
Quantum Lattice Boltzmann
Method based on linear
equilibrium distribution functions

Zhengliang Liu*, Benzi John and David R. Emerson

Scientific Computing Department, STFC Daresbury Laboratory, Warrington, United Kingdom

In this paper, we propose a complete formulation of the Lattice Boltzmann
Method adapted for quantum computing. The classical collision, based on
linear equilibrium distribution functions and streaming steps, are reformulated
as linear algebraic operations. The inherently non-unitary collision operator is
decomposed using Singular Value Decomposition and the Linear
Combination of Unitaries technique. Bounce-back boundary conditions are
incorporated directly into the collision matrix, while the streaming step is
realized through conditional unitary shift operations on spatial registers,
controlled by lattice velocity indices encoded in the distribution function
register. This formulation ensures that the streaming step remains purely
unitary. The resulting quantum circuit is implemented using Qiskit and
validated against Couette flow and Poiseuille flow benchmarks. The
simulation accurately reproduces the expected velocity profile, with
relative errors below 10−4. This work establishes a foundational framework
for quantum fluid solvers and provides a pathway toward quantum
computational fluid dynamics.

KEYWORDS

quantum computation, CFD, Lattice Boltzmann (LB) Method, boundary condition, QISKit

1 Introduction

Quantum computing offers fundamentally new computational capabilities by
exploiting the principles of quantum mechanics, such as superposition, interference,
and entanglement. These properties enable quantum systems to process and store
information in ways that are inaccessible to classical computers, achieving potential
speedups ranging from polynomial to exponential in specific applications, owing to the
ability to operate on exponentially large state spaces in superposition (Bharadwaj, 2024).
Quantum algorithms are expected to perform better than their classical counterparts in
tasks such as optimization, search, and simulating physical systems. However, the
quantum devices that are currently available remain limited by decoherence and
circuit depth, making the practical implementation of complex algorithms
challenging. Nonetheless, advances in quantum hardware and control makes possible
the near-term feasibility of quantum algorithms for meaningful scientific applications.
This motivates the development of quantum algorithms that not only offer theoretical
advantages but also operate efficiently.

Computational Fluid Dynamics (CFD) has long been dominated by classical
numerical methods for solving the Navier–Stokes and related partial differential
equations. Turbulent flow simulations, in particular, demand significant
computational resources due to the wide range of temporal and spatial scales
involved. Quantum computing promises to alleviate some of these challenges, such

OPEN ACCESS

EDITED BY

Zhenhua Chai,
Huazhong University of Science and
Technology, China

REVIEWED BY

Arash Shams Taleghani,
Aerospace Research Institute, Ministry of
Science, Research and Technology, Tehran, Iran
Xiaodong Niu,
Shantou University, China
Ming Li,
China University of Petroleum (East China),
China

*CORRESPONDENCE

Zhengliang Liu,
zhengliang.liu@stfc.ac.uk

RECEIVED 02 October 2025
REVISED 04 November 2025
ACCEPTED 05 November 2025
PUBLISHED 16 January 2026

CITATION

Liu Z, John B and Emerson DR (2026) Quantum
Lattice Boltzmann Method based on linear
equilibrium distribution functions.
Front. Mech. Eng. 11:1717775.
doi: 10.3389/fmech.2025.1717775

COPYRIGHT

© 2026 Liu, John and Emerson. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Mechanical Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 16 January 2026
DOI 10.3389/fmech.2025.1717775

https://www.frontiersin.org/articles/10.3389/fmech.2025.1717775/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1717775/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1717775/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2025.1717775&domain=pdf&date_stamp=2026-01-16
mailto:zhengliang.liu@stfc.ac.uk
mailto:zhengliang.liu@stfc.ac.uk
https://doi.org/10.3389/fmech.2025.1717775
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2025.1717775

as high Reynolds number flow, by exploiting its parallelism and
high-dimensional state representation. Initial quantum research
has focused primarily on solving linear systems, such as the
Poisson and advection-diffusion equations (Esmaeilifar et al.,
2024). However, real-world fluid dynamics is fundamentally
nonlinear and dissipative, presenting conceptual challenges for
quantum algorithms. Quantum mechanics prohibits
straightforward computation of quadratic terms like u2 by
storing temporary copies (no-cloning theorem), and imposes
unitary (i.e., reversible) dynamics, whereas viscous dissipation
in fluids is inherently irreversible. When dealing with nonlinear
problems, some studies have attempted to design quantum
algorithms based on linearization techniques, such as Carleman
linearization (Liu et al., 2021), and the Fokker-Planck equation
(Tennie and Magri, 2024). However, these methods require
mapping the original problem to a higher-dimensional space,
and quantum algorithms can only achieve effective speedup when
the dimension is a polynomial function of the original
problem’s dimension.

One promising route to quantum CFD is the Quantum Lattice
Boltzmann Method (QLBM). Classical Lattice Boltzmann
Methods (LBM) simulate fluid dynamics in terms of discrete
particle distributions via collision and streaming steps on
discrete lattices, thus avoiding the explicit discretization of the
Navier–Stokes equations (Liu et al., 2017). The inherently linear
structure of the LBM propagation operation makes it aligned with
quantum computational models. Quantum LBM studies have
begun to address both the encoding of particle distributions
and the execution of collision/streaming steps using a
quantum algorithm.

Ljubomir (Budinski, 2022) pioneered the use of standard-form
encoding for the collision and boundary-condition operations, while
employing quantum-walk protocols to realize the streaming
step. Wawrzyniak et al., (2025) extended this by introducing
general quantum building blocks for initialization, collision, and
streaming that are adaptable to arbitrary lattice-velocity sets in one,
two, and three dimensions, and demonstrated their algorithm on
non-uniform advection problems. In that work, both collision and
streaming were expressed as linear algebraic transformations, and
the velocity field was externally prescribed. Xu et al. (2025) proposed
an ancilla-free QLBM formulation for advection-diffusion
equations, using local unitary operations to reduce circuit depth
and eliminate the need for quantum tomography in each simulation
loop. Kocherla et al. (2024) proposed a two-circuit QLBM algorithm
for solving the 2D Navier–Stokes equations in a stream
function–vorticity form. By separating the stream function and
vorticity into distinct quantum circuits, the method achieves
reductions in both gate count and circuit depth. Kumar and
Frankel (Kumar and Frankel, 2025) incorporated boundary
conditions within the streaming step, which required treating
both collision and streaming as non-unitary processes. This
necessitated separate Singular Value Decomposition (SVD) and
Linear Combination of Unitaries (LCU) decompositions for each
operation, leading to increased circuit depth and reduced
computational efficiency.

To address nonlinearity in the collision step, Steijl (Steijl, 2023)
focused on encoding nonlinear equilibrium distributions using
quantum floating-point arithmetic, analyzing trade-offs between

circuit width and numerical precision. Wang et al. (2025)
introduced a node-level ensemble formulation by transforming
low-dimensional nonlinear fluid systems into medium-
dimensional linear lattice gas representations. To address
deviations from physical constraints during ensemble
transformations, they introduce an auxiliary H-step to maintain
near-equilibrium velocity distributions. In addition, Carleman
linearization techniques have been effectively applied to
nonlinear collisions by Itani et al. (2024), and further developed
by Claudio and Sauro (Sanavio and Succi, 2024; Sanavio et al., 2025),
allowing quantum-compatible treatment of nonlinear LBM
dynamics. Zeng et al. (2025) developed a hybrid quantum lattice
Boltzmann method that uses a linearized non-equilibrium collision
operator to preserve unitarity while maintaining accuracy and
enable adjustable relaxation parameters for different flow regimes.

Software and hardware developments have further promoted
the QLBM framework. Georgescu et al. (2025) introduced a
Python-based framework that integrates quantum circuit
generation, simulation, and performance analysis into a unified
platform for facilitating rapid prototyping and deployment of
QLBM algorithms. Tiwari et al. (2025) demonstrated the first
realization of QLBM on actual quantum hardware. Their
implementation successfully simulated the time evolution of a
2D Gaussian density distribution under advection-diffusion, and
was extended to 3D flow fields with non-uniform advection,
representing a significant milestone in the path toward
practical quantum CFD.

Based on the foundations established in prior studies, this paper
presents a novel Quantum Lattice Boltzmann Method (QLBM)
framework built on linear equilibrium distribution functions. We
reformulate both the classical collision and streaming steps into
quantum operations. The collision operator is expressed in a linear
algebraic form, making it suitable for decomposition using Singular
Value Decomposition (SVD) and implementation using the Linear
Combination of Unitaries (LCU) method. Bounce-back boundary
conditions are directly integrated into the collision operator, while
imposed wall velocities are encoded within the distribution function
register. This approach ensures that the streaming step remains fully
unitary, as it is implemented through conditional cyclic shift operations
controlled by lattice velocity indices. The quantum circuits are
implemented using Qiskit and validated against benchmark Couette
flow and Poiseuille flow cases, where analytical velocity profiles are
available for direct comparison. The aim of this research is to establish a
theoretically sound and efficient QLBM framework, with validation
against classical benchmark cases. The primary objective is to
demonstrate algorithmic feasibility and physical accuracy while
achieving reduced circuit depth compared to prior QLBM
formulations. From a computational perspective, maintaining unitary
evolution not only ensures physical reversibility but also minimizes
circuit depth, thereby improving algorithmic scalability on near-term
and fault-tolerant quantum architectures. The remainder of the paper is
organized as follows: Section 2 introduces the fundamentals of the
classical LBM. Section 3 details the quantum implementation of LBM,
including encoding strategies (Section 3.2), construction of the collision
operator (Section 3.3), treatment of boundary conditions (Section 3.4),
and the streaming operation (Section 3.6). Numerical validation
results are presented in Section 4. Finally, conclusions and
directions for future research are discussed.

Frontiers in Mechanical Engineering frontiersin.org02

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

2 The lattice Boltzmann methods

The Lattice Boltzmann Method is a mesoscopic numerical approach
for simulating fluid dynamics, particularly effective for complex
boundaries and multiphysics problems. It models fluid flow by
tracking the evolution of particle distribution functions on a discrete
lattice. The fundamental equation with the Bhatnagar–Gross–Krook
(BGK) collision operator and without external forcing, is written as:

fi x + ciΔt, t + Δt()−fi x, t() � −
1
τ
fi x, t()−feq

i x, t()􏼂 􏼃, (1)

where fi(x, t) is the distribution function in the ith lattice direction
at position x and time t, and ci are the discrete lattice velocities. The
right-hand side models relaxation toward an equilibrium distribution
f

eq
i over a characteristic relaxation time τ, which is related to the

kinematic viscosity] and the lattice speed of sound cs as:

τ �
]
c2
s

+
1
2

.

Equation 1 is typically solved in two consecutive steps (Liu et al.,
2022): the collision step and the streaming step, expressed
respectively as:

fi* x, t() � fi x, t()−
1
τ
fi x, t()−feq

i x, t()􏼂 􏼃,

fi x + ciΔt, t + Δt() � fi* x, t().

Here, fi*(x, t) represents the post-collision distribution function.
The equilibrium distribution function feq

i plays a central role in linking
the microscopic particle dynamics to macroscopic fluid behavior.

When the viscous effects dominate over advection, the equilibrium
distribution can be approximated using a linearized distribution:

f
eq
i x, t() � wi ρ + ρ0

ciu
c2
s

􏼠 􏼡, (2)

where wi are lattice weights specific to the lattice model used (e.g.,
D2Q9), ρ is the macroscopic fluid density, ρ0 is a reference density,
and u is the macroscopic velocity.

After each time step, the macroscopic fluid properties are
recovered by taking moments of the distribution functions:

ρ x, t() �􏽘
i

fi x, t(),

u x, t() �
1
ρ0
􏽘
i

fi x, t()ci.
(3)

In this study, the two-dimensional nine-velocity model (D2Q9) is
employed, which consists of one rest particle, four particles moving
along the coordinate axes, and four particles moving diagonally.

To impose no-slip boundary conditions at solid walls, the bounce-
back scheme is utilized. Specifically, on the top and bottom
boundaries, a prescribed velocity uw is imposed at the midpoints
between boundary and fluid nodes using the bounce-back with
velocity correction. The boundary condition is formulated as:

fī xb, t() � fi* xb, t()− 2wiρw
ciuw
c2
s

, (4)

where xb denotes a boundary node location, ī indicates the
direction opposite to i (i.e., cī � −ci), and ρw is the fluid
density at the wall. This corrected bounce-back approach
allows enforcement of moving or stationary wall conditions
with second-order accuracy.

3 Quantum lattice Boltzmann method
implementation

The Quantum Lattice Boltzmann Method maps the classical
Lattice Boltzmann dynamics onto a quantum computer to
simulate fluid dynamics in a potentially more efficient manner
compared to classical LBM. In particular, QLBM exploits
amplitude encoding to represent the high-dimensional
distribution functions within the amplitudes of a quantum
state and performing the collision and streaming steps via
unitary (and, when necessary, ancilla-assisted non-unitary)
operations. In this section, we describe the encoding strategy,
the quantum implementation of the collision operator via singular
value decomposition (SVD) and the linear combination of
unitaries (LCU) method, the treatment of bounce-back
boundary conditions, and the streaming step via conditional
bit-shifts.

3.1 Quantum LBM workflow

The quantum lattice Boltzmann method simulation is
implemented using a state vector-based quantum circuit model.
The overall procedure is outlined below in pseudocode:

1: Initialize quantum LBM circuit
2: Compute initial distribution functions
3: Compute collision matrix
4: Set bounce-back boundary conditions in

collision matrix
5: for t � 0 to nstep −1 do
6: Encode initial field into quantum state:

scalef ← InitialEncoding(fini)
7: Apply collision operator:

scaleC ← MatrixMultiplier

8: Apply streaming operator: Stream
9: Compile and simulate circuit: result ←

simulator.run
10: Extract state vector: ψ ← result.get_statevector()
11: Update field: fini ← ReconstructField(ψ,scalef,scaleC)

12: end for

Algorithm 1. Quantum LBM Simulation

• InitialEncoding: Maps the distribution functions into a
quantum state using amplitude encoding.

• MatrixMultiplier: Applies the collision operator using singular
value decomposition (SVD) and linear combination of
unitaries (LCU). This involves:
– Decomposing the collision matrix into unitary components
U, Σ, and V†.

– Constructing ancilla-controlled phase rotations based on
normalized singular values.

– Applying extended unitary matrices to the quantum register.
• Stream: Implements conditional shift operations that mimic

particle propagation in the lattice. These are realized using
multi-controlled unitary gates conditioned on velocity
directions.

Frontiers in Mechanical Engineering frontiersin.org03

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

3.2 Encoding of distribution functions

In this implementation, four quantum registers are to used to
encode distribution functions of a D2Q9 model. The fluid domain
is discretized into a mesh of nx × ny nodes, with each node
holding 9 discrete velocity distribution functions (as in the
D2Q9 model). These distributions are encoded into quantum
registers as follows:

• qx: Position register in the x-direction, requiring
log2(nx) qubits.

• qy: Position register in the y-direction, requiring
log2(ny) qubits.

• qf: Distribution function register, requiring log2(9) � 4 qubits
to encode the 9 discrete velocity directions.

• qa: Ancilla qubit for implementing non-unitary operations via
linear combinations of unitaries.

The total number of qubits required is log2(nxny) + 5. Before
encoding, the classical distribution vector f ∈ R9nxny is normalized
to form a valid quantum state:

f̂ �
f
‖f‖2

.

The quantum state after amplitude encoding becomes:

|ϕ〉 � 􏽘

nxny−1

k�0
􏽘

8

iq�0
f̂iq,k|0〉a|iq〉f|k〉x,y,

where |k〉x,y denotes the spatial position encoded by registers qx and
qy, and f̂iq,k is the normalized distribution function for direction iq
at node k.

3.3 Collision

In the classical LBM, the collision step updates the distributions
based on local equilibrium. By substituting the macroscopic
quantities ρ and u using the moment relations in Equation 3, the
equilibrium distribution in Equation 2 can be written in terms of the
distribution functions:

f
eq
i �􏽘

j

wi 1 +
ci · cj
c2
s

􏼠 􏼡fj.

The post-collision distribution function is then given by:

fi* � 1 −
1
τ

􏼒 􏼓fi +
1
τ
􏽘
j

wi 1 +
ci · cj
c2
s

􏼠 􏼡fj �􏽘
j

Cijfj,

where the collision matrix Cij is defined as:

Cij � δij 1 −
1
τ

􏼒 􏼓 +
wi

τ
1 +

ci · cj
c2
s

􏼠 􏼡,

and δij is the Kronecker delta. For the D2Q9 lattice model, the discrete
velocity set are explicitly defined as: cx � [0, 1, 0,−1, 0, 1,−1,−1, 1]
and cy � [0, 0, 1, 0,−1, 1, 1,−1,−1], with corresponding lattice
weights w � [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]. The

lattice sound speed is cs � 1/
�
3
√

. The full matrix representation of
the collision operation Af across all velocity directions is given by:

Af �

C00 ⋯ C0nq

..

.
⋱ ..

.

Cnq0 ⋯ Cnqnq

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0
0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0
⋱

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0
0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0

C00 ⋯ C0nq

..

.
⋱ ..

.

Cnq0 ⋯ Cnqnq

⎡⎢⎢⎣

⎤⎥⎥⎦

f
0
0

..

.

f
0
nq

f
k

0

..

.

f
k

nq

f
n

0

..

.

f
n

nq

⎡⎢⎢⎣

⎤⎥⎥⎦

The collision operator A is non-unitary and cannot be directly
implemented on a quantum computer. To address this, we employ
the Singular Value Decomposition and the Linear Combination of
Unitaries technique (Kumar and Frankel, 2025).

First, we perform SVD on the collision matrix:

A � UΣV†,

where U and V are unitary matrices, V† is the conjugate transpose of
V, and Σ is a diagonal matrix with non-negative real singular values.
The unitary matrices U and V can be implemented directly on a
quantum computer.

To implement Σ, we use the LCU method (Childs and Wiebe,
2012), which decomposes it as:

Σ �
1
2

B1 + B2(),

where:

B1 � Σ + i
�����
I−Σ2

􏽰
, B2 � Σ− i

�����
I−Σ2

􏽰
,

and both B1 and B2 are unitary matrices. The LCU is implemented
using a Hadamard gate on the ancilla qubit, followed by
controlled-unitary gates conditioned on the ancilla state, and a
final Hadamard gate to complete the linear combination. The full
quantum circuit for the collision step is illustrated in Figure 1.
During the decomposition of the collision matrix using SVD and
the construction of the LCU components, numerical noise can
arise due to floating-point precision and small singular values. To
address this, we normalize the singular values, and extend unitary
matrices with identity padding to preserve unitarity. These
measures ensure the reliability of the quantum circuit under
state vector simulation.

3.4 Boundary condition

Unlike previous QLBM implementations where the bounce-
back boundary condition was incorporated into the streaming step,
leading to a non-unitary streaming operator, we incorporate the
bounce-back boundary condition, given by Equation 4, into the
collision matrix, A. This ensures that the streaming step remains
purely unitary and is handled separately. The bounce-back method
replaces incoming distribution functions at the boundary with their
oppositely directed outgoing post-collision counterparts.

Frontiers in Mechanical Engineering frontiersin.org04

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

To impose this within a quantum circuit, we modify the collision
matrix coefficients at the corresponding mirrored boundary. For
instance, to enforce bounce-back on the top boundary, we alter the
matrix coefficients for the bottom boundary accordingly. This
avoids additional gates during the quantum streaming operation.

To implement a constant wall velocity, uw, its components are
encoded into unused amplitude states in the qf register. For the
D2Q9 model, 4 qubits (16 states) are available, of which 7 states
(|1001〉 to |1111〉) are unused. These can be exploited to embed uw.
For example, consider a grid with nx � 1, ny � 3, and a top boundary
velocity uw � [uw, 0]. The complete matrix for the D2Q9 model becomes:

Af �

C00 ⋯ C08 0 ⋯ 0 0 ⋯ 0 0

..

.
⋱ ..

. ..
.

⋱ ..
. ..

.
⋱ ..

. ..
.

C30 ⋯ C38 0 ⋯ 0 0 ⋯ 0 0

0 ⋯ 0 0 ⋯ 0 C20 ⋯ C28 −w2ρw
cx2

c2
s

C50 ⋯ C58
..
.

⋱ ..
.

0 ⋯ 0 ..
.

C60 ⋯ C68 0 ⋯ 0 0 ⋯ 0 0

0 ⋯ 0 0 ⋯ 0 C50 ⋯ C58 −w5ρw
cx5

c2
s

0 ⋯ 0 0 ⋯ 0 C60 ⋯ C68 −w6ρw
cx6

c2
s

0 ⋯ 0 C00 ⋯ C08 0 ⋯ 0 0

..

.
⋱ ..

. ..
.

⋱ ..
. ..

.
⋱ ..

. ..
.

0 ⋯ 0 C80 ⋯ C88 0 ⋯ 0 0

0 ⋯ 0 0 ⋯ 0 C00 ⋯ C08 0

..

.
⋱ ..

. ..
.

⋱ ..
. ..

.
⋱ ..

. ..
.

0 ⋯ 0 0 ⋯ 0 C80 ⋯ C88 0

0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

f
0,0
0

..

.

f
0,0
3

f
0,0
4

f
0,0
5

f
0,0
6

f
0,0
7

f
0,0
8

f
0,1
0

..

.

f
0,1
8

f
0,2
0

..

.

f
0,2
8

uw

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

3.5 Forces

For steady, incompressible flows, the forcing term expanded to
first order in velocity space can be expressed as

Fi � wi

ci
c2
s

F,

where F denotes the force density. With trapezoidal discretization,
the collision step becomes

fi* x, t() � fi x, t()−
1
τ
fi x, t()−feq

i x, t()􏼂 􏼃 + 1 −
1

2τ
􏼒 􏼓FiΔt,

and the macroscopic velocity is updated as

u x, t() �
1
ρ0
􏽘
i

fi x, t()ci +
Δt
2ρ0

F.

Following the same procedure as in Section 3.3, the post-
collision distribution function can be expressed in matrix form as

fi* �􏽘
j

Cijfj + wi

Δt
c2
s

ciF,

where Cij is the collision matrix defined previously in Section 3.3. In
the quantum setting, the force density F is encoded into the unused
amplitude states of the qf register, in a manner analogous to the
wall-velocity encoding described above.

3.6 Stream

The streaming step corresponds to particle propagation along
discrete lattice directions. In the quantum setting, this is
implemented using conditional shift operations controlled by the
distribution index qf.

The positive (P, see Figure 2a) and negative (N, see Figure 2b)
cyclic shift operators under periodic boundary conditions are
defined as (Budinski, 2021):

P � 􏽘

2M−1

i�0
| i + 1()mod 2M〉〈i|,

N � 􏽘
2M−1

i�0
|i〉〈 i + 1()mod 2M|.

The actual shifts are applied only on registers qx or qy,
conditioned on the direction encoded in qf. For example,
distribution f6 with velocity c8 � [1,−1] requires a positive shift
on qx and a negative shift on qy. This is implemented using multi-

FIGURE 1
Quantum circuit for the collision operation.

Frontiers in Mechanical Engineering frontiersin.org05

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

controlled gates, targeting the basis state |1000〉f. The full quantum
circuit for the streaming step is shown in Figure 3.

4 Validation

The quantum LBM is implemented using the Qiskit toolbox
(version 1.4.2) developed by IBM (Javadi-Abhari et al., 2024)
with the StatevectorSimulator, which deterministically evolves
the quantum state. The real part of the state vectors obtained

from the deterministic state vector simulator is extracted
and used to reinitialize the quantum state at each
subsequent time step.

To validate the implementation, we consider the classical
plane Couette flow problem. This choice is particularly suitable
since the linear equilibrium distribution function assumption
neglects nonlinear terms, and therefore does not recover
the full Navier–Stokes equations with convection. The
computational domain consists of nx × ny � 8 × 8 lattice
nodes, with periodic boundary conditions along the

FIGURE 2
Quantum circuit for cyclic positive and negative shift operations: (a) Positive shift operator (P). (b) Negative shift operator (N).

FIGURE 3
Quantum circuit for cyclic positive and negative shift operations.

Frontiers in Mechanical Engineering frontiersin.org06

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

x-direction. The top and bottom boundaries are modeled as
no-slip walls, with velocities uw � 0.02 (top) and 0 (bottom),
respectively. The simulation parameters are as follows:
relaxation time τ � 0.9, grid spacing Δx � 1, time step Δt � 1,
and a total of 500 time steps. The distribution function is
initialized as fi � wi, corresponding to a static flow field with
zero velocity and unit density.

Due to the bounce-back boundary condition, which imposes the
wall velocity at the mid-point of the boundary node, the analytical
velocity profile for Couette flow is given by:

uax iy􏼐 􏼑 � uw
iy

ny
+ 0.5􏼠 􏼡,

where iy is the index in the y-direction. As shown in Figure 4, the
velocity profile predicted by the QLBM closely matches the
analytical solution. The relative difference (ux − uax)/uw remains
below 10−4 across the domain, confirming the accuracy of the
quantum LBM implementation.

We further validate the quantum LBM implementation against
plane Poiseuille flow, where forcing terms are included. The setup is

FIGURE 4
Normalized velocity and relative error along the y-direction for Couette flow: (a) Normalized velocity. (b) Relative error.

Frontiers in Mechanical Engineering frontiersin.org07

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

identical to the Couette case, except that both the top and bottom
boundaries are stationary, and the relaxation time is set to
τ �

����
3/16
√

+ 0.5.
The analytical velocity profile for Poiseuille flow is given by

uax iy􏼐 􏼑 � −
4umax

n2
y

iy + 0.5􏼐 􏼑 iy + 0.5 − ny􏼐 􏼑,

where umax � 0.1. As shown in Figure 5, the QLBM accurately
reproduces the parabolic velocity profile, with the predicted
solution matching the analytical curve. The normalized error

(ux − uax)/umax remains below 10−4 across the domain,
demonstrating that the quantum LBM formulation accurately
reproduces the parabolic velocity profile of Poiseuille flow.

To assess scalability, we compare the quantum circuit
characteristics for Couette and Poiseuille flows at two grid
resolutions: nx � ny � 8 and nx � ny � 16. For the smaller grid,
the quantum circuit has a depth of 5164, 11 qubits, and circuit size of
14,416. For the larger grid, the depth increases to 20,534, with
13 qubits and circuit size of 65,628. This growth in circuit size and
depth reflects the increased computational cost associated with

FIGURE 5
Normalized velocity and relative error along the y-direction for Poiseuille flow: (a) Normalized velocity. (b) Relative error.

Frontiers in Mechanical Engineering frontiersin.org08

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

encoding more distribution functions. The number of qubits grows
logarithmically with the number of nodes, while the depth and size
scale with the number of operations required for collision and
streaming steps.

5 Conclusion

In this work, we presented a quantum lattice Boltzmann method
framework by reformulating the classical collision and streaming
steps for implementation on quantum hardware. The collision step
was recast as a pure matrix multiplication applied to all distribution
functions across the computational domain. To handle the non-
unitary nature of the collision operator, we decomposed the collision
matrix using Singular Value Decomposition and implemented it via
the Linear Combination of Unitaries method, enabling
compatibility with quantum circuits.

The bounce-back boundary condition was incorporated
directly into the collision matrix, and the imposed wall velocity
was encoded within the distribution function register. This
approach allows the streaming step to remain unitary, in
contrast to the method of Kumar and Frankel (Kumar and
Frankel, 2025), which embeds the wall boundary in the
streaming step and consequently requires solving another non-
unitary operator. In our formulation, the streaming step was
implemented as conditional cyclic shift operations on the
spatial registers, controlled by the lattice velocity indices
encoded in the distribution function register.

The complete quantum circuit was implemented using Qiskit
and simulated using a deterministic state vector simulator to
perform iterative time evolution. Validation against the plane
Couette flow and Poiseuille flow demonstrated that the quantum
LBM accurately reproduces expected velocity profiles, with relative
errors below 10−4. The Couette flow benchmark confirms the correct
handling of linear velocity profiles, while the Poiseuille flow
demonstrates that the method accurately incorporates forcing
terms. These results collectively confirm the correctness of the
proposed quantum LBM framework under simplified flow
conditions.

The current formulation is limited to single-phase and linearized
flow regimes. Extending quantum LBM to multiphase or interface-
driven problems remains an open challenge. These phenomena
typically require nonlinear collision operators and interface
tracking mechanisms (e.g., color-gradient methods) (Noori et al.,
2021; Sheikholeslam Noori et al., 2019), which are difficult to
implement on quantum hardware due to the inherent linearity of
quantum mechanics. Future work may explore hybrid
quantum–classical approaches to approximate nonlinear
behavior, potentially enabling quantum simulations of more
complex fluid systems.

Additionally, while current results are limited to running
simulations of the quantum algorithms (via Qiskit) on a classical
electronic computer, rather than execution on actual quantum
hardware, the proposed formulation provides a foundational
structure for quantum LBM algorithms. The current
implementation requires full reinitialization using state vector
extraction at each time step. However, this process could
potentially be replaced by mid-circuit measurement followed by

post-selection: retaining the state when the ancilla qubit is measured
in the |0〉 state and discarding outcomes where it is |1〉, thereby
removing garbage terms introduced by the LCU method. One
limitation of this approach is the decreasing success probability
over time, as the number of successful post-selections diminishes
during successive iterations. In such scenarios, amplitude
amplification techniques could be employed to improve the
likelihood of retaining valid states.

Even though a direct complexity comparison with classical LBM
is not straightforward due to the fundamentally different encoding
schemes, quantum algorithms may offer asymptotic advantages in
memory efficiency and parallelism, particularly for high-
dimensional fluid systems. The simulation is performed on
classical hardware without modeling quantum noise or error
correction. The linearized equilibrium model restricts
applicability to low Reynolds number flows. Furthermore, the
encoding of complex boundary conditions and generalized
forcing schemes remains a challenge. These aspects represent
important directions for future research. Extensions to nonlinear
flow regimes, more efficient state encoding schemes, and hybrid
quantum–classical solvers represent promising directions for
further development and scaling of the quantum LBM
framework. The implementation code is available at: https://
github.com/dugudyoudi/quantum-lbm/tree/main/linear.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/dugudyoudi/
quantum-lbm/tree/main/linear%20equilibrium.

Author contributions

ZL: Conceptualization, Investigation, Methodology, Software,
Validation, Visualization, Writing – original draft, Writing – review
and editing. BJ: Funding acquisition, Project administration,
Writing – review and editing. DE: Funding acquisition,
Supervision, Writing – review and editing.

Funding

The authors declare that financial support was received for the
research and/or publication of this article. The authors gratefully
acknowledge financial support from the Computational Science
Centre for Research Communities (CoSeC) and the Collaborative
Computational Project in Quantum Computing (CCP-QC), which
funded this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Mechanical Engineering frontiersin.org09

Liu et al. 10.3389/fmech.2025.1717775

https://github.com/dugudyoudi/quantum-lbm/tree/main/linear
https://github.com/dugudyoudi/quantum-lbm/tree/main/linear
https://github.com/dugudyoudi/quantum-lbm/tree/main/linear%20equilibrium
https://github.com/dugudyoudi/quantum-lbm/tree/main/linear%20equilibrium
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

Generative AI statement

The authors declare that Generative AI was used in the
creation of this manuscript. Generative AI was used solely for
language refinement and proofreading purposes. All scientific
content, analysis, and conclusions are the original work of
the authors.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts
have been made to ensure accuracy, including review by the

authors wherever possible. If you identify any issues,
please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bharadwaj, S. S. (2024). QFlowS: Quantum simulator for fluid flows. Phys. Fluids 36
(10), 107112. doi:10.1063/5.0226074

Budinski, L. (2021). Quantum algorithm for the advection–diffusion equation
simulated with the lattice Boltzmann method. Quantum Inf. Process. 20 (2), 57.
doi:10.1007/s11128-021-02996-3

Budinski, L. (2022). Quantum algorithm for the Navier–Stokes equations by using the
streamfunction-vorticity formulation and the lattice boltzmann method. Int.
J. Quantum Inf. 20 (02), 2150039. doi:10.1142/s0219749921500398

Childs, A. M., and Wiebe, N. (2012). Hamiltonian simulation using linear
combinations of unitary operations. Quantum Inf. comput. 12, 901–924. doi:10.
26421/qic12.11-12-1

Esmaeilifar, E., Ahn, D., and Myong, R. S. (2024). Quantum algorithm for nonlinear
Burgers’ equation for high-speed compressible flows. Phys. Fluids 36 (10), 106110.
doi:10.1063/5.0231994

Georgescu, C. A., Schalkers, M. A., and Möller, M. (2025). qlbm–a quantum lattice
Boltzmann software framework. Comput. Phys. Commun. 315, 109699. doi:10.1016/j.
cpc.2025.109699

Itani, W., Sreenivasan, K. R., and Succi, S. (2024). Quantum algorithm for lattice
Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term.
Phys. Fluids 36 (1), 017112. doi:10.1063/5.0176569

Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C. J., Lishman, J., Gacon, J., et al.
(2024). Quantum computing with qiskit.

Kocherla, S., Adams, A., Song, Z., Alexeev, A., and Bryngelson, S. H. (2024). A two-
circuit approach to reducing quantum resources for the quantum lattice boltzmann
method.

Kumar, E. D., and Frankel, S. H. (2025). Quantum unitary matrix representation of the
lattice Boltzmann model for low Reynolds fluid flow simulation. AVS Quantum Sci. 7
(1), 013802. doi:10.1116/5.0245082

Liu, Z., Tian, F.-B., Young, J., and Lai, J. C. S. (2017). Flapping foil power generator
performance enhanced with a spring-connected tail. Phys. Fluids 29 (12), 123601. doi:10.
1063/1.4998202

Liu, J.-P., Kolden, H. Ø., Krovi, H. K., Loureiro, N. F., Trivisa, K., and Childs, A.
M. (2021). Efficient quantum algorithm for dissipative nonlinear differential
equations. Proc. Natl. Acad. Sci. 118 (35), e2026805118. doi:10.1073/pnas.
2026805118

Liu, Z., Tian, F.-B., and Feng, X. (2022). An efficient geometry-adaptive mesh
refinement framework and its application in the immersed boundary lattice
boltzmann method. Comput. Methods Appl. Mech. Eng. 392, 114662. doi:10.1016/j.
cma.2022.114662

Noori, M. S., Taleghani, A. S., and Rahni, M. T. (2021). Surface acoustic waves as
control actuator for drop removal from solid surface. Fluid Dyn. Res. 53 (4), 045503.
doi:10.1088/1873-7005/ac12af

Sanavio, C., and Succi, S. (2024). Lattice Boltzmann–Carleman quantum algorithm
and circuit for fluid flows at moderate reynolds number. AVS Quantum Sci. 6 (2),
023802. doi:10.1116/5.0195549

Sanavio, C., Simon, W. A., Ralli, A., Love, P., and Succi, S. (2025). Carleman-lattice-
boltzmann quantum circuit with matrix access oracles. Phys. Fluids 37 (3), 037123.
doi:10.1063/5.0254588

Sheikholeslam Noori, S., Taeibi Rahni, M., and Shams Taleghani, S. (2019). Multiple-
relaxation time color-gradient lattice boltzmann model for simulating contact angle in
two-phase flows with high density ratio. Eur. Phys. J. Plus 134 (8), 399. doi:10.1140/epjp/
i2019-12759-x

Steijl, R. (2023). Quantum circuit implementation of multi-dimensional non-linear
lattice models. Appl. Sci. 13 (1), 529. doi:10.3390/app13010529

Tennie, F., and Magri, L. (2024). “Solving nonlinear differential equations on quantum
computers: a fokker-planck approach,” in arXiv preprint arXiv:2401.13500.

Tiwari, A., Iaconis, J., Jojo, J., Ray, S., Roetteler, M., Hill, C., et al. (2025). Algorithmic
advances towards a realizable quantum lattice boltzmann method.

Wang, B., Meng, Z., Zhao, Y., and Yang, Y. (2025). “Quantum lattice Boltzmann
method for simulating nonlinear. fluid Dyn. arXiv preprint arXiv:2502.

Wawrzyniak, D., Winter, J., Schmidt, S., Indinger, T., Janßen, C. F., Schramm, U., et al.
(2025). A quantum algorithm for the lattice-Boltzmann method advection-diffusion
equation. Comput. Phys. Commun. 306, 109373. doi:10.1016/j.cpc.2024.109373

Xu, L., Li, M., Zhang, L., Sun, H., and Yao, J. (2025). Improved quantum lattice
Boltzmann method for advection-diffusion equations with a linear collision model.
Phys. Rev. E 111, 045305. doi:10.1103/PhysRevE.111.045305

Zeng, K.-Y., Niu, X.-D., Khan, A., Li, D.-C., and Yamaguchi, H. (2025). A quantum
computing-based lattice boltzmann method with a linearized non-equilibrium collision
operator and modular circuit for practical flow simulation. Phys. Fluids 37 (8), 081701.
doi:10.1063/5.0278054

Frontiers in Mechanical Engineering frontiersin.org10

Liu et al. 10.3389/fmech.2025.1717775

https://doi.org/10.1063/5.0226074
https://doi.org/10.1007/s11128-021-02996-3
https://doi.org/10.1142/s0219749921500398
https://doi.org/10.26421/qic12.11-12-1
https://doi.org/10.26421/qic12.11-12-1
https://doi.org/10.1063/5.0231994
https://doi.org/10.1016/j.cpc.2025.109699
https://doi.org/10.1016/j.cpc.2025.109699
https://doi.org/10.1063/5.0176569
https://doi.org/10.1116/5.0245082
https://doi.org/10.1063/1.4998202
https://doi.org/10.1063/1.4998202
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1016/j.cma.2022.114662
https://doi.org/10.1016/j.cma.2022.114662
https://doi.org/10.1088/1873-7005/ac12af
https://doi.org/10.1116/5.0195549
https://doi.org/10.1063/5.0254588
https://doi.org/10.1140/epjp/i2019-12759-x
https://doi.org/10.1140/epjp/i2019-12759-x
https://doi.org/10.3390/app13010529
https://doi.org/10.1016/j.cpc.2024.109373
https://doi.org/10.1103/PhysRevE.111.045305
https://doi.org/10.1063/5.0278054
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775

	Quantum Lattice Boltzmann Method based on linear equilibrium distribution functions
	1 Introduction
	2 The lattice Boltzmann methods
	3 Quantum lattice Boltzmann method implementation
	3.1 Quantum LBM workflow
	3.2 Encoding of distribution functions
	3.3 Collision
	3.4 Boundary condition
	3.5 Forces
	3.6 Stream

	4 Validation
	5 Conclusion
	Data availability statement
	Author contributions
	Author contributionsZL: Conceptualization, Investigation, Methodology, Software, Validation, Visualization, Writing – origi ...
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

