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In this paper, we propose a complete formulation of the Lattice Boltzmann 
Method adapted for quantum computing. The classical collision, based on 
linear equilibrium distribution functions and streaming steps, are reformulated 
as linear algebraic operations. The inherently non-unitary collision operator is 
decomposed using Singular Value Decomposition and the Linear 
Combination of Unitaries technique. Bounce-back boundary conditions are 
incorporated directly into the collision matrix, while the streaming step is 
realized through conditional unitary shift operations on spatial registers, 
controlled by lattice velocity indices encoded in the distribution function 
register. This formulation ensures that the streaming step remains purely 
unitary. The resulting quantum circuit is implemented using Qiskit and 
validated against Couette flow and Poiseuille flow benchmarks. The 
simulation accurately reproduces the expected velocity profile, with 
relative errors below 10−4. This work establishes a foundational framework 
for quantum fluid solvers and provides a pathway toward quantum 
computational fluid dynamics.
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1 Introduction

Quantum computing offers fundamentally new computational capabilities by 
exploiting the principles of quantum mechanics, such as superposition, interference, 
and entanglement. These properties enable quantum systems to process and store 
information in ways that are inaccessible to classical computers, achieving potential 
speedups ranging from polynomial to exponential in specific applications, owing to the 
ability to operate on exponentially large state spaces in superposition (Bharadwaj, 2024). 
Quantum algorithms are expected to perform better than their classical counterparts in 
tasks such as optimization, search, and simulating physical systems. However, the 
quantum devices that are currently available remain limited by decoherence and 
circuit depth, making the practical implementation of complex algorithms 
challenging. Nonetheless, advances in quantum hardware and control makes possible 
the near-term feasibility of quantum algorithms for meaningful scientific applications. 
This motivates the development of quantum algorithms that not only offer theoretical 
advantages but also operate efficiently.

Computational Fluid Dynamics (CFD) has long been dominated by classical 
numerical methods for solving the Navier–Stokes and related partial differential 
equations. Turbulent flow simulations, in particular, demand significant 
computational resources due to the wide range of temporal and spatial scales 
involved. Quantum computing promises to alleviate some of these challenges, such 
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as high Reynolds number flow, by exploiting its parallelism and 
high-dimensional state representation. Initial quantum research 
has focused primarily on solving linear systems, such as the 
Poisson and advection-diffusion equations (Esmaeilifar et al., 
2024). However, real-world fluid dynamics is fundamentally 
nonlinear and dissipative, presenting conceptual challenges for 
quantum algorithms. Quantum mechanics prohibits 
straightforward computation of quadratic terms like u2 by 
storing temporary copies (no-cloning theorem), and imposes 
unitary (i.e., reversible) dynamics, whereas viscous dissipation 
in fluids is inherently irreversible. When dealing with nonlinear 
problems, some studies have attempted to design quantum 
algorithms based on linearization techniques, such as Carleman 
linearization (Liu et al., 2021), and the Fokker-Planck equation 
(Tennie and Magri, 2024). However, these methods require 
mapping the original problem to a higher-dimensional space, 
and quantum algorithms can only achieve effective speedup when 
the dimension is a polynomial function of the original 
problem’s dimension.

One promising route to quantum CFD is the Quantum Lattice 
Boltzmann Method (QLBM). Classical Lattice Boltzmann 
Methods (LBM) simulate fluid dynamics in terms of discrete 
particle distributions via collision and streaming steps on 
discrete lattices, thus avoiding the explicit discretization of the 
Navier–Stokes equations (Liu et al., 2017). The inherently linear 
structure of the LBM propagation operation makes it aligned with 
quantum computational models. Quantum LBM studies have 
begun to address both the encoding of particle distributions 
and the execution of collision/streaming steps using a 
quantum algorithm.

Ljubomir (Budinski, 2022) pioneered the use of standard-form 
encoding for the collision and boundary-condition operations, while 
employing quantum-walk protocols to realize the streaming 
step. Wawrzyniak et al., (2025) extended this by introducing 
general quantum building blocks for initialization, collision, and 
streaming that are adaptable to arbitrary lattice-velocity sets in one, 
two, and three dimensions, and demonstrated their algorithm on 
non-uniform advection problems. In that work, both collision and 
streaming were expressed as linear algebraic transformations, and 
the velocity field was externally prescribed. Xu et al. (2025) proposed 
an ancilla-free QLBM formulation for advection-diffusion 
equations, using local unitary operations to reduce circuit depth 
and eliminate the need for quantum tomography in each simulation 
loop. Kocherla et al. (2024) proposed a two-circuit QLBM algorithm 
for solving the 2D Navier–Stokes equations in a stream 
function–vorticity form. By separating the stream function and 
vorticity into distinct quantum circuits, the method achieves 
reductions in both gate count and circuit depth. Kumar and 
Frankel (Kumar and Frankel, 2025) incorporated boundary 
conditions within the streaming step, which required treating 
both collision and streaming as non-unitary processes. This 
necessitated separate Singular Value Decomposition (SVD) and 
Linear Combination of Unitaries (LCU) decompositions for each 
operation, leading to increased circuit depth and reduced 
computational efficiency.

To address nonlinearity in the collision step, Steijl (Steijl, 2023) 
focused on encoding nonlinear equilibrium distributions using 
quantum floating-point arithmetic, analyzing trade-offs between 

circuit width and numerical precision. Wang et al. (2025)
introduced a node-level ensemble formulation by transforming 
low-dimensional nonlinear fluid systems into medium- 
dimensional linear lattice gas representations. To address 
deviations from physical constraints during ensemble 
transformations, they introduce an auxiliary H-step to maintain 
near-equilibrium velocity distributions. In addition, Carleman 
linearization techniques have been effectively applied to 
nonlinear collisions by Itani et al. (2024), and further developed 
by Claudio and Sauro (Sanavio and Succi, 2024; Sanavio et al., 2025), 
allowing quantum-compatible treatment of nonlinear LBM 
dynamics. Zeng et al. (2025) developed a hybrid quantum lattice 
Boltzmann method that uses a linearized non-equilibrium collision 
operator to preserve unitarity while maintaining accuracy and 
enable adjustable relaxation parameters for different flow regimes.

Software and hardware developments have further promoted 
the QLBM framework. Georgescu et al. (2025) introduced a 
Python-based framework that integrates quantum circuit 
generation, simulation, and performance analysis into a unified 
platform for facilitating rapid prototyping and deployment of 
QLBM algorithms. Tiwari et al. (2025) demonstrated the first 
realization of QLBM on actual quantum hardware. Their 
implementation successfully simulated the time evolution of a 
2D Gaussian density distribution under advection-diffusion, and 
was extended to 3D flow fields with non-uniform advection, 
representing a significant milestone in the path toward 
practical quantum CFD.

Based on the foundations established in prior studies, this paper 
presents a novel Quantum Lattice Boltzmann Method (QLBM) 
framework built on linear equilibrium distribution functions. We 
reformulate both the classical collision and streaming steps into 
quantum operations. The collision operator is expressed in a linear 
algebraic form, making it suitable for decomposition using Singular 
Value Decomposition (SVD) and implementation using the Linear 
Combination of Unitaries (LCU) method. Bounce-back boundary 
conditions are directly integrated into the collision operator, while 
imposed wall velocities are encoded within the distribution function 
register. This approach ensures that the streaming step remains fully 
unitary, as it is implemented through conditional cyclic shift operations 
controlled by lattice velocity indices. The quantum circuits are 
implemented using Qiskit and validated against benchmark Couette 
flow and Poiseuille flow cases, where analytical velocity profiles are 
available for direct comparison. The aim of this research is to establish a 
theoretically sound and efficient QLBM framework, with validation 
against classical benchmark cases. The primary objective is to 
demonstrate algorithmic feasibility and physical accuracy while 
achieving reduced circuit depth compared to prior QLBM 
formulations. From a computational perspective, maintaining unitary 
evolution not only ensures physical reversibility but also minimizes 
circuit depth, thereby improving algorithmic scalability on near-term 
and fault-tolerant quantum architectures. The remainder of the paper is 
organized as follows: Section 2 introduces the fundamentals of the 
classical LBM. Section 3 details the quantum implementation of LBM, 
including encoding strategies (Section 3.2), construction of the collision 
operator (Section 3.3), treatment of boundary conditions (Section 3.4), 
and the streaming operation (Section 3.6). Numerical validation 
results are presented in Section 4. Finally, conclusions and 
directions for future research are discussed.
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2 The lattice Boltzmann methods

The Lattice Boltzmann Method is a mesoscopic numerical approach 
for simulating fluid dynamics, particularly effective for complex 
boundaries and multiphysics problems. It models fluid flow by 
tracking the evolution of particle distribution functions on a discrete 
lattice. The fundamental equation with the Bhatnagar–Gross–Krook 
(BGK) collision operator and without external forcing, is written as: 

fi x + ciΔt, t + Δt( )−fi x, t( ) � −
1
τ
fi x, t( )−feq

i x, t( )􏼂 􏼃, (1)

where fi(x, t) is the distribution function in the ith lattice direction 
at position x and time t, and ci are the discrete lattice velocities. The 
right-hand side models relaxation toward an equilibrium distribution 
f

eq
i over a characteristic relaxation time τ, which is related to the 

kinematic viscosity ] and the lattice speed of sound cs as: 

τ �
]
c2
s

+
1
2

. 

Equation 1 is typically solved in two consecutive steps (Liu et al., 
2022): the collision step and the streaming step, expressed 
respectively as: 

fi* x, t( ) � fi x, t( )−
1
τ
fi x, t( )−feq

i x, t( )􏼂 􏼃,

fi x + ciΔt, t + Δt( ) � fi* x, t( ). 

Here, fi*(x, t) represents the post-collision distribution function. 
The equilibrium distribution function feq

i plays a central role in linking 
the microscopic particle dynamics to macroscopic fluid behavior.

When the viscous effects dominate over advection, the equilibrium 
distribution can be approximated using a linearized distribution: 

f
eq
i x, t( ) � wi ρ + ρ0

ciu
c2
s

􏼠 􏼡, (2)

where wi are lattice weights specific to the lattice model used (e.g., 
D2Q9), ρ is the macroscopic fluid density, ρ0 is a reference density, 
and u is the macroscopic velocity.

After each time step, the macroscopic fluid properties are 
recovered by taking moments of the distribution functions: 

ρ x, t( ) �􏽘
i

fi x, t( ),

u x, t( ) �
1
ρ0
􏽘
i

fi x, t( )ci.
(3)

In this study, the two-dimensional nine-velocity model (D2Q9) is 
employed, which consists of one rest particle, four particles moving 
along the coordinate axes, and four particles moving diagonally.

To impose no-slip boundary conditions at solid walls, the bounce- 
back scheme is utilized. Specifically, on the top and bottom 
boundaries, a prescribed velocity uw is imposed at the midpoints 
between boundary and fluid nodes using the bounce-back with 
velocity correction. The boundary condition is formulated as: 

fī xb, t( ) � fi* xb, t( )− 2wiρw
ciuw
c2
s

, (4)

where xb denotes a boundary node location, ī indicates the 
direction opposite to i (i.e., cī � −ci), and ρw is the fluid 
density at the wall. This corrected bounce-back approach 
allows enforcement of moving or stationary wall conditions 
with second-order accuracy.

3 Quantum lattice Boltzmann method 
implementation

The Quantum Lattice Boltzmann Method maps the classical 
Lattice Boltzmann dynamics onto a quantum computer to 
simulate fluid dynamics in a potentially more efficient manner 
compared to classical LBM. In particular, QLBM exploits 
amplitude encoding to represent the high-dimensional 
distribution functions within the amplitudes of a quantum 
state and performing the collision and streaming steps via 
unitary (and, when necessary, ancilla-assisted non-unitary) 
operations. In this section, we describe the encoding strategy, 
the quantum implementation of the collision operator via singular 
value decomposition (SVD) and the linear combination of 
unitaries (LCU) method, the treatment of bounce-back 
boundary conditions, and the streaming step via conditional 
bit-shifts.

3.1 Quantum LBM workflow

The quantum lattice Boltzmann method simulation is 
implemented using a state vector-based quantum circuit model. 
The overall procedure is outlined below in pseudocode:

1: Initialize quantum LBM circuit
2: Compute initial distribution functions
3: Compute collision matrix
4: Set bounce-back boundary conditions in 

collision matrix
5: for t � 0 to nstep −1 do
6: Encode initial field into quantum state: 

scalef ← InitialEncoding(fini)
7: Apply collision operator: 

scaleC ← MatrixMultiplier

8: Apply streaming operator: Stream
9: Compile and simulate circuit: result ← 

simulator.run
10: Extract state vector: ψ ← result.get_statevector()
11: Update field: fini ← ReconstructField(ψ,scalef,scaleC)

12: end for

Algorithm 1. Quantum LBM Simulation

• InitialEncoding: Maps the distribution functions into a 
quantum state using amplitude encoding.

• MatrixMultiplier: Applies the collision operator using singular 
value decomposition (SVD) and linear combination of 
unitaries (LCU). This involves:
– Decomposing the collision matrix into unitary components 
U, Σ, and V†.

– Constructing ancilla-controlled phase rotations based on 
normalized singular values.

– Applying extended unitary matrices to the quantum register.
• Stream: Implements conditional shift operations that mimic 

particle propagation in the lattice. These are realized using 
multi-controlled unitary gates conditioned on velocity 
directions.
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3.2 Encoding of distribution functions

In this implementation, four quantum registers are to used to 
encode distribution functions of a D2Q9 model. The fluid domain 
is discretized into a mesh of nx × ny nodes, with each node 
holding 9 discrete velocity distribution functions (as in the 
D2Q9 model). These distributions are encoded into quantum 
registers as follows:

• qx: Position register in the x-direction, requiring 
log2(nx) qubits.

• qy: Position register in the y-direction, requiring 
log2(ny) qubits.

• qf: Distribution function register, requiring log2(9) � 4 qubits 
to encode the 9 discrete velocity directions.

• qa: Ancilla qubit for implementing non-unitary operations via 
linear combinations of unitaries.

The total number of qubits required is log2(nxny) + 5. Before 
encoding, the classical distribution vector f ∈ R9nxny is normalized 
to form a valid quantum state: 

f̂ �
f
‖f‖2

. 

The quantum state after amplitude encoding becomes: 

|ϕ〉 � 􏽘

nxny−1

k�0
􏽘

8

iq�0
f̂iq,k|0〉a|iq〉f|k〉x,y,

where |k〉x,y denotes the spatial position encoded by registers qx and 
qy, and f̂iq,k is the normalized distribution function for direction iq
at node k.

3.3 Collision

In the classical LBM, the collision step updates the distributions 
based on local equilibrium. By substituting the macroscopic 
quantities ρ and u using the moment relations in Equation 3, the 
equilibrium distribution in Equation 2 can be written in terms of the 
distribution functions: 

f
eq
i �􏽘

j

wi 1 +
ci · cj
c2
s

􏼠 􏼡fj. 

The post-collision distribution function is then given by: 

fi* � 1 −
1
τ

􏼒 􏼓fi +
1
τ
􏽘
j

wi 1 +
ci · cj
c2
s

􏼠 􏼡fj �􏽘
j

Cijfj,

where the collision matrix Cij is defined as: 

Cij � δij 1 −
1
τ

􏼒 􏼓 +
wi

τ
1 +

ci · cj
c2
s

􏼠 􏼡,

and δij is the Kronecker delta. For the D2Q9 lattice model, the discrete 
velocity set are explicitly defined as: cx � [0, 1, 0,−1, 0, 1,−1,−1, 1]
and cy � [0, 0, 1, 0,−1, 1, 1,−1,−1], with corresponding lattice 
weights w � [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]. The 

lattice sound speed is cs � 1/
�
3
√

. The full matrix representation of 
the collision operation Af across all velocity directions is given by: 

Af �

C00 ⋯ C0nq

..

.
⋱ ..

.

Cnq0 ⋯ Cnqnq

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0
0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0
⋱

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0
0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0

0 ⋯ 0
..
.

⋱ ..
.

0 ⋯ 0

C00 ⋯ C0nq

..

.
⋱ ..

.

Cnq0 ⋯ Cnqnq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f
0
0

..

.

f
0
nq

f
k

0

..

.

f
k

nq

f
n

0

..

.

f
n

nq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The collision operator A is non-unitary and cannot be directly 
implemented on a quantum computer. To address this, we employ 
the Singular Value Decomposition and the Linear Combination of 
Unitaries technique (Kumar and Frankel, 2025).

First, we perform SVD on the collision matrix: 

A � UΣV†,

where U and V are unitary matrices, V† is the conjugate transpose of 
V, and Σ is a diagonal matrix with non-negative real singular values. 
The unitary matrices U and V can be implemented directly on a 
quantum computer.

To implement Σ, we use the LCU method (Childs and Wiebe, 
2012), which decomposes it as: 

Σ �
1
2

B1 + B2( ),

where: 

B1 � Σ + i
�����
I−Σ2

􏽰
, B2 � Σ− i

�����
I−Σ2

􏽰
,

and both B1 and B2 are unitary matrices. The LCU is implemented 
using a Hadamard gate on the ancilla qubit, followed by 
controlled-unitary gates conditioned on the ancilla state, and a 
final Hadamard gate to complete the linear combination. The full 
quantum circuit for the collision step is illustrated in Figure 1. 
During the decomposition of the collision matrix using SVD and 
the construction of the LCU components, numerical noise can 
arise due to floating-point precision and small singular values. To 
address this, we normalize the singular values, and extend unitary 
matrices with identity padding to preserve unitarity. These 
measures ensure the reliability of the quantum circuit under 
state vector simulation.

3.4 Boundary condition

Unlike previous QLBM implementations where the bounce- 
back boundary condition was incorporated into the streaming step, 
leading to a non-unitary streaming operator, we incorporate the 
bounce-back boundary condition, given by Equation 4, into the 
collision matrix, A. This ensures that the streaming step remains 
purely unitary and is handled separately. The bounce-back method 
replaces incoming distribution functions at the boundary with their 
oppositely directed outgoing post-collision counterparts.
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To impose this within a quantum circuit, we modify the collision 
matrix coefficients at the corresponding mirrored boundary. For 
instance, to enforce bounce-back on the top boundary, we alter the 
matrix coefficients for the bottom boundary accordingly. This 
avoids additional gates during the quantum streaming operation.

To implement a constant wall velocity, uw, its components are 
encoded into unused amplitude states in the qf register. For the 
D2Q9 model, 4 qubits (16 states) are available, of which 7 states 
(|1001〉 to |1111〉) are unused. These can be exploited to embed uw. 
For example, consider a grid with nx � 1, ny � 3, and a top boundary 
velocity uw � [uw, 0]. The complete matrix for the D2Q9 model becomes: 

Af �

C00 ⋯ C08 0 ⋯ 0 0 ⋯ 0 0

..

.
⋱ ..

. ..
.

⋱ ..
. ..

.
⋱ ..

. ..
.

C30 ⋯ C38 0 ⋯ 0 0 ⋯ 0 0

0 ⋯ 0 0 ⋯ 0 C20 ⋯ C28 −w2ρw
cx2

c2
s

C50 ⋯ C58
..
.

⋱ ..
.

0 ⋯ 0 ..
.

C60 ⋯ C68 0 ⋯ 0 0 ⋯ 0 0

0 ⋯ 0 0 ⋯ 0 C50 ⋯ C58 −w5ρw
cx5

c2
s

0 ⋯ 0 0 ⋯ 0 C60 ⋯ C68 −w6ρw
cx6

c2
s

0 ⋯ 0 C00 ⋯ C08 0 ⋯ 0 0

..

.
⋱ ..

. ..
.

⋱ ..
. ..

.
⋱ ..

. ..
.

0 ⋯ 0 C80 ⋯ C88 0 ⋯ 0 0

0 ⋯ 0 0 ⋯ 0 C00 ⋯ C08 0

..

.
⋱ ..

. ..
.

⋱ ..
. ..

.
⋱ ..

. ..
.

0 ⋯ 0 0 ⋯ 0 C80 ⋯ C88 0

0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 1
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3.5 Forces

For steady, incompressible flows, the forcing term expanded to 
first order in velocity space can be expressed as 

Fi � wi

ci
c2
s

F,

where F denotes the force density. With trapezoidal discretization, 
the collision step becomes 

fi* x, t( ) � fi x, t( )−
1
τ
fi x, t( )−feq

i x, t( )􏼂 􏼃 + 1 −
1

2τ
􏼒 􏼓FiΔt,

and the macroscopic velocity is updated as 

u x, t( ) �
1
ρ0
􏽘
i

fi x, t( )ci +
Δt
2ρ0

F. 

Following the same procedure as in Section 3.3, the post- 
collision distribution function can be expressed in matrix form as 

fi* �􏽘
j

Cijfj + wi

Δt
c2
s

ciF,

where Cij is the collision matrix defined previously in Section 3.3. In 
the quantum setting, the force density F is encoded into the unused 
amplitude states of the qf register, in a manner analogous to the 
wall-velocity encoding described above.

3.6 Stream

The streaming step corresponds to particle propagation along 
discrete lattice directions. In the quantum setting, this is 
implemented using conditional shift operations controlled by the 
distribution index qf.

The positive (P, see Figure 2a) and negative (N, see Figure 2b) 
cyclic shift operators under periodic boundary conditions are 
defined as (Budinski, 2021): 

P � 􏽘

2M−1

i�0
| i + 1( )mod 2M〉〈i|,

N � 􏽘
2M−1

i�0
|i〉〈 i + 1( )mod 2M|. 

The actual shifts are applied only on registers qx or qy, 
conditioned on the direction encoded in qf. For example, 
distribution f6 with velocity c8 � [1,−1] requires a positive shift 
on qx and a negative shift on qy. This is implemented using multi- 

FIGURE 1 
Quantum circuit for the collision operation.
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controlled gates, targeting the basis state |1000〉f. The full quantum 
circuit for the streaming step is shown in Figure 3.

4 Validation

The quantum LBM is implemented using the Qiskit toolbox 
(version 1.4.2) developed by IBM (Javadi-Abhari et al., 2024) 
with the StatevectorSimulator, which deterministically evolves 
the quantum state. The real part of the state vectors obtained 

from the deterministic state vector simulator is extracted 
and used to reinitialize the quantum state at each 
subsequent time step.

To validate the implementation, we consider the classical 
plane Couette flow problem. This choice is particularly suitable 
since the linear equilibrium distribution function assumption 
neglects nonlinear terms, and therefore does not recover 
the full Navier–Stokes equations with convection. The 
computational domain consists of nx × ny � 8 × 8 lattice 
nodes, with periodic boundary conditions along the 

FIGURE 2 
Quantum circuit for cyclic positive and negative shift operations: (a) Positive shift operator (P). (b) Negative shift operator (N).

FIGURE 3 
Quantum circuit for cyclic positive and negative shift operations.
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x-direction. The top and bottom boundaries are modeled as 
no-slip walls, with velocities uw � 0.02 (top) and 0 (bottom), 
respectively. The simulation parameters are as follows: 
relaxation time τ � 0.9, grid spacing Δx � 1, time step Δt � 1, 
and a total of 500 time steps. The distribution function is 
initialized as fi � wi, corresponding to a static flow field with 
zero velocity and unit density.

Due to the bounce-back boundary condition, which imposes the 
wall velocity at the mid-point of the boundary node, the analytical 
velocity profile for Couette flow is given by: 

uax iy􏼐 􏼑 � uw
iy

ny
+ 0.5􏼠 􏼡,

where iy is the index in the y-direction. As shown in Figure 4, the 
velocity profile predicted by the QLBM closely matches the 
analytical solution. The relative difference (ux − uax)/uw remains 
below 10−4 across the domain, confirming the accuracy of the 
quantum LBM implementation.

We further validate the quantum LBM implementation against 
plane Poiseuille flow, where forcing terms are included. The setup is 

FIGURE 4 
Normalized velocity and relative error along the y-direction for Couette flow: (a) Normalized velocity. (b) Relative error.

Frontiers in Mechanical Engineering frontiersin.org07

Liu et al. 10.3389/fmech.2025.1717775

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1717775


identical to the Couette case, except that both the top and bottom 
boundaries are stationary, and the relaxation time is set to 
τ �

����
3/16
√

+ 0.5.
The analytical velocity profile for Poiseuille flow is given by 

uax iy􏼐 􏼑 � −
4umax

n2
y

iy + 0.5􏼐 􏼑 iy + 0.5 − ny􏼐 􏼑,

where umax � 0.1. As shown in Figure 5, the QLBM accurately 
reproduces the parabolic velocity profile, with the predicted 
solution matching the analytical curve. The normalized error 

(ux − uax)/umax remains below 10−4 across the domain, 
demonstrating that the quantum LBM formulation accurately 
reproduces the parabolic velocity profile of Poiseuille flow.

To assess scalability, we compare the quantum circuit 
characteristics for Couette and Poiseuille flows at two grid 
resolutions: nx � ny � 8 and nx � ny � 16. For the smaller grid, 
the quantum circuit has a depth of 5164, 11 qubits, and circuit size of 
14,416. For the larger grid, the depth increases to 20,534, with 
13 qubits and circuit size of 65,628. This growth in circuit size and 
depth reflects the increased computational cost associated with 

FIGURE 5 
Normalized velocity and relative error along the y-direction for Poiseuille flow: (a) Normalized velocity. (b) Relative error.
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encoding more distribution functions. The number of qubits grows 
logarithmically with the number of nodes, while the depth and size 
scale with the number of operations required for collision and 
streaming steps.

5 Conclusion

In this work, we presented a quantum lattice Boltzmann method 
framework by reformulating the classical collision and streaming 
steps for implementation on quantum hardware. The collision step 
was recast as a pure matrix multiplication applied to all distribution 
functions across the computational domain. To handle the non- 
unitary nature of the collision operator, we decomposed the collision 
matrix using Singular Value Decomposition and implemented it via 
the Linear Combination of Unitaries method, enabling 
compatibility with quantum circuits.

The bounce-back boundary condition was incorporated 
directly into the collision matrix, and the imposed wall velocity 
was encoded within the distribution function register. This 
approach allows the streaming step to remain unitary, in 
contrast to the method of Kumar and Frankel (Kumar and 
Frankel, 2025), which embeds the wall boundary in the 
streaming step and consequently requires solving another non- 
unitary operator. In our formulation, the streaming step was 
implemented as conditional cyclic shift operations on the 
spatial registers, controlled by the lattice velocity indices 
encoded in the distribution function register.

The complete quantum circuit was implemented using Qiskit 
and simulated using a deterministic state vector simulator to 
perform iterative time evolution. Validation against the plane 
Couette flow and Poiseuille flow demonstrated that the quantum 
LBM accurately reproduces expected velocity profiles, with relative 
errors below 10−4. The Couette flow benchmark confirms the correct 
handling of linear velocity profiles, while the Poiseuille flow 
demonstrates that the method accurately incorporates forcing 
terms. These results collectively confirm the correctness of the 
proposed quantum LBM framework under simplified flow 
conditions.

The current formulation is limited to single-phase and linearized 
flow regimes. Extending quantum LBM to multiphase or interface- 
driven problems remains an open challenge. These phenomena 
typically require nonlinear collision operators and interface 
tracking mechanisms (e.g., color-gradient methods) (Noori et al., 
2021; Sheikholeslam Noori et al., 2019), which are difficult to 
implement on quantum hardware due to the inherent linearity of 
quantum mechanics. Future work may explore hybrid 
quantum–classical approaches to approximate nonlinear 
behavior, potentially enabling quantum simulations of more 
complex fluid systems.

Additionally, while current results are limited to running 
simulations of the quantum algorithms (via Qiskit) on a classical 
electronic computer, rather than execution on actual quantum 
hardware, the proposed formulation provides a foundational 
structure for quantum LBM algorithms. The current 
implementation requires full reinitialization using state vector 
extraction at each time step. However, this process could 
potentially be replaced by mid-circuit measurement followed by 

post-selection: retaining the state when the ancilla qubit is measured 
in the |0〉 state and discarding outcomes where it is |1〉, thereby 
removing garbage terms introduced by the LCU method. One 
limitation of this approach is the decreasing success probability 
over time, as the number of successful post-selections diminishes 
during successive iterations. In such scenarios, amplitude 
amplification techniques could be employed to improve the 
likelihood of retaining valid states.

Even though a direct complexity comparison with classical LBM 
is not straightforward due to the fundamentally different encoding 
schemes, quantum algorithms may offer asymptotic advantages in 
memory efficiency and parallelism, particularly for high- 
dimensional fluid systems. The simulation is performed on 
classical hardware without modeling quantum noise or error 
correction. The linearized equilibrium model restricts 
applicability to low Reynolds number flows. Furthermore, the 
encoding of complex boundary conditions and generalized 
forcing schemes remains a challenge. These aspects represent 
important directions for future research. Extensions to nonlinear 
flow regimes, more efficient state encoding schemes, and hybrid 
quantum–classical solvers represent promising directions for 
further development and scaling of the quantum LBM 
framework. The implementation code is available at: https:// 
github.com/dugudyoudi/quantum-lbm/tree/main/linear.
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