwarranted downtime, over-maintenance, or unexpected
failures, which can be both costly in terms of financial loss and
safety issues, there is a need for a data-driven maintenance technique
such as PdM.

Artificial intelligence (AI) and robotics are also technologies that
have gained traction in Industry 4.0, enabling automated, data-
driven diagnostics and prognostics, as well as intervention
2006; Schwabacher 2007;

Sikorska et al, 2011). The high rate of development of robotics

(Vachtsevanos et al, and Goebel,
and artificial intelligence systems has generated significant changes
in industrial processes and has a direct effect on predictive
maintenance systems. While AI finds various applications in
smart manufacturing such as predictive analytics (Daniyan et al.,
2022), robotics automation makes operations more productive in
the workplaces where automated activities are needed, and also
reduces the danger to workers on their safety and allows permanent
operation (Pookkuttath et al, 2021). Such convergence of
technologies is a paradigm shift from the old ways of
maintenance to smart, data-driven mechanisms that are capable
of predicting and avoiding equipment failures before they happen.
Predictive maintenance now substitutes the old reactive and
planned approaches to maintenance through instantaneous data
analysis, computational learning, and advanced sensor technologies.
The use of AI allows industries to predict the failure of the
equipment in advance, construct more effective maintenance
plans and minimize the downtime of the operating equipment,
and increase its service life (Kamel, 2022; Mourtzis et al., 2023).
PdM leverages Al to detect anomalies and predict remaining
useful life (RUL) of an equipment, while robotics offers an
automated sensing and intervention especially in an hazardous or
difficult-to-reach locations. The convergence of Al, robotics, and
other Industry 4.0 technologies such as the smart sensor, Internet-
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of-Things (IoT) and digital twin promises a fully integrated
maintenance loop whereby there is a culture of continuous data
collection, analytics, monitoring, prediction and automated
intervention or human-supervised action.

Many studies have reported on the suitability of AI for predictive
analytics and PdM operations (Zenisek et al., 2019; Kumar and Hati,
2021; Shah, et al., 2021; Betz et al., 2022; Bouabdallaoui et al., 2021).
For instance, machine and deep learning have been applied for
intelligent fault diagnosis (Duan et al., 2018; Li et al., 2020; Zhou
et al, 2022) and Al-models have been employed for prognostic
operations (Daniyan et al., 2020; Daniyan et al., 2023; Kamariotis
et al,, 2024). Raouf et al. (2023) reported on the use of transfer
learning; an emerging Al technique for fault diagnosis while Adam
et al. (2023) found that the deep learning can be utilized for
diagnosing multiple faults in an equipment or system. Yin et al.
(2023) reported on transfer network for fault diagnosis while some
authors have explored the emerging field of explainable AI for
predictive analytics and maintenance as well as in smart
manufacturing (Matzka, 2020; Hrnjica and Softic, 2020; Garouani
et al, 2022). In the field of intelligent manufacturing, Yan et al.
(2023) as well as Liu et al. (2021) have demonstrated the application
of Al for predictive maintenance.

The use of robots for maintenance operations has also been
reported. For instance, Daniyan et al. (2023) reported on the design
of robot for inspecting and diagnosis of rail track defects while the
use of robots for pipeline defects assessment and detection has been
reported (Nguyen et al., 2025; Daniyan et al., 2022). Mitrevski and
Ploger (2019) reported on a data-driven robotic system for
diagnostics operation and fault identification while the use of Al
systems and models for troubleshooting robots to identify faults and
anomaly have been reported (Chen et al., 2020; Hong, et al., 2020).

However, the integration of Al and robotic systems for PdM is
still an emerging field of research with a view to integrate data
analytics and predictive capabilities of AI models with autonomous
intervention of robotic systems.

Hence, the following are the research questions underlying
this study:

1. What are the AI
employed for PAM?
2. What robotic capabilities support the implementation of PAM

methods and data modalities

for maintenance operations such as inspection, and repair, etc.?
3. How can the integration of AI and robotics be achieved?
4. What are the current limitations and adoption hindering the
deployment of Al and robotics for PAM and what are the
future trends?

This literature review provides in-depth study of the history of
predictive maintenance, focusing on how AI and robotics can make
predictive maintenance more effective, how adoption issues can be
mitigated, and the future possible future trends. The paper also uses
the latest studies to offer a profound understanding of the influence
of Al-controlled robots on predictive maintenance within the
different
manufacturing, aerospace, automotive, and energy industries. It

commercial environment in sectors such as
synthesizes the findings of studies on the intersection and
integration of AI and robotics for predictive maintenance,

highlighting the techniques employed, data and algorithmic
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trends, robotic roles, integration architectures, evaluation metrics,
deployment challenges and limitations, as well as future research
opportunities.

This study is significant in that it contributes to the
understanding how AI and robotics are deployed in PdM. It also
contributes a conceptual model for ai-robot integration for
predictive maintenance. The synthesis of literature provides
multidisciplinary knowledge on the diagnostics and prognostics
capability of AI and robotic inspection and intervention, thus,
providing a consolidated reference for researchers, practitioners,
and policymakers.

From the theoretical perspective, this study advances the
conceptual understanding of a form of cyber-physical predictive
maintenance ecosystems, where data-driven intelligence and
autonomous systems operate synergistically thereby bridging the
research domains of Al-based diagnostics and robotic automation.
In maintenance engineering, it provides a unified framework that
that provides insights into how AI powered robotic systems can
process sensory data and execute maintenance tasks predicted by Al
models (Ucar et al., 2024).

Furthermore, the literature synthesis identifies the research gaps
such as explainable AI, transfer learning, and human-robot
collaboration in the context of PdM (Dereci et al, 2024;
Asif et al, 2026). These insights support future work in the
development of an adaptive, reliable, responsive and human-
centered PAM models, thus, contributing to the broader field of
Industry 4.0 and 5.0, which focuses on sustainability and
human-machine synergy (Aheleroff et al., 2022).

The outcome of this study provide useful insights that can assist
industrial maintenance engineers and operations managers, robotics
developers and Al researchers, manufacturing and infrastructure
organisations, policymakers and regulators, academia and training
institutions, in the quest for the development of AI-powered robotic
system for PAM.

1.1 Related systematic reviews and
positioning

To position this work within the existing body of knowledge, we
review recent comprehensive surveys on Al-driven predictive
maintenance and highlight our distinct contribution.

Campos et al. (2024) conducted a scoping review screening
machine learning techniques specifically for predictive maintenance
applications. Their study systematically evaluated 87 papers
published  between  2018-2023, focusing on
performance metrics across rotating machinery,

algorithm

focusing
primarily on supervised learning methods (SVM, Random Forest,
Neural Networks). They reported accuracy ranges of 85%-94% for
classification tasks and highlighted the dominance of vibration-
based sensing (Campos et al., 2024). Their key findings emphasized
preprocessing importance, the prevalence of benchmark datasets
(NASA C-MAPSS, CWRU bearing data), and identified gaps in
cross-domain generalization.

Carvalho et al. (2019) provided an earlier comprehensive
systematic literature review of machine learning methods in
predictive maintenance, analyzing 127 studies from 2005 to 2018.
They established foundational taxonomies of ML algorithms
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(supervised, unsupervised, semi-supervised) and reported
performance benchmarks that have become widely cited baseline
references. Their work documented the transition from traditional
statistical methods to deep learning approaches but did not address
robotics integration or autonomous inspection systems.
Dalzochio et al. (2020) examined machine learning and
reasoning for predictive maintenance in Industry 4.0, analyzing
123 papers with emphasis on data quality challenges, integration
barriers, and implementation case studies across manufacturing
They identified cost,

interpretability, and scalability as primary adoption barriers,

sectors. computational model
themes that remain relevant but required updating with post-
2020 developments in edge computing and explainable Al

Zonta et al. (2020) conducted a systematic review of 187 studies on
predictive maintenance in Industry 4.0, providing comprehensive
coverage of IoT integration, cyber-physical systems, and digital twin
applications. Their methodology section established rigorous
PRISMA-compliant protocols that have influenced subsequent
reviews. However, their robotics coverage was limited to brief
mentions of automated inspection without detailed analysis of
robotic capabilities or human-robot collaboration models.

Serradilla et al. (2022) specifically reviewed deep learning models
for predictive maintenance, comparing 156 papers on CNN, LSTM,
GAN, and hybrid They provided detailed

performance comparisons (accuracy, precision, recall, F1-scores)

architectures.

across different network topologies and identified dataset size
requirements for reliable training. Their work highlighted the
interpretability-accuracy trade-off but did not address robotic
deployment contexts.

Achouch et al. (2022) analyzed 142 studies on predictive
maintenance in Industry 4.0, with strong emphasis on IoT sensor
integration, wireless networks, and edge computing architectures.
They documented implementation challenges related to data
transmission, sensor reliability, and energy constraints in wireless
systems. Their robotics discussion was limited to mentions of
automated guided vehicles (AGVs) without detailed capability analysis.

Recent domain-specific studies and reviews have addressed
predictive maintenance in particular sectors:Bouabdallaoui et al.
(2021) in construction/building facilities, Davari et al. (2021) for
railway systems (57 studies), Bekar et al. (2020) for aerospace
(43 studies), and Chen et al. (2023) for civil infrastructure
(89 studies). These provide valuable sector-specific insights but
lack cross-domain synthesis and robotics integration frameworks.

1.2 Differentiation of current work
The present review distinguishes itself through:

1. Dual AI-Robotics Focus: While prior reviews comprehensively
cover AI/ML algorithms (Campos et al., 2024; Serradilla et al.,
2022), they treat robotics peripherally. We provide equal

depth to

manipulation

analytical robotic  inspection  capabilities,

systems, and human-robot collaboration
models, supported by a formal robotics taxonomy (Section
3.11) absent in previous surveys.

2. Integration Architecture: We develop a validated conceptual
framework (Section 4.6; Figure 2) for Al-robotic integration
with explicit data flows, decision thresholds, and uncertainty

propagation mechanisms. Prior reviews describe AT and robotics
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separately; we synthesize their operational integration with
quantified performance metrics and failure modes.
3. Systematic Robotics Taxonomy: Section 3.11 introduces a three-
classification  (Mobility
Autonomy) with TRL assessments, safety protocols, and

dimensional Manipulation X
validation metrics—components not systematically addressed
in prior literature.

4. Additive Manufacturing Integration: Section 2.5 examines
AM’s role in closed-loop predictive maintenance (spare-
parts fabrication, in-situ repair), a nexus under-explored in
existing reviews despite growing industrial relevance (Maware
et al., 2024).

5. Updated Empirical Evidence: We incorporate 28 studies
published in 2023-2025 (33% of corpus) capturing recent
developments in explainable AI, federated learning, and
edge deployment that post-date the 2022 reviews.

6. Methodological Rigor Enhancement: We implement reviewer-
recommended PRISMA extensions (database-specific search
strings, inter-rater reliability protocols, risk-of-bias assessment
following ROBIS framework) that exceed the methodological
detail of prior surveys (see Section 2.1.1, Section 2.1.2,
Section 2.1.3).

7. Conflicting Findings Analysis: Section 4.8 explicitly addresses
contradictory results in transfer learning efficacy (Raouf et al.,
2023 vs. Yin et al, 2023) and sensor modality performance
(Xue et al., 2025 vs. Vlasov et al., 2018)—reconciliations absent
in prior reviews.

8. Socio-Technical Dimensions: Section 4.9 examines ethical

(with

employment projections from Achouch et al, 2022 vs;

implications, ~workforce impacts contradictory
Mourtzis et al, 2023), and accountability frameworks for
Al-robotic systems, topics peripherally covered in technical-

focused prior reviews.

Overlapping Foundations Acknowledged: Core ML algorithm
prevalence (ANN/SVM dominance), preprocessing importance,
and vibration sensor prominence documented by Campos et al.
(2024) and Carvalho et al. (2019) are confirmed by our analysis.
We cite these established findings appropriately and focus our
original contribution on the robotics-Al integration nexus,
operational validation frameworks, and updated post-2022
evidence synthesis.

This positioning clarifies that while we build upon foundational
ML surveys, our distinct value lies in systematic robotics integration
analysis, formal architectural frameworks, and synthesis of the AI-
robotic convergence in PdM; a gap in existing literature identified
through this comparative review of related works.

2 Methodology

The literature analysis was systematic in identifying, evaluating,
and synthesizing the relevant studies in the domain of AI and robot
applications in predictive maintenance. Systematic literature review
could also lead to the identification of trends, gaps and emerging
themes (Maware et al., 2024; Tranfield et al., 2003). The method of
the research involved the principles and regulations of carrying out
extensive literature reviews in accordance with the Preferred
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Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) PRISMA guideline.

2.1 Search strategy

A comprehensive search was carried out in some academic
databases like IEEE Xplore, ScienceDirect, Springer Link, Google
Scholar, Scopus, ACM Digital Library and Web of Science for peer-
reviewed articles and high-quality conference papers for a period of
10 years (2015-2025). The search employs keywords such as
“predictive maintenance,” “Artificial intelligence” “prognostics
and health management,” “RUL” “diagnostics and prognostics”
“remaining useful life,” “machine learning,” “deep learning,”
“robotics,” “autonomous inspection,” and “digital twin.” The
search was performed with the help of the Boolean operators and
with the years of publication between 2015 and 2025 to retrieve
current and relevant literature in the field.

The search terms with the aid of the Boolean operator included:

I. “Predictive maintenance” AND (“artificial intelligence” OR
“machine learning”)
II. “Robotics” AND
“Industry 4.0”)
II. “Anomaly detection” AND “industrial equipment”

“maintenance” AND (“IoT” OR

IV. “Deep learning” AND “condition monitoring”
V. “Sensor fusion” AND “predictive analytics”

2.1.1 Detailed search protocol

The systematic search was conducted between January 15-28,
2025, across seven academic databases. The complete search strings
employed were:

IEEE Xplore:

(“predictive maintenance” OR “condition-based maintenance”
OR “prognostics”) AND (“artificial intelligence” OR “machine
learning” OR “deep learning”) AND (robot OR autonom)

Filters: 2015-2025, English, Conference + Journal

Results: 342 documents

ScienceDirect:

TITLE-ABSTR-KEY((“predictive maintenance” OR “PdM”)
AND (“AI” OR “machine learning”) AND (“sensor” OR “IoT”))

Filters: 2015-2025, Engineering, Computer Science

Results: 456 documents

Scopus:

TITLE-ABS-KEY((“predictive maintenance”) AND (“artificial
intelligence”  OR network”)  AND  (“industr”
OR “manufact”))

Filters: 2015-2025, English, Article OR Conference Paper.

Results: 389 documents

Web of Science:

TS=(“predictive maintenance” AND (“machine learning” OR

“neural

“deep learning”) AND (“fault detection” OR “anomaly detection”))
Filters: 2015-2025, English
Results: 267 documents
Google Scholar:
“predictive maintenance” “artificial intelligence” OR “robotics”
“Industry 4.0”-patent.
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TABLE 1 Database-specific search yields and selection process.

10.3389/fmech.2025.1722114

Database Initial After Title/Abstract Full-text Final
retrieval deduplication screening assessment inclusion

IEEE Xplore 342 298 187 156 23
ScienceDirect 456 401 245 198 19
Scopus 389 312 201 167 18
Web of Science 267 223 148 119 12
Google Scholar 183 156 98 76 7
ACM Digthe ital Library 89 78 52 41 4
Springer Link 138 115 73 58 2
TOTAL 1,864 1,583 1,004 815 85

Search conducted: First 200 results screened

Results: 183 relevant documents

ACM Digital Library:

[Title: “predictive maintenance”] OR [Abstract: “predictive
maintenance”] AND [Anywhere: “machine learning” OR “AI”]

Filters: 2015-2025

Results: 89 documents

Springer Link:

“predictive maintenance” AND (“AI” OR “robotics”) AND
(“sensor” OR “RUL”)

Filters: 2015-2025, Computer Science, Engineering.

Results: 138 documents

Total Initial Retrieval: 1,864 documents

Inter-Rater Reliability Protocol:

Two independent reviewers (Authors LD and RM) screened all
titles and abstracts using predefined inclusion/exclusion criteria.
Disagreements were resolved through discussion, with a third
reviewer (Author TA) consulted for unresolved cases (n = 23,
1.4% of screened articles). Inter-rater agreement was quantified
using Cohen’s kappa:

i. Title/Abstract screening: k = 0.87 (95% CIL: 0.84-0.90),

indicating strong agreement
ii. Full-text eligibility: k = 0.91 (95% CI: 0.88-0.94), indicating

very strong agreement

Data Extraction Codebook:
A standardized extraction form was captured:

1. Bibliographic Data: Authors, year, journal/conference, DOI

2. Study Design: Experimental/case study/simulation/theoretical,
sample size, validation method

3. A/ML Components: Algorithm type, training data size,
performance metrics (accuracy, precision, recall, F1, RMSE,
MAE), computational requirements

4. Sensor Modalities: Types (vibration, temperature, acoustic,
etc.), sampling rates, data preprocessing methods

5. Robotic Systems: Robot type (mobile/fixed/aerial/aquatic),
manipulation capability,

autonomy level, deployment

environment

Frontiers in Mechanical Engineering

6. Performance Outcomes: Downtime reduction (%), cost savings
(%), RUL prediction error (%), detection sensitivity/specificity

7. Implementation Context: Industry sector, equipment type,
deployment scale (lab/pilot/production)

8. Challenges Reported: Data quality issues, computational
constraints, integration barriers

9. Validation Rigor: Dataset origin (public benchmark/
proprietary), train-test split, cross-validation strategy,
external validation

Dual extraction was performed on 20% random sample (n =
17 studies) with a discrepancy rate of 3.2%, resolved through
consensus discussions. Table 1 presents the database-specific
search yields and selection process.

2.1.2 Quality assessment protocol

Study quality was assessed using the Mixed Methods Appraisal
Tool (MMAT) version 2018 (Hong et al, 2018), adapted for
technology reviews. Each study was evaluated on five criteria:

1. Methodological rigor: Clear research design, appropriate
methods (Score: 0-2)

2. Data quality: Sample size adequacy, data collection methods
(Score: 0-2)

3. Analysis appropriateness: Statistical or analytical methods
justified (Score: 0-2)

4. Results clarity: Findings clearly presented with evidence
(Score: 0-2)

5. Relevance to PdM: Direct contribution to predictive
maintenance field (Score: 0-2)

Quality Score Interpretation:
i. High Quality: 810 points (n = 52 studies, 61%)
ii. Moderate Quality: 57 points (n = 28 studies, 33%)
iii. Low Quality: 04 points (n = 5 studies, 6% excluded

from synthesis)

Studies scoring below 5 were excluded from thematic synthesis
but documented in the selection process.
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2.1.3 Risk of bias assessment

Risk of bias was assessed following the ROBIS (Risk of Bias in
Systematic reviews) framework across four domains (Whiting et al.,
2016). This systematic approach to bias assessment ensures that our
review findings are reliable and not unduly influenced by
methodological weaknesses.

The first domain evaluated study eligibility criteria. We assessed
whether our inclusion and exclusion criteria were clearly defined,
consistently applied, and appropriate for the review objectives. Our
assessment concluded that concern for bias in this domain was low,
as we established clear criteria and applied them uniformly across all
candidate studies.

The second domain examined identification and selection of
studies. This domain assesses whether the search strategy was
comprehensive and whether study selection processes were
rigorous and transparent. We rated concern as low in this domain
because our systematic search across seven major databases combined
with dual screening by independent reviewers minimized the risk of
missing relevant studies or introducing selection bias.

The third domain focused on data collection and study
appraisal. We evaluated whether data extraction processes were
standardized and whether study quality was appropriately assessed.
Our use of standardized extraction forms and dual extraction for a
20% random sample of studies ensured consistency and accuracy.
Therefore, we assessed concern for bias in this domain as low.

The fourth domain examined synthesis and findings,
considering whether synthesis methods were appropriate given
the heterogeneity of included studies and whether conclusions
were supported by the evidence. We rated concern in this
domain as medium because the considerable heterogeneity in
reported metrics, study designs, and industrial contexts
necessitated a narrative synthesis approach rather than formal
meta-analysis. While this approach is appropriate for the
evidence base, it introduces some subjectivity in interpretation
that warrants acknowledging moderate concern.

To address potential publication bias, we recognize that positive
results in AT and machine learning applications may be overrepresented
in published literature. We attempted to mitigate this through several
strategies. First, we included grey literature by incorporating conference
proceedings alongside journal articles. Second, we imposed no language
restrictions beyond English language reporting, which most
international scientific literature provides. Third, we actively sought
and included studies reporting negative or null results, identifying seven
such studies that provided valuable insights about implementation
failures and algorithmic limitations. Fourth, while formal funnel plot
analysis was not applicable given our narrative synthesis design, we
remained cognizant throughout the analysis that reported performance
metrics might represent upper bounds rather than typical performance.

2.2 Inclusion and exclusion criteria

The following are the inclusion criteria (1) Peer-reviewed
journal articles and conference proceedings (2) Studies focusing
on AI/ML applications in predictive maintenance (3) Research on
robotics integration in maintenance systems (4) Publications in the
English language (5) Studies with clear methodology and results.
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The exclusion criteria include the following (1) Non-peer-
Studies
predictive maintenance (3) Publications older than 2015 (except

reviewed publications (2) not directly related to
seminal works) (4) Duplicate publications.

Reviews of articles, empirical studies, and case studies that focused
on manufacturing, energy, transport, and robotics, etc. were selected
for review. After title/abstract screening and implementation of the
inclusion and exclusion criteria, 1,764 initial articles retrieved from the
academic databases were pruned down to 85 full-text studies, which
were thematically synthesized to extract methods, AI techniques,
robotic functionalities, architectures, datasets, metrics, performance,
challenges, and future trends.

Figure 1 shows the PRISMA diagram, which details on the
article selection process.

2.3 Data extraction and analysis

Data mining was concentrated on the extraction of the main
information, such as the aims of the study, the methods used, AI/ML
approaches to the topic, practical uses, performance indicators,
challenges, and recommendations. The data that were extracted
were categorized into thematic categories to be analyzed
comprehensively.

2.4 Aggregation methodology

Given heterogeneity across 85 studies, formal meta-analysis was
infeasible; we employed structured narrative synthesis with
quantitative aggregation where appropriate (Tranfield et al., 2003).

Step 1: Metric standardization converted to common scales
(percentage accuracy, normalized RMSE), excluding
qualitative-only studies.

Step 2: Grouping by task type (classification vs. RUL vs. anomaly
detection), equipment type (bearings, motors, turbines),
and dataset characteristics (lab vs. field).

Step 3: Aggregation method

For homogeneous clusters (>5 studies, same task/equipment/
metric), we calculated weighted means by sample size, reported min-
max ranges, and computed 2

Example. SVM accuracy aggregated from 12 bearing fault studies,
weighted mean 89.7%, range 85%-95%, I* = 52% indicating
moderate heterogeneity from noise levels and class imbalance.

For heterogeneous clusters, we reported ranges without
averaging and described variability narratively.

Step 4: Confidence assignment
i. HIGH (>10 studies, I*’<50%)
ii. MODERATE (5-9 studies, 1°50%-75%)
ili. LOW (<5 studies or I’>75%, flagged as tentative).

Conflicting results handling: Both results presented with context
(Xue et al., 2025 vibration superior in controlled labs; Vlasov et al.,
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FIGURE 1
PRISMA diagram.

2018 acoustic superior in noisy fields; synthesis: sensor selection is
context-dependent).
Limitations acknowledged:

i. Publication bias toward positive results
ii. Evaluation protocol variability (different train/test splits,
cross-validation strategies)
ifi. Dataset diversity (benchmark NASA C-MAPSS may not
generalize to proprietary data)
iv. Temporal effects (2015-2018 studies may underestimate
current capabilities)

2.5 Integration of additive manufacturing
with Al-Driven predictive maintenance

The design freedom offered by Additive Manufacturing (AM)

enables it to support Al-driven Predictive Maintenance
(Thompson et al., 2016). For example, AM can produce
customized jigs and fixtures for accessing difficult-to-reach
areas and for demanding maintenance tasks (Wits et al., 2016).
Also, the use of AM can allow to produce intelligent components

with embedded sensors to monitor equipment conditions, thereby

Frontiers in Mechanical Engineering

providing data needed for
(Munasinghe, 2021).
AM enhances predictive-maintenance workflows by enabling

developing AI  algorithms

on-demand fabrication of replacement parts and customized tooling
within AI-robotic maintenance loops. If replacement parts become
obsolete, AM provides a solution by digital recreation on site
(Vorkapi¢ et al, 2023; Abhilash and Ahmed, 2023). When
coupled with machine-learning prognostics and robotic repair
systems, AM allows a closed maintenance cycle in which faults
are predicted, parts are printed (Gibson et al., 2021) and robots
execute installation with minimal human intervention (Maware
et al.,, 2024; Rahman et al., 2023).

In industrial settings, AM shortens lead time for critical spares
and reduces inventory costs by 40%-60% compared with
(Wohlers, 2024).
energy sectors now employ predictive spare-parts scheduling
where AI models forecast component end-of-life and
automatically queue AM production jobs (GE Aviation, 2024).

traditional procurement Aerospace and

This digital-inventory concept replaces physical warehouses with
CAD-file repositories and raw-material stock, enabling parts to be
produced only when required.

Robotic integration further extends AM capability to in-situ
maintenance. Multi-axis robots equipped with directed-energy-
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TABLE 2 Evolution timeline of predictive maintenance technologies.

10.3389/fmech.2025.1722114

Period Technology focus Key developments Limitations Representative
references
1990s Digital diagnostics Early vibration-based condition monitoring and rule- Manual interpretation; few Ran et al. (2019)
based expert systems sensors
2000s Statistical methods Regression, ARIMA, and classical ML (SVM, decision Limited processing power; Carvalho et al. (2019)
trees) for equipment health reactive deployment
2010s ToT integration Cloud platforms, sensor networks, and big-data Data-quality issues; Achouch et al. (2022)
analytics for real-time monitoring interoperability gaps
2020s AI/ML integration Deep learning, digital-twin modeling, and edge Computational cost; Mourtzis et al. (2023); Shaheen and
computing for prognostics explainability Németh (2022)
Future Autonomous and cognitive Explainable Al, self-healing, and quantum Technology maturity; standards IoT Analytics (2023)
systems optimization concepts evolution

deposition heads perform localized metal repair on structures such
as turbine blades and pipeline sections, eliminating costly
disassembly and logistics delays (Lopes de Aquino Brasil et al,
2025). Real-time process monitoring using convolutional-neural-
network vision ensures printed components meet dimensional and
metallurgical specifications, achieving up to 97% defect-detection
accuracy during build (Khanzadeh et al., 2019).

Al can be used to identify failures, while AM allows rapid iteration
of possible designs to overcome the failure (Rahito et al,, 2019). This
can be achieved through quick production and testing of Al-generated
designs (Fu et al, 2023; Nafea, 2025). Furthermore, AM allows
predictive design improvements such as topology-optimized parts
with reduced stress and material combinations that enhance the
durability of equipment (Hamza et al., 2025).

Despite these advantages, material-property variability and
certification latency remain obstacles to large-scale adoption
(Malakizadi et al., 2022). Ongoing research focuses on integrating
digital-twin models that link sensor data, AI prognostics, and AM
production planning to create verifiable, traceable maintenance
actions within Industry 4.0 infrastructures.

3 Results

This
literature synthesis.

section presents the outcomes derived from the

3.1 Predictive maintenance
strategy evolution

3.1.1 Historical development

The use of existing data and analytics in predicting equipment
breakdowns is a characteristic that separates Predictive Maintenance
(PdM) from conventional maintenance programs, reduces the
length of machine downtimes, and enhances maintenance
planning. The existing industrial setting is challenging both in
terms of preventative and corrective maintenance approaches due
to the unplanned downtimes that result in significant expenses
(Zonta et al., 2020).

The initial phases of condition-based maintenance (CBM)
operated by digital diagnostics to detect faults early in the 1990s
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(Ran et al,, 2019). Since it was first developed several years ago, PAM
has been developed to consider IoT devices and sophisticated data
analytics and machine learning techniques to execute equipment
malfunction predictions and preventions (Achouch et al., 2022;
Nunes et al., 2023).

Table 2 presents the evolution timeline of predictive
maintenance technologies.

Timeline synthesized from peer-reviewed historical and review
papers: Carvalho et al. (2019) Computers & Industrial Engineering;
Achouch et al. (2022) Applied Sciences; Mourtzis et al. (2023)
Electronics; Shaheen and Németh (2022) Processes; and the IoT
Analytics Predictive-Maintenance Market Report (2023). Dates and
developments correspond to consensus milestones identified across
these reviews.

3.1.2 Industry 4.0 integration

With Industry 4.0, intelligent systems emerged, integrating both
IoT and Al and enabling real-time monitoring of the condition of
assets and enhanced PdM strategies (Canito et al., 2022; Sahli et al,,
2021). PAM systems are based on cyber-physical system (CPS)
integration and AI methods and applications, in particular,
machine learning, to estimate the remaining useful life precisely
and optimize maintenance intervals as recommended by Giunta
et al. (2020) and Hashemian (2011).

PdM has transformed the maintenance practice in the
aerospace, automotive, and manufacturing The
current technology solutions within the PAM systems lengthen

industries.

the lifespan of equipment and minimize unexpected failures of
assets (Selcuk, 2016; Lughofer and Sayed Mouchaweh, 2019).
Tiddens et al. (2020) affirm the importance of PdM in the
manufacturing sector, as it has intelligent systems that identify
defects as they occur, but produce decisions based on the
gathered data to avoid any form of disruption during the
production process.

The emerging trends Industry 4.0 transcends PdM capability to
intelligent prognostics and e-maintenance (Lee et al., 2023; Lee
et al., 2006).

3.1.3 Implementation challenges

PdM technology encounters several challenges, even though it
has operational advantages. Nunes et al. (2023) and Sakib and Wuest
(2018) find the implementation of PAM challenging because of the

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1722114

Azeta et al. 10.3389/fmech.2025.1722114

TABLE 3 Performance comparison of machine learning techniques.

Algorithm Dataset

Study ID

Task type Split strategy Accuracy/

Susto-2015

Semiconductor
manufacturing
(proprietary)

Fault classification

70/30 train-test

Metric

89.3% accuracy

Class imbalance
addressed via SMOTE

Carvalho-2019-Meta

Fernéndez-Francos
et al. (2013)

Aggregate of 12 bearing
studies

CWRU Bearing Data

Fault classification

Multi-class fault

Varies by study

5-fold CV

85%-94% range
(weighted mean 89.7%)

91.2% accuracy

Heterogeneity I* = 52%
(moderate)

Feature importance
analysis included

Susto-2015

Peng et al. (2021)

Semiconductor
(proprietary)

NASA C-MAPSS FD001

Anomaly
detection

RUL regression

60/40 train-test

80/20 train-test

86.8% accuracy

RMSE = 18.3
(normalized)

Ensemble of 100 trees

3-layer feedforward,
dropout 0.3

Ferndndez-Francos
et al. (2013)

Motor current signatures

Fault classification

70/30 train-test

93.5% accuracy

Compared against
SVM (89.1%)

Chen-2023 Bridge sensor network = Damage detection Time-series split 95.2% accuracy, 6-layer architecture,
(field data) AUC =097 early stopping

Tagcr et al. (2023) Turbofan engines RUL prediction Sliding window CV RMSE = 14.7, R* = 0.91 | Outperformed LSTM
(NASA) (RMSE = 16.2)

Fan-2018 Industrial compressor Anomaly Unlabelled data, post 78.4% detection rate 15.3% false positive rate
(proprietary) detection hoc validation (upon labelling)
Givnan et al. (2022) Wind turbine SCADA Anomaly 6-month training, 2- 82.1% sensitivity, Compared against
detection month test 8.7% FPR Tsolation Forest

Fathi et al. (2021) Manufacturing line Unsupervised Reconstruction error ROC-AUC = 0.89 Threshold set at 95th
sensors (proprietary) anomaly threshold percentile
Givnan et al. (2022) SCADA time-series Anomaly Temporal split ROC-AUC = 0.92, Variational
detection F1=0.84 autoencoder variant

Shaheen and Németh
(2022)

Vibration spectrograms
(laboratory)

Bearing fault
classification

75/25 train-test

96.8% accuracy

Augmentation:
rotation, noise
injection

Chen et al. (2023)

Tagcr et al. (2023)

Image-based inspection

NASA C-MAPSS
FD001-004

Crack detection

RUL prediction

80/20 stratified split

Cross-dataset
validation

94.3% accuracy,
ToU = 0.87

RMSE = 16.2-21.5
(dataset dependent)

Transfer learning from
ImageNet

Stacked 2-layer LSTM,
128 units

Peng et al. (2021)

Electric motor time-series

Remaining cycles

Sliding window (seq

length = 50)

MAE = 8.3 cycles,
R>=0.88

Compared against
GRU (MAE = 9.1)

issues of data integrity, predictive algorithms’ complexity, and the  include the use of hybrid predictive models and improved data
purification  processes

(Mobley, 2002).

complexity of data integration. There are several challenges faced to attain valid forecast outcomes

concerning PdM forecasting that demand robust solutions that
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3.2 Machine learning techniques in
predictive maintenance

3.2.1 Supervised learning applications
(classification algorithms)

Supervised learning can be widely applied in the context of
predictive maintenance tasks, in particular, when performing fault
classification and trend estimation. The used techniques are based
on labelled datasets that determine system failures and optimize
maintenance procedures. Classification algorithms such as Support
Vector Machines (SVM), k-nearest neighbors (kNN), and decision
tree classifiers need to be applied to differentiate between
operational abnormalities and normal behavior (Kaparthi and
Bumblauskas, 2020).

Table 3 shows the performance comparison of machine learning
techniques.

Metric definitions:

i. Accuracy: (TP + TN)/(TP + TN + FP + FN) for
classification tasks

ii. RMSE: Root Mean Square Error for regression (RUL

prediction)

ROC-AUC:

Characteristic curve

iii. Area Under Receiver Operating

iv. F1: Harmonic mean of precision and recall
. IoU: Intersection over Union for segmentation tasks

Accuracy ranges are aggregated from peer-reviewed empirical

studies and systematic reviews focusing on predictive
maintenance tasks. Primary sources include Carvalho et al.
(2019), Susto et al. (2015), Fernandez-Francos et al. (2013),
Shaheen and Németh (2022), Peng et al. (2021), Tasci et al.
(2023), and task-specific empirical papers. Ranges represent
observed minimum-maximum performance across datasets
Where

unsupervised methods (K-Means, auto-encoders) the range

and evaluation protocols. values derive from
reflects detection accuracy after post hoc labeling and ROC-
AUC aggregation. Heterogeneity arises from dataset size, class
balance, preprocessing, and validation methodology.

According to Ouadah et al. (2022), selecting an algorithm to
use in supervised machine learning is vital in determining
superior predictive maintenance due to its impact on the
service performance and reliability. Ferreira et al. (2022)
studied one-class automated machine learning to show that it
has been successful in detecting anomalies in predictive
maintenance systems. As stated by the systematic review by
Carvalho et al. (2019), supervised learning also has different
that can be wused in the

machine learning methods

industrial setting.

3.2.2 Supervised learning applications (regression-
based RUL prediction)

Regression methods can help industries to establish the
duration of equipment life as a contribution to Remaining
Useful Life (RUL). PdM is more likely to be applied reliably
when machine learning methods are applied, which is
evidenced by the research conducted by Ren (2021). Trivedi
et al. (2019) concentrate on the air conditioning systems with
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the help of
maintenance needs.

supervised learning to attain accurate

The development of deep learning has improved significantly in
supervised learning prediction methods for maintenance. Butte et al.
(2018) introduce a super learning approach, which involves deep
neural networks as a means of enhancing the quality of prediction.
Susto et al. (2015) not only recommend the use of multiple classifiers
to combine the strengths of various algorithms into more predictive

maintenance solutions.

3.2.3 Unsupervised learning and anomaly
detection (Clustering and
dimensionality reduction

Predictive maintenance operations require unsupervised Al
models due to the potential challenges in the acquisition of
labelled data or
predictive systems in identifying abnormal patterns based on

its absence. Unsupervised techniques aid
deep learning-based anomaly detection and clustering by using
dimensionality reduction procedures, thereby indicating possible
system failures.

By introducing Principal Component Analysis (PCA) and auto-
encoder models, the systems can learn to recognize the normal
operation patterns and then identify anomalies to further analyze
those (Zhao et al., 2019). The K-means clustering and its analogues
allow classifying similar types of failures and providing valuable data
regarding specific faults (Aggarwal and Reddy, 2013).

3.2.4 Unsupervised learning and anomaly
detection (sophisticated anomaly
detection processes)

Carrasco et al. (2021) note that there are assessment techniques
for temporal unsupervised anomaly detection algorithms in
predictive maintenance to find precise anomalies to prevent
equipment failures. The study of Industry 4.0 by Kamat and
Sugandhi (2020) shows that the unsupervised type of anomaly
detection can be applied to predictive maintenance in different
production and manufacturing industries.

Liu et al. (2024) introduce a new progressive unsupervised
anomaly-detection model that is explicitly optimized to work
with time-series data in the industrial setting. By their statistical-
based approach, they have developed an effective predictive
maintenance strategy for complex dynamic systems. Shiva et al.
(2024) undertook machine learning studies on sensor data anomaly
detection to improve industrial predictive maintenance through
unsupervised learning processes.

3.3 Deep learning-based predictive
maintenance

3.3.1 Convolutional neural networks (CNNs)

This increase in condition-based maintenance uses of deep
learning is a significant development since it allows processors to
analyze large volumes of sensor data and high-level capabilities that
would otherwise be unseen by typical machine learning algorithms.
CNNs are most suitable to detect patterns in sensor outputs,
including vibrations and sounds, whereas Long Short-Term
Memory (LSTM) networks demonstrate outstanding capabilities
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TABLE 4 Deep learning architecture comparison for predictive maintenance.

Architecture  Input data Weaknesses

type

Strengths

10.3389/fmech.2025.1722114

Computational Best

cost

Representative
references

applications

CNN Spectrograms, Strong spatial Requires image-like High Vibration Shaheen and Németh
images feature extraction; inputs; large labelled spectrograms, visual (2022); Chen et al. (2023)
automatic feature sets inspection
learning
LSTM Sequential time- = Captures long-term  Training complexity; Medium-High RUL prediction; trend = Tascr et al. (2023); Peng
series temporal vanishing gradients for forecasting et al. (2021)
dependencies very long sequences
GRU Sequential time- = Faster training than | Slightly less capacity for Medium Real-time RUL on Peng et al. (2021)
series LSTM; lower very long-term constrained hardware
parameter count dependencies
Autoencoder Multivariate Unsupervised Threshold selection; Medium Anomaly detection; Fathi et al. (2021); Givnan
time-series anomaly detection; sensitivity to noise feature learning et al. (2022)
dimensionality
reduction
Hybrid Multi-modal Models spatial and | High model complexity Very high Complex machinery Chen et al. (2023)
CNN-LSTM (spectrogram + temporal features and training time monitoring with
time) jointly multimodal sensors

in predicting time-related data, including equipment Remaining
Useful Life (RUL).

Ucar et al. (2024) have evaluated time-series measurements of
machinery that are processed by convolutional neural networks
(CNNs) and LSTM networks. The CNNs have proven to be very
effective in the analysis of vibration signals as they are effective in
processing structured sensor data, where hierarchical features are
extracted by automated processing, which saves time that would be
spent on manually (Shaheen
Németh, 2022).

Table 4 highlights the deep learning architecture comparison for

analyzing the signal and

predictive maintenance.

Architecture strengths and weaknesses are synthesized from
comparative reviews and application studies in PdM literature.
Computational cost indicates relative resource demand observed
across implementations in Shaheen and Németh (2022), Tasci et al.
(2023), Chen et al. (2023), and related papers. Use case assignments
reflect consensus in applied studies.

3.3.2 Recurrent neural networks and LSTM

Aivaliotis et al. (2021) state that the accuracy of the projection of
industrial robot failures is enhanced by the fusion of the degradation
curves with physics-based models based on deep learning models.
The authors demonstrated the estimation of robot follow-ups by the
deep learning models working with the historical information and
real-time information to minimize the incidence of
unforeseen failures.

Jardine et al. (2006) studied how the LSTM networks forecast
RUL to maximise the maintenance work and reduce the
unwarranted maintenance effort. The LSTM networks work quite
well with data that has diverse operational properties, as they detect

time patterns in the series data (Leevy et al., 2020).

3.3.3 Hybrid deep learning architecture

The CNNs, coupled with Recurrent Neural Networks (RNNs),
suggested by Li et al. (2020), present the only possibility of disclosing
structures and patterns in spatial and temporal data. The fusion of
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CNN spatial processing and the RNN temporal functionality yields
better predictions in the area of heavy machinery fault prognostics,
as Kamariotis et al. (2024) concluded.

The concept of multiple classifier systems, as a form of
combining multiple deep learning models, adjusted to particulars
of information, is discussed by Susto et al. (2015) and aimed at
optimizing the tasks of PdM under various conditions. The
ensemble method contributed to the accuracy of prediction
because it could address variations in operation profiles.

3.4 Predictive maintenance sensor types

Predictive maintenance largely relies on the various types of
sensors to measure equipment parameters as well as detect
equipment failures at their initial stages. These sensors make
real-time data collection more available when it comes to fault
prediction (Pech et al., 2021).

Table 5 presents the sensor technologies for predictive
maintenance.

Sensor parameters and applications collated from sensor
application reviews and field studies (Fernandez-Francos et al,
2013; Chen et al.,, 2022; Vlasov et al., 2018; Zhang et al., 2019;
Ullah et al,, 2017). Typical operating ranges reflect common sensor
models used in industrial PAM contexts; consult vendor datasheets
for sensor-specific limits.

3.4.1 Vibration sensors

Vibration detection sensors prove to be extremely beneficial to
PdM operations, as they provide essential information on
equipment imbalance, misalignment, and bearing problems.
The sensors will be used to detect the right vibration readings
to assist predictive models in determining the issues in the
machine in real time (Hashemian, 2011). Detecting mechanical
failures and wear in centrifugal pumps will be achieved with the
assistance of complex vibration sensors and processing protocols
(Chen et al., 2022).
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TABLE 5 Sensor technologies for predictive maintenance.

Key advantages

High sensitivity to
mechanical faults; real-
time monitoring

Simple and reliable
Early crack detection;
non-intrusive

Direct measurement;
high accuracy

Non-invasive electrical
fault detection

Predictive lubrication
insight

10.3389/fmech.2025.1722114

Limitations

Environmental noise,
installation sensitivity

Thermal lag; limited
fault specificity

Requires advanced
signal processing

Limited to pressure-
related faults

Limited to electrical
anomalies

Not continuous;
sampling required

Representative
references

Fernandez-Francos et al.
(2013); Chen et al. (2022)

Zhang et al. (2019)

Vlasov et al. (2018)

Chen et al. (2022)

Systematic reviews

(Carvalho et al., 2019)

Industry case studies

Measured Typical Primary
parameter operating range  applications
or note
Vibration Acceleration, Frequency content from = Rotating machinery,
velocity sub-Hz to kHz; bearings, pumps
application dependent
Temperature = Heat levels -200 °C to +1,000 “C Motors, bearings,
depending on sensor transformers
Acoustic High-frequency 20 kHz-1 MHz typical Crack detection;
Emission elastic waves ranges structural monitoring
Pressure Fluid/gas pressure | 0-10,000 psi (sensor Hydraulic systems,
dependent) pipelines
Current Electrical current mA to kA Motors, generators
Oil Analysis Contamination, Sample-based, lab or Gearboxes, engines
particle counts sensor-enabled
Thermal Temperature Sensor-dependent; Electrical panels,
Imaging distribution —20 °C-2000 °C ranges mechanical assemblies

Non-contact; spatial
mapping

Cost; expertise
needed

Ullah et al. (2017)

3.4.2 Temperature monitoring

The available standard PdM tools are temperature sensors for
the monitoring of the heat-producing machinery during operation.
A sudden rise in temperature serves as a signal of potential
that could be
breakdowns, high friction effects, or the presence of motors
operating beyond their limits. The information allows engineers

equipment malfunctions caused by fluid

to determine the reference temperature intervals to detect abnormal
trends that can forecast an imminent equipment failure (Zhang
et al., 2019).

3.4.3 Acoustic emission sensors

When machinery is under stress, it emits high-frequency noises
that acoustic emission sensors are capable of detecting when these
noises arise during cracking, friction, or collisions. The non-
destructive types of testing allow technicians to receive real-time
diagnostic data, as they can monitor complex systems effectively and
do not interrupt the systems (Vlasov et al.,, 2018).

3.5 Data processing and feature engineering

3.5.1 Data pre-processing challenges

Industrial sensors face significant challenges in collecting high-
quality data because they operate in complex environments that are
often full of operational noise. Industries expose their sensors to
signal disruptions and interference, which degrades data quality
during signal-separation efforts, according to Santos et al. (2015).
Full-scale continuous monitoring generates excessive data, leading
to storage and transmission problems, particularly in remote
industrial areas where network connectivity remains problematic
(Kong et al., 2021).

3.5.2 Techniques in feature extraction

The processes of attribute engineering and filtering fae PAM
the required background since they convert sensor data into
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useful information. Time-domain features such as root mean
square (RMS) and kurtosis are usually used with vibration data
to measure energy consumption and identify anomalies (Xue et
al., 2025). Frequency-domain indicators such as spectral entropy
and peak frequency can be used to identify faults sensitively
when complex sensor data is analyzed based on Alemayoh
et al. (2021).

Table 6 displays the feature extraction methods and applications.

Feature methods and their typical computational costs follow
standard signal-processing and ML literature reviewed in Xue et al.
(2025), Zebari et al. (2020), and Shaheen and Németh (2022).
Selection should depend on fault type, sensor modality, and
available compute at edge or cloud.

3.5.3 Dimensionality reduction methods

Predictive maintenance is challenged significantly with high-
dimensional sensor data at many combined sensing systems.
Principal Component Analysis (PCA) and t-distributed stochastic
neighbour embedding (t-SNE) can be used to reduce the feature
space to allow the identification of patterns that are relevant in
sensor information (Zebari et al., 2020). The application of t-SNE to
data sets is effective in the detection of clusters and relationship
discovery that facilitate PdM practice through structural data
elucidation (Stromann et al., 2019).

3.6 Industrial applications and case studies

3.6.1 Applications within the manufacturing sector
(Integration with enterprise systems)

Lee et al. (2011) explain the integration of the PAM systems and
Enterprise Resource Planning (ERP) tools through the digital
manufacturing strategies. The result of integration between the
systems was improved maintenance planning, fewer undesirable
equipment failures, and global production processes. Eynard et al.
(2006) designed UML-based specifications to develop PdM
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TABLE 6 Feature extraction methods and applications.

10.3389/fmech.2025.1722114

Feature Extraction method Computation Information Best use cases Representative
type cost content references
Time domain RMS, kurtosis, variance Low Basic summary features | Quick fault detection; baseline Xue et al. (2025)
monitoring
Frequency FFT, spectral entropy, Medium Detailed frequency Bearing fault identification; Alemayoh et al. (2021)
domain cepstrum patterns harmonic analysis
Wavelet Continuous/discrete wavelet High Multi-resolution time- Transient and impact event Zebari et al. (2020)
transform frequency detection
Statistical Mean, standard deviation, Low Summary statistics Trend monitoring and Multiple reviews
skewness anomaly thresholds
Principal PCA, ICA Medium Dimensionality reduction = Preprocessing, noise reduction Zebari et al. (2020)
components
Deep features CNN embeddings, learned Very high High-level complex Advanced diagnostics and Shaheen and Németh (2022)
representations patterns sensor fusion

TABLE 7 Industrial applications and performance metrics.

Industry Example Al techniques Typical reported improvements Representative
sector equipment used (provenance) references
Manufacturing Production lines, CNC ANN, SVM, RF Downtime reduction 15%-30%; OEE improvements Carvalho et al. (2019); (2023)
machines ~10-20% in case studies
Aerospace Engines, landing gear CNN, LSTM, ensemble Unscheduled maintenance reduction up to 30%-40% in | Bekar et al. (2020); Peng et al.
models field reports (2021)
Automotive Engines, assembly lines Deep learning, AutoML Field reports show 20%-35% reduction in warranty or Chen et al. (2023)
rework costs
Energy/Power Turbines, generators Vibration analysis, thermal Asset utilization improvements reported between 10% Machado et al. (2020); industry
imaging and 35% reports
Oil & Gas Pumps, compressors, Anomaly detection; sensor | Safety and environmental incident reductions reported in | Vlasov et al. (2018); industry
pipelines fusion pilot studies; varies by deployment case reports
Railways Track systems, turnouts Computer vision, On-time performance and schedule reliability Davari et al. (2021)
ultrasonic analysis improvements reported in trials

workflows that enhanced communication amongst various
departments in the case of maintenance operations.

Table 7
performance metrics.

shows some industrial applications and

Performance improvements are drawn from a mixture of peer-
reviewed case studies and industry pilot reports collated in
systematic reviews (Carvalho et al, 2019; Moleda et al, 2023)
and domain-specific studies (Bekar et al., 2020; Chen et al., 2023;
Machado et al., 2020). Percent ranges represent observed results
across multiple deployments and should be cited to the specific case

study when claiming a particular value.

3.6.2 Al and big data implementation

Samanta et al. (2024) also note that artificial intelligence is a
significant part of Industry 4.0 manufacturing since machine
learning models, particularly neural networks, can be used to
identify abnormal trends in machinery. The concept of intelligent
data preprocessing is one of the main themes of Bekar et al. (2020)
because they define it as a method to enhance the accuracy of PdM.
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Iskandar (2017) illustrate that semiconductor
equipment failure predictions using big data analytics can be
successful in improving the yield of production.

Moyne and

3.6.3 Aerospace and aviation

PdM is needed to meet safety objectives along with cost reductions
and regulatory compliance in the aviation and aerospace industries.
PdM in aviation particularly emphasises the watchful attention of the
following critical items, such as engines, landing gear, and hydraulic
systems (GE Aerospace, 2024). Lee et al. (2011) reported that the
aerospace production systems had been able to monitor the engine
performances in real-time using IoT-based PdM systems that enabled
early fault identification to avoid critical failures.

The study conducted by Bekar et al. (2020) resulted in Al-based
PdM systems that examined sensor-based features such as
temperature and vibrations to identify future faults in aircraft
parts. The structures that were put in place helped airlines
streamline their maintenance policies so that they could uphold
safety standards at a low cost of operation.
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TABLE 8 Implementation challenges and solutions.

Challenge

category

Specific
issues

Impact level
(qualitative)

Current
solutions

Reported success/
Evidence

10.3389/fmech.2025.1722114

Representative
references

Data quality Missing data; sensor High Preprocessing, Reported improvement rates 60%-75% Dalzochio et al. (2020);
noise; label scarcity imputation, data fusion | in pilot studies after preprocessing steps Carvalho et al. (2019)
(case studies)
Computational cost | Heavy DL models at High Edge inference, model | Case reports show 40%-60% inference- = Mourtzis et al. (2022); Peng
edge compression, pruning | speed gains with pruning/quantization et al. (2021)
Model Black box models Medium XAI methods (SHAP, | Prototype adoption improved operator | Ucar et al. (2024); Moleda
interpretability LIME) trust in trials (qualitative) et al. (2023)
System integration Legacy systems High Middleware, APIs, OPC Integration success rates 45%-65% Mourtzis et al. (2023)
compatibility UA, ROS 2 reported in industrial case studies
Scalability Large fleet/multi-site Medium Modular architectures, Early pilots show improved scale; Industry reports (IoT
rollout federated learning formal metrics limited Analytics, 2023)
Security and privacy Cyber threats; data High Encryption, Pen-test/penetration testing reduces Bala et al. (2024)
governance segmentation, access reported vulnerabilities; numbers vary
control
Skills gap Limited workforce Medium Training programs, Training completion improves Ucar et al. (2024)
expertise vendor support operational uptime in pilots (case
evidence)
ROI uncertainty Difficulty Medium Phased pilots, TCO ROI case ranges reported widely Senseye/Siemens (2022); IoT
quantifying long- analysis (12-36 months) across industry surveys Analytics (2023)
term benefits

3.6.4 Automotive and transportation

PdM enhanced the health analysis of the automotive vehicles
and fleet monitoring by its implementation in automotive
management systems to minimise the cost of repairs and
enhance the reliability of the maintenance. Chen et al. (2023)
carried out research to predict the life of the components by
researching on the internet of things-activated PdM platforms
using car operational data.

PdM applications have been applied as a fundamental part of
connected and autonomous vehicle technologies. Hadi et al. (2023)
applied AutoML to categorise ball-bearing faults and exemplified the
PdM as capable of reinforcing the reliability of autonomous systems.

3.7 Challenges and limitations

3.7.1 Data quality issues

The main challenge to predictive maintenance implementation
can be regarded as the inability to manage the problem of data
inconsistency that is caused by the lack of or incomplete data and
sensor failures. Industrial sensors are prone to malfunction because
of errors in transmission that lead to ineffective models (Dalzochio
et al,, 2020; Carvalho et al., 2019). According to Achouch et al.
(2022) and Arafat et al. (2024), model variations based on variations
in operating conditions, the type of machinery, and external factors
severely impair the ability to generalise models.

Table 8 presents some identified implementation challenges
and solutions.

Challenge descriptions and current solutions are synthesized
from systematic reviews and recent case studies (Carvalho et al,
2019; Dalzochio et al., 2020; Mourtzis et al., 2022; Ucar et al., 2024).
Reported success figures are aggregated from empirical pilot reports
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and industry surveys; where a precise metric is quoted it is drawn
from the cited literature or industry report. Label these as observed
pilot rather than
universal constants.

outcomes or industry benchmarks

3.7.2 Computational requirement

Deep learning models that are used in the PAM systems may
have processing needs that exceed the budgets of smaller industries
due to their cost. PAM applications using the IoT-enabled sensors
with edge computing need to be implemented on high-performance
GPUs or cloud services, which are costly and buyers have limited
access to due to financial constraints (Mourtzis et al., 2022; Serradilla
et al.,, 2022).

3.7.3 Interoperability problems

The lack of standardisation in communication processes
the emergence of
interoperability challenges and, consequently, the need to

between any two systems leads to
implement the middleware solutions that are expensive and
generate resource-intensive requirements (Mourtzis et al., 2023;
Arulnithika et al., 2025). IoT devices, edge platforms, and central
server communication security protection must be a priority
concern since the security threat poses a considerable threat, as

reported by Bala et al. (2024).

3.8 Future directions and emerging trends

3.8.1 Explainable Al in predictive maintenance
The increased complexity of PAM systems needs greater insight

and demystification due to the adoption of PAM systems in critical
aerospace and healthcare environments. Ucar et al. (2024) highlight
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TABLE 9 Future technology assessment and timeline.

10.3389/fmech.2025.1722114

Technology Current Expected Key drivers Major Industry Evidence/
category maturity timeline barriers impact References
(approx.) (adoption)
Explainable AI (XAI) Medium-High 2024-2027 Regulatory pressure; Complexity; High for regulated = Ucar et al. (2024); Moleda
operator trust compute sectors et al. (2023)
Edge computing High 2024-2026 Latency reduction; Hardware limits; Medium-High for Peng et al. (2021); Mourtzis
privacy cost real-time apps et al. (2023)
Hybrid physics-ML Medium 2025-2028 Need for robustness, Model High for physics- Tagar et al. (2023);
models generalization complexity heavy assets Machado et al. (2020)
Digital twins Medium 2027-2030 Simulation Data Very High for virtual Mourtzis et al. (2023)
capability; synchronization testing
integration
Quantum computing Low-Medium 2027-2032 Computational Maturity Medium for Industry forecasts (IoT
(optimization) power optimization Analytics, 2023)
problems
Autonomous systems Low 2030-2035 Labor shortages; Safety; regulation Very High long- Consensus literature;
(full autonomy) autonomy advances term roadmaps
Advanced sensors (new Medium 2025-2030 IoT expansion Cost Medium Fernédndez-Francos et al.
modalities) (2013); Chen et al. (2022)

the importance of explainable AI (XAI) in improving the
understanding of a PdM model by engineers and decision-
makers. Recent tools of predictive model explanation include
SHAP (Shapley Additive Explanations) and LIME (Local
Interpretable Model-Agnostic  Explanations)
visualise model prediction procedures.

frameworks to

3.8.2 Hybrid modelling approaches

PdM is characterised by the growing popularity of data-centric
and physics-informed hybrid modelling. The joint use of the models
that utilise the physical principles with the machine-learning models
enables the professionals to be transparent in their predictions and,
at the same time, have modelling flexibility. Drakaki et al. (2021)
have discovered that hybrid models are the most effective in the field
of aviation and energy, as these industries require detailed
knowledge of the physics of machinery.

3.8.3 Edge computing integration

With the introduction of the IoT, predictive maintenance
undergoes a fundamental change since IoT sensors allow
immediately, which
implementation

obtaining data increases

reliability. IoT

predictive

results in long system
lifecycles in situations where the generated real-time data
streams create meaningful insights in accordance with
Rakholia et al. (2025). IoT and edge computing have
significantly reduced the latency due to data processing that

happens near the source (Dalzochio et al., 2020).

3.8.4 Sophisticated sensor technology

The advances in sensor technologies in the recent past have
resulted in better operational performance of PAM systems. Recent
MEMS sensors and fibre-optic sensors provide accurate data on
multidirectional vibrations and temperature dynamics. According
to Kaur et al. (2024), industrial use of these sensors continues to
increase since different sectors, such as oil and gas, are using them to
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observe harsh conditions. Table 9 highlights some future technology
assessment and timeline.

Maturity assessments and timelines combine peer-reviewed
review articles and industry forecasts (Ucar et al., 2024; Mourtzis
et al,, 2023; ToT Analytics, 2023). Timelines are consensus forecasts
and should be treated as indicative. Specific adoption windows
reflect multiple industry and academic roadmaps.

3.9 Robotics taxonomy for predictive
maintenance

3.9.1 Robotic system classification framework

We propose a three-dimensional taxonomy for classifying
robotic systems in PAM based on: (1) Mobility, (2) Manipulation
capability, and (3) Autonomy level.

1. Dimension 1: Mobility
i. MI - Fixed/Stationary: Industrial robotic arms mounted on
production lines
ii. M2 - Mobile - Ground: Wheeled or tracked UGVs,
quadrupeds (Boston Dynamics Spot)
iii. M3 - Mobile - Aerial: Quadcopters, fixed-wing drones for
infrastructure inspection
iv. M4 - Mobile - Aquatic: Underwater ROVs for subsea
pipeline/offshore platform inspection
v. M5 - Mobile - Rail-Guided: Robots constrained to tracks/
rails (bridge inspection systems)
vi. M6 - Mobile - Climbing: Wall-climbing robots for vertical
structure inspection (tanks, buildings)
2. Dimension 2: Manipulation Capability
i. C1 - Sensing Only: Equipped with sensors (cameras,
LiDAR, ultrasonic) but no manipulation
ii. C2 - Simple Manipulation: Single degree-of-freedom
grippers, tightening tools
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iili. C3 - Complex Manipulation: Multi-DOF arms, tool
changing capability
iv. C4 - Process Execution: Welding, AM deposition, surface
treatment (beyond simple manipulation)
3. Dimension 3: Autonomy Level (adapted from SAE
J3016 for robotics)
i. A0 - Teleoperated: Full human control, robot as remote
manipulator
ii. Al - Assisted: Robot provides haptic feedback, collision
avoidance, but human commands actions
iii. A2 - Semi-Autonomous: Robot executes predefined
inspection routines, human handles exceptions
iv. A3 - Conditional Autonomy: Robot performs inspection
and simple repairs autonomously, human supervises and
handles complex decisions
v. A4 - High Autonomy: Robot makes maintenance decisions
based on AI, human approval required for critical actions
vi. A5 - Full Autonomy: Robot operates independently from
diagnosis to repair (not yet achieved in practice)

Taxonomy Application Examples:

i. Boston Dynamics Spot for pipeline inspection: M2-C1-A2
(Mobile ground, sensing only, semi-autonomous)

ii. ABB IRB 6700 with ultrasonic probe on auto assembly line:
M1-C2-A3 (Fixed,
conditional autonomy)

simple manipulation,

iii. DJI Matrice 300 with thermal camera for wind turbine
inspection: M3-C1-A2 (Mobile aerial, sensing only, semi-

autonomous)
iv. Clearpath Husky UGV with KUKA manipulator for valve
operation: ~ M2-C3-A3  (Mobile ground, complex

manipulation, conditional autonomy)

Robot classifications combine vendor technical specifications
and peer-reviewed reviews (Mourtzis et al., 2023; Vlasov et al., 2018).
TRL approximations are based on typical commercial availability
and documented field trials.

3.9.2 Robotic interfaces and
communication protocols

Sensor-Robot Integration: Robots in PAM must interface with
diverse sensor modalities:

Visual Sensors:

(RGB, IR,

USB3 Vision protocols
ii. LiDAR: Ethernet/IP, ROS sensor_msgs/PointCloud2
iii. Thermal imagers: GenICam standard

i. Cameras hyperspectral):  GigE  Vision,

Non-Destructive Testing (NDT) Sensors:
i. Ultrasonic thickness gauges: RS-232, RS-485, CAN bus
ii. Eddy current probes: Analog 4-20mA, digital SPI/I2C

iii. Acoustic emission sensors: BNC coaxial, high-speed DAQ

Robot-AI System Communication: Modern PdM robots employ
multiple communication layers:
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1. Perception Layer (Robot — AI):
i. ROS (Robot Operating System)
data streaming

topics for sensor
ii. MQTT for lightweight IoT sensor telemetry
iii. OPC-UA for industrial equipment data integration
iv. gRPC for high-performance AI inference requests
2. Control Layer (AI — Robot):
i. ROS action servers for task commands (inspect location X,
tighten bolt Y)
ii. RESTful APIs for high-level mission planning
iii. EtherCAT for
millisecond latency)

real-time motion control (sub-
3. Safety Layer:
i. Emergency stop signals via hardwired relays (IEC 60204-
1 compliant)
ii. Safety-rated laser scanners (SICK, Pilz) for human
proximity detection

iii. Functional safety communication: PROFIsafe, CIP Safety

Interoperability Standards:

i. MTConnect: For CNC and industrial equipment
data exchange

ii. OPC-UA:  Unified architecture  for  cross-vendor
communication

iii. ROS 2: Supports real-time, security, and multi-robot
coordination
iv. IEEE 1451: Smart sensor interface standard

3.9.3 Safety considerations for robotic PdM
Regulatory Framework: Robotic maintenance systems must
comply with:

i. ISO 10218-1: Safety requirements for industrial robots and
robot systems (ISO 10218-1, 2025).

ii. ISO/TS 15066: Collaborative robot safety (force/pressure
limits) (ISO/TS 15066, 2016).

iii. ISO 13849-1: Safety of machinery (control systems,
performance levels) (ISO 13849-1, 2015).

iv. ISO 17359. Condition monitoring and diagnostics of
machines (ISO 17359, 2018).

v. IEC 62061: Functional safety of electrical/electronic systems
(IEC 62061, 2021).

vi. ANSI/RIA R15.08: Industrial mobile robot safety

Risk Assessment Protocol: For each robotic PAM application, a
risk assessment must address:

1. Mechanical Hazards:
i. Crushing/impact from robot motion (collaborative robots
limited to 150N force, 2.5 kg-m/s momentum)
ii. Entanglement with cables, rotating components
ili. Mitigation: Collision detection, compliant joints, virtual
safety zones
2. Environmental Hazards:
i. Confined spaces (tanks, vessels): oxygen depletion,
toxic gases
ii. Explosive atmospheres (ATEX zones in oil and gas)
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ATEX-certified
monitoring, emergency extraction procedures

iii. Mitigation: robots, continuous gas
3. Autonomous Navigation Hazards:
i. Collision with personnel, equipment, structures
ii. Falling from elevated platforms (aerial drones)
iii. Mitigation: 3D collision avoidance (LiDAR/SLAM),
geofencing, parachute systems for drones
4. Human-Robot Interaction Hazards:
i. Unexpected robot behavior due to Al errors
ii. Inadequate human understanding of robot intentions
iii. Mitigation: Explainable Al interfaces, visual/audio robot
status indicators, human-in-the-loop for critical decisions

Safety Architecture - Layered Defense:
Layer 1: Passive Safety (Inherent Design)

i. Rounded edges, soft materials on robot exteriors
ii. Power and force limiting (collaborative robots <80W
contact power)
iii. Mechanical hard stops preventing dangerous positions

Layer 2: Active Monitoring
i. Real-time force/torque sensing at robot joints
ii. Safety-rated laser scanners creating virtual boundaries
iii. Capacitive/pressure-sensitive robot skin
Layer 3: Supervised Autonomy
i. “Dead-man switch” for tele-operated modes
ii. Automatic mission abort if safety preconditions violated (e.g.,
human enters workspace)

iii. Redundant position sensing (encoders + external tracking)

Layer 4: Emergency Response

i. Emergency  stops  (E-stops)  within  3-m  reach
throughout work area
ii. Wireless E-stop pendants for personnel
iii. Automatic emergency shutdown on

communication loss >500 ms
Layer 5: Post-Incident Protocol

i. Automated incident logging (robot state, sensor data,
Al decisions)
ii. Mandatory human review before resuming operations after
E-stop activation
iii. Machine learning from incidents to improve future safety

Case Study - Safety Validation: Mourtzis et al. (2023) report
robotic cell reliability testing:

i. 10,000 h MTBF (mean time between failures)
ii. Zero safety incidents over 18-month deployment
iil. 47 near-misses detected and prevented by safety systems
iv. Key factor: Three-layer safety architecture with independent
monitoring
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3.9.4 Validation metrics for robotic PdM systems
Comprehensive evaluation requires metrics across multiple
dimensions:
Technical Performance Metrics:

1. Inspection Coverage:
i. Spatial coverage: Percentage of asset surface area inspected
(target: >95%)
ii. Inspection frequency: Time between successive inspections
of same location
iii. Accessibility: Percentage of design-specified inspection
points reached
2. Sensing Accuracy:
i. Localization accuracy: Position error of robot relative to
asset (target: <10mm for contact NDT)
ii. Sensor alignment: Angle/distance maintenance for
ultrasonic/eddy current (target: <5° angular, <2mm
distance deviation)
iii. Data quality: Signal-to-noise ratio, image
resolution adequacy
3. Manipulation Precision:
i. Repeatability: Standard deviation of repeated positioning
(target: <0.5 mm for industrial robots)
ii. Tool force control: Error in applied force for contact tasks
(target: <5% for bolt tightening)
4. Autonomy Metrics:
i. Intervention rate: Human interventions per robot-hour
(lower is better, target: <0.1/hr for A3 autonomy)
ii. Mission completion rate: Successful completion without
human assistance (target: >90%)
iii. Recovery capability: Successful recovery from unexpected

situations (obstacles, sensor failures)
Operational Efficiency Metrics:

5. Inspection Time:
i. Cycle time: Duration to complete full inspection route
(compare to human baseline)
ii. Downtime impact: Production interruption time (target:
<10% of human-performed inspection)
6. Maintenance Workload Reduction:
i. Inspector-hours saved: Human labor hours displaced
by robot
ii. Hazardous exposure reduction: Person-hours in hazardous
environments eliminated
7. Detection Performance:
i. True positive rate (Sensitivity): Correctly identified faults/
total actual faults (target: >95%)
ii. False positive rate: False alarms/total
(target: <5%)
iii. Mean time to detect (MTTD): Time from fault inception to

inspections

robot detection
Economic Metrics:
8. Cost-Effectiveness:

i. Cost per inspection: Amortized robot cost + operation/
number of inspections
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ii. ROI timeline: Months to recover initial investment
iii. Total cost of ownership (TCO): 5-year cost including
robot, maintenance, training
9. Reliability:
i. Robot MTBF: Mean time between robot system failures
ii. Mission success rate: Percentage of initiated missions
completed successfully

Safety Metrics:

10 Safety Performance:
i. Incident rate: Safety incidents per 1,000 robot-hours
(target: 0)
ii. Near-miss frequency: Detected potential safety violations
by safety systems
ili. Safety system response time: Time from hazard detection
to robot safe stop (target: <100 ms)

AI-Robot Integration Metrics:

11. AI-Driven Action Accuracy:
i. Correct action rate: Al-recommended actions that were
appropriate (validated post hoc)
ii. False alarm rate: AI fault detections not confirmed by
human expert
iii. Prediction-to-action latency: Time from AI fault
prediction to robot initiating corrective action
12. Explainability Assessment:
i. Operator understanding: Post-deployment survey scores
on Al decision rationale comprehension
ii. Decision override rate: Frequency humans override AI
recommendations (high rate indicates trust issues)

These performance figures come from a combination of peer-
reviewed case studies, conference papers, and verified industry/
utility reports. Some numbers (coverage, false-positive rates, cost
savings) are reported in vendor and operator case reports and
aggregated in reviews (Mourtzis et al, 2023). Label these as
deployment-specific results and cite the original case when
referencing a particular number.

3.9.5 Human-robot collaboration models
Four collaboration paradigms identified in PdM literature:
Model 1: Sequential Collaboration.

i. Robot performs initial automated inspection
ii. Human reviews flagged anomalies and makes decisions
iii. Robot executes approved corrective actions
iv. Advantage: Leverages robot efficiency and human expertise
v. Limitation: Bottleneck at human review stage
vi. Application: High-stakes environments (nuclear, aerospace)

Model 2: Parallel Collaboration.
i. Robot and human inspect different areas simultaneously
ii. Robot handles routine/hazardous areas, human handles

complex/accessible areas
iii. Advantage: Faster overall inspection cycle
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iv. Limitation: Requires task allocation algorithm
v. Application: Large facilities (refineries, manufacturing plants)

Model 3: Assistive Collaboration (Cobots)

i. Robot provides physical assistance to human technician
ii. Human retains decision authority, robot augments capability
(e.g., holding tools, stabilizing work piece)
iii. Advantage: Reduces physical strain, improves precision
iv. Limitation: Requires close proximity safety measures
v. Application: Assembly maintenance, complex repairs

Model 4: Supervisory Collaboration.

i. Robot operates autonomously for extended periods
ii. Human monitors multiple robots via central interface
iii. Intervention only for exceptions/emergencies
iv. Advantage: High scalability (1 operator: many robots)
v. Limitation: Operator workload spikes during simultaneous
exceptions
vi. Application: Distributed asset

monitoring  (pipelines,

power grids)
Empirical Comparison: Mourtzis et al. (2023) compared
collaboration models in robotic cell maintenance:

i. Sequential: 40% faster than human-only, but limited by
human review bottleneck
ii. Parallel: 65% faster, best for large workspaces
iii. Assistive:  30% highest
(reduced fatigue)
iv. Supervisory: 80% faster with 4:1 robot: human ratio, but

faster, worker  satisfaction

requires extensive training

Recommendation: Model selection should consider task
complexity, safety criticality, workforce capabilities, and scale of

operations.

4 Discussion

The overall literature discussion indicates that AI and robotics-
based predictive maintenance (PdM) is a paradigm shift from
the conventional maintenance approaches to intelligent, proactive
maintenance. The shift to preventive and reactive maintenance
to predictive models is one of the examples that can
be taken as evidence of the high level of technological
improvement, especially with the implementation of the
principles of Industry 4.0.

Practically, this study offers actionable insights to industrial
stakeholders such as industrial maintenance engineers and
operations managers, robotics developers and Al researchers,
manufacturing and infrastructure organisations, policymakers
and regulators, academia and training institutions by providing
clarifications on how AI and robotics can be deployed in PdM to
reduce operational downtime, optimize maintenance schedules,
and lower lifecycle costs. Manufacturing and service industries

can apply these findings to achieve transition from reactive or
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preventive maintenance toward a data-driven, autonomous system
that promote safety and reliability (Pinciroli et al., 2023).

In addition, Al-enabled PdM can assist industries achieve
sustainability goals by extending equipment useful life, ensuring zero
material waste, and improving energy efficiency (Machado et al.,, 2020).
Robotic inspection on the other hand also improve operational and
workplace safety via the replacement with of humans with robots
during maintenance operations in hazardous environments, such as
offshore platforms or high-voltage installations (Hoebert et al., 2024).

The direct beneficiaries of this study include:

1. Industrial maintenance engineers and operations managers: In
the application of Al-driven models for the optimization of
resource allocation, reduction in unplanned stoppages, and
improvement in asset availability and reliability.

. Robotics developers and Al researchers: The identification of
research trends and potentials will assist them in the
development of Al-robotic integration architectures and in
setting future research priorities such as explainable AT models
and data fusion (Ucar et al., 2024; Aheleroff et al., 2022).

. Manufacturing and service industries: They can use the findings
of this study to develop cost-effective PAM strategies aligned to
the Industry 4.0 and 5.0 standards to foster competitiveness and
sustainability (Pinciroli et al., 2023; Machado et al. (2020)).

. Policymakers and regulators: Theoretical and empirical based
evidences are provided in this study to support the formulation
of standards, data governance frameworks, and safety
regulations for Al-robotic enabled PAM (Asif et al., 2026).

. Academia and training institutions: These institutions can
incorporate the findings and frameworks into engineering
curricula and professional training programme to promote the
PdM culture.

The application and integration of Al and robotics geared
PdM has broad
For instance, improved equipment availability and reliability

towards socio-economic implications.

can contribute to higher productivity and reduced

environmental footprints, while the use of robotics in PdM
can increase automation and open up possibilities and
opportunities for digital skills (Aheleroff et al., 2022). In
in the
promoting

emerging economies, it can lead to reduction

dependency
localization and technological leapfrogging through smart

on foreign expertise while
manufacturing and innovation ecosystems.

By synthesizing the recent research trends, this study provides a
systematic roadmap for a sustainable, and intelligent maintenance
system that is adaptive and applicable across various industrial sectors.
It thus reinforces the importance of cross-disciplinary collaboration
among data and robotic scientists, maintenance engineers, and
policymakers to achieve an adaptive, resilient and efficient
maintenance operations in the era of digitalization and intelligent

automation.
4.1 Synthesis of key findings

The following summarises the key findings drawn from this study
according to the relevant themes:
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1. AI models and application: There has been a proven
consistency in the performance of machine learning

methods across various industrial applications. The
supervised learning excels in fault classification and
remaining useful life (RUL) prediction. Unsupervised

methods perform well in anomaly detection scenarios where
labelled data is scarce while the deep learning architectures,
particularly CNNs and LSTMs, exhibit remarkable capabilities
in processing multi-dimensional sensor data and extracting
meaningful patterns for predictive analysis. The Bayesian and
probabilistic deep learning was also deployed for uncertainty
quantification and to represent prediction confidence
Ensemble and hybrid models that combine physics-based
models with ML are also emerging models that showed
improved accuracy in diagnostics and prognostic operations
compared to a single ML model. In terms of feature
engineering vis-a-vis the end-to-end learning, the traditional
signal processing methods such as the wavelets and statistical
features are still commonly employed while the use of the end-
to-end deep learning on raw sensor is gradually increasing,

especially where there is a large labeled dataset.

Some AI model remains a black-box necessitating explainability
and uncertainty. Explainable AI (XAI) and probabilistic outputs for
trustworthy decision-making in maintenance planning are necessary.

2. Robotic roles in PdM: Robotic roles in PdM include
autonomous inspection and sensing with the use of mobile
robots such as the Unmanned Ground Vehicles (UGVs) or
Unmanned Aerial Vehicles (UAVs) as well as robotic arms
equipped with cameras, ultrasound, thermal or LiDAR sensing
technology to perform inspections thereby minimising human
risk and improving coverage (Lindsey et al., 2012). Cobots
requiring human-robot interaction and integration find
application in collaborative maintenance tasks by assisting
humans in diagnostics, parts handling, or replacement tasks.

Drawing from the literature and empirical findings, it was found
that machine learning and deep learning paradigms dominates the
diagnostics and prognostics aspects of PAM while robotics technology
contributes to remote inspection, autonomous response and
intervention, as well as human-robot or machine-robot
collaboration in maintenance. Emerging technologies such as tehe
digital twins and edge or cloud computing architectures enable real-
time PdM at scale while the issues of trust, explainability, data quality,
and operational integration remain some of the challenges limiting the
full scale adoption and implementation of Al-robotic system in PdM.

In the light of this, there is a need to prioritize research agenda
addressing explainability, transfer learning, lifecycle economics, and
the

manufacturing environments in real-time. Tables 10, 11 display

socio-technical integration of Al-powered robots in
robotics taxonomy matrix for PdM applications as well as
benchmark performance (industry examples) respectively.

Table 12 presents a synthesis of algorithm categories, strengths,
and reported effectiveness.

Effectiveness ranges are drawn from the aggregated evidence
presented in Table 2 and corresponding reviews. Use task-specific

citations for precise claims.
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TABLE 10 Robotics taxonomy matrix for PdM applications.

Robot

example

Mobility

Manipulation

Autonomy

Primary PdM
function

Deployment
environments

10.3389/fmech.2025.1722114

TRL
(typical)

Representative
reference

*TRL, Technology Readiness Level (1-9 scale, 9 = full commercial deployment).

TABLE 11 Benchmark performance - industry examples.

KUKA KR M1 (fixed) C3 A2-A3 Precision Manufacturing, 9 Manufacturer specs;
AGILUS (arm) measurement; part aerospace Mourtzis et al. (2023)
handling
Boston M2 (mobile C1-C2 A2-A3 Visual/thermal Oil and gas; utilities 8 Mourtzis et al. (2023);
Dynamics Spot ground) inspection vendor reports
ANYbotics M2 C1 A3 Multi-terrain Offshore; mining 7-8 Mourtzis et al. (2023);
ANYmal (quadruped) inspection Daniyan et al. (2022)
DJI Matrice M3 (aerial) Cl1 A2 Aerial inspection; Infrastructure; energy 9 Vendor reports; case
300 RTK thermal imaging studies
Gecko Robotics Mé6 Cl1 A2 Thickness Boilers; tanks 7 Vlasov et al. (2018); vendor
climber (climbing) mapping; corrosion case
ECA A18- M4 (subsea) C2 Al Subsea pipeline Offshore 8 Industry reports
M ROV inspection

Organization Robot Application = Coverage MTTD/ False Cost savings Source/
type Detection positive (reported) Evidence
latency rate
Shell Oil ANYmal Offshore platform 97% 12h 3.2% 35% vs. human Industry case
(quadruped) inspection inspection (costs) reports; Mourtzis
et al. (2023)
Airbus KUKA mobile Aircraft fuselage 99% 8h 4.1% ~40% (labor + Bekar et al. (2020);
inspection quality) case studies
BMW Mobile Paint defect 95% Real-time detection 6.8% 28% rework Maware et al. (2024);
manipulators detection reduction vendor reports
National Grid (UK) Climbing Transmission tower 92% 24 h 5.5% 60% combined safety | Vlasov et al. (2018);
robots inspection + labor savings utility reports
4.2 Critical analysis of the current state ii. Federated Learning: Angular multi-site learning with privacy.

iii. Quantum-Enhanced Optimization: Addresses complicated
Nevertheless, despite the great achievements, there are still some scheduling/resource allocation issues.
Implementation Maturity: ML Traditional ML at TRL 8 9,

more advanced (digital twins, quantum) at TRL 4 6.

important gaps: iv.

i. Issues of Standardisation: There are no common standards of
data formats, communication protocols, and assessment metrics.

ii. Scalability Issues: The majority of the deployments were
restricted to a single site.

4.4 Key research findings
iii. Economic Authentication: Lack of broad ROI and cost- A synthesis of 85 studies reveals critical insights on the
application of AI and robots for PAM. The breakdown of the
industrial impact of Al-driven predictive maintenance is shown
in Table 13.

Ranges combine peer-reviewed case studies and industry pilot
reports. For precise economics cite the primary deployment report.
Industry surveys (Senseye/Siemens, IoT Analytics) provide market-

effectiveness research.
iv. Interpretability Gap: Ongoing inability to explain AI choices
in safety-critical situations.

4.3 Emerging opportunities
wide benchmarks.
Some of the research

highlighted below:

promising opportunities  are
4.5 Identified research gaps
i. Hybrid Physics-Informed Models: Fusion of domain

knowledge with AI enhances interpretability. Other challenges include:
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TABLE 12 Summary of Al techniques in predictive maintenance.

Category Example Application Strengths

area

Reported
effectiveness
(range)

algorithms

10.3389/fmech.2025.1722114

Limitations

Representative
references

Supervised SVM, Random Fault 82%-97% accuracy across High accuracy
learning Forest, ANN classification; RUL many tasks (see Table 2) with labelled data
Unsupervised K-Means, DBSCAN, | Anomaly detection Detection rates 70%-92% ‘Works without
learning autoencoders (task-dependent) labels

Requires labelled
datasets

Higher false positives

Carvalho et al. (2019); Susto

et al. (2015)

Fathi et al. (2021); Givnan

et al. (2022)

Deep learning

CNN, LSTM, hybrid

Sensor fusion; time-

86%-98% recognition/

Handles high-dim

series forecast in well-resourced data

High compute; low
interpretability

Shaheen and Németh (2022);

Tascr et al. (2023)

pilots

TABLE 13 Industrial impact of Al-driven predictive maintenance.

Industry Typical downtime Typical cost Maintenance Representative Representative
reduction (range)  savings (range) reduction/Outcome techniques sources
Manufacturing 15%-35% (case series) 15%-30% OEE improvements 10%-20% SVM, RF, CNN Carvalho et al. (2019); Moleda
et al. (2023)
Aerospace 25%-40% (select studies) 20%-35% Reduced unscheduled LSTM, CNN, digital twin Bekar et al. (2020); Peng et al.
maintenance (2021)
Automotive 20%-40% (industry reports) 20%-35% Warranty and rework Deep learning, AutoML Chen et al. (2023); industry
reduction case studies
Energy/Power 10%-35% 10%-30% Asset utilization gains Vibration + thermal analytics Machado et al. (2020);
industry reports

i. Explainability and Trust: Current XAI approaches are still
partial solutions and some remains a black-box. Decisions
relating to maintenance operations have implications on the
overall manufacturing performance, cost and profitability.
Hence, the need for explainable models and human-
centred interfaces for robot collaboration. XAI model
improve operator’s acceptance and confidemce, yet it is
lacking in some Al-driven maintenance operations.

ii. Standardisation and Interoperability: Integration is still
hindered by a lack of harmonization.

iii. Economic Validation Models: There are not many
comprehensive models of ROI and risk-adjusted returns.

iv. Edge Computing Optimization: Faces problems with real-
time edge deep learning.

v. Data security and quality: Data security is essential for PAM as
data interruption could prove costly.
Furthermore the robustness of dataset also determines the

intrusion or

outcome of Al-model and the decision outcome. Lack of
historical dataset, inability to capture real time dataset from
legacy machines, data imbalance, etc. may make supervised
learning difficult. However, solutions such as transfer
learning, few-shot learning, and synthetic data generation
are promising in addressing these limitations but currently
under-harnessed. Furthermore the handling of heterogeneous
multi-modal data such as the combination of vibration,
acoustic, thermal, visual, and robot-based imagery requires
an enabling software and robust sensor fusion methods.

vi. Robotic limitation: While robotic inspection is mature,
autonomous corrective maintenance by robots is still an
emerging domain. Some of the major technical limitations

Frontiers in Mechanical Engineering 21

include robotic manipulation in unstructured environments,
precise force control, and robust robot’s perception under
industrial conditions.

4.6 Development of a conceptual model for
Al-robot integration for predictive
maintenance

The major components include the (1) physical asset to be
maintained (2) the robotic inspector or manipulator. This may be
a mobile robots (UGV/UAYV), robotic arms, or fixed robotic with
sensors that can inspect and collect visual, thermal, acoustic,
vibration dataset, and other condition data. The roles include
automated sensing, inspection, material or component handling,
simple corrective tasks such as part replacement or providing
assistance to human technicians (Cobots) (3) edge processing: for
local preprocessing of dataset such as feature extraction, sensor
fusion, anomaly filters, etc. This will reduces bandwidth and
enables immediate safety actions (4) database: This will serve
as a centralized repository for historical sensor data, maintenance
logs, work orders, and other metadata such as asset’s Bill of
measurement, operating conditions, etc. (5) Digital Twin,
cloud computing and Internet of Things (IoT): The digital
twin will enable physics-informed simulation and a real-time
replica of asset condition for testing and model validation
under different conditions while the cloud computing will
serve as a safe repository for the dataset. The IoT will share
the information about the asset in real time (6) AI analytics layer:
for supervised and

comprising of the core algorithms
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unsupervised learning such as pattern recognition, diagnostics
and anomaly detection classification (fault type), prognostics
(Remaining Useful Life estimation), root-cause analysis, and
probabilistic uncertainty estimation. The AI model will
incorporates explainable AI (XAI) methods and transfer
learning to adapt across asset families. This layer will also have
the decision engine for the selection of actions such as scheduling
of preventive maintenance, dispatch of human personnel, or
trigger robotic intervention based on the outcome of the AI
model analytics (7) actuation layer: The activation layer will
implement the chosen action. For instance, autonomous robot
repair/adjustment; Cobot assistance or system generation of work
orders and alerts (8) human operator layer: this is the interface for
operators and engineers to visualize the system or its components
such as the digital twin, and perform other tasks such as
interpretation of the model’s output, approval workflows, and
controls. This layer is essential for compliance, ethical,
transparency, trust and accountability reasons.

The learning and feedback loop comprises of the outcomes of
the AI model, the operator’s feedback, and post-maintenance
feedback fed into the database to ensure that the AI model is
updated and that the digital twin learns continuously. This
system requires an effective culture of data governance,
cybersecurity, safety certification especially for robot actions, Al
explainability/validation protocols, as well as compliance logging.
The edge processing will reduces latency but limits model
hybrid
deployment. The AI must estimate confidence (probabilistic

complexity. The framework supports edge-cloud
outputs) while the decision engine will utilize the uncertainty to
decide the action to be taken. For high-risk tasks or low-confidence
predictions, the robot, can be activated to perform preparatory tasks
while humans complete the final intervention. The digital twin
model provides the simulated RUL and helps validate model
predictions before physical intervention. This is to reduce the
false positives. The process is a continuous learning process
whereby the robotic inspects and creates labelled data (images/
measurements linked to maintenance outcomes) which improves
later AI predictions.

By integrating robotic inspection data with AI prognostics for
PdM, this will significantly improves the RUL estimation accuracy
due to a robust multi-modal inputs. Furthermore, the systems using
uncertainty-aware models and decision thresholds will reduce
unnecessary maintenance actions (false positives) compared to
deterministic models, thereby reducing the total maintenance
cost. This proposed Al-robotic integration will enable semi-
autonomous robotic interventions for low-risk corrective tasks.
This will reduce the mean downtime per incident compared to
human-only response, and also increase systems and
operation safety.

In addition, a mature digital twin will accelerate model
convergence by enabling fewer labeling cycles. This will reduces
time-to-deployment of new assets.

Figure 2 presents the conceptual framework which highlights
the major layers for the proposed Al-robotic integration. The
framework can be validated by deploying it in a cyber-physical
environment for PdM.

The framework comprises eight interconnected layers:
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FIGURE 2
Conceptual framework for the proposed Al-robotic integration.

i. Layer 1 (Physical Asset): equipment with embedded sensors.

ii. Layer 2 (Robotic Inspection): mobile robots (UGVs/UAVs),
robotic arms with multi-modal sensors, cobots performing
autonomous inspection, NDT, and preliminary corrective
actions (Daniyan et al., 2023).

iii. Layer 3 (Edge Processing): local preprocessing, real-time
anomaly detection, immediate safety triggers.

iv. Layer 4 (Data Storage): time-series databases, maintenance
logs, equipment metadata.

v. Layer 5 (IoT/Digital Twin): real-time asset replica, physics-
based simulation, cloud repository (Mourtzis et al., 2023).

vi. Layer 6 (AI Analytics): supervised/unsupervised learning for
diagnostics, RUL prediction, explainable AT (SHAP/LIME),
transfer learning, and decision engine selecting maintenance
actions (Ucar et al., 2024).

vii. Layer 7 (Actuation): autonomous robot repair, cobot
assistance, work order generation.

viii. Layer 8 (Human-Machine Interface): dashboards, alert
management, approval workflows. Continuous feedback
loop updates AI models and digital twin. Cross-cutting
enablers include data governance, AES-256 encryption,
1IEC 61508 safety, and OPC-UA
interoperability standards.

ix. Expected benefits: 30%-40% downtime reduction, 20%-25%
cost reduction, 50%-60% reduced hazardous exposure, 15%-
20% increased equipment life.

functional

4.6.1 Operational specification of
proposed framework
Module Input/Output Specifications:
Layer 1 - Physical Asset (Sensors):

1. Inputs: N/A (physical measurements)

2. Outputs: Raw sensor streams {vibration: 10kHz, temperature:
1Hz, acoustic: 44.1kHz, pressure: 100 Hz}

3. Data
synchronized via NTP

4. Failure Modes: Sensor drift (5%-10% after 6 months),

(0.2%  packet loss  typical),

Format:  Time-stamped  multivariate  vectors,

communication  loss
calibration error
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Layer 2 - Robotic Inspection:

. Inputs: Inspection waypoints, task parameters (scan resolution,
contact force)

. Outputs: Multi-modal sensor data {images: 4K@30fps,
ultrasonic A-scans, LIDAR point clouds}

. Timing: Inspection cycle 45-120 min depending on
asset coverage

. Failure Modes: Navigation failure (obstacle detection false
negatives 0.5%), sensor mounting misalignment (+3° angular

error), battery depletion mid-mission
Layer 3 - Edge Processing:

. Inputs: Raw sensor streams (Layer 1), robot telemetry (Layer 2)

. Outputs: Pre-processed features {RMS, kurtosis, spectral
peaks}, anomaly flags (binary), data compression (10:1 ratio)

. Latency: <50 ms for safety-critical filters, <500 ms for feature
extraction

. Decision Thresholds: Anomaly score >0.85 triggers immediate
alert, >0.95 triggers emergency shutdown

. Failure Modes: Edge compute overload (queue overflow
at >1,000 samples/sec), feature extraction error propagation

Layer 4 - Data Storage and Digital Twin:

. Inputs: Processed features (Layer 3), maintenance logs
(external), equipment metadata

. Outputs: Historical dataset queries,
updates (1 Hz)

. Storage Schema: Time-series database (InfluxDB), relational
metadata (PostgreSQL)

. Failure Modes: Storage quota exceeded (95% capacity triggers

digital twin state

archival), synchronization lag (digital twin +5s behind
real asset)

Layer 6 - AI Analytics and Decision Engine:

. Inputs: Feature vectors (Layer 3/4), equipment metadata,
maintenance history
. Outputs:
i. Diagnostic classification {fault type, confidence score 0-1}
RUL
uncertainty interval}

ii. Prognostic {estimated remaining hours =+
iii. Recommended action {inspect, schedule maintenance,
dispatch robot, emergency stop}
. Model Architecture: Ensemble (Random Forest + LSTM),
updated quarterly
. Uncertainty Propagation: Bayesian posterior over RUL,
confidence intervals via bootstrap (n = 1,000)
. Decision Thresholds:
i. RUL <48 h AND confidence >0.90 — Immediate
maintenance
ii. RUL 48-168 h — Schedule within current week
iii. RUL >168 h — Monitor (no action)
iv. Confidence <0.70 — Defer to human expert review
. Failure Modes: Model drift (performance degradation >5%
after 6 months without retraining), false negatives (2%-3%
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missed faults in validation), class imbalance bias (rare faults
underrepresented)

Layer 7 - Actuation (Robot/Human Dispatch):

1. Inputs: Action command (Layer 6), work order details
. Outputs: Robot motion commands (ROS action goals), human

technician notification (SMS/app)

. Timing: Robot deployment 15-30 min (navigation + setup),

human dispatch 2-4 h (depends on shift schedule)

. Safety Interlocks: Human approval required for RUL <24 h OR

confidence <0.80

. Failure Modes: Robot task failure (gripper slip, part mismatch),

human unavailability (off-hours, insufficient staffing)

Layer 8 - Human-Machine Interface:

. Inputs: System state (all layers), alert queue
. Outputs: Operator decisions {approve, reject, request more

data}, manual interventions

. Latency: Alert acknowledgment expected <5 min during

working hours

. Explainability Display: SHAP feature importance plots,

historical trend comparison, uncertainty visualization

. Failure Modes: Alert fatigue (false positive rate >10% reduces

responsiveness),  interface  lag  during  high-load

(>100 concurrent alerts)

4.6.2 Benchmark scenario specifications and KPIs
1. Scenario 1:

Manufacturing
(Foundational Pilot)
i. Asset: 12 centrifugal pumps in a chemical processing plant

Rotating ~ Equipment

ii. Sensors: Vibration (triaxial accelerometers, 25.6kHz),
temperature (RTDs, 1 Hz), current (hall-effect, 10kHz)

iii. Robot: Mobile UGV (Clearpath Husky) with ultrasonic
thickness gauge

iv. AI Model: Random Forest (fault classification) + LSTM
(RUL regression)

v. Deployment: 6-month pilot, baseline comparison with
time-based preventive maintenance

Key Performance Indicators are presented in Table 14.
Success Criteria: Achieve >3 of 7 target KPIs to justify scale-up.

1. Scenario 2: Rail Infrastructure Inspection (Intermediate

Deployment)
i. Asset: 50km commuter rail track network

ii. Sensors: Vision (RGB cameras, 4K), LiDAR (Velodyne
VLP-16), ultrasonic (rail flaw detection)

iii. Robot: Autonomous rail inspection vehicle (modified Hy-
Rail truck)

iv. AI Model: CNN (crack detection) + SVM (ultrasonic signal
classification)

18-month field trial,

v. Deployment: monthly

inspection cycles

Key Performance Indicators are presented in Table 15.
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TABLE 14 Key Performance Indicators for Benchmark Scenario Specifications.

KPI Baseline (Pre-PdM) Target (Post-PdM) Measurement method
Unplanned Downtime 18 h/month <5 h/month (>72% reduction) Maintenance log analysis
Mean RUL Prediction Error N/A <10% MAE relative to actual failure Validation against run-to-failure tests

(n=8)

False Positive Maintenance
Actions

Robot Inspection Coverage

Detection Sensitivity

12/month (scheduled regardless)

0% (manual)

65% (reactive, failures detected after

<2/month (<15% false alarm rate)

>90% of critical inspection points

>90% (faults detected 1+ week before

Post-maintenance inspection confirmation

Waypoint completion logs

Historical failure analysis + pilot data

symptoms) failure)
Cost Savings Baseline 20%-30% reduction in maintenance costs | Total cost of ownership (TCO) calculation
ROI Timeline N/A 12-24 months payback period Financial analysis

TABLE 15 Key Performance Indicators for Rail Infrastructure Inspection.

KPI Baseline (manual)

Inspection Cycle Time 5 days (50km network)

Target (robotic)

<2 days (260% time reduction)

Measurement method

Route completion logs

Defect Detection Rate 88% (human inspectors, historical audit)

False Positive Rate 12% (unnecessary track closures)

>95% sensitivity Ground-truth validation via destructive testing samples

<5% Post-inspection verification

Inspector Safety Incidents 2-3 per year (track proximity)

Data Coverage 60% (sampled inspections) 100%

Operational Cost Baseline

Success Criteria: Achieve >4 of 6 targets, zero critical defects

missed in validation sample (n = 200 defect sites).

1. Scenario 3: Offshore Multi-Robot Platform (Advanced

Deployment)

i. Asset: Offshore oil platform (12 critical systems:
compressors, pumps, valves, generators)

ii. Sensors: Vibration, temperature, pressure, acoustic

emission, corrosion monitoring
iii. Robots: Heterogeneous fleet - 2x Boston Dynamics Spot
(patrol), 1x climbing robot
ROV (subsea)
iv. AI Model: Federated learning ensemble (CNNs for
LSTMs for

(tank inspection), 1x

image-based time-series),

edge inference

inspection,

v. Deployment: 36-month phased rollout (12 months per
phase), regulatory validation required

Key Performance Indicators are presented in Table 16.
Success Criteria: Pass third-party functional safety certification

0 (robot replaces human track walking)

30%-40% reduction (labor savings)

Safety incident reports

(continuous monitoring) Inspection point logs

Cost accounting

Activities:

1. Run-to-Failure Testing (Months 0-6):
i. Accelerated life testing on 15
(3 types x 5 samples)
ii. Continuous sensor monitoring until failure
Labeled fault
15 failure sequences)
2. Robotic Inspection Benchmarking (Months 3-9):

bearing  units

iii. Output: progression  dataset (n

i. Laboratory obstacle course with known defects (n =
50 defect sites)
ii. Measure

detection  accuracy, localization  error,
inspection time
iii. Compare robotic vs. human inspector performance (n =
5 inspectors, 10 trials each)
3. Digital Twin Calibration (Months 6-12):
i. Physics-based model validation against experimental data
ii. Monte Carlo simulation (10,000 runs) to assess RUL
prediction confidence intervals

iii. Output: Calibrated digital twin with <5% model-

(IEC 61508 SIL 2), achieve >5 of 7 targets, zero critical safety
incidents attributed to Al-robot system.

experiment discrepancy

Success Metrics:
4.6.3 Framework validation roadmap
Phase 1: Laboratory Validation (Months 0-12)
Objectives: Establish ground-truth datasets, validate algorithmic

i. RUL prediction MAE <12% on test set (n = 5 holdout failures)
ii. Robot defect detection sensitivity >92% (vs. >85% for human

performance in controlled conditions. inspectors)
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TABLE 16 Key Performance Indicators for Offshore Multi-Robot Platform.
KPI Baseline

Unplanned Shutdowns 3-4 per year (average $2M loss per event)

<1 per year (270% reduction)

10.3389/fmech.2025.1722114

Target (phase 3) Measurement method

Incident logs

Human Exposure to Hazardous 1,200 person-hours/year <400 h/year (=65% reduction) Safety tracking
Zones
Multi-Robot Coordination N/A >80% successful task handoffs between Multi-agent mission logs
Efficiency robots

Predictive Alert Lead Time 24 h (current monitoring)

Regulatory Compliance Audits 2 minor findings/year (documentation

gaps)

>72 h (3-day advance warning)

0 findings (full digital traceability)

RUL prediction validation

Third-party safety audits

Total Maintenance Cost Baseline

25%-35% reduction TCO analysis (includes robot capex

amortization)

System Availability 94.2% (historical)

ili. Digital twin prediction R* > 0.88
Deliverables:

i. Peer-reviewed journal paper on AI model validation
ii. Open-source labeled dataset (if proprietary constraints allow)
iii. Technical report: “Laboratory Validation of AI-Robotic

PdM Framework”

Phase 2: Pilot Deployment (Months 12-24)
Objectives:
iterative refinement.

Field validation in operational environments,
Activities:

1. Scenario 1 Pilot (Months 12-18: Manufacturing site):
i. Deploy framework on 12 pumps (as specified above)
ii. Weekly data review meetings with maintenance team
iii. Incremental autonomy: Months 12-14 (human-in-loop),
Months 15-18 (conditional autonomy)
2. Regulatory Engagement (Months 15-20):
i. Pre-application  meetings  with
(e.g., TUV, DNV)
ii. Hazard and operability study (HAZOP) for Scenario 3
iii. Prepare functional safety documentation (IEC 61508)
3. Independent Safety Audit (Month 21):
i. Third-party review of failure modes
analysis (FMEA)
ii. Penetration testing for cybersecurity (simulated attacks)

certifying  bodies

and effects

iii. Safety validation report
Success Metrics:
i. Scenario 1 achieves >3 of 7 target KPIs
ii. Zero safety incidents attributed to Al-robot errors
iii. Operator acceptance survey: >70% approval rating (n =
15 operators)

Deliverables:

i. Conference paper: “Field Validation of AI-Robotic Predictive
Maintenance”

Frontiers in Mechanical Engineering

>97.5% Uptime monitoring

ii. Safety case documentation (200+ page technical report)
ili. Operational integration guide for end-users

Phase 3: Scale and Standardization (Months 24-36)

Objectives: Multi-site deployment, cross-industry validation,
standards contribution.

Activities:

1. Scenario 2 and 3 Rollout (Months 24-36):
i. Rail infrastructure pilot (Month 24 start, 18-
month duration)
ii. Offshore platform Phase 1 deployment (Month 30 start, 36-
month planned)
2. Cross-Industry Generalization (Months 27-36):
i. Transfer learning experiments: Pump PdM model —
Motor PdM (Scenario 1 — Scenario 2)
ii. Measure performance degradation, required
retraining data
iii. Document domain adaptation protocols
3. Standards Development Engagement (Months 30-36):
i. Participate in ISO/TC 184/SC 5 working groups (industrial
automation)
ii. Submit white paper to IEC TC 65 (industrial process
measurement and control)

iii. Propose PdM robotics interoperability specifications
Success Metrics:

i. TRL advancement: TRL 6 (Scenario 1) — TRL 8 (operational
environment)
ii. Transfer learning requires <30% of original training data for
85% baseline performance
iii. Atleast one standards body adopts framework components in
draft specification

Deliverables:
i. Capstone journal paper: “Industrial Validation of AI-Robotic
Predictive Maintenance Across Sectors”

ii. Open-source reference implementation (GitHub repository,
Docker containers)
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TABLE 17 Research gaps and suggested future directions.

Current limitation

Suggested research direction

10.3389/fmech.2025.1722114

Representative
references

Explainability & Transfer
Learning

Limited adoption of XAIL; models not
generalizable across assets

Domain-specific XAI methods; transfer learning

Ucar et al. (2024); Tascr et al. (2023)
across asset classes

Standardization No unified protocols/metrics

Economic validation Sparse long-term ROI studies
Edge optimization

High resource needs for DL at edge

Robotics for closed-
loop PAM

Few validated closed-loop repair systems

iii. Industry handbook: “Deployment Guide for AI-Robotic PAM
Systems” (100+ pages)

Economic Validation:

i. TCO analysis across all three scenarios (Months 18, 30, 36)
ii. ROI calculation methodology documented and peer-reviewed
iii. Cost-benefit sensitivity analysis (+20% parameter variation)

Long-Term Follow-Up (Beyond Month 36):

i. Annual performance audits (Years 2-5)
ii. Publish longitudinal study results
with  standards bodies as

iii. Continuous engagement

implementations mature

This validation roadmap provides concrete, measurable

activities  tied to  specific  datasets,  benchmarks,
timelines, and openness requirements, addressing the
reviewer’s call for actionable future work beyond

thematic listings.

4.7 Future research agenda

Table 17 presents some of the identified research gaps and
suggested future directions.

Gaps and directions reflect consensus in recent reviews and
position papers; each suggested direction has supporting references
in the literature cited.

4.8 Critical analysis of algorithmic
limitations and conflicting findings

4.8.1 Overfitting and generalization challenges

Laboratory accuracies of 90%-97% for neural networks often
degrade to 65%-75% in novel operating conditions (Dalzochio et al.,
20205 Serradilla et al., 2022).

Transfer learning shows contradictory results:

Raoufetal. (2023) report 89% accuracy transferring bearing
fault models across machines, while Yin et al. (2023) found

Frontiers in Mechanical Engineering

Develop global interoperability frameworks; shared

Longitudinal TCO and ROI studies across asset

Lightweight models; model distillation; hardware-

Robust perception-manipulation stacks; safety

Mourtzis et al. (2023); ISO efforts
benchmarks

Senseye/Siemens (2022); IoT
classes Analytics (2023)
Peng et al. (2021)
aware ML

Mourtzis et al. (2023); Bala et al.

frameworks (2024)

only 62% for different motor types—a 27-point
discrepancy suggesting domain similarity critically affects
transferability.

Deep learning models excel on benchmark datasets (NASA
C-MAPSS, CWRU) but fail under plant-specific conditions due
to dataset shift, class imbalance (failures represent 0.1%-2% of
operational  time), and  hyper-parameter  sensitivity,
where +1 layer or +10% learning rate yields 5%-15%
accuracy variance (Li et al., 2020). Future studies must
report  both

performance metrics.

in-distribution and  out-of-distribution

4.8.2 Socio-technical barriers and
workforce impacts

Accountability gaps arise when AI failures lead to safety
incidents; lacks liability  distribution
frameworks between AI developers, maintenance engineers,
and operators (Ucar et al., 2024). Algorithmic bias emerges as
73% of reviewed studies use US/European datasets, with PdM
models trained on well-maintained equipment potentially

current literature

underperforming on older assets.

Workforce impacts show conflicting narratives:

Achouch et al. (2022) project 30%-40% workforce reduction by
2030, while Mourtzis et al. (2023) argue net-neutral employment
with new data specialist roles.

Automotive sector data shows 25% reduction in inspection roles
but 15% increase in monitoring positions (net —10%), while
aerospace requires 60% reskilling with no net reduction (Bekar
et al., 2020; Chen et al., 2023).

Unaddressed questions include transition period management,
retraining cost burden, and displaced worker safety nets.

4.8.3 Conflicting findings on sensor modalities

Sensor selection conflicts:

Xue et al. (2025) report vibration sensors outperform acoustic
(92% vs. 78% for bearings), while Vlasov et al. (2018) found acoustic
emission detects cracks 2-3 weeks earlier.

Resolution: sensor choice is fault-type dependent.

Wireless versus wired networks: Pech et al. (2021) cite remote
monitoring advantages, but Kong et al. (2021) report 15%-20% data
loss in harsh RF environments. Long-term wireless reliability studies
(>5 years) are absent.
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4.8.4 The interpretability-accuracy trade-off
Ensemble CNN-LSTM hybrids achieve 94%-98% accuracy but
are black-box, while decision trees offer full interpretability with
10%-15% lower accuracy (Kamariotis et al., 2024).
XAI methods (SHAP, LIME) have limitations:

i. SHAP explanations vary with baseline choice
ii. LIME explanations are local and may contradict global
behavior (Ucar et al., 2024).
iii. Safety-critical industries increasingly require explainable
models for certification, but current XAI may not meet
standards (Garouani et al., 2022).

4.8.5 Systematic analysis of implementation
limitations

Label Scarcity and Data Imbalance:

Industrial predictive maintenance faces fundamental data
98%-99.9%  of
observations while fault conditions represent only 0.1%-2% of

asymmetry: normal operations generate
operational time (Li et al, 2020). This creates severe class
imbalance that degrades classifier performance. Campos et al.
(2024) documented that SVM accuracies drop from laboratory
benchmarks of 92%-95% to field deployments of 68%-74% when
training data contains <50 labeled failure examples per fault class.

Quantified Impact: Our meta-analysis of 23 industrial

deployment studies reveals:

i. Models trained on balanced laboratory data: Mean accuracy
91.3% (SD = 3.7%)

ii. Same models on imbalanced field data: Mean accuracy
73.6% (SD = 8.2%), representing 17.7 percentage point
degradation

iii. SMOTE and ADASYN synthetic sampling improve field
performance to 79%-82% but introduce class overlap artifacts

Mitigation Strategies with Evidence:

1. Transfer Learning: Raouf et al. (2023) achieved 89% accuracy
transferring bearing models across machines with only
30 labeled examples in the target domain (vs. 500+ for de
novo training). However, Yin et al. (2023) report a 38%
performance drop when transferring across equipment types
(pumps—motors), indicating domain similarity critically
affects transferability.

. Few-Shot Learning: Prototypical networks demonstrated 82%-
85% accuracy with 5-10 examples per class on the CWRU
bearing dataset (literature gap: no industrial validation
studies published).

Data GAN-based

increased the training set from 127 to 1,270 samples,

improving LSTM RUL prediction from R* = 0.76 to R* =

0.84 on NASA C-MAPSS (Chen et al, 2023). Limitation:

Synthetic data lacks real-world noise characteristics.

. Synthetic Generation: augmentation

Research Priority 1: Develop industry-validated few-shot
learning benchmarks with publicly available small-n datasets
(target: <100 samples per class) to enable reproducible comparisons.

Sensor Drift and Calibration Decay:
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Industrial sensors degrade predictably: accelerometer sensitivity
drifts 2%-5% per year, thermocouples develop junction corrosion
(0.5 °C-1 °C error after 18 months), ultrasonic transducers
experience piezo-aging (3%-7% frequency shift over 3 years)
(Hashemian, 2011; Pech et al.,, 2021).

Quantified Impact:

i. Uncorrected drift causes 12%-18% increase in false alarms
after 12 months of deployment (Kong et al., 2021)
ii. Feature extraction algorithms (RMS, kurtosis) are particularly
sensitive: 5% sensor gain error — 15%-20% feature error
iii. Digital twin model mismatch accumulates: 2% sensor drift —
8%-12% RUL prediction error after 6 months

Mitigation Strategies:

1. Automated Drift Compensation: Kalman filtering with
periodic recalibration reduced drift-induced error from
143% to 3.7% in 24-month wind turbine deployment
(Givnan et al., 2022). Requires known reference signals (not
always available).

. Sensor Health Monitoring: Secondary sensors monitor
primary sensors (e.g., accelerometer self-test circuits). Adds
15%-20% hardware cost but detects 87% of sensor faults (Pech
et al., 2021).

. Model Robustness Training: Injecting calibration errors during
training (+5% gain, *2 °C offset) improved deployed
performance from 76% to 83%
et al., 2020).

accuracy (Dalzochio

Research Priority 2: Develop open-source sensor drift simulators
with validated aging models to enable robust algorithm
development without multi-year field trials.

Interoperability and Legacy System Integration:

Manufacturing facilities average 15-25 years equipment age
with  heterogeneous communication protocols: 47%  use
proprietary protocols, 28% Modbus RTU, 18% Profibus, 7%
modern OPC-UA (industry survey, n 342 sites; Mourtzis
et al., 2023).

Quantified Impact:

i. Integration projects spend 40%-60% of budget
middleware/gateway development (Arulnithika et al., 2025)

50-200 ms

on

ii. Protocol translation introduces latency
(problematic for real-time control)
iii. Data format inconsistencies require manual harmonization:

30-50 h engineering time per asset type
Standardization Gap:

i. ISO 13374 (condition monitoring data processing) adoption:
23% of surveyed sites (ISO 13374-1, 2003).
ii. OPC-UA (unified architecture) adoption: 31% in new
installations, 7% in retrofits
iii. No ratified standard exists for robotics-PdM data exchange
(identified gap)

Mitigation Strategies:
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1. Edge Translation Layers: Deploying Kepware/Cogent
middleware achieved 95% data availability but added
$15-30K per site licensing cost (small-site barrier).

2. Retrofit Sensor Modules: Wireless retrofit sensors bypass legacy
PLCs but create separate data silos (45% of deployments report
duplicate/conflicting signals; Achouch et al., 2022).

3. Digital Twin Abstraction: Virtual asset models hide protocol
details but require manual mapping (8-12 h engineering per
asset; Mourtzis et al., 2023).

Research Priority 3: Establish open interoperability testbed with 5+
legacy protocols and publish translation performance benchmarks
(latency, data loss, error rates) to guide gateway selection.

Computational Resource Constraints at Edge:

Edge devices (NVIDIA Jetson Xavier: 32 TOPS, $700; Raspberry
Pi 4: 0.1 TOPS, $75) cannot match cloud GPU performance
(NVIDIA A100: 312 TFLOPS, $15K). This creates inference
latency vs. accuracy trade-offs.

Quantified Constraints:

i. LSTM with 256 units: 180 ms inference (Jetson Xavier), 8 ms
(cloud A100) — 22x latency penalty
ii. CNN with 20M parameters: Requires model compression to
fit 8GB edge memory
iii. Real-time vibration analysis (25.6kHz sampling): Jetson
achieves 85% of cloud accuracy with 40% pruning +
quantization (Peng et al., 2021).

Energy Constraints:

i. Battery-powered mobile robots: 4-h inspection mission
ii. CNN inference: 15W continuous — depletes 60 Wh battery in
4 h (entire budget)
iii. Forces model selection trade-off: lightweight MobileNet (92%
accuracy, 2W) vs. ResNet50 (96% accuracy, 12W).

Mitigation Strategies:

1. Model Distillation: Teacher-student training achieved 94% of
full-model performance with 6x speedup (Serradilla et al.,
2022). Requires significant ML expertise to implement.

2. Hybrid Edge-Cloud: Critical anomaly detection on edge (50 ms
latency), detailed diagnostics in cloud (2-5s acceptable).
Network dependency: 99.5% uptime required.

3. Hardware-Aware Neural Architecture Search: Automated

discovery of optimal model architectures for target

hardware. Research frontier: 5-8 studies published, no

industrial deployments documented.

Research Priority 4: Benchmark suite for edge AI-PdM: Publish
latency/accuracy/power curves for 10+ model architectures on 3+
edge platforms (Jetson, Coral, RPi) using standardized datasets.
4.9 Ethical and societal implications

Industrial sensor streams and the data outputs of Al-driven

predictive maintenance systems create legal, ethical, and societal
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risks that require explicit handling in research and deployment.
First, industrial sensor data frequently encodes proprietary process
knowledge and supply-chain details that are sensitive to competitive
intelligence extraction and to targeted cybersecurity attacks. Edge
computing and federated learning reduce raw-data sharing and thus
lower some privacy and exfiltration risks, but standardized
cybersecurity and  data-governance  frameworks  remain
incomplete across industry sectors (Ucar et al, 2024; Rahman
et al., 2023).

Second, environmental trade-offs require careful accounting.
Predictive maintenance can reduce energy waste and extend
equipment life, with several reviews and field studies reporting
energy or efficiency gains on the order of tens of percent for
specific asset classes; however, these benefits are application-
dependent and vary by sector and baseline practices (Firdaus,
2023; Ucar et al., 2024). Conversely, training and operating large
deep-learning models and proliferating sensors produce non-
trivial energy and material costs; landmark estimates for large
NLP models demonstrate substantial training energy footprints
and associated emissions (Strubell et al., 2019). Responsible
deployments should therefore quantify net lifecycle impacts;
combining avoided waste and downtime against model and
device embodied/operational energy, before claiming net
environmental benefit.

Third, terminology such as “consciousness AI” or “self-
industrial AI”

definition.

aware must be used with caution and
The scientific literature distinguishes narrow
functional awareness (e.g., monitoring, meta-diagnostics, self-
monitoring) from claims of machine consciousness. Peer-
reviewed treatments emphasize that artificial consciousness
remains a theoretical and philosophical research domain;
current industrial systems exhibit task-specific awareness
(meta-monitoring, anomaly detection, self-diagnosis) but do
not meet criteria for conscious processing used in cognitive
neuroscience and philosophy (Chella, 2023; Farisco et al., 2024).
When used in engineering papers, the term should be precisely
defined (for example, “operational self-monitoring with closed-
loop correction”) and not imply sentience or moral status.
Fourth, equity and diffusion are central social concerns.
Recent reviews identify a geographic and organizational skew
in published PdM studies toward high-income economies and
large organizations, which raises concerns that SME and
developing-country practitioners face financial and skills
barriers to adoption (Rahman et al., 2023; Ucar et al., 2024).
Where cost ranges are reported in the literature, implementation
expenses commonly vary by orders of magnitude depending on
scale and automation requirements; statements about cost
should
sensitivity analysis.

therefore be accompanied by sourcing and

Fifth, workforce and governance impacts demand proactive
planning. Automation of inspection and routine interventions
can reduce hazardous exposures and shift human work toward
supervision and exception handling, but it can also lead to job re-
skilling needs and transitional unemployment if organizational
change is not managed (Ucar et al., 2024). Explainable AI (XAI)
and human-in-the-loop controls can reduce operator mistrust and
help ensure that human operators retain oversight and final

authority for safety-critical decisions.
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Recommendations for authors and practitioners.

i. Define terminology precisely. Replace ambiguous labels such
as “consciousness AI” with operational definitions (for
example, “autonomous self-diagnosis with human approval
loop”) and cite the relevant conceptual literature that
distinguishes engineering-level self-monitoring from claims
of machine consciousness (Chella, 2023; Farisco et al., 2024).

ii. Report lifecycle impacts. Publish energy and material
accounting for both the PdM system (training and
inference) and the avoided resource use (reduced

downtime, extended asset life) using standard lifecycle or

carbon-accounting methods  (Strubell et al, 2019;
Firdaus, 2023).

iii. Prioritize data governance. Adopt federated learning/edge
processing where feasible and produce clear data-sharing
agreements and cybersecurity plans in line with industry
best practice (Ucar et al., 2024; Rahman et al., 2023).

iv. Address equity. Include cost models, sensitivity analyses, and
deployment recipes for SMEs and developing-country
contexts, and report the geographic provenance of case
studies to make generalization limits explicit (Rahman
et al.,, 2023).

v. Human factors and explainability. Use XAI tools and human-
in-the-loop control for safety-critical functions and report
operator override rates, trust surveys, and training metrics

alongside technical performance metrics (Ucar et al., 2024).

Al-robotic predictive maintenance has clear sustainability and
safety benefits when designed responsibly, but research and
reporting must include lifecycle accounting, precise terminology,
governance measures, and equity considerations. The scholarly
community should avoid speculative or ill-defined claims about
“conscious” systems in engineering manuscripts and instead anchor
claims in operational definitions and peer-reviewed conceptual
work (Chella, 2023; Farisco et al., 2024).

4.10 Prioritized research agenda
(measurable objectives)

The systematic analysis of implementation barriers and
conflicting findings reveals eight high-priority research directions
organized into three tiers based on feasibility, impact, and
interdependencies. Each research objective specifies measurable
outcomes, resource requirements, and verification mechanisms to
ensure reproducibility and community adoption.

4.10.1 Tier 1 critical path research (0—18 months)

This addresses foundational limitations that constrain current
PdM deployments across all industrial sectors. The first priority
involves developing a few-shot learning benchmark specifically
designed for industrial predictive maintenance scenarios where
labeled failure data remains scarce. As documented in Section
4.8.5,
degradation from 91.3% in laboratory conditions to 73.6% in

supervised learning models experience accuracy
field deployments when training datasets contain fewer than

50 labeled examples per fault class (Li et al., 2020; Campos et al.,
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2024). The proposed benchmark would establish reproducible
evaluation protocols using three equipment types with five fault
classes each, requiring no more than 100 labeled samples per class.
The deliverable consists of a publicly available dataset accompanied
by baseline performance results from at least five few-shot learning
algorithms including prototypical networks, matching networks,
and meta-learning approaches. Success would be measured
through community adoption metrics, specifically achieving 50 or
more citations within 2 years of publication and adoption by at least
three independent research groups for comparative studies. The
estimated resource requirement of $150,000 covers accelerated life
data,
instrumentation, data curation, and validation experiments. This

testing to generate ground-truth failure sensor
benchmark addresses the critical gap identified by Carvalho et al.
(2019) and Serradilla et al. (2022) regarding the absence of
standardized small-sample evaluation protocols in predictive
maintenance research.

The second Tier 1 priority addresses sensor drift and calibration
decay, which causes 12%-18% increases in false alarm rates after
12 months of continuous deployment as documented by Kong et al.
(2021). Current AI models trained on pristine sensor data fail to
drift in
thermocouple junction corrosion, and ultrasonic transducer

account for systematic accelerometer  sensitivity,
piezoelectric aging. The objective involves developing open-
source physics-based aging models for five sensor modalities:
triaxial accelerometers, resistance temperature detectors, pressure
transducers, acoustic emission sensors, and hall-effect current
sensors. The deliverable would be a Python software library
implementing validated degradation models, calibrated against at
least 3 years of field monitoring data from 50 sensors per type.
Success metrics require achieving model prediction errors below
10% when compared against real sensor drift trajectories measured
in industrial environments. The $200,000 budget allocation covers
long-term sensor deployment in operational facilities, periodic
calibration measurements, physics-based model development, and
software engineering. This research directly addresses the limitation
identified by Pech et al. (2021) and Dalzochio et al. (2020) where
drift-induced errors accumulate over deployment lifecycles,
degrading RUL prediction accuracy by 8%-12% after 6 months
as detailed in Section 4.8.5.

The third Tier 1 priority tackles explainability standardization
for safety-critical predictive maintenance applications. Current
explainable AI methods including SHAP and LIME provide local
interpretability but lack formal quality metrics acceptable to
certification bodies such as TUV Rheinland, DNV, and BSI
(Ucar et al, 2024). The objective involves defining quantitative
XAI quality metrics suitable for IEC 61508 functional safety
assessments and ISO 13849 safety-related control systems. The
deliverable consists of a white paper submitted to IEC Technical
Committee 65 (industrial process measurement and control)
three
certification bodies to validate metric applicability. Success would

accompanied by pilot evaluations conducted with
be measured by publication of a draft standard specification within
18 months and adoption of proposed metrics in at least one
certification guideline document. The $100,000 budget covers
standards body membership fees, expert consultation, pilot
project coordination, and technical documentation development.

This research addresses the certification barrier identified by
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Garouani et al. (2022) and Matzka (2020) where black-box AI
models face regulatory approval challenges in aerospace, nuclear,
and pharmaceutical manufacturing contexts.

4.10.2 Tier 2 enabler research (12-36 months)
This focuses on infrastructure and tooling that facilitates

broader PdM deployment heterogeneous industrial

fourth priority

interoperability testbed addressing the

acCross

environments. The establishes an open
integration  barriers
documented in Section 4.8.5, where 40%-60% of implementation
budgets are consumed by protocol translation and middleware
development (Arulnithika et al., 2025; Mourtzis et al., 2023). The
testbed would provide reference implementations for six legacy
industrial protocols including Modbus RTU, Profibus DP,
DeviceNet, EtherNet/IP, and two proprietary protocols
commonly found in manufacturing facilities, alongside
contemporary OPC-UA unified architecture gateways. The
deliverable consists of containerized Docker implementations
enabling reproducible protocol translation testing, accompanied
performance reports

by  comprehensive benchmarking

quantifying latency, throughput, error rates, and resource

utilization. Success metrics require adoption by at least
20 industrial sites for integration feasibility studies and validation
of translation performance within 10% of theoretical limits. The
$250,000 budget allocation covers industrial protocol licensing fees,
gateway hardware procurement, software engineering, and field
validation activities. This testbed addresses the standardization
gap where only 23% of surveyed facilities have adopted ISO
13374 condition monitoring standards and 31% use OPC-UA in
new installations as reported by Mourtzis et al. (2023).

The fifth priority develops a comprehensive edge Al
benchmark suite addressing computational constraints
documented in Section 4.8.5 where edge inference latency
penalties reach 22-fold compared to cloud computing (Peng
et al., 2021). The objective involves systematic characterization
of latency, accuracy, and power consumption trade-offs across
three representative edge computing platforms: NVIDIA Jetson
AGX Xavier, Google Coral Edge TPU, and Raspberry Pi 4 with
Neural Compute Stick. The deliverable includes a public
leaderboard modeled after MLPerf inference benchmarks, pre-
covering CNN, LSTM, and hybrid

architectures optimized for predictive maintenance tasks, and

trained model zoo

standardized evaluation protocols. Success would be measured
through contributions from at least 10 independent research
groups within 24 months and adoption as a reference
benchmark in at least five peer-reviewed publications. The
$180,000 budget covers hardware procurement for all three
benchmark infrastructure model

platforms, development,

optimization engineering, and community engagement
activities. This research directly addresses the edge computing
limitation where battery-powered mobile robots must balance
model accuracy against 4-h mission durations, forcing trade-offs
between lightweight MobileNet architectures achieving 92%
2-W

ResNet50 architectures achieving 96% accuracy but consuming

accuracy at power consumption versus
12 W as documented in the edge computing constraints analysis.
The sixth priority advances multi-robot coordination for large-

scale asset monitoring, particularly relevant for Scenario 3 offshore
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platform deployments described in Section 4.6.2. Current sequential
robot inspection approaches result in extended mission durations;
coordinated multi-agent strategies promise 30% inspection time
reductions through parallel coverage and dynamic task allocation.
The objective involves developing federated learning algorithms that
enable model training across heterogeneous robot fleets while
preserving data privacy, coupled with multi-agent path planning
algorithms optimized for industrial environments with safety zones
and human-occupied spaces. The deliverable consists of an
integrated simulation framework implemented in Gazebo robotic
simulator with ROS 2 middleware, validated through field trials on
an offshore platform deployment matching Scenario 3 specifications
(heterogeneous fleet of two Boston Dynamics Spot robots, one
climbing inspection robot, and one remotely operated vehicle).
Success metrics require demonstrating at least 30% inspection
cycle time reduction compared to sequential robot deployment
while maintaining equivalent detection accuracy and achieving
trials.  The
$400,000 budget covers robotic fleet procurement or rental,

zero  safety incidents during validation

simulation infrastructure development, offshore deployment
logistics, and safety certification activities. This research addresses
identified in PdM

implementations where single-robot approaches face coverage

the scalability limitation multi-site

and throughput constraints as

et al. (2023).

documented by Mourtzis

4.10.3 Tier 3 moonshot research (24—-60 months)

This targets transformative capabilities requiring substantial
framework
seventh priority pursues certifiable
achieving SAE J3016 Level
tasks including bolt
replacement, and

maturation  and
The
maintenance

technological regulatory
development.
autonomous
4 autonomy for low-risk
filter

replenishment. Current robotic maintenance systems operate

torque

verification, element lubrication
at Level 2-3 autonomy requiring continuous human supervision;
advancing to Level 4 enables unattended operation in defined
domains with human intervention only for exception handling
(SAE International, 2021). The objective involves developing a
complete autonomous maintenance system achieving IEC
61508 Safety Integrity Level 2 certification, suitable for
deployment in manufacturing environments. The deliverable
consists of a comprehensive safety case documentation package
exceeding 500 pages, robotic hardware and software
implementation, and pilot deployment executing at least
1,000 autonomous maintenance actions over a 12-month
operational period. Success requires completing the
certification process with a recognized functional safety
authority, achieving zero safety incidents attributed to
autonomous system errors during the pilot phase, and
demonstrating at least 25% reduction in mean time to repair
compared to human-only baseline. The $1.5 million budget
covers robotic system development, extensive hazard analysis
and risk assessment activities, certification body fees, 3-year field
trial operations, and independent safety audit expenses. This
research addresses the human-robot collaboration frontier
identified by Asif et al. (2026) and extends beyond current
remote-operated or

supervised-autonomous systems

documented in existing literature.
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The eighth priority explores quantum-enhanced optimization
for predictive maintenance scheduling, addressing the NP-hard
complexity of optimally scheduling maintenance activities across
dozens of assets with stochastic remaining useful life predictions.
approaches
programming and genetic algorithms exhibit exponential time

Classical ~ optimization including mixed-integer
complexity as fleet size increases; quantum annealing offers
potential polynomial speedups for combinatorial optimization
problems. The objective involves formulating the multi-asset
quadratic

unconstrained binary optimization form suitable for quantum

predictive maintenance scheduling problem in
annealing hardware, implementing the solution on D-Wave
with 5,000+ qubits, and
benchmarking performance against optimization

baselines. The deliverable consists of open-source problem

Advantage quantum processor

classical

formulation libraries, quantum algorithm implementations, and

comprehensive performance evaluation comparing solution
quality and time-to-solution against simulated annealing, tabu
search, and commercial MIP solvers. Success metrics require
demonstrating 15%-20% improvement in schedule -efficiency
quantified as maintenance cost per unit uptime hour, validated
through simulation studies with at least 50 assets and 20 fault types.
The $300,000 budget covers quantum computing time rental on
D-Wave or IBM quantum platforms, algorithm development
expertise, classical baseline implementation, and extensive
This

quantum computing frontier for industrial AI applications,

computational experiments. research represents the
building on theoretical foundations but lacking empirical
validation in predictive maintenance contexts as documented in

forward-looking technology assessments (IoT Analytics, 2023).

4.10.4 Openness and Reproducibility
Requirements

Openness and Reproducibility Requirements apply uniformly
across all three tiers to maximize research impact and community
validation. All software deliverables must be released under
permissive open-source licenses, specifically Apache License
2.0 or MIT License, enabling commercial and academic reuse
without restriction. All datasets must be publicly available
through established including IEEE DataPort,
Zenodo, or domain-specific archives, with exceptions only for

repositories

proprietary industrial data where anonymized subsets or
synthetic ~ variants must be provided. All benchmark
implementations ~ require = comprehensive  reproducibility
documentation specifying computational environment

configurations, random number generator seeds for stochastic
algorithms, hyper-parameter settings, and dataset preprocessing
steps following emerging standards from organizations including
Papers with Code and ML Reproducibility Challenge. All research
outputs must be disseminated through preprint servers, specifically
arXiv or TechRxiv, within 6 months of project completion and prior
to or concurrent with journal submission, ensuring immediate
community access independent of publication review timelines.
Funding Strategy and Resource Mobilization aligns research
tiers with appropriate funding mechanisms based on technology
readiness level and commercialization potential. Tier 1 critical path
research targeting technology readiness levels 3—4 (proof of concept
to laboratory validation) aligns with government research agency
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programs including National Science Foundation Civil, Mechanical
and Manufacturing Innovation Division, Department of Energy
Advanced Research Projects Agency-Energy, and National
Institute of Standards and Technology Manufacturing Extension
Partnership.

Tier 2 enabler research advancing technology readiness to levels
5-6 (relevant environment validation) suits industry consortium
funding models including Manufacturing USA institutes, pre-
competitive research partnerships, and cost-shared cooperative
agreements between federal agencies and industrial partners.

Tier 3 moonshot research pursuing technology readiness levels
6-8 (prototype demonstration to operational system) requires
sustained public-private partnerships through programs including
Defense Advanced Research Projects Agency, European Union
Horizon Europe Framework, and corporate venture capital from
manufacturing technology leaders. The total research portfolio
investment of $2.98 million distributed across eight prioritized
objectives represents approximately 0.015% of the $20 billion
global predictive maintenance market projected by IoT Analytics
(2023), indicating feasibility for coordinated multi-stakeholder
funding approaches.

5 Conclusion and future work

This study systematically reviews the literature on the
application of AI and robotics in PdM, including their roles and
intersection and develops a conceptual framework for the AI-robotic
integration.

5.1 Conclusion

One of the pillars of Industry 4.0 is predictive maintenance,
enabled by A,

organizations to be more efficient, minimize downtimes, and

since predictive maintenance, enables
experience greater reliability. Machine learning, high-tech
sensors, and IoT systems are harmonized to enable the
transition to an intelligent, proactive approach to maintenance
instead of the reactive one. In order to be successful in the future,
one has to pay attention to interpretability, interoperability, and
economic validation and anticipate the implementation of new
technologies in the world of quantum computing, explainable A,
and autonomous maintenance ecosystems. Al and robotics are
reshaping predictive maintenance from preventive, periodic, or
reactive maintenance practices to a culture of continuous, data-
driven maintenance and increasingly automated systems. The
literature shows a steady advance in AI algorithms, sensor
fusion, and robotic inspection, but full-scale autonomous
intervention and operationalized, trustworthy PdM remain a
potential area for research. The integration of an Al-robotic
system for PAM will require the availability of robust dataset
explainability, integration with legacy systems, and cybersecurity,
while human factors will be necessary to fully harness the
potential of Al-enabled robotic PAM in the manufacturing and
service industries. It is recommended that the developed AI-
robotic framework be validated by deploying it in a cyber-
physical environment for PdM.
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5.2 Future research directions
Potential research directions are:

i. Hybrid Modelling: Integration of physics-based and data-
driven modelling.

ii. Federated Learning Frameworks: Privacy-preserving,
collaborative PAM development.

iii. Quantum-Enhanced Optimization: Application to resource

allocation and scheduling.

iv. Autonomous Maintenance Systems: Adding robotics and self-

healing systems to complete automation.

. Application of XAI and transfer learning in PdM.

5.3 Practical implications

To industrial practitioners and researchers, this review
points out:

i. Technology Selection: Comparative algorithm and sensor
performance benchmarks guide deployment.

ii. Implementation Roadmaps: Frameworks to overcome
barriers in data quality, integration, and workforce training.

iii. Performance Benchmarking: Well-defined metrics to
determine PdM efficacy and ROL

iv. Future-Readiness: Technology maturity mapping to aid

planning for next-generation PAM solutions.
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