
A cable tension measurement 
method for transmission lines 
based on micro-vibration 
broadband phase motion 
magnification and deep learning

Huang Zhiming*, Wang Shuo, Wen Hongbing and Li Zixin

Jiangmen Power Supply Bureau, Guangdong Power Grid Co., Ltd., Jiangmen, Guangdong, China

Introduction: Cable components are widely used in transmission lines, and their 
tension values and variations are critical factors affecting the intrinsic safety of 
these lines. Thus, tension monitoring becomes a priority during both 
construction and operational maintenance. Traditional cable tension 
measurement methods suffer from limitations such as low accuracy, stringent 
environmental requirements, and difficulties in live-line monitoring, resulting in a 
lack of universality for application in transmission lines.
Methods: This paper utilizes visual image technology and Broadband Phase 
Motion Magnification to amplify the micro-vibration amplitude and enhance 
the vibration images of transmission line cable- type components under 
environmental excitation. Furthermore, this study develops a combined 
segmentation algorithm using the U-Net network architecture and level set 
loss entropy to accurately capture the centroid motion trajectory of cables, 
thereby precisely extracting the vibration displacement time series. Finally, 
spectrum analysis is applied to invert the self-vibration characteristic 
parameters of the components and establish a tension calculation model.
Results: Experimental verification shows that the proposed method can precisely 
capture the micro-vibration signals induced by environmental excitation. The 
tension calculation results, when compared to standard sensor data, have a 
deviation of no more than 8%.
Discussion: This method successfully establishes a non-contact, high-precision 
measurement system for cable-type components, providing a new technical 
pathway for intelligent monitoring during the construction and maintenance of 
transmission lines.
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1 Introduction

Transmission lines are crucial national infrastructure, and the structural safety during both 
their construction and operation is vital to the overall reliability of the power system (Yao et al., 
2021). Tension members are widely distributed in the structural components of transmission 
line projects, including various conductors and ground wires, guy wires of transmission towers, 
as well as stay cables and anchor cables during construction, all of which are types of tension 
members. Under operational conditions, these tension members primarily bear large axial 
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tensile forces, and their tension values fluctuate significantly due to 
environmental loads such as wind, temperature changes, and ice 
accumulation, as well as material characteristics changes like stress 
relaxation, creep, and broken strands. These fluctuations in tension 
directly impact the overall safety and stability of the structure (Zhenya, 
2009; We et al., 2015). Therefore, identifying the modal parameters of 
the tension members and measuring their tension values have always 
been key aspects of structural health monitoring during both 
construction and operation (Dengke et al., 2015). The tension 
members in transmission line projects can be classified into two 
main categories: one category bears electrical functions such as 
power transmission and lightning protection, mainly consisting of 
conductors and ground wires; the other category stabilizes structures 
like towers and brackets, primarily consisting of tower guy wires, stay 
cables, and anchor cables. For existing structures, it is difficult to 
measure the tension of these members by installing tension sensors, so 
quick and accurate tension measurement has always been a challenge 
in transmission line construction and operation.

Currently, cable tension monitoring and detection can be classified 
into contact-based and non-contact methods. In complex field 
environments, technicians often have to rely on manually shaking 
the cable (Yanbao et al., 2022) and subjectively judging its tightness 
based on experience. With the development of sensing technology, 
researchers and engineers have begun exploring cable tension detection 
using various sensors. References (Zhanghua et al., 2023; Xiongjun et al., 
2016) installed highly sensitive vibration pickups on stay cables to 
acquire their natural frequencies, establishing vibration equations 
based on the elastic distributed mass and cable vibration direction to 
calculate cable tension. This method can yield relatively accurate tension 
results but requires contact-based vibration sensors. In transmission line 
engineering, as cables are typically energized and susceptible to various 
environmental factors like terrain and weather, contact-based 
measurements are often impractical, lack universality, and do not 
align with the expected trend toward intelligent construction and 
maintenance of future transmission lines (Haitao et al., 2023). 
Consequently, contact-based measurement methods have gradually 
fallen out of use for tension detection in transmission lines.

In contrast, non-contact detection methods have developed 
rapidly in recent years due to advantages such as ease of 
installation and debugging, and no interference with transmission 
lines (Jian et al., 2022; Qiao et al., 2022; Longqiang et al., 2023). 
Among these, vision-based tension detection is an emerging non- 
contact intelligent detection technology that has been widely 
adopted in this field owing to its high measurement accuracy, 
convenient installation, and good real-time performance. As early 
as 2015, Banfu et al. (2015) conducted research on cable force testing 
using moving target image tracking. They used industrial cameras 
and smartphones to capture vibration videos of steel strands, 
proposing morphological image processing to extract 
displacement time-history for calculating cable tension. However, 
this method relies on binarization to extract morphological features 
of the strand, which may fail to accurately identify features when 
image pixel grayscale values are high. Lan et al. (2022) applied this 
approach to measure tension in transmission guyed towers, 
employing Canny edge detection and sub-pixel localization to 
address issues of rough strand edges and low positioning 
accuracy. While this method can achieve relatively precise 
tension values, it requires manual excitation to impart initial 

velocity or displacement to the cable to induce sufficiently large 
free vibrations before capturing the vibration images. Summarizing 
previous non-contact measurement research, two main factors affect 
measurement accuracy: first, insufficient robustness of the 
measurement method, which can lead to significant errors in 
practical engineering environments; second, difficulties in directly 
applying artificial excitation to transmission line cables, whether for 
primary or secondary components, due to their working 
environment and energized state. The only viable solution is to 
identify the visual images of minor vibrations of cable components 
under ambient excitation, enabling analysis of natural frequency and 
tension calculation. Therefore, leveraging minor vibrations under 
environmental excitation for modal analysis is key to achieving 
rapid, accurate, and non-contact tension measurement for 
transmission line cable components.

In recent years, phase amplification technology based on machine 
vision has gradually developed, providing a solution for identifying 
small movements. Reference (Zhang Yuhang et al., 2021) applied phase 
amplification algorithms to measure bridge stay cables, using manually 
placed markers for edge localization to obtain displacement curves and 
then calculate cable tension using the frequency method. This method 
can effectively measure the vibration frequency of cables by 
recognizing artificial markers, but it requires the prior 
determination of the natural frequency. Building upon this, Xuan 
et al. (2023) and colleagues adopted broadband phase amplification 
technology, which amplifies small vibrations across a wide frequency 
band without requiring prior knowledge of the frequency. They then 
used template matching to determine the displacement-time history of 
the object, enabling the identification of the natural frequency. These 
studies all amplified small movements and achieved relatively accurate 
experimental results, validating the feasibility of using amplification 
algorithms for structural vibration identification. However, unlike the 
objects studied in these references, the tension members in 
transmission lines are typically made of twisted strands, with 
rougher edges. The presence of video noise and issues such as 
image signal step transitions caused by the phase pyramid 
algorithm can lead to artifacts, which significantly interfere with the 
accurate extraction of the displacement of tension members and the 
subsequent data processing, ultimately affecting the 
calculation accuracy.

With the development of artificial intelligence, deep learning 
algorithms have expanded the possibilities for identifying and 
removing artifacts (He et al., 2023; Chuankai et al., 2021; Lee et al., 
2023; Yang et al., 2021). Kim et al. (2019) proposed combining the 
level-set image processing method with deep learning semantic 
segmentation networks, and using backpropagation of the loss 
functions from both methods to enhance the network’s 
segmentation performance. Yang and Dengke (2022) applied this 
method to seismic arrival picking, solving the problem of poor 
recognition accuracy in conventional machine vision.

To identify the natural frequencies and calculate the tension of 
transmission line tension members under environmental excitation, 
this paper proposes using broadband phase video amplification 
technology. The small vibrations of the tension members are 
amplified within a specific frequency band, responding to 
environmental excitation. To effectively remove artifacts, a deep 
learning semantic segmentation network is introduced to segment 
and cluster the movement of tension members. Finally, edge fitting 
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is applied to improve accuracy and extract the displacement-time 
history of the centroid of the tension member. The target vibration 
frequency is obtained through spectral transformation, and the 
tension is calculated using the frequency method, thereby 
achieving non-contact tension measurement of transmission line 
tension members. This approach, by combining phase amplification 
with deep learning for artifact removal and segmentation, can 
significantly enhance the accuracy and reliability of tension 
measurements in real-world transmission line environments, 
addressing the challenges posed by noise and rough edges in 
tension member images.

2 Tension measurement method based 
on micro-vibration monitoring

The research method proposed in this paper is as follows: The sub- 
band signals of vibration video images in different directions and scales 
are extracted using a complex-valued controllable pyramid. The 
broadband phase amplification algorithm is applied to process the 
target motion video and enhance its motion state. A deep learning 
network-based U-Net and level-set entropy loss joint segmentation 
method is employed, with images magnified by different amplification 
factors and captured at various angles used as the dataset for training. 
This allows the network to learn the pixel information of tension 
members, extracting the relevant pixel information of transmission line 
tension members from various image pixels. To improve the accuracy 
of edge pixel information, a least-squares fitting algorithm is used to 
smooth the edge pixels, extracting the pixel coordinates of the centroid 
of the tension member and performing statistical analysis. The modal 
frequency is obtained using the Fast Fourier Transform (FFT) 
algorithm, and finally, the tension of the member is calculated 
using the frequency method.

2.1 Broadband phase-based motion 
amplification algorithm

The vibration amplitude of tension members in transmission 
line projects is very small under environmental excitation, and the 

resulting displacement is not significant. Traditional visual image 
processing techniques based on edge recognition algorithms 
struggle to detect such small vibrations and cannot eliminate 
noise interference. The broadband phase-based motion 
magnification (BPMM) algorithm has shown good performance 
in identifying and amplifying small movements. The complex- 
valued controllable pyramid is the main processing step in the 
broadband phase-based motion amplification algorithm. It 
decomposes the video of vibrating objects into individual frames 
and then breaks down each frame into sub-band signals in different 
directions and scales, thereby extracting phase information related 
to object displacement. The 2D Gabor filter within the pyramid can 
effectively handle noise in image videos and enhance the signal-to- 
noise ratio of the vibration video image. The motion of the cable 
component, after being decomposed by the complex-valued 
controllable pyramid, can be defined by image intensity. 
Assuming the image intensity of the cable component is f (x,y), 
when the image pixels of the cable component experience small 
vibrations along the x-axis and y-axis at time t, denoted as δ (x,t) 
and δ (y,t), the image intensity can be represented as shown 
in Equation 1: 

f x + δ x, t( ), y + δ y, t( 􏼁( 􏼁 (1)

The vibration signal of the tension member can be 
decomposed into a sum of sine waves at all frequencies using 
Fourier series.

When the tension member in the video has not started 
experiencing small vibrations, i.e., at t = 0, the image intensity is: 

f x, y( 􏼁 � 􏽘
∞

ω �−∞
Aω x, y, 0( 􏼁ei

ω x,y( ) (2)

When the video starts capturing and the tension member begins 
to experience small vibrations, i.e., at t > 0, the image intensity is: 

f x + δ x, t( ), y + δ y, t( 􏼁( 􏼁 � 􏽘
∞

ω �−∞
Aω x, y, t( 􏼁eiω x+δ x,t( ),y+δ y,t( )( )

(3)

Here, Aω(x,y,t) represents the vibration amplitude of the tension 
member; ω represents the harmonic frequency; eiω(x,y) and 

FIGURE 1 
Video Frame Amplified by BPMM Algorithm.
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eiω(x+δ(x,t),y+δ(y,t)) represents the phase information of the tension 
member’s image; By subtracting Equation 2 from Equation 3, 
the image motion phase—P (x,y,t) difference of the tension 
member at the ω harmonic frequency can be obtained, as shown 
in Equation 4: 

P x, y, t( 􏼁 � ω δ x, t( ), δ y, t( 􏼁( 􏼁 (4)

According to the time-shifting property of the Fourier 
transform, changes in the phase information can be used to 
achieve variations in the image motion information. By 
multiplying the expression in Equation 4 by an amplification 
factor α, the local phase amplification is achieved, as shown in 
Equation 5: 

P̄ x, y, t( 􏼁 � αω δ x, t( ), δ y, t( 􏼁( 􏼁 (5)

The final amplified image intensity is given by Equation 6: 

f x + 1 + ∂( )δ x, t( ), y + 1 + α( )δ y, t( 􏼁( 􏼁

� 􏽘
∞

ω �−∞
Aω x, y, t( 􏼁eiω x+ 1+∂( )δ x,t( ),y+ 1+α( )δ y,t( )( ) (6)

The algorithm amplifies the small motion in the image domain 
by increasing the phase difference. Here, ω represents controlled 
through filtering, and when using the amplification algorithm, the 
filtering range must be greater than the frequency range of the 
natural frequency of the tension member. In this paper, the 
measured fundamental frequency of the transmission line tension 
member is used as the result for solving via the frequency method. 
Since most of the first-order natural frequencies of tension members 
lie between 0 and 20 Hz, to ensure both the amplification effect and 
experimental accuracy, the filtering range in this study is set 
to 0–20 Hz.

2.2 An image segmentation network

For video images of cable components undergoing small 
vibrations, the broad-band phase magnification algorithm is 
applied. During the phase magnification process, artifacts around 
the target are generated due to phase constraints from the complex- 
valued controllable pyramid, and environmental noise interference 
arises from camera-based image capture.

To extract the displacement of cable vibrations amidst 
environmental noise and artifacts, traditional image recognition 
techniques such as edge detection struggle to differentiate the 
edge motion information of the cable component, which is 
surrounded by artifacts, making it difficult for subsequent 
tension calculations, as shown in Figure 1.

Therefore, this paper proposes the use of semantic segmentation 
techniques from deep learning to extract cable images, remove 
environmental noise, and eliminate the artifacts caused by the 
phase magnification technique.

2.2.1 U-net network
With the development of computer vision technology, computers 

have already achieved the ability to automatically classify various 
objects in images through learning. Semantic segmentation 
technology in deep learning is a technique that achieves object 
segmentation by classifying each pixel of an object. The U-Net 
network is a precise and efficient semantic segmentation network 
(Ronneberger et al., 2015). It improves upon the FCN network by 
using a concatenation method to combine deep and shallow image 
features instead of the summation method used in FCN (Long et al., 
2015). The advantage of U-Net lies in its ability to achieve high 
segmentation accuracy with a smaller dataset and shorter training 
time, which addresses the issue of limited dataset availability in power 
transmission line engineering.

FIGURE 2 
U-Net network structure.
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The U-Net network structure is a U-shaped symmetric 
architecture. The left side consists of an encoder made up of four 
convolution blocks. In each convolution block, convolutional layers 
and pooling layers downsample the image information. As the 
sampling channels of the image pixels are doubled, the feature 
map size is reduced to half of the original. The right side structure is 
the decoder, which has a similar design to the encoder. The key 
difference is that the pooling layers in the convolution blocks are 
replaced by deconvolution layers, which restore the image 
dimensions. Through upsampling, the decoder classifies and 
segments each pixel of the image. Skip connections concatenate 
the processed images with the same pixel size from both sides of the 
network, achieving the fusion of edge information across different 
scales. Finally, a single convolution layer outputs the semantic 
segmentation results. The structure is shown in Figure 2.

2.2.2 Semantic segmentation nerwork integrated 
with level sets

Level set methods, as traditional image segmentation 
techniques, have been widely used in engineering practices, 
typically for segmenting foreground and background. Therefore, 
they are well-suited for segmenting a single target, such as 
transmission line conductor components. The level set method 
constructs an energy function based on image pixel information, 
such as grayscale values, and iteratively moves the segmentation line 
toward the target object until the segmentation is completed. To 
improve the accuracy of edge segmentation in magnified images, a 
global level set segmentation method is combined with the loss 
entropy from semantic segmentation. The level set energy function 
EC is shown in Equation 7: 

EC � λ1 􏽚􏽚 I x, y( 􏼁−
􏼌􏼌􏼌􏼌 cl,1

􏼌􏼌􏼌􏼌
2
H ϕ( 􏼁dxdy+

λ2􏽚􏽚 I x, y( 􏼁−cl,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 1 −H ϕ( 􏼁( 􏼁dxdy

(7)

The parameters cl,1, cl,2 and Hε(ϕ) in Equation 7 are given by 
Equations 8–10, respectively. 

cl,1 �
􏽒
Kl
Kl x, y( 􏼁Hε ϕ x, y( 􏼁( 􏼁dxdy

􏽒
Kl
Hε ϕ x, y( 􏼁( 􏼁dxdy

(8)

cl,2 �
􏽒
Kl
Kl x, y)(1 −Hε ϕ x, y( 􏼁( 􏼁( 􏼁dxdy

􏽒
Kl

1 −Hε ϕ x, y( 􏼁( 􏼁( 􏼁dxdy
(9)

Hε ϕ( 􏼁 �
1
2

1 +
2
π

arctan
z

ε
􏼒 􏼓 (10)

Here, K (x,y) represents the Gaussian kernel function, λ1, λ1, and ω 
represents the weights, cl1 and cl2 represents the mean pixel grayscale 
values inside and outside the segmentation boundary, ϕ represents the 
level set distance function, H(ϕ) represents the approximate expression 
of the step function, and ε represents a constant, ε tends to be close to 0.

Deep learning-based semantic segmentation methods can 
output intuitive segmentation results, but they are prone to issues 
with data imbalance. Therefore, it is necessary to introduce a loss 
function to adjust the deep learning segmentation model. Using only 
the loss value from the U-Net semantic segmentation network for 
error backpropagation can result in unclear boundary segmentation 
of the enlarged object. To address this, the level set energy functional 
is introduced as a loss term for backpropagation, which enhances 
robustness against noise and the contours of the target object.

The loss function of the level set is as shown in Equation 11: 

Ls �
1

2n
􏽘

n

i�1
yl − el
����

����
2 (11)

Here, yl represents the pixel true value, and el represents the pixel 
predicted value. The final goal of this study is to segment the cable 
images for result processing. Therefore, artifacts and background are 
considered noise, and the segmentation task is converted into a 
binary classification with a single-label task. For the case of evenly 
distributed binary classification samples, we use the Cross-Entropy 
loss function Lu, as shown in Equation 12: 

Lu � −􏽘
C

i�1
y xi( )log q xi( )( 􏼁 (12)

Here,C represents the number of samples, y (xi) represents the 
true pixel, and q (xi) represents the predicted pixel probability. In 
this paper, a binary classification method is used, so the cross- 
entropy is Equation 13: 

LU � − y logŷ + 1 −y( 􏼁log 1 − ŷ( 􏼁( 􏼁 (13)

Here, y represents the true distribution probability of the pixel 
for the transmission line component, ŷ represents the predicted 
probability of the pixel for the transmission line component by the 
U-Net network, and 1-y and 1-ŷ represent the true distribution 
probability of the pixels for non-transmission line components 
(background, artifacts) and the predicted probability of the non- 
transmission line components’ pixels, respectively.

The final loss function is shown in Equation 14: 
LR � EC + βLU (14)

Here, β represents the weight value.

2.3 Vibration and centroid extraction of the 
cable component

2.3.1 Edge fitting and centroid extraction of the 
cable component

When the cable component is subjected to environmental 
excitation, it generates random vibrations in the normal 

FIGURE 3 
Centroid selection after fitting.
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direction. During image capture, this can be viewed as motion on a 
plane. Based on this, a displacement coordinate system for the cable 
can be established, and the cable component can be segmented using 
a semantic segmentation network. To extract its displacement, this 
paper uses the centroid of the binary image after segmentation as a 
statistical value.

Since the edge of the cable component is not a smooth straight 
line, using the centroid as a reference point to extract its 
displacement coordinates through the semantic segmentation 
network may introduce some errors. Therefore, this paper 
employs the least squares method to fit the edge points of the 
cable component. The fitting formula is as follows in Equation 15: 

f x( ) � a0 + a1x + a2x
2 + · · · · · + anx

n (15)

Here, α0, α1, α2 . . . , αn represents the coefficients of the fitting 
equation, x and f(x) represent the coordinate information of the 
cable component’s edge.

The fitted image recognition can reach sub-pixel accuracy. After 
selecting the Region of Interest (ROI), the center of centroid of the fitted 
cable image is found. After binarizing the image, the result is shown in 
Figure 3. The red pixels (representing the identified cable structure 
pixels) are located at the average y-coordinate of the vertical axis, while 
the green point represents the extracted center of centroid. This green 

point is used as the center of centroid, and the segmented images, frame 
by frame, are processed to track its displacement over time. The 
displacement time series can then be transformed into frequency 
domain data using the Fast Fourier Transform (FFT) method.

2.3.2 Frequency method measurement
Under environmental excitation, transmission line cables 

undergo small random transverse vibrations (Yunlong et al., 
2023). Treating the environmental excitation as white noise, the 
modal parameter identification peak-picking method can be used to 
recognize the natural frequency of transmission line cable 
components.

Using cable vibration theory, the relationship between the 
vibration frequency and tension of transmission line cables can 
be established. Let the direction of the cable installation be the x-axis, 
and the direction perpendicular to the cable be the y-axis. The 
vibration equilibrium equation of the cable can be derived as 
Equation 16: 

T
∂2
y

∂x2 −m
∂2
y

∂t2
−EJ

∂4
y

∂x4 � 0 (16)

Here, T represents the tension of the cable component; t is time; 
m is the centroid per unit length of the cable; EJ represents the 
bending stiffness of the cable component. When the cable is 
relatively long, its bending stiffness can be neglected. The above 
equation can be simplified to the classical wave Equation 17: 

FIGURE 4 
Overall process.

FIGURE 5 
Test site.

FIGURE 6 
Part of the test data set.
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T
∂2
y

∂x2 −m
∂2
y

∂t2
� 0 (17)

By using the method of separation of variables, the spatial 
equation of the above equation can be solved. Since the two ends 
of the cable are fixed (displacement is 0 at x = 0 and x = I), the 
relationship between the angular frequency ω and the tension T can 
be obtained as Equation 18: 

ω �
nπ
l

��
T

m

􏽲

(18)

From the natural frequency fn � ω
2π, EJ << TL2, the bending 

stiffness of such members can be considered negligible. The 
following can be obtained as Equation 19: 

T �
4ml2fn2

n2 (19)

Here, n is the order of the natural frequency of the cable 
vibration; fn is the nth-order natural frequency of the cable, and l 
is the length of the cable.

2.4 Tension calculation process

The method for calculating the tension of transmission line 
cables in this paper is divided into three parts, as shown in Figure 4:

Step 1: Dataset Collection: Due to the lack of semantic 
segmentation datasets for transmission line cables, this 
paper creates a new dataset. Video images of cable 
vibrations under environmental excitation are collected 
and magnified using the broadband phase magnification 
algorithm. The magnified video images are then 
decomposed frame by frame, and part of the images are 

TABLE 1 Different magnification tension identification.

Zoom scale Accelerometer tension (kN) Vision-based tension (kN) Error (%)

5 15.485 14.620 5.59

10 15.485 14.930 3.58

15 15.485 14.838 4.18

20 15.485 16.409 −5.97

FIGURE 7 
Loss curve.

FIGURE 8 
Confusion matrix.
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manually annotated with the edges of the cable 
components to create the dataset.

Step 2: Network Processing and Segmentation: The manually 
annotated dataset is input into a network combining 
the level-set and U-Net loss functions for training, 
achieving network fitting.

Step 3: Tension Calculation: The magnified video images are 
decomposed frame by frame and processed through the 
trained network. The semantic segmentation network 
converts the magnified cable image into a binary image. 

After selecting the ROI area, the center of centroid of the 
image is used to extract the cable displacement time 
series, which is then transformed into the frequency 
domain. The tension is calculated using the frequency 
method formula.

3 Expeprimental validation

3.1 Dataset creation

The dataset was collected at an outdoor experimental site, as 
shown in Figure 5, where steel-core aluminum-stranded wires were 
installed between two iron towers. The steel-core aluminum-stranded 
wire consists of 24 aluminum strands and 7 steel strands, with an outer 
diameter of 16.67 mm and a unit length centroid of 0.549 kg/m. These 
wires were used to simulate the operating conditions of overhead 
conductors, and the tension of the wires was adjusted by controlling 
the tensioning device.

TABLE 2 Evaluation index comparison.

Network Loss Evaluation metrics

MIoU Accuracy

FCN 0.092 0.832 0.867

U-net 0.013 0.924 0.974

FIGURE 9 
Network usage.
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To verify the accuracy of the tension measurement method 
proposed in this paper, a tension sensor was installed between the 
line clamp and the tensioner to obtain the force values, which were 
then compared with the tension results obtained from the 
proposed method.

A camera (Canon EOS RP) with a frame rate of 60 frames per 
second and a resolution of 1920 × 1,080 was used for the video 
capture. To reduce image distortion caused by the lens, the camera 
was positioned approximately 1 m away from the target wire during 
each capture. The shooting angle in this article is kept as parallel as 
possible to the suspension components. When it is not possible to 
shoot in parallel, drones will be used to assist in the filming. The 
dataset was divided into three groups, with tension controlled by the 
tensioner. The groups were filmed under three tension conditions: 

2673N, 7703N, and 9261N. For each group, 7 sets of 10-s vibration 
video images of the wire under environmental excitation were 
captured from different angles and lighting conditions. During 
the experimental testing period, the environmental excitation was 
predominantly aeolian vibration, with frequencies ranging from 
10 Hz to 40 Hz. The lighting conditions were controlled to be 
well-lit in the morning and insufficiently lit in the evening, with a 
filming ratio of 5:2 for daytime and evening shots.

The 21 sets of 10-s video images collected were magnified using 
the BPMM algorithm with a magnification factor of 10. To balance 
the workload and network fitting accuracy, one frame was selected 
every 30 frames from the magnified video images to create the 
dataset, resulting in a total of 420 original images. A part of the 
dataset is shown in Figure 6. The edges of the wire in the images were 
manually annotated using Labelme, and the original JSON files were 
converted into JPG images with mask masks, which were then fed 
into the network for training.

To validate the robustness of the proposed method across 
different magnification scales, we selected zoom levels of 5, 10, 
15, and 20 as comparative conditions. Videos at these four different 
magnification scales were input into the network, and the centroid 
pixel variation was statistically calculated to determine the tension. 
The measured results were compared with those from the 
acceleration sensor, as shown in Table 1.

Based on the results presented in Table 1, the proposed 
method effectively extracts the pixel-level morphological 
features of cable components even when affected by artifacts 
and accurately calculates their tension values, with all errors 
falling within acceptable ranges for engineering applications. 
The data indicate that under ambient excitation, cables 
undergo minor vibrations. When the zoom scale is relatively 
small (α < 10), the measurement error is more pronounced. At 
zoom scales of 10 or 15, the cable tension can be measured with 
higher accuracy. Therefore, for cable vibration analysis, it is 
concluded that maintaining a zoom scale around 10 enables 
accurate identification while avoiding image distortion caused 
by excessive magnification.

To prevent overfitting, the initial dataset was augmented by 
random rotations, random cropping, and random resizing, 
generating a total of 3220 augmented images. The original dataset 
and augmented dataset were combined, totaling 3640 images, and they 
were randomly split into training and validation sets at an 8:2 ratio.

3.2 Network training

The experiment in this paper was conducted on a Windows 
system, based on the GPU version of the PyTorch deep learning 
framework, using an RTX3060Ti 8G graphics card as the 
experimental environment. The labeled training set images 
were input into the network for training, with the learning 
parameters configured as a learning rate of 0.001, a maximum 
of 500 epochs, and a batch size of 2. To avoid overfitting due to 
excessive training, the early stopping method was used to control 
the network. Training was stopped after 8 consecutive epochs 
without improvement in the validation loss. The total training 
time for the network was 6 h and 17 min, and the network 
stabilized and converged.

FIGURE 10 
Time history of centroid displacement for 3 groups of image 
recognition. (a) Displacement time history of the first group. (b) 
Displacement time history of the second group. (c) Displacement time 
history of the third group.
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The U-Net experiment was conducted in a Windows environment 
utilizing a GPU-accelerated Py Torch deep learning framework, with 
an RTX 3060 Ti 8G graphics card serving as the hardware platform. 
The annotated training set images were fed into the network for 
training with the following hyperparameters: a learning rate of 0.001, 
maximum of 500 epochs, and a batch size of 4. An early stopping 
mechanism was implemented, halting the training process if the 
validation loss showed no improvement over eight consecutive 
epochs. The total training duration was 6 h and 27 min, by which 
point the network had stabilized and converged. The corresponding 
loss trajectory during training is illustrated in Figure 7.

The four values in the confusion matrix are critical parameters 
for evaluating the performance of the network model, as illustrated 
in Figure 8.

Specifically: TP denotes the number of samples correctly 
predicted as positive; FP represents the number of samples 
incorrectly predicted as positive; FN indicates the number of 
samples incorrectly predicted as negative; TN corresponds to the 
number of samples correctly predicted as negative.

The metric MIoU (Mean Intersection over Union) quantifies 
model accuracy by measuring the overlap between the predicted 
segmentation and the ground truth labels. It is mathematically 
defined as Equation 20: 

MIoU �
1

k + 1
􏽘

k

i�0

TP

FP + FN + TP
(20)

Here, k denotes the total number of classes.
The metric Accuracy quantifies the proportion of correctly 

predicted samples relative to the total number of samples. It is 
calculated using the Equation 21: 

Accuracy �
TP + TN

TP + TN + FP + FN
(21)

The training evaluation metrics for the FCN and U-Net 
networks are presented in Table 2 below.

As shown in Table 2, the improved U-Net achieves superior 
performance over the FCN network in terms of both MIoU and 
Accuracy, validating that its adoption can significantly enhance 
segmentation performance.

3.3 Measurement results

After the network training is completed, the magnified video 
images under three different tension levels are decomposed frame by 
frame and input into the trained semantic segmentation network. 

The displacement of their centroids is then statistically measured. 
The measurement process is shown in Figure 9.

The centroid displacement time histories for the three groups are 
shown in Figure 10. From the displacement time history graph, it can 
be observed that the maximum centroid displacement for the three 
groups of magnified images is about 3 pixels. The corresponding 
frequency spectra of the three groups after fast Fourier transform (FFT) 
are shown in Figures 11a–c. The first peak value in the spectrum 
corresponds to the fundamental frequency of the conductor. By 
substituting this value into Equation 17, the calculation results are 
presented in Table 3. The measurement errors for the three groups of 
tension are all below 4%, verifying the effectiveness of the proposed 
method for micro-vibration tension identification.

To explore the effect of lighting on the proposed method, a fourth 
group of experiments was added. The video for this group was captured 
in the evening under poor lighting conditions, and the tension sensor 
reading was 9261N. The magnified image videos were decomposed 
frame by frame and input into the network. The results for the fourth 
group are shown in Table 3. By calculating the error between the image 
recognition results and the tension sensor readings for the fourth group, 
it was found that the error was relatively large, reaching 7.84%. This could 
be due to the semantic segmentation network’s poor recognition ability 
under low lighting conditions, where the image pixel contrast is not high.

To verify the applicability of the proposed method for detecting 
small vibrations, a video image captured during a well-lit period was 
tested, as shown in Figure 12. The video was magnified using the 
broadband phase algorithm and input into the semantic segmentation 
network to extract the centroid. The displacement time histories before 
and after amplification were compared, as shown in Figure 12a.

By comparing the centroid displacement maps before and after 
amplification, it can be observed that the vibration amplitude of the 
conductor without the amplification algorithm is relatively small 
under environmental excitation. The image displacement is within 
0.6 pixels, and in many cases, no displacement change is detected, 
leading to little difference in pixel displacement between adjacent 
frames. However, after applying broadband phase amplification, the 
centroid displacement extracted through semantic segmentation can 
reach approximately 2 pixels.

The Fourier-transformed frequency spectrum analysis, as shown 
in Figure 12b, indicates that the frequency spectrum of the image not 
processed by the magnification algorithm struggles to detect the 
fundamental frequency peak. However, the image processed by the 
method presented in this paper allows for the identification of the 
natural frequency through peak detection, enabling tension 
calculation. This validates that the proposed method can 
effectively amplify small vibrations and accurately extract the 
displacement-time history, thus solving the issue of machine 

TABLE 3 Results of 4 groups of experiments.

Serial 
number

Tension sensor displays the 
tension value/N

Image recognition frequency 
value/Hz

Image recognition 
tension value/N

Error/%

1 2673 1.267 2608 2.43

2 7703 2.148 7496 2.69

3 9261 2.345 8934 3.53

4 9261 2.292 8534 7.84
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FIGURE 11 
3 groups of image recognition spectrum. (a) Spectrum of the first group. (b) Spectrum of the second group. (c) Spectrum of the third group.
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FIGURE 12 
Network segmentation results before and after magnification algorithm. (a) Comparison of displacement time histories before and after 
magnification. (b) Comparison of frequency spectra before and after magnification.

FIGURE 13 
Performance Comparison of Low-light Adaptation: Pre-vs. Post-Improvement. (a) Original low-light image. (b) Enhanced low-light image.
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vision recognition unable to obtain accurate natural frequencies due 
to the small displacement pixels in images without magnification.

The primary source of error in the proposed method stems from 
a significant reduction in contrast between the conductor and the 
background, which leads to a decreased image signal-to-noise ratio 
(SNR). Experimental data indicate that during evening hours, the 
grayscale difference between the conductor and the background 
drops from 80 to 120 under normal lighting conditions to 20–40, 
accompanied by an approximately 70% attenuation in edge gradient 
magnitude. This degradation in image quality directly compromises 
the accuracy of subsequent edge detection and centroid localization. 
Furthermore, despite the use of fixed mounting brackets, minor 
environmental vibrations can still induce image jitter, thereby 
introducing additional measurement errors.

3.4 Improved adaptation to low-light 
conditions

To address the performance degradation of image segmentation 
under low-light conditions, this paper introduces an adaptive 
contrast enhancement mechanism and an illumination-invariant 
feature extraction method during the image preprocessing stage, as 
shown in Figure 13. These improvements enhance feature extraction 
in low-light scenarios at the level of physical imaging mechanisms.

3.4.1 Adaptive contrast enhancement mechanism
The Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) method is employed, which operates by dividing the 
image into sub-regions and performing histogram equalization 
independently on each. This approach effectively enhances local 
contrast without amplifying noise. The process can be 
mathematically represented as follows: 

Ienhanced x, y( 􏼁 � CLAHE Ioriginal x, y( 􏼁, clipLimit, tileGridSize􏼐 􏼑

where the clip limit is set to 2.0 and the tile grid size is 8 × 8. This 
configuration maximizes contrast enhancement while suppressing 
noise amplification. By constraining the height of local histograms, it 
limits the degree of contrast enhancement to prevent over- 
enhancement in homogeneous regions.

3.4.2 Illumination-invariant feature extraction
Based on the Retinex theory, the image is decomposed into an 

illumination component and a reflection component as Equation 22: 

I x, y( 􏼁 � L x, y( 􏼁 · R x, y( 􏼁 (22)

The two components are separated via logarithmic 
transformation and Gaussian filtering, with emphasis on 
enhancing the intrinsic object features contained within the 
reflection component as Equation 23: 

R x, y( 􏼁 � exp log I x, y( 􏼁− log Gσ x, y( 􏼁*I x, y( 􏼁􏼂 􏼃( 􏼁 (23)

Where G represents the Gaussian kernel function as 
Equation 24: 

Gσ x, y( 􏼁 �
1

2πσ2 exp −
x2 + y2

2σ2􏼠 􏼡 (24)

Multi-scale processing (using σ1, σ2, σ3) is applied to integrate 
detail information from different frequency bands, resulting in the 
final reflection component as Equation 25: 

R x, y( 􏼁 �􏽘
3

k�1
wkRk x, y( 􏼁 (25)

Following the aforementioned enhancement process, 
experimental results demonstrate that the segmentation error 
under low-light conditions is reduced from 7.84% to 3.75%. This 
improvement significantly enhances the all-weather applicability of 
the method and provides reliable technical support for nighttime 
maintenance of transmission lines.

4 Conclusion

1. This paper achieves high-precision, non-contact tension 
measurement for transmission line cable components by 
accurately extracting the centroid of the cable member 
using a segmentation method that combines the deep 
learning U-Net network with a level set loss entropy 
function. This enables precise acquisition of the vibration 
displacement time history. Subsequently, the natural 
frequency is obtained through frequency domain analysis, 
from which the cable tension is derived. The measured 
cable tension values exhibit errors within 8% when 
compared to sensor-based measurements.

2. The non-contact cable tension measurement method proposed 
in this paper demonstrates errors within 8% compared to 
sensor measurements. Furthermore, by applying image 
enhancement techniques to improve the contrast between 
the conductor and the background in images captured 
under low-light conditions, the measurement error under 
such conditions was reduced from 7.84% to 3.75%.

3. Limited by the current number of learning samples, the 
generalization capability of the proposed algorithm under 
extreme operating conditions requires further improvement. 
In subsequent research, we will focus on constructing a large- 
scale and diverse visual database for transmission lines. This 
will involve systematically collecting conductor images under 
various meteorological conditions, geographical 
environments, and line structure configurations, thereby 
further enhancing the generalization performance of the 
proposed method in complex scenarios.
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