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Quantum Lattice Boltzmann
Method based on linear
equilibrium distribution functions

Zhengliang Liu*, Benzi John and David R. Emerson

Scientific Computing Department, STFC Daresbury Laboratory, Warrington, United Kingdom

In this paper, we propose a complete formulation of the Lattice Boltzmann
Method adapted for quantum computing. The classical collision, based on
linear equilibrium distribution functions and streaming steps, are reformulated
as linear algebraic operations. The inherently non-unitary collision operator is
decomposed wusing Singular Value Decomposition and the Linear
Combination of Unitaries technique. Bounce-back boundary conditions are
incorporated directly into the collision matrix, while the streaming step is
realized through conditional unitary shift operations on spatial registers,
controlled by lattice velocity indices encoded in the distribution function
register. This formulation ensures that the streaming step remains purely
unitary. The resulting quantum circuit is implemented using Qiskit and
validated against Couette flow and Poiseuille flow benchmarks. The
simulation accurately reproduces the expected velocity profile, with
relative errors below 107, This work establishes a foundational framework
for quantum fluid solvers and provides a pathway toward quantum
computational fluid dynamics.

quantum computation, CFD, Lattice Boltzmann (LB) Method, boundary condition, QISKit

1 Introduction

Quantum computing offers fundamentally new computational capabilities by
exploiting the principles of quantum mechanics, such as superposition, interference,
and entanglement. These properties enable quantum systems to process and store
information in ways that are inaccessible to classical computers, achieving potential
speedups ranging from polynomial to exponential in specific applications, owing to the
ability to operate on exponentially large state spaces in superposition (Bharadwaj, 2024).
Quantum algorithms are expected to perform better than their classical counterparts in
tasks such as optimization, search, and simulating physical systems. However, the
quantum devices that are currently available remain limited by decoherence and
circuit depth, making the practical implementation of complex algorithms
challenging. Nonetheless, advances in quantum hardware and control makes possible
the near-term feasibility of quantum algorithms for meaningful scientific applications.
This motivates the development of quantum algorithms that not only offer theoretical
advantages but also operate efficiently.

Computational Fluid Dynamics (CFD) has long been dominated by classical
numerical methods for solving the Navier-Stokes and related partial differential
equations. Turbulent flow simulations, in particular, demand significant
computational resources due to the wide range of temporal and spatial scales
involved. Quantum computing promises to alleviate some of these challenges, such
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as high Reynolds number flow, by exploiting its parallelism and
high-dimensional state representation. Initial quantum research
has focused primarily on solving linear systems, such as the
Poisson and advection-diffusion equations (Esmaeilifar et al,
2024). However, real-world fluid dynamics is fundamentally
nonlinear and dissipative, presenting conceptual challenges for
quantum  algorithms.  Quantum  mechanics  prohibits
straightforward computation of quadratic terms like u? by
storing temporary copies (no-cloning theorem), and imposes
unitary (i.e., reversible) dynamics, whereas viscous dissipation
in fluids is inherently irreversible. When dealing with nonlinear
problems, some studies have attempted to design quantum
algorithms based on linearization techniques, such as Carleman
linearization (Liu et al., 2021), and the Fokker-Planck equation
(Tennie and Magri, 2024). However, these methods require
mapping the original problem to a higher-dimensional space,
and quantum algorithms can only achieve effective speedup when
the dimension is a polynomial function of the original
problem’s dimension.

One promising route to quantum CFD is the Quantum Lattice
Boltzmann Method (QLBM).

Methods (LBM) simulate fluid dynamics in terms of discrete

Classical Lattice Boltzmann

particle distributions via collision and streaming steps on
discrete lattices, thus avoiding the explicit discretization of the
Navier-Stokes equations (Liu et al., 2017). The inherently linear
structure of the LBM propagation operation makes it aligned with
quantum computational models. Quantum LBM studies have
begun to address both the encoding of particle distributions
and the
quantum algorithm.

Ljubomir (Budinski, 2022) pioneered the use of standard-form

execution of collision/streaming steps using a

encoding for the collision and boundary-condition operations, while
employing quantum-walk protocols to realize the streaming
step. Wawrzyniak et al., (2025) extended this by introducing
general quantum building blocks for initialization, collision, and
streaming that are adaptable to arbitrary lattice-velocity sets in one,
two, and three dimensions, and demonstrated their algorithm on
non-uniform advection problems. In that work, both collision and
streaming were expressed as linear algebraic transformations, and
the velocity field was externally prescribed. Xu et al. (2025) proposed
QLBM formulation for
equations, using local unitary operations to reduce circuit depth

an ancilla-free advection-diffusion
and eliminate the need for quantum tomography in each simulation
loop. Kocherla et al. (2024) proposed a two-circuit QLBM algorithm
for solving the 2D Navier-Stokes equations in a stream
function—vorticity form. By separating the stream function and
vorticity into distinct quantum circuits, the method achieves
reductions in both gate count and circuit depth. Kumar and
Frankel (Kumar and Frankel, 2025) incorporated boundary
conditions within the streaming step, which required treating
both collision and streaming as non-unitary processes. This
necessitated separate Singular Value Decomposition (SVD) and
Linear Combination of Unitaries (LCU) decompositions for each
operation, leading to increased circuit depth and reduced
computational efficiency.

To address nonlinearity in the collision step, Steijl (Steijl, 2023)
focused on encoding nonlinear equilibrium distributions using
quantum floating-point arithmetic, analyzing trade-offs between
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(2025)
introduced a node-level ensemble formulation by transforming
fluid
dimensional linear lattice gas
physical
transformations, they introduce an auxiliary H-step to maintain

circuit width and numerical precision. Wang et al.

low-dimensional  nonlinear systems into medium-
To address

ensemble

representations.

deviations  from constraints  during
near-equilibrium velocity distributions. In addition, Carleman

linearization techniques have been effectively applied to
nonlinear collisions by Itani et al. (2024), and further developed
by Claudio and Sauro (Sanavio and Succi, 2024; Sanavio et al., 2025),
allowing quantum-compatible treatment of nonlinear LBM
dynamics. Zeng et al. (2025) developed a hybrid quantum lattice
Boltzmann method that uses a linearized non-equilibrium collision
operator to preserve unitarity while maintaining accuracy and
enable adjustable relaxation parameters for different flow regimes.

Software and hardware developments have further promoted
the QLBM framework. Georgescu et al. (2025) introduced a
Python-based framework that integrates quantum circuit
generation, simulation, and performance analysis into a unified
platform for facilitating rapid prototyping and deployment of
QLBM algorithms. Tiwari et al. (2025) demonstrated the first
realization of QLBM on actual quantum hardware. Their
implementation successfully simulated the time evolution of a
2D Gaussian density distribution under advection-diffusion, and
was extended to 3D flow fields with non-uniform advection,
representing a significant milestone in the path toward
practical quantum CFD.

Based on the foundations established in prior studies, this paper
presents a novel Quantum Lattice Boltzmann Method (QLBM)
framework built on linear equilibrium distribution functions. We
reformulate both the classical collision and streaming steps into
quantum operations. The collision operator is expressed in a linear
algebraic form, making it suitable for decomposition using Singular
Value Decomposition (SVD) and implementation using the Linear
Combination of Unitaries (LCU) method. Bounce-back boundary
conditions are directly integrated into the collision operator, while
imposed wall velocities are encoded within the distribution function
register. This approach ensures that the streaming step remains fully
unitary, as it is implemented through conditional cyclic shift operations
controlled by lattice velocity indices. The quantum circuits are
implemented using Qiskit and validated against benchmark Couette
flow and Poiseuille flow cases, where analytical velocity profiles are
available for direct comparison. The aim of this research is to establish a
theoretically sound and efficient QLBM framework, with validation
against classical benchmark cases. The primary objective is to
demonstrate algorithmic feasibility and physical accuracy while
achieving reduced circuit depth compared to prior QLBM
formulations. From a computational perspective, maintaining unitary
evolution not only ensures physical reversibility but also minimizes
circuit depth, thereby improving algorithmic scalability on near-term
and fault-tolerant quantum architectures. The remainder of the paper is
organized as follows: Section 2 introduces the fundamentals of the
classical LBM. Section 3 details the quantum implementation of LBM,
including encoding strategies (Section 3.2), construction of the collision
operator (Section 3.3), treatment of boundary conditions (Section 3.4),
and the streaming operation (Section 3.6). Numerical validation
results are presented in Section 4. Finally, conclusions and
directions for future research are discussed.
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2 The lattice Boltzmann methods

The Lattice Boltzmann Method is a mesoscopic numerical approach
for simulating fluid dynamics, particularly effective for complex
boundaries and multiphysics problems. It models fluid flow by
tracking the evolution of particle distribution functions on a discrete
lattice. The fundamental equation with the Bhatnagar—Gross—Krook
(BGK) collision operator and without external forcing, is written as:

fi(x+ At t+At) - fi(x,t) = —% [fixn)-f1xn], Q)

where f;(x,t) is the distribution function in the ith lattice direction
at position x and time ¢, and ¢; are the discrete lattice velocities. The
right-hand side models relaxation toward an equilibrium distribution
£:3 over a characteristic relaxation time 7, which is related to the
kinematic viscosity v and the lattice speed of sound c; as:

v 1

T=—+_.

¢z 2
Equation 1 is typically solved in two consecutive steps (Liu et al.,
2022): the collision step and the streaming step, expressed

respectively as:

f1060 = Fim D= [fix D~ £,
f,' (X + CiAt,t + At) = f:. (X, t).

Here, f;'(x,t) represents the post-collision distribution function.
The equilibrium distribution function f;" plays a central role in linking
the microscopic particle dynamics to macroscopic fluid behavior.

When the viscous effects dominate over advection, the equilibrium
distribution can be approximated using a linearized distribution:

FaD = w,~<p + pi—“) @)
where w; are lattice weights specific to the lattice model used (e.g.,
D2Q9), p is the macroscopic fluid density, p,, is a reference density,
and u is the macroscopic velocity.

After each time step, the macroscopic fluid properties are
recovered by taking moments of the distribution functions:

p(x1t) = Zfz- (x,1),

u(x,t) = 1 Zf, (x, t)c;. ©)
Po 5

In this study, the two-dimensional nine-velocity model (D2Q9) is
employed, which consists of one rest particle, four particles moving
along the coordinate axes, and four particles moving diagonally.

To impose no-slip boundary conditions at solid walls, the bounce-
back scheme is utilized. Specifically, on the top and bottom
boundaries, a prescribed velocity u,, is imposed at the midpoints
between boundary and fluid nodes using the bounce-back with
velocity correction. The boundary condition is formulated as:

Filnt) = f (3 ) = 203p, 752, )
s
where x, denotes a boundary node location, i indicates the
direction opposite to i (ie, ¢;=-¢), and p, is the fluid
density at the wall. This corrected bounce-back approach
allows enforcement of moving or stationary wall conditions
with second-order accuracy.
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3 Quantum lattice Boltzmann method
implementation

The Quantum Lattice Boltzmann Method maps the classical
Lattice Boltzmann dynamics onto a quantum computer to
simulate fluid dynamics in a potentially more efficient manner
compared to classical LBM. In particular, QLBM exploits
amplitude encoding to represent the high-dimensional
distribution functions within the amplitudes of a quantum
state and performing the collision and streaming steps via
unitary (and, when necessary, ancilla-assisted non-unitary)
operations. In this section, we describe the encoding strategy,
the quantum implementation of the collision operator via singular
value decomposition (SVD) and the linear combination of
(LCU) method, the treatment of bounce-back
boundary conditions, and the streaming step via conditional

bit-shifts.

unitaries

3.1 Quantum LBM workflow

The quantum lattice Boltzmann method simulation is
implemented using a state vector-based quantum circuit model.
The overall procedure is outlined below in pseudocode:

Initialize quantum LBM circuit
Compute initial distribution functions
Compute collision matrix

boundary

AW N o

Set bounce-back conditions in
collision matrix
for t =0 to Nstep -1 do

Encode initial field into quantum state:

[eXNe)]

scalef « InitialEncoding(fini)
7: Apply collision operator:
scalec « MatrixMultiplier
8: Apply streaming operator: Stream
9: Compile and simulate circuit: result «
simulator.run
10: Extractstatevector: y « result.get_statevector()
11: Update field: fin; « ReconstructField(w,scaler, scalec)

12: end for
Algorithm 1. Quantum LBM Simulation

o InitialEncoding: Maps the distribution functions into a
quantum state using amplitude encoding.

« MatrixMultiplier: Applies the collision operator using singular
value decomposition (SVD) and linear combination of
unitaries (LCU). This involves:

- Decomposing the collision matrix into unitary components
U, %, and VT,

- Constructing ancilla-controlled phase rotations based on
normalized singular values.

- Applying extended unitary matrices to the quantum register.

o Stream: Implements conditional shift operations that mimic
particle propagation in the lattice. These are realized using
multi-controlled unitary gates conditioned on velocity
directions.
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3.2 Encoding of distribution functions

In this implementation, four quantum registers are to used to
encode distribution functions of a D2Q9 model. The fluid domain
is discretized into a mesh of n, x n, nodes, with each node
holding 9 discrete velocity distribution functions (as in the
D2Q9 model). These distributions are encoded into quantum
registers as follows:

o qy: Position register in the x-direction, requiring
log, (n,) qubits.
o q,: Position register in the y-direction, requiring

log, (n,) qubits.

+ qy: Distribution function register, requiring log, (9) = 4 qubits
to encode the 9 discrete velocity directions.

¢ g,: Ancilla qubit for implementing non-unitary operations via
linear combinations of unitaries.

The total number of qubits required is log, (n.7,) + 5. Before

ny

encoding, the classical distribution vector f € R is normalized

to form a valid quantum state:
I i
f=—n0o.
£,

The quantum state after amplitude encoding becomes:

neny,—=1 g .
oy = > Zfiq,k|0>u|iQ>f|k>va"
k=0 iq=0

where |k}, , denotes the spatial position encoded by registers g, and
qy» and f ik is the normalized distribution function for direction iq
at node k.

3.3 Collision

In the classical LBM, the collision step updates the distributions
based on local equilibrium. By substituting the macroscopic
quantities p and u using the moment relations in Equation 3, the
equilibrium distribution in Equation 2 can be written in terms of the
distribution functions:

C -G
eq _ 1 ]
fi —Zw,-<1+ P >f]
Jj s
The post-collision distribution function is then given by:

7=(1- D (105 )= Tt

s

where the collision matrix C;; is defined as:

1 w; G+ C;
Cij = 6,'1'(1——) +—(1 +—2]>)
T T c:

and d;; is the Kronecker delta. For the D2Q9 lattice model, the discrete
velocity set are explicitly defined as: ¢, = [0,1,0,-1,0,1,-1,-1,1]
and ¢y = [0,0,1,0,-1,1,1,-1,-1], with corresponding lattice
weights w = [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]. The
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lattice sound speed is c¢; = 1/4/3. The full matrix representation of
the collision operation Af across all velocity directions is given by:

-~ 0 -
[ COO Can 0 --0 0 ---0 ) fO
Cuo Cupy 0 = 0 0 - 0 f?:q
0 -0 0 - 0 f’g
Y |
0 -0 0 - 0 f];
0 -0 0 -0 Coo Con, "
| 00 0 - 0 quo qunqd_f:q-

The collision operator A is non-unitary and cannot be directly
implemented on a quantum computer. To address this, we employ
the Singular Value Decomposition and the Linear Combination of
Unitaries technique (Kumar and Frankel, 2025).

First, we perform SVD on the collision matrix:

A =UzV',

where Uand V are unitary matrices, V' is the conjugate transpose of
V, and X is a diagonal matrix with non-negative real singular values.
The unitary matrices U and V can be implemented directly on a
quantum computer.

To implement X, we use the LCU method (Childs and Wiebe,
2012), which decomposes it as:

1
Y= E (Bl +B2),

where:
B, =X+iVI-32, B,=X-iVI-3?

and both B; and B, are unitary matrices. The LCU is implemented
using a Hadamard gate on the ancilla qubit, followed by
controlled-unitary gates conditioned on the ancilla state, and a
final Hadamard gate to complete the linear combination. The full
quantum circuit for the collision step is illustrated in Figure 1.
During the decomposition of the collision matrix using SVD and
the construction of the LCU components, numerical noise can
arise due to floating-point precision and small singular values. To
address this, we normalize the singular values, and extend unitary
matrices with identity padding to preserve unitarity. These
measures ensure the reliability of the quantum circuit under
state vector simulation.

3.4 Boundary condition

Unlike previous QLBM implementations where the bounce-
back boundary condition was incorporated into the streaming step,
leading to a non-unitary streaming operator, we incorporate the
bounce-back boundary condition, given by Equation 4, into the
collision matrix, A. This ensures that the streaming step remains
purely unitary and is handled separately. The bounce-back method
replaces incoming distribution functions at the boundary with their
oppositely directed outgoing post-collision counterparts.

frontiersin.org
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Quantum circuit for the collision operation.

To impose this within a quantum circuit, we modify the collision
matrix coefficients at the corresponding mirrored boundary. For
instance, to enforce bounce-back on the top boundary, we alter the
matrix coefficients for the bottom boundary accordingly. This
avoids additional gates during the quantum streaming operation.

To implement a constant wall velocity, u,, its components are
encoded into unused amplitude states in the g; register. For the
D2Q9 model, 4 qubits (16 states) are available, of which 7 states
(]1001) to |1111)) are unused. These can be exploited to embed u,,.
For example, consider a grid with n, = 1, n,, = 3, and a top boundary
velocity u,, = [uy, 0]. The complete matrix for the D2Q9 model becomes:

Coo - Cog 0 - 0 0 - 0 0 177007
Cyp - Csg 0 =+ 0 0 - 0 0 w0
0 - 0 0 -+ 0 Cy - Cy —wzpwcizz 00
Cs 4
. . . 0,0
Cs - Csg * .+ 0 - 0 : 5
Ceo -+ Ces O 0 0 0 0 P
0 -+ 0 0 -+ 0 Cs - Cs —wspwci; 20
Af: Cx6 g'o
0 O 0 cee 0 C60 C68 _w6pw_2
Cs fg,l
0 0 COO ‘ COS 0 0 0
0,1
0 0 Cg - Cg O 0 0 ’
fo,z
0 0 0 0 Cp -+ Cos 0 !
0,2
0 0 0 0 Cg() ng 0 fs
L 0 0 0 0 0 0 1 1L wy
3.5 Forces

For steady, incompressible flows, the forcing term expanded to
first order in velocity space can be expressed as

Frontiers in Mechanical Engineering

c,
Fi=w—F,
C2

s

where F denotes the force density. With trapezoidal discretization,
the collision step becomes

e 1 . 1
F®n) = ikt = [fixn - 0] + (1 - Z)mt,

and the macroscopic velocity is updated as
1 At
u(x,t)=— ) fi(xt)c+-—F.
Po Z,: 2p,

Following the same procedure as in Section 3.3, the post-
collision distribution function can be expressed in matrix form as

At
fz* = ZCIJfJ + lU,*gC,‘F,
j s

where C;; is the collision matrix defined previously in Section 3.3. In
the quantum setting, the force density F is encoded into the unused
amplitude states of the gy register, in a manner analogous to the
wall-velocity encoding described above.

3.6 Stream

The streaming step corresponds to particle propagation along
discrete lattice directions. In the quantum setting, this is
implemented using conditional shift operations controlled by the
distribution index q;.

The positive (P, see Figure 2a) and negative (N, see Figure 2b)
cyclic shift operators under periodic boundary conditions are
defined as (Budinski, 2021):

2M_1

P= ) |(i+1)mod2")il,

N = 2 [iY< (i + 1) mod 2M].

i=0

The actual shifts are applied only on registers g, or g,
conditioned on the direction encoded in gy. For example,
distribution fs with velocity cs = [1,—1] requires a positive shift
on g, and a negative shift on g,. This is implemented using multi-
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FIGURE 2

Quantum circuit for cyclic positive and negative shift operations: (a) Positive shift operator (P).

(b) Negative shift operator (N).

[AE-Rl===—
V=== P
NE=====

19,)
FIGURE 3

Quantum circuit for cyclic positive and negative shift operations

controlled gates, targeting the basis state [1000) ;. The full quantum
circuit for the streaming step is shown in Figure 3.

4 Validation

The quantum LBM is implemented using the Qiskit toolbox
(version 1.4.2) developed by IBM (Javadi-Abhari et al., 2024)
with the StatevectorSimulator, which deterministically evolves
the quantum state. The real part of the state vectors obtained

Frontiers in Mechanical Engineering
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is extracted
each

from the deterministic state vector simulator

and wused to reinitialize the quantum state at
subsequent time step.

To validate the implementation, we consider the classical
plane Couette flow problem. This choice is particularly suitable
since the linear equilibrium distribution function assumption
neglects nonlinear terms, and therefore does not recover
the full Navier-Stokes The
computational domain consists of n, xn, =8 x8 lattice

the

equations with convection.

nodes, with periodic boundary conditions along
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FIGURE 4
Normalized velocity and relative error along the y-direction for Couette flow: (a) Normalized velocity. (b) Relative error.
x-direction. The top and bottom boundaries are modeled as a(, ) i 0.5
. . .. u i, ) =u,| —+0.5|,
no-slip walls, with velocities u, = 0.02 (top) and 0 (bottom), X\ “\n,

respectively. The simulation parameters are as follows:
relaxation time 7= 0.9, grid spacing Ax = 1, time step At =1,
and a total of 500 time steps. The distribution function is
initialized as f; = w;, corresponding to a static flow field with
zero velocity and unit density.

Due to the bounce-back boundary condition, which imposes the
wall velocity at the mid-point of the boundary node, the analytical
velocity profile for Couette flow is given by:

Frontiers in Mechanical Engineering

where i, is the index in the y-direction. As shown in Figure 4, the
velocity profile predicted by the QLBM closely matches the
analytical solution. The relative difference (u,—uf)/u, remains
below 107 across the domain, confirming the accuracy of the
quantum LBM implementation.

We further validate the quantum LBM implementation against
plane Poiseuille flow, where forcing terms are included. The setup is
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FIGURE 5

Normalized velocity and relative error along the y-direction for Poiseuille flow: (a) Normalized velocity. (b) Relative error.

identical to the Couette case, except that both the top and bottom
boundaries are stationary, and the relaxation time is set to

T =1/3/16 +0.5.

The analytical velocity profile for Poiseuille flow is given by

(iy) i

where Uy = 0.1. As shown in Figure 5, the QLBM accurately

4umax
2
n)’

ull

x

(iy +05)(iy +0.5-n,),

reproduces the parabolic velocity profile, with the predicted
solution matching the analytical curve. The normalized error

Frontiers in Mechanical Engineering

(thy —U%)/thmax  Temains  below 107 the domain,

demonstrating that the quantum LBM formulation accurately

across

reproduces the parabolic velocity profile of Poiseuille flow.

To assess scalability, we compare the quantum circuit
characteristics for Couette and Poiseuille flows at two grid
resolutions: n, =n, =8 and n, = n, = 16. For the smaller grid,
the quantum circuit has a depth of 5164, 11 qubits, and circuit size of
14,416. For the larger grid, the depth increases to 20,534, with
13 qubits and circuit size of 65,628. This growth in circuit size and
depth reflects the increased computational cost associated with

08
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encoding more distribution functions. The number of qubits grows
logarithmically with the number of nodes, while the depth and size
scale with the number of operations required for collision and
streaming steps.

5 Conclusion

In this work, we presented a quantum lattice Boltzmann method
framework by reformulating the classical collision and streaming
steps for implementation on quantum hardware. The collision step
was recast as a pure matrix multiplication applied to all distribution
functions across the computational domain. To handle the non-
unitary nature of the collision operator, we decomposed the collision
matrix using Singular Value Decomposition and implemented it via
the Linear Combination of Unitaries method, enabling
compatibility with quantum circuits.

The bounce-back boundary condition was incorporated
directly into the collision matrix, and the imposed wall velocity
was encoded within the distribution function register. This
approach allows the streaming step to remain unitary, in
contrast to the method of Kumar and Frankel (Kumar and
Frankel, 2025), which embeds the wall boundary in the
streaming step and consequently requires solving another non-
unitary operator. In our formulation, the streaming step was
implemented as conditional cyclic shift operations on the
spatial registers, controlled by the lattice velocity indices
encoded in the distribution function register.

The complete quantum circuit was implemented using Qiskit
and simulated using a deterministic state vector simulator to
perform iterative time evolution. Validation against the plane
Couette flow and Poiseuille flow demonstrated that the quantum
LBM accurately reproduces expected velocity profiles, with relative
errors below 107, The Couette flow benchmark confirms the correct
handling of linear velocity profiles, while the Poiseuille flow
demonstrates that the method accurately incorporates forcing
terms. These results collectively confirm the correctness of the
proposed quantum LBM framework under simplified flow
conditions.

The current formulation is limited to single-phase and linearized
flow regimes. Extending quantum LBM to multiphase or interface-
driven problems remains an open challenge. These phenomena
typically require nonlinear collision operators and interface
tracking mechanisms (e.g., color-gradient methods) (Noori et al.,
2021; Sheikholeslam Noori et al., 2019), which are difficult to
implement on quantum hardware due to the inherent linearity of
quantum  mechanics. hybrid
nonlinear

Future work may explore

quantum-classical ~ approaches to approximate
behavior, potentially enabling quantum simulations of more
complex fluid systems.

Additionally, while current results are limited to running
simulations of the quantum algorithms (via Qiskit) on a classical
electronic computer, rather than execution on actual quantum
hardware, the proposed formulation provides a foundational
The

implementation requires full reinitialization using state vector

structure  for quantum LBM  algorithms. current
extraction at each time step. However, this process could

potentially be replaced by mid-circuit measurement followed by
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10.3389/fmech.2025.1717775

post-selection: retaining the state when the ancilla qubit is measured
in the |0) state and discarding outcomes where it is |1), thereby
removing garbage terms introduced by the LCU method. One
limitation of this approach is the decreasing success probability
over time, as the number of successful post-selections diminishes
during successive iterations. In such scenarios, amplitude
amplification techniques could be employed to improve the
likelihood of retaining valid states.

Even though a direct complexity comparison with classical LBM
is not straightforward due to the fundamentally different encoding
schemes, quantum algorithms may offer asymptotic advantages in
high-

dimensional fluid systems. The simulation is performed on

memory efficiency and parallelism, particularly for
classical hardware without modeling quantum noise or error
correction. The linearized equilibrium model restricts
applicability to low Reynolds number flows. Furthermore, the
encoding of complex boundary conditions and generalized
forcing schemes remains a challenge. These aspects represent
important directions for future research. Extensions to nonlinear
flow regimes, more efficient state encoding schemes, and hybrid
quantum-classical solvers represent promising directions for
further
framework. The implementation code is available at: https://

development and scaling of the quantum LBM

github.com/dugudyoudi/quantum-lbm/tree/main/linear.
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