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To enhance the path tracking performance of intelligent vehicles, this paper
conducts optimization research on the classical Linear Quadratic Regulator (LQR)
controller based on a 2-degrees-of-freedom (2-DOF) vehicle dynamics lateral
tracking error model. Aiming at the insufficient adaptability of the LQR controller
with fixed weight coefficients at varying vehicle speeds, the Ant Lion Optimizer
(ALO) is introduced to dynamically adjust the matrix weight coefficients, and a
preview feed-forward steering angle compensation strategy is integrated to
improve the lateral path-tracking capability. Furthermore, to address the
reduced steering stability of the feed-forward LQR controller caused by
model linearization, an adaptive prediction mechanism based on fuzzy control
is designed. This mechanism integrates parameters such as vehicle speed, path
curvature, and its rate of change. By utilizing a dual-fuzzy controller, a hybrid
control strategy that combines dynamic prediction time and fixed preview time is
constructed. Simulation verification is conducted via MATLAB/Simulink and
CarSim co-simulation. Results show the proposed lateral control method
balances tracking accuracy and system stability, with good robustness across
speeds—simulation at double lane change 95.66% lower than traditional LQR at
15 m/s , and only 39.74% of traditional LQR’s average deviation at 25 m/s. This
study offers an efficient solution for intelligent vehicle lateral tracking, addressing
fixed-weight LQR and fixed preview time limitations in complex roads.

KEYWORDS

autonomous vehicles, feed-forward LQR, predictive controller, ant lion algorithm,
fuzzy control

1 Introduction

Intelligent vehicles refer to a new generation of vehicles equipped with advanced sensors
and other devices, utilizing new technologies such as artificial intelligence, featuring
autonomous driving capabilities, and gradually developing into intelligent mobile spaces
and application terminals (Zhang et al., 2020). With the rapid advancement of autonomous
driving technology, intelligent vehicles have been gradually deployed in specific fields such
as environmental sanitation services, transportation, and industrial parks (Cui et al., 2022),
significantly transforming people’s lifestyles and quality of life. In the future, higher-level
autonomous driving will offer broad application prospects. Generally, an autonomous
driving system consists of four components: environmental perception, decision-making,
path planning, and path tracking (Hu et al., 2021). Among these technologies, path tracking
control is the core of realizing intelligent driving and effectively ensures vehicle driving
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safety and handling stability (Ribeiro et al., 2020). Since it directly
affects vehicle safety and user experience, path tracking technology
has great value in engineering applications and profound
significance for theoretical research.

Currently, scholars have focused on path tracking research based
on vehicle dynamics, and the main methods widely used in lateral
tracking control include fuzzy control (Zhou et al., 2025), Linear
Quadratic Regulator (LQR) (Kaleemullah and Faris, 2022), and
Model Predictive Control (MPC) (Norouzi et al., 2023). Among
these, LQR control is extensively used in lateral control of vehicle
trajectory tracking due to not requiring online optimization
calculations, thus saving a large amount of computing resources,
and exhibiting high practical application value in real vehicles under
embedded environments (Wang et al., 2020).

During path tracking, vehicle speed and planned path curvature
are not fixed, and both have a significant impact on the control effect
of the path tracking controller. Therefore, the LQR controller with
fixed weights is difficult to ensure the optimal path tracking effect
under different vehicle speeds and road curvatures, which greatly
limits the adaptability and accuracy of the controller. Guo Ningyuan
et al. also found in their research on the handling stability of
distributed drive electric vehicles that the fixed feedback gain of
the Linear Quadratic Regulator (LQR) cannot achieve adaptive
adjustment like nonlinear model predictive control (NMPC). It is
difficult to cope with physical constraints and stability requirements
under dynamic operating conditions, and may even lead to vehicle
instability (Zhang et al., 2024). Thus, research on variable weight
matrices Q and R has gradually developed. Improvements to the
LQR lateral tracking controller based on fuzzy controllers (Hu et al.,
2022), genetic algorithms (Gong et al, 2023), particle swarm
optimization (PSO) (Wang X. G. et al, 2024), and ant lion
optimization algorithms (Wang et al., 2023) have achieved higher
tracking accuracy to varying degrees. Compared with other swarm
intelligence optimization algorithms (such as genetic algorithms and
particle swarm optimization), the ALO algorithm has stronger
optimization convergence ability. In addition, ALO is more
convenient and intuitive to apply due to fewer parameters to
adjust, so this study selects the ant lion algorithm to optimize the
matrix weights.

According to different control strategies, trajectory tracking
can be divided into two categories: preview strategy-based (Chen
et al,, 2014) and non-preview strategy-based (Guo et al., 2019).
Research has shown that preview-based strategies achieve better
performance in trajectory tracking. To enable trajectory tracking
to adapt to different paths, taking the vehicle’s speed and curvature
as inputs to realize optimization the preview distance (Li et al,
2024; Li and Chen, 2024; Ibrahim, 2022; Wang F. A. et al., 2024)
can significantly improve tracking accuracy. Cui Kaichen et al.
(Cui et al., 2024) designed an adaptive preview time controller
based on vehicle speed and road curvature using a fuzzy control
algorithm, in order to select the optimal prediction time T to adapt
to various road conditions. Shi Qiang et al. (Shi et al., 2021)
incorporate the curvature change rate as a factor affecting
trajectory tracking accuracy, used the unit length curvature
increment after mean filtering to describe the curvature
adjusted  the
parameters of pure tracking control and feed-forward control.

fluctuation, and dynamically normalized

Therefore, based on the fuzzy controller in (Cui et al., 2024), this
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study improves the fuzzy controller according to the curvature
change rate of the reference trajectory.

In summary, to tackle the problem of poor control adaptability
caused by fixed weight coefficients, this study dynamically adjusts
the weight coefficients of the LQR lateral tracking controller based
on the ALO algorithm. On the basis of the controller that
optimizes the preview time using speed and curvature, a dual-
fuzzy controller is designed according to the curvature change rate,
and a hybrid control strategy combining real-time changing and
fixed preview time is adopted to reduce the calculation time.
Finally, MATLAB/Simulink and CarSim co-simulation are
conducted to verify the trajectory tracking effect under two
The results show that under different vehicle
speeds, the hybrid significantly improves the
optimization effect in terms of distance deviation, side slip

conditions.
controller

angle of the center of mass, and yaw rate.

The subsequent chapters of this paper are organized as follows:
Chapter 2 focuses on Materials and Methods, providing a detailed
account of the construction of the 2-DOF vehicle dynamics model,
the design of the LQR controller, and the optimization methods
based on the ALO and fuzzy control. Chapter 3 is dedicated to
Experimental Scenario Settings and Evaluation Indicators. It defines
the simulation platform, comparative controllers, experimental
scenarios, vehicle speed parameters, and performance evaluation
indicators. Chapter 4 presents Simulation Results and Analysis. It
compares the performance of different controllers under double lane
change and double sine trajectory scenarios, so as to verify the
effectiveness of the proposed method. Chapter 5 contains
Conclusions and Prospects. It summarizes the research findings,
analyzes the existing limitations, and puts forward directions for
future research.

2 Materials and methods
2.1 Vehicle dynamics model

2.1.1 Assumptions and parameter definition
This paper adopts a simplified 2-DOF vehicle dynamic model
with the following assumptions:

1. The vehicle is symmetric about its longitudinal axis, with its
center of mass (COM) at the coordinate origin, and the effect of
wheel track is neglected;

2. Only planar motion is considered, and ignoring
vertical motion;

3. The tires are assumed to be rigid; the effects of the suspension,

air resistance, and rolling resistance are neglected.

When the vehicle is traveling at high speeds, it is assumed that
the tires undergo no deformation and the slip angle is zero, meaning
the lateral force exhibits a linear relationship with the slip angle
(Fy = Ca). Based on the bicycle model (see Figure 1):

2.1.2 Establishment of dynamic equations

Based on Newton’s second law, under the assumption of small
angles, the 2-DOF dynamic equations are established in
Equation 1:
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FIGURE 1
Two-degree-of-freedom vehicle dynamics model.

ma, = Fy; + F), = Cyray + Corax,

Izlp = Fyflf - Fyrl, = lfC.,faf - I,Ca,a,
a, =y + vy

vy =y

(1)

Where m is the total mass of the vehicle, y is the yaw angle,
and I, is the moment of inertia about the z-axis. From this,
the motion equations of the 2-DOF model can be derived as
Equation 2:

Caf + Cyr lfC,xf—l,Co,, v -%
e, e V][0
w vy lfCaf—erw l;Caf + lfCM v _lfC,xf

Iv, Iv, 1,

)

In the above equations, Cy and C, represent the side slip
stiffness of the front and rear wheels, respectively, and vy = vcos ()
and v, = vsin () are the components of the vehicle’s velocity at the
center of mass along the x, y directions in the vehicle coordinate
system. The Cartesian coordinate system makes it difficult to
intuitively describe path tracking error, so a transformation to
the Frenet coordinate system is applied:

The lateral error is the distance between the current vehicle
position and the projection point on the target path, while the
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heading angle error is the angle between the vehicle’s heading angle
and the tangential direction of the path (see in Figure 2). In the
figure, point A represents the actual position of the vehicle, and
point A’ is the projection point of the vehicle on the target path § is
the position vector of the vehicle’s actual location, and ?: is the
vector of the projection point; § is the speed magnitude at the
projection point of the vehicle on the target path; 0 is the vehicle
heading angle; and 6, is the heading angle of the projection point on
the target path. Based on the geometric relationships and Frenet
formulas, the path tracking error model can be expressed as
Equation 3:

é,, = Ae,, + Bu + Cér (3)

In the equation, &, = [es €4 e, €, ] is the error vector, which
includes the lateral error ey and its derivative é4, while e, and é,
represent the heading angle error and its derivative, respectively;
u = § is the control input; and A, B, and C are coefficient matrices.

0 1 0 0
0 2C,s +2C,, 2Cy5 +2C,, 2C¢,flf -2C,l,
mvy, m mv,
A= 0 0 0 1 ’
0 —2Caflf - 2Ca,l, 2C“flf - 2Ca,-l, 2Cufl]2r - 2le,z-
Izvx IZ Izvx
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2.2 LQR controller design

2.2.1 Feedback control law

LQR is an optimization control method based on state-space
equations, widely used in lateral control of autonomous
driving. Its core is to design an optimal control law to achieve
the best balance between system state error and control input.
The control objective is described by a quadratic cost function as
Equation 4:

17
1=5] X mex @+ U (R (1))ar @

Where Q and R are controller weighting matrices, with Q being
positive definite or positive semi-definite and R being positive
definite. The Hamiltonian function as Equation 5 is constructed
to solve for optimal control:

H- % [XTQX + UTRU] + A" (AX + BU) 5)

By applying the extreme condition % = 0, the optimal control
input is derived as Equation 6:

U*(t) = -R'BTA(¢) (6)

Where A(t) = -P(t)X(t), P is the solution of the Riccati
equation which is expressed as Equation 7:
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PA+ATP-PBR'B'P+Q=0 (7)

The final LQR control law show in Equation 8 is in the form of
state feedback:

U(t) = -KX (t),K = R'B™P (8)

where K = [ky, ky, ks, kq] is the feedback gain matrix. The dynamic
response is optimized by adjusting Q and R.

2.2.2 Feed-forward compensation

Although the feedback control law 8 = —Ke,, based on LQR can
stabilize the system, it will cause steady-state tracking errors may
occur due to model simplifications. To reduce this error, the front
wheel steering control law is substituted into the state equation of
the original system, yielding the steady-state error of the system
under feedback control show in Equation 9, where w, is the
disturbance term caused by the reference path curvature:

e, =—(A- BK)ilcwr (9)

To eliminate the steady-state error, a feed-forward control
quantity 5 is introduced. Thus, the total control input becomes
Equation 10:

8 = —Key, + 8¢ (10)

The steady-state error of the system under this condition is
expressed as Equation 11:

e, = —(A-BK) " (BS; + Cw,) (11)

To minimize the steady-state error e,, ,it is necessary to solve the
steady-state error equation to determine an appropriate feed-
forward steering angle control quantity d; under the condition
that the lateral distance deviation e; is zero. The feed-forward
steering control term is given by Equation 12:

w, mv: (I, I Iy
A LA L s (Caf ok c)] (12)

where kj is the gain coefficient of the third column in the feedback
gain matrix K of the LQR controller.

2.3 Controller improvement

During the path tracking process, the vehicle speed and path
conditions are not fixed. Therefore, the LQR controller with fixed
weights struggles to ensure optimal path tracking performance
under varying speeds and road environments. To address this
issue, an adaptive weight adjustment method for the LQR
controller is proposed, implemented using the ALO. To adapt to
different speeds and curvatures, a fuzzy controller is designed for
real-time adjustment.

2.3.1 Ant Lion Optimizer

ALO is an intelligent optimization algorithm inspired by the
hunting behavior of ant lions behavior of ant lions. It optimizes
parameters by establishing a dynamic interaction mechanism
between candidate solutions and the optimal solution. During the
initialization phase of the algorithm, two key matrices are set up: the
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position matrix Mygen, Which stores the coordinates of all
individuals (including ants and ant lions) in the d-dimensional
solution space, and the fitness matrix Mg, which records the fitness
function values of the corresponding individuals.

Al,l AI,Z cee Al,d f( [ Al,l AI,Z B Al,d ])

A2,1 A2,2 s A2,d f( [ A2,1 A2,2 e Az,d ])
MAgent . . . F = .

Ay Ay .. Apg F([Ans Auz ... Anal)

The movement behavior of individuals is described using an
improved random walk model shows in Equation 13:

0, cumsum (20 (1,) — 1),

.., cumsum (26 (1,,) — 1) (13)

X(7) = [
T is iteration number, and m is the maximum number of iterations.
The random function ¢(7) is defined as Equation 14:

1, rand>0.5

o(r) = {0, rand<0.5 (14)

In this model, rand is a random number uniformly distributed

within [0, 1]. To address discretization issues, the walking trajectory
is normalized as Equation 15:

o Xi-a) ()

! (bi — @) e (15)

where b; and a; define the walking range of individuals #; d] and ¢}
are the lower and upper search boundaries of the i — th ant at the
7-th iteration, respectively. For ant lions that hunt through traps,
the search boundaries of ants which showed in Equation 16 are
determined by the position information of elite individuals:

d; = Antlionjf +d', ¢ = Antlionj’ +c’ (16)

where d” and ¢” are the lower and upper boundaries of the search
interval for all ants at the 7-th iteration, respectively, and AntlionjT is
the trap position set by the j — th ant lion. In nature, when an ant is
successfully captured by a trap, the ant lion will shrink the trap size
to confine the ant. The algorithm simulates this trap contraction
during predation through an adaptive adjustment mechanism which
shows in Equation 17:
c’ dr

T T

(17)

The contraction coefficient w adopts a piece-wise constant
strategy, w dynamically adjusted based on the current iteration
number during the iteration process as shown in Equation 18:

Om<1<0.1m
0.1m<71<0.5m
0.5m<1<0.75m
0.75m<17<0.9m
0.9m<17<0.95m
0.95m<1t<1m

(18)

[SERSERSEESERSER S
Il
AU R W N =

The ant lion position update mechanism involves two key rules:

1. If the fitness of a candidate solution is better than the current
optimal solution, the current optimal solution is replaced, and
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the positions and fitness values of the ant and ant lion
are updated.

2. In the process of generating the position of the new generation
of ant individual, a roulette wheel selection strategy and an elite
retention strategy are introduced. The roulette wheel section
strategy shows in Equation 19 helps select suitable ant lions
based on fitness, while the elite retention strategy ensures that
the best individuals are passed to the next-generation, which
jointly determines the positions of the new generation of ant
individuals:

R, + R}

2 (19)

T _

Ant; =

where R}, and R}, represent the positions obtained by the ant walking

around the ant lion selected via the roulette wheel strategy and the
elite ant lion, respectively.

2.3.2 Weight optimization

In the design of the LQR controller, the selection of the weight
matrices Q and R has a decisive impact on control performance. To
address this, this paper adopts a dynamic adjustment strategy that
optimizes the weight matrices in real-time based on the actual
tracking state of the vehicle so as to improve path tracking
accuracy and system adaptability. For the lateral motion
controller involved in this study, the weighting matrices Q and R
can be expressed as Equation 20:

Q=diaglq,.9,.95-9,), R=r (20)

where the elements in the matrix Q represent the degree of attention
to the corresponding control objectives, q;, 45, g3, g4 correspond to
the system’s control degrees for distance deviation ey, rate of
distance deviation €4, heading deviation e,, and rate of heading
deviation &, respectively. The larger the value, the stronger the
control degree of the system for the control objective. During target
path tracking, distance deviation e; and heading deviation e,, are the
primary control objectives. Therefore, this paper keeps g, and q,
fixed as constants, and focuses on designing adjustment rules for g,
q;, and r.

To balance vehicle driving stability and path tracking
performance, the evaluation function for the ALO is defined as
the integral of the absolute values of lateral error e4, heading angle
error e, lateral velocity error é4, heading angular velocity error é,
and output front wheel steering angle § over the sampling time T,
which shows in Equation 21:

T T T
Fitnessaio = Jo les (£)|dt + JO e, (1)|dt + L AGI
T T
+j |é,,,(t)|dt+J 16.(8)\dt 1)
0 0

where eg (1), €4 (1), e, (1), &, (t), and § (t) represent the values of each
control variable at time ¢, and T is the total sampling time.

To reduce the computational time associated with frequent calls
to the Simulink model, this study uses the ode45 solver during
parameter optimization to solve the system response directly
according to Equation 3 within 0-0.05 s to obtain the required
parameters. The number of ants and ant lions N is set to 15, and the
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FIGURE 3
Alo algorithm flowchart

search intervals for q,, g5, and r are defined as [0.1, 0.1, 0.1] to [50,
50, 50], with a maximum iteration count of 100. The specific
workflow and steps of the Ant Lion Optimizer are illustrated
in Figure 3:

2.3.3 Preview time optimization

To adapt to the need for certain predictability in direction
control in actual driving and to reduce vehicle instability caused
by repeated adjustments of the front wheel steering angle due to
control response delays, this paper employs preview control
technology to optimize steering response. Based on the current
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vehicle state, the kinematic model of the preview point is as
Equation 22:

Xpre = X +vT cos(y)
Ypre = Y + vT sin(y) (22)
Yy =Y +@T

where X, and Y, represents the coordinates of the preview point,
and y,,,, is the yaw angle of the preview point; X and Y denotes the
position coordinates of the vehicle’s center of mass at the current
time, ¥ and w are the vehicle’s heading angle and yaw rate at the
current moment, respectively, and v is the vehicle’s speed.

The selection of the preview time T is critical to the control
performance. If T is too small, the preview point distance is too
short, which may lead to delayed control responses. Conversely, if T
is too large, the preview point distance is too far, which may result in
significant deviations between the preview point and the actual path,
thereby affecting system stability and response speed.

The simulation experiments method provided in reference (Cui
et al, 2024) reveal the relationship between vehicle speed, road
curvature, and preview time. The simulation results indicate that the
selection of preview time is not only related to the magnitude of road
curvature but also closely related to the trend of curvature changes.
Taking a continuous lane-change scenario at 25 m/s as an example
(see in Figure 4):

When the curvature gradually increases, the second derivative of
the path is positive, indicating that the vehicle is entering a sharper
curve, with intensifying trajectory changes. Thus, the preview time
needs to be shortened to improve response speed. When the
curvature gradually decreases, the second derivative of the path is
negative, indicating that the vehicle is entering a smoother road
section where trajectory changes tend to stabilize. In this case, the
preview time can be extended to achieve control over a
longer distance.

Therefore, this paper proposes an adaptive preview time
which
dynamically optimizes the preview control parameters by

adjustment method based on fuzzy control,
comprehensively analyzing the vehicle speed, road curvature,
and their variation characteristics. To reduce unnecessary
calculation time, the controller is improved based on the rate
of curvature change, adopting a hybrid control strategy that
combines fixed preview time and dynamically adjusted preview
time. Under the same simulation time of 15.5 s, 10 sets of the
model’s actual runtime were collected for comparison. It was
found that compared with the hybrid control strategy (see in
Figure 5), the single fuzzy control not only has a longer runtime
but also exhibits instability. In summary, the controller design

considers the following key factors:

1. Vehicle speed: The preview time T is positively correlated with
the vehicle speed v. Under high-speed conditions, the preview
distance needs to be extended to compensate for system
response delays.

2. Road curvature: The curvature v directly affects steering
demands. On large-curvature road sections, the preview
time needs to be increased. The rate of curvature change
reflects the intensity of road morphology variations. When
it exceeds a certain threshold, fuzzy dynamic adjustment is
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Tracking trajectories under two controllers.

activated; otherwise, a fixed preview time is selected based
solely on the current speed.

3. Second derivative of the road trajectory: When the second
derivative of the reference trajectory is positive, a shorter
preview time is required; when it is negative, a longer
preview time is needed. Thus, the same controller cannot be
used for both cases.

To achieve adaptive control, this paper first employs a fuzzy
control algorithm with vehicle speed and road curvature as inputs.
On straight or gently curved road sections, a fixed preview time is
adopted; on sharp curves or under complex road conditions, the
system automatically switches to fuzzy adjustment mode.

After extensive co-simulation testing using Carsim and
Simulink, it was determined that excessive input variables could
over-complicate the controller’s rule configuration. Therefore, this
paper only categorizes based on the sign (positive or negative) of the
second derivative of the reference trajectory. Based on the sign
characteristics of the trajectory’s second derivative, differentiated
control strategies are implemented, ultimately outputting an
adaptive preview time T. This simplified design helps reduce the
the thereby
computational efficiency in practical applications. One single

complexity of fuzzy  controller, improving
curvature point cannot reflect abrupt trajectory changes, and the
vehicle may fail to respond in time during operation. Thus, this
paper uses the rate of curvature change, denoted as KR, which is
calculated by combining the curvature change rates from the current
trajectory point dmin and the subsequent four points:

When KR is less than the total number of points n, express as

Equation 23:

Frontiers in Mechanical Engineering

KR = 1000 * (kr (dmin) + kr (dmin + 1) + - - - + kr (dmin + 4))
(23)

Otherwise, expressed as Equation 24:

KR = 1000 * (kr (dmin) + - - - + kr (n)) (24)

When the rate of curvature change is greater than 0, Controller
1 is used for solution. If it exceeds the switching threshold KR, the
fuzzy controller is activated; otherwise, the minimum preview time
of 0 is adopted. When the rate of curvature change is less than or
equal to 0, Controller 2 is used for solution. If it exceeds KRy, the
fuzzy controller is activated; otherwise, the preview time is linearly
solved. Through multiple experiments, it is verified that the value of
T is related to speed v and generally follows quadratic Equation 25:

T = 0.013v'* + 0.03v' + 0.008 (25)

In the equation v' = v/5, the operation stops when the length of
the operating path s exceeds the length of the reference path S.

2.3.4 Parameter selection and design

The most important parameters of the controller are the fuzzy
controller and the threshold; a detailed analysis of the selection of
both will be conducted next.

2.3.4.1 Fuzzy controller

The fuzzy controller designed in this paper adopts a precision
configuration of 7-level input and 11-level output to ensure control
accuracy while avoiding excessive complexity in rules. The precision
levels of the input variables v and k, and output variables T are
as follows:
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v ={NB,NM,NS, ZO, PS, PM, PB}
k, = {NB,NM, NS, ZO, PS, PM, PB}
T ={NV,NL NB,NM,NS,ZO,PS,PM, PB,PL, PV}

The universe of discourse for vehicle speed v is set to [0, 30] m/s,
which covers the range from vehicle standstill to high-speed driving
and ensures the threshold can adapt to multiple scenarios such as
low-speed urban driving, medium-speed suburban driving, and
high-speed highway driving. The universe of discourse for road
curvature k; is set to [0, 0.02] m™!; it includes the approximately zero
curvature of straight road sections and also covers regular medium-
curvature curves, preventing threshold failure caused by extreme
curvature. The universe of discourse for preview time T is set to [0,
0.5] s, which aligns with the typical control cycle range of vehicles to
ensure threshold update efficiency.

Input variables adopt the Gauss2 membership function to
achieve smooth transition, while output variables use the Trimf
membership function to ensure defuzzification accuracy. The design
of fuzzy rules starts with a rough draft based on prior experience,
which is then adjusted through iterative upward and downward
tuning, and finally validated via simulation to determine the optimal
set of rules. The membership functions of each input and output
variable are shown in Figure 6. The fuzzy rules for the two
controllers are listed in Table 1. When the second derivative of
the trajectory is greater than zero, Fuzzy Rule 1 is applied; when the
second derivative of the trajectory is less than or equal to zero, Fuzzy
Rule 2 is applied. The inference results of the two fuzzy controllers
are illustrated in Figure 7.

2.3.4.2 Switching threshold filte

The selection of the switching threshold KRy is critical in the
optimization of preview time T, as it fundamentally determines

Frontiers in Mechanical Engineering

whether adaptive adjustment of preview time can be achieved,
thereby governing the overall control performance of the system.

Excessively low KRy, triggers premature fuzzy controller
The
associated computation latency from frequent switching impedes

activation during allowable trajectory perturbations.

rapid steady-state attainment, counteracting response time
reduction while increasing power dissipation through repeated
initialization. KRy,

trajectory variation sensitivity, compromising system adaptability.

Conversely, excessive values diminish
This suppresses preview time adjustment, fixing T within a static
operational envelope rather than enabling real-time optimization.
Such insufficient performance contradicts the core objective. To
address this scenario, this study initially selects five candidate
threshold values: 1, 1.5, 2, 2.5, and 3, followed by designed
experiments for subsequent screening.

The S-path comprises straight trajectories, curved trajectories,
and the transitions between them, making it suitable for verifying
the tracking performance of turning paths. So the experimental
procedure chooses tracking the S-shaped trajectory illustrated in
Figure 8A at three speeds—10 m/s (low speed), 20 m/s (medium
speed), and 25 m/s (high speed)—under five distinct states.
Subsequently, calculating fitness values to evaluate model
performance in terms of tracking accuracy and stability. The
distance deviation, steering angle error, and output steering angle
are discretized to obtain e4 (), e, (i), and 8 (i), the fitness function is

defined as Equation 26:

J = At (wilea ()] + wale, (3)] + ws]8 (i) | )

i=1

(26)

where w;, w;, and w; represent the weighting coefficients for
the three variables respectively, and At denotes the sampling
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Membership Functions of (A) Inputs (v). (B) Inputs (kr) and (C) Output (T) with Fuzzy State Labels (NB, NM, NS, ZO, PS, PM, PB, NV, NL, PL, PV) and Axis
Scale Labels.

TABLE 1 Fuzzy rules.

(A) Fuzzy rules 1

k, NB NV NV NV NV NV NV NV
NM NV NV NV NV NV NV NV
NS NV NV NV NV NV NV NL
/) NV NV NV NL NL NL NL
PS NV NV NV NL NB NL NB
PM NV NV NV NL NB NB NB
PB NV NV NV NL NB NB NB

(B) Fuzzy rules 2

k, NB NV NV NS PM PM /e PS
NM NV NV NS PB PB PS PM
NS NV NV NS PB PB PM PB
y/e} NV NV NS PB PB PB PB
PS NV NV NS PL PL PL PL
PM NL NL NS PV PV PL PV
PB NL NL /o] PV PV PV PV

Frontiers in Mechanical Engineering

time interval. The fitness values are normalized, and a line chart
as shown in Figure 8B 1is plotted. After comprehensive
consideration, three levels (1.5, 2, and 2.5) are selected for
further research.

A comparative analysis of the three thresholds was
conducted under conditions of low road adhesion (with
p=0.6) to evaluate the robustness of the model in harsh
environments. For the small-curvature trajectory as shown in
Figure 8C, it is primarily designed to verify the tracking
performance and stability specifically under the scenario of
small curvature combined with high speed. The fitness status
is presented in Figure 8D.

After a comprehensive assessment of tracking accuracy
and stability, this paper adopts 1.5 as the threshold for
subsequent studies. Otherwise, for the output steering angle
8, which directly determines the direction of the vehicle’s
steering and the responsiveness of trajectory adjustment to
ensure the vehicle maintains good operational stability
across diverse driving conditions, strict range constraints on
the front-wheel angle are essential. This prevents over steering,
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(A) Fuzzy Controller 1

FIGURE 7

(B) Fuzzy Controller 2

Fuzzy Inference Results of kr-v-T Relationship with Axis Variable Labels (kr, v, T) and Scale Labels. (A) Fuzzy Controller 1. (B) Fuzzy Controller 2.
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yaw rate from exceeding the safety threshold, and the
subsequent risks of vehicle trajectory deviation or loss of
body attitude control, with the front-wheel angle
specifically limited to a range of [-0.5,0.5]. The complete
flowchart of the controller is finally obtained, as shown

in Figure 9.
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3 Ethics statement
3.1 Data and copyright compliance

All simulation data used in this study were generated through
the established 2-DOF vehicle dynamics model and improved
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Controller flowchart.
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4 Results

To validate the effectiveness of the designed controller, a test
environment is built based on the CarSim/Simulink co-simulation
platform, and the following comparative experiments are conducted:

. Classical LQR controller (without preview, and with fixed
weights: Q = diag[1,1,1,1], R = 10);
. Fixed preview time of 0.1 s, with weight optimization for the
LQR algorithm using the ALO;
. Fuzzy algorithm-optimized preview time combined with the
ALO algorithm to optimize the weights;
The tracking results of the three controllers under the same
reference path are compared and analyzed. Two typical extreme
scenarios—Double Lane Change and Double Sine—are selected
as  reference  trajectories.  Control  performance is
comprehensively through three indicators:distance deviation
eq, yaw rate v, and side slip angle .
1. Distance deviation e;: The linear distance between the
current vehicle position and the nearest point on the

reference trajectory, which directly reflects the steady-state
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TABLE 2 Vehicle parameters table.

10.3389/fmech.2025.1715592

Parameter name Value Parameter name Value
Total vehicle Mass (kg) 1350 Front wheel cornering stiffness (N/rad) —68200
Rear wheel cornering stiffness (N/rad) —645,00 Moment of inertia about z-axis (kg-m?) 1438
Distance from front axle to CG (m) 1.03 Distance from rear axle to CG (m) 1.28
Road surface adhesion coefficient 0.85 Road Wide(m) 4
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accuracy of the control system and the effectiveness of the
front wheel angle control quantity.

. Yaw rate y: The rotational angular velocity of the vehicle
around its vertical axis, reflecting the controller’s ability to
track the desired yaw moment and stability during abrupt
changes in lateral acceleration.

. Side slip angle B: The angle between the vehicle’s
velocity direction and its longitudinal axis of the
vehicle, directly characterizing the dynamic stability of
the vehicle.

To thoroughly validate the performance of the designed
controller, in the co-simulation experiments, the vehicle speed
under the two different working conditions is set to a constant
value without special speed planning. Considering the vehicle
driving safety and controller performance under different speeds,
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two vehicle speeds are configured: 15 m/s represents medium-high
speed, which is used to test the stability and accuracy of the
controller at lower speeds; 25 m/s represents relatively high
speed, which is used to test the fast response and trajectory
accuracy of the controller, so as to more comprehensively
evaluate the performance of the controller under various working
conditions. The experimental simulation step size is 0.05 s, and key
dynamic parameters of the test vehicle and the simulation
environment are listed in Table 2:

4.1 Simulation scenario 1
The double lane change scenario requires the control algorithm

to respond rapidly to environmental changes, providing a
comprehensive test of the control system’s adaptability to time-
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varying curvature. It is well-suited for evaluating the real-time
optimization performance of the controller. The trajectory
equation is defined as Equation 27:

L

where, ¢ = 10, d = 100. The tracking results under this scenario are

2

Y(X)=%{7t+7

shown in Figures 10, 11:

4.2 Simulation Scenario 2
The double sine trajectory requires the vehicle to
complete two directional switches within a short time,
making it suitable for testing the controller’s dynamic
response speed, yaw stability, and yaw rate. It is ideal for
high-precision and high-stability validation. The specific
equation is as Equation 28:

d d
Y (X) = 2% (1+ tanh(z))) - % (1 + tanh(z,))  (28)
Where dy; =4.05, d,=57 2z =2%2(X-2719)-12,
2z = 75 (X —56.46) — 1.2, is the horizontal coordinate of the
trajectory. The tracking results under this scenario are shown in
Figures 12, 13.
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4.3 Simulation results analysis

As clearly illustrated, the LQR + ALO + Fuzzy controller
designed in this paper achieves varying degrees of optimization
in three key aspects: distance deviation, yaw rate, and slip angle. The
maximum absolute values and average values of these three metrics
are summarized in Tables 3, 4 as follows:

In the performance evaluation of vehicle path tracking control,
the composite control strategy incorporating fuzzy algorithms
demonstrates significant advantages. Under the 15 m/s double
lane change scenario, the maximum lateral position error of this
strategy is as low as 0.006 m, which is only 66.67% of that of the LQR
+ ALO strategy and represents a 95.66% reduction compared to the
traditional LQR strategy. In the double sine scenario, the maximum
distance deviation of LQR + ALO + Fuzzy is reduced by 75.53%
compared to the ALO + LQR strategy, indicating its excellent
adaptability to paths with abrupt curvature changes. Although
the performance of the improved controller slightly declines
under high-speed conditions, its accuracy in high-speed scenarios
still far surpasses that of traditional methods. For example, in the
25 m/s double lane change scenario, its average error is only 12.5% of
that of ALO + LQR; in the 25 m/s double sine scenario, its average
distance deviation is only 39.74% of that of the traditional LQR
controller. These results not only highlight the high tracking
precision of the improved strategy in high-speed dynamic
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scenarios but also expose the limitations of traditional LQR and
ALO + LQR strategies in balancing stability and accuracy at
high speeds.

In terms of vehicle dynamic response, the time-varying
controller quickly adapts to road conditions through rapid
adjustments. In the 15 m/s double lane change scenario, its yaw
rate shows minimal difference compared to traditional controllers,
but its average steering angular velocity is lower than that of the LQR
controller. In the 15 m/s double sine scenario, the maximum yaw
rate of LQR + ALO + Fuzzy is reduced by 11.33% compared to
traditional LQR, and the average value is optimized by 15.59%,
validating the effectiveness of variable preview time control in
suppressing steering oscillations. Under the 25 m/s high-speed
scenario, this strategy reduces the maximum yaw rate by 10.78%
compared to LQR + ALO in the double lane change scenario,
demonstrating the synergistic effect of fuzzy control and ALO
optimization in enhancing steering smoothness. However, in the
double sine scenario, although the maximum yaw rate is reduced by
6.38% compared to ALO + LQR, the average value slightly increases,
indicating that oscillations may intensify under high-speed
conditions with abrupt curvature changes.

Regarding vehicle stability, the LQR + ALO + Fuzzy strategy
significantly enhances the anti-slip capability. Under the 15 m/s
continuous lane-change maneuver, its slip angle is 1.080% the
maximum value is 10.15% lower than that of the ALO + LQR
strategy, and the average value is optimized by 10.38%. Under the
15 m/s double-lane-change maneuver, the maximum value of its slip
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angle is 26.67% lower than that of the ALO + LQR strategy, and
the average value is 20.95% lower. In the 25 m/s high-speed
continuous lane-change maneuver, the maximum value of its slip
angle is 11.79% smaller than that of the LQR + ALO strategy
before the integration of fuzzy control, and the average value is
9.75% smaller. Notably, under the 25 m/s double-lane-change
maneuver, the average slip angles of both the ALO improved and
Fuzzy + ALO improved strategies are higher than that of the
traditional LQR; however, this increase is suppressed after the
introduction of the improved preview time: compared with the
Fuzzy + ALO strategy before fuzzy optimization, the LQR + ALO
+ Fuzzy strategy achieves a 7.24% reduction in the maximum
value and a 10.56% reduction in the average value. This fully
indicates that although the performance of the designed
controller in some indicators under high-speed conditions is
slightly degraded compared with that under medium and low-
speed conditions, it still has significant advantages in terms of
high-speed stability compared with the traditional controller
with fixed preview time.

5 Conclusion
5.1 Contribution of the article

1. Addressing the core limitation of fixed-weight LQR controllers.
To tackle the poor adaptability of fixed-weight LQR controllers
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TABLE 3 Double lane change and double sine scenarios at 15 m/s.

Scenario Name ALO + Fuzzy preview LQR + ALO LAQR
Double lane change scenario max (| eq [)/m 0.006 0.009 0.139
Mean (| €4 |)/m 6.234 x 10? 0.001 0.021

max (|  |)/rad/s 10.914 12.284 10.066

Mean (| \ |)/rad/s 4.379 4.402 4.550

max (|  |)/deg 1.080 1.202 1.118

mean (| B |)/deg 0.397 0.443 0.442

Double sine scenario max (| eq |)/m 0.023 0.094 0.970
Mean (| eq |)/m 0.002 0.006 0.007

max (| § |)/rad/s 28.415 35.134 32.047

mean (|  |)/rad/s 4.232 4.735 4.982

max (| B |)/deg 2.540 3.464 4.151

mean (| B |)/deg 0.366 0.463 0.507

to complex road conditions and curvature changes, this study
introduces the ALO algorithm to solve for the optimal
coefficient matrices of the LQR controller under different
path conditions. By dynamically optimizing based on
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specific path characteristics, the controller’s adaptability to
various trajectory forms is significantly enhanced.

2. Proposing a hybrid strategy to overcome the limitation of fixed
preview time Aiming at the defect that fixed preview time in
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TABLE 4 Double lane change and double sine scenarios at 25 m/s.

10.3389/fmech.2025.1715592

Scenario Name ALO + Fuzzy preview LQR + ALO (@]
Double lane change scenario max (| eq [)/m 0.022 0.290 1.289
Mean (| eq |)/m 0.003 0.024 0.154

max (|  |)/rad/s 15.274 17.119 17.364

mean (|  |)/rad/s 7.663 8.264 8.544

max (| B |)/deg 2,650 3.004 3.446

mean (| B |)/deg 1.222 1.354 1.475

Double sine scenario max (| eq [)/m 12.830 21.078 25.045
mean (| eq |)/m 1.111 1.361 2.795

max (| |)/rad/s 33.837 36.143 31.975

mean (|  |)/rad/s 8.881 8.702 6.075

max (| B |)/deg 6.988 7.533 6.949

mean (| B |)/deg 1.695 1.895 1.254

traditional preview control cannot adapt to diverse road
scenarios, this study puts forward a hybrid control strategy.
This strategy takes dynamic adjustment of preview time as its
basic framework and further classifies and optimizes different
curvature change rates and reference path change rates. Such
multi-dimensional adjustment ensures that preview control
can more accurately match real-time road conditions, avoiding
control response delays or overshoot caused by fixed
preview time.

3. Verifying performance and practical value through simulations
Simulation results confirm the effectiveness of the designed
controller. It can not only effectively adapt to dynamic changes
in path conditions, such as sudden increases in curvature or
complex trajectory switches, but also improve the path-
tracking accuracy during vehicle operation while ensuring
driving stability.

5.2 Limitations of controller

exhibits
limitations under high-speed conditions. Although it can
maintain the vehicle within the scope of basic stability

However, the proposed controller significant

requirements while ensuring tracking accuracy, it still sacrifices
partial dynamic stability, which is specifically manifested in an
increase in yaw rate. This indicates that the current control
strategy cannot meet the strict stability requirements for high-
speed driving, mainly due to two key factors: first, the linearization
of the 2-DOF vehicle model ignores nonlinear dynamic
characteristics such as tire load transfer and tire slip angle
saturation at high speeds, leading to deviations between the
control model and the actual vehicle state; second, the fuzzy
preview controller adopts a simplified rule design, which fails
to fully capture the complex coupling relationship between high-
speed vehicle dynamics and path characteristics, resulting in sub-
optimal preview time adjustment.
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5.3 Outlook

Future research will address the aforementioned limitations from
three aspects: Firstly, increase the degree of freedom of the nonlinear
vehicle dynamics model and improve the similarity between the
linearized model and the actual model. Secondly, the fuzzy preview
control rules will be optimized by adding input parameters such as lateral
acceleration, to improve the adaptability of the preview strategy to high-
speed and extreme curvature scenarios. Third, real-vehicle validation
experiments will be conducted to verify the controller’s performance
under real road conditions, and further calibrate the control parameters
to narrow the gap between simulation results and practical applications.
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