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Introduction: Cable components are widely used in transmission lines, and their
tension values and variations are critical factors affecting the intrinsic safety of
these lines. Thus, tension monitoring becomes a priority during both
construction and operational maintenance. Traditional cable tension
measurement methods suffer from limitations such as low accuracy, stringent
environmental requirements, and difficulties in live-line monitoring, resulting in a
lack of universality for application in transmission lines.

Methods: This paper utilizes visual image technology and Broadband Phase
Motion Magnification to amplify the micro-vibration amplitude and enhance
the vibration images of transmission line cable- type components under
environmental excitation. Furthermore, this study develops a combined
segmentation algorithm using the U-Net network architecture and level set
loss entropy to accurately capture the centroid motion trajectory of cables,
thereby precisely extracting the vibration displacement time series. Finally,
spectrum analysis is applied to invert the self-vibration characteristic
parameters of the components and establish a tension calculation model.
Results: Experimental verification shows that the proposed method can precisely
capture the micro-vibration signals induced by environmental excitation. The
tension calculation results, when compared to standard sensor data, have a
deviation of no more than 8%.

Discussion: This method successfully establishes a non-contact, high-precision
measurement system for cable-type components, providing a new technical
pathway for intelligent monitoring during the construction and maintenance of
transmission lines.

transmission lines, micro vibration, tension measurement, deep learning, image
recognition, vibration frequency

1 Introduction

Transmission lines are crucial national infrastructure, and the structural safety during both
their construction and operation is vital to the overall reliability of the power system (Yao et al,,
2021). Tension members are widely distributed in the structural components of transmission
line projects, including various conductors and ground wires, guy wires of transmission towers,
as well as stay cables and anchor cables during construction, all of which are types of tension
members. Under operational conditions, these tension members primarily bear large axial
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tensile forces, and their tension values fluctuate significantly due to
environmental loads such as wind, temperature changes, and ice
accumulation, as well as material characteristics changes like stress
relaxation, creep, and broken strands. These fluctuations in tension
directly impact the overall safety and stability of the structure (Zhenya,
2009; We et al, 2015). Therefore, identifying the modal parameters of
the tension members and measuring their tension values have always
been key aspects of structural health monitoring during both
construction and operation (Dengke et al, 2015). The tension
members in transmission line projects can be classified into two
main categories: one category bears electrical functions such as
power transmission and lightning protection, mainly consisting of
conductors and ground wires; the other category stabilizes structures
like towers and brackets, primarily consisting of tower guy wires, stay
cables, and anchor cables. For existing structures, it is difficult to
measure the tension of these members by installing tension sensors, so
quick and accurate tension measurement has always been a challenge
in transmission line construction and operation.

Currently, cable tension monitoring and detection can be classified
into contact-based and non-contact methods. In complex field
environments, technicians often have to rely on manually shaking
the cable (Yanbao et al, 2022) and subjectively judging its tightness
based on experience. With the development of sensing technology,
researchers and engineers have begun exploring cable tension detection
using various sensors. References (Zhanghua et al., 2023; Xiongjun et al,,
2016) installed highly sensitive vibration pickups on stay cables to
acquire their natural frequencies, establishing vibration equations
based on the elastic distributed mass and cable vibration direction to
calculate cable tension. This method can yield relatively accurate tension
results but requires contact-based vibration sensors. In transmission line
engineering, as cables are typically energized and susceptible to various
environmental factors like terrain and weather, contact-based
measurements are often impractical, lack universality, and do not
align with the expected trend toward intelligent construction and
maintenance of future transmission lines (Haitao et al, 2023).
Consequently, contact-based measurement methods have gradually
fallen out of use for tension detection in transmission lines.

In contrast, non-contact detection methods have developed
rapidly in recent years due to advantages such as ease of
installation and debugging, and no interference with transmission
lines (Jian et al., 2022; Qiao et al., 2022; Longgiang et al., 2023).
Among these, vision-based tension detection is an emerging non-
contact intelligent detection technology that has been widely
adopted in this field owing to its high measurement accuracy,
convenient installation, and good real-time performance. As early
as 2015, Banfu et al. (2015) conducted research on cable force testing
using moving target image tracking. They used industrial cameras
and smartphones to capture vibration videos of steel strands,
proposing  morphological ~image processing to  extract
displacement time-history for calculating cable tension. However,
this method relies on binarization to extract morphological features
of the strand, which may fail to accurately identify features when
image pixel grayscale values are high. Lan et al. (2022) applied this
approach to measure tension in transmission guyed towers,
employing Canny edge detection and sub-pixel localization to
address issues of rough strand edges and low positioning
accuracy. While this method can achieve relatively precise
tension values, it requires manual excitation to impart initial
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velocity or displacement to the cable to induce sufficiently large
free vibrations before capturing the vibration images. Summarizing
previous non-contact measurement research, two main factors affect
measurement accuracy: first, insufficient robustness of the
measurement method, which can lead to significant errors in
practical engineering environments; second, difficulties in directly
applying artificial excitation to transmission line cables, whether for
primary or secondary components, due to their working
environment and energized state. The only viable solution is to
identify the visual images of minor vibrations of cable components
under ambient excitation, enabling analysis of natural frequency and
tension calculation. Therefore, leveraging minor vibrations under
environmental excitation for modal analysis is key to achieving
rapid, accurate, and non-contact tension measurement for
transmission line cable components.

In recent years, phase amplification technology based on machine
vision has gradually developed, providing a solution for identifying
small movements. Reference (Zhang Yuhang et al., 2021) applied phase
amplification algorithms to measure bridge stay cables, using manually
placed markers for edge localization to obtain displacement curves and
then calculate cable tension using the frequency method. This method
can effectively measure the vibration frequency of cables by
artificial
determination of the natural frequency. Building upon this, Xuan
et al. (2023) and colleagues adopted broadband phase amplification

recognizing markers, but it requires the prior

technology, which amplifies small vibrations across a wide frequency
band without requiring prior knowledge of the frequency. They then
used template matching to determine the displacement-time history of
the object, enabling the identification of the natural frequency. These
studies all amplified small movements and achieved relatively accurate
experimental results, validating the feasibility of using amplification
algorithms for structural vibration identification. However, unlike the
objects studied in these references, the tension members in
transmission lines are typically made of twisted strands, with
rougher edges. The presence of video noise and issues such as
image signal step transitions caused by the phase pyramid
algorithm can lead to artifacts, which significantly interfere with the
accurate extraction of the displacement of tension members and the
data
calculation accuracy.

subsequent processing,  ultimately  affecting  the

With the development of artificial intelligence, deep learning
algorithms have expanded the possibilities for identifying and
removing artifacts (He et al., 2023; Chuankai et al,, 2021; Lee et al,
2023; Yang et al,, 2021). Kim et al. (2019) proposed combining the
level-set image processing method with deep learning semantic
segmentation networks, and using backpropagation of the loss
functions from both methods to enhance the network’s
segmentation performance. Yang and Dengke (2022) applied this
method to seismic arrival picking, solving the problem of poor
recognition accuracy in conventional machine vision.

To identify the natural frequencies and calculate the tension of
transmission line tension members under environmental excitation,
this paper proposes using broadband phase video amplification
technology. The small vibrations of the tension members are
amplified within a specific frequency band, responding to
environmental excitation. To effectively remove artifacts, a deep
learning semantic segmentation network is introduced to segment
and cluster the movement of tension members. Finally, edge fitting
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FIGURE 1
Video Frame Amplified by BPMM Algorithm.

is applied to improve accuracy and extract the displacement-time
history of the centroid of the tension member. The target vibration
frequency is obtained through spectral transformation, and the
tension is calculated using the frequency method, thereby
achieving non-contact tension measurement of transmission line
tension members. This approach, by combining phase amplification
with deep learning for artifact removal and segmentation, can
significantly enhance the accuracy and reliability of tension
measurements in real-world transmission line environments,
addressing the challenges posed by noise and rough edges in
tension member images.

2 Tension measurement method based
on micro-vibration monitoring

The research method proposed in this paper is as follows: The sub-
band signals of vibration video images in different directions and scales
are extracted using a complex-valued controllable pyramid. The
broadband phase amplification algorithm is applied to process the
target motion video and enhance its motion state. A deep learning
network-based U-Net and level-set entropy loss joint segmentation
method is employed, with images magnified by different amplification
factors and captured at various angles used as the dataset for training.
This allows the network to learn the pixel information of tension
members, extracting the relevant pixel information of transmission line
tension members from various image pixels. To improve the accuracy
of edge pixel information, a least-squares fitting algorithm is used to
smooth the edge pixels, extracting the pixel coordinates of the centroid
of the tension member and performing statistical analysis. The modal
frequency is obtained using the Fast Fourier Transform (FFT)
algorithm, and finally, the tension of the member is calculated
using the frequency method.

2.1 Broadband phase-based motion
amplification algorithm

The vibration amplitude of tension members in transmission
line projects is very small under environmental excitation, and the
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resulting displacement is not significant. Traditional visual image
processing techniques based on edge recognition algorithms
struggle to detect such small vibrations and cannot eliminate
noise interference. The broadband phase-based motion
magnification (BPMM) algorithm has shown good performance
in identifying and amplifying small movements. The complex-
valued controllable pyramid is the main processing step in the
broadband phase-based motion amplification algorithm. It
decomposes the video of vibrating objects into individual frames
and then breaks down each frame into sub-band signals in different
directions and scales, thereby extracting phase information related
to object displacement. The 2D Gabor filter within the pyramid can
effectively handle noise in image videos and enhance the signal-to-
noise ratio of the vibration video image. The motion of the cable
component, after being decomposed by the complex-valued
controllable pyramid, can be defined by image intensity.
Assuming the image intensity of the cable component is f (x,y),
when the image pixels of the cable component experience small
vibrations along the x-axis and y-axis at time t, denoted as § (x,t)
and § (y.t), the image intensity can be represented as shown
in Equation 1:

fx+8(xt),y+8(yt)) (1)

The vibration signal of the tension member can be
decomposed into a sum of sine waves at all frequencies using
Fourier series.

When the tension member in the video has not started
experiencing small vibrations, i.e., at t = 0, the image intensity is:

floy)= i Aw(x,y,0)e ) @

When the video starts capturing and the tension member begins
to experience small vibrations, i.e., at t > 0, the image intensity is:

f(x +8(x, t),y+5(y,t)) _ i A, (x’ y’t)eiw(x+6(x,t),y+5(y,r))
(3)

Here, A, (x,),t) represents the vibration amplitude of the tension
member; w represents the harmonic frequency; e“*” and
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FIGURE 2

U-Net network structure.

eerOy 0D represents the phase information of the tension
member’s image; By subtracting Equation 2 from Equation 3,
the image motion phase—P (x,y,f) difference of the tension
member at the w harmonic frequency can be obtained, as shown
in Equation 4:

P(x,y,t) = w(8(x,1),8(y,1)) (4)

According to the time-shifting property of the Fourier
transform, changes in the phase information can be used to
in the
multiplying the expression in Equation 4 by an amplification

achieve variations image motion information. By
factor «, the local phase amplification is achieved, as shown in

Equation 5:
B, y.t) = a(8(x,1),8(1.1)) ®)

The final amplified image intensity is given by Equation 6:

fle+ (1+0)3(x), y+ (1+@)d(y:t))

— i Aw (X, ¥, t)eiw (x+(1+a)6(x,t),y+(l+a)6 (y,t)) (6)

W =—00

The algorithm amplifies the small motion in the image domain
by increasing the phase difference. Here, w represents controlled
through filtering, and when using the amplification algorithm, the
filtering range must be greater than the frequency range of the
natural frequency of the tension member. In this paper, the
measured fundamental frequency of the transmission line tension
member is used as the result for solving via the frequency method.
Since most of the first-order natural frequencies of tension members
lie between 0 and 20 Hz, to ensure both the amplification effect and
experimental accuracy, the filtering range in this study is set
to 0-20 Hz.
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2.2 An image segmentation network

For video images of cable components undergoing small
vibrations, the broad-band phase magnification algorithm is
applied. During the phase magnification process, artifacts around
the target are generated due to phase constraints from the complex-
valued controllable pyramid, and environmental noise interference
arises from camera-based image capture.

To extract the displacement of cable vibrations amidst
environmental noise and artifacts, traditional image recognition
techniques such as edge detection struggle to differentiate the
edge motion information of the cable component, which is
surrounded by artifacts, making it difficult for subsequent
tension calculations, as shown in Figure 1.

Therefore, this paper proposes the use of semantic segmentation
techniques from deep learning to extract cable images, remove
environmental noise, and eliminate the artifacts caused by the
phase magnification technique.

2.2.1 U-net network

With the development of computer vision technology, computers
have already achieved the ability to automatically classify various
objects in images through learning. Semantic segmentation
technology in deep learning is a technique that achieves object
segmentation by classifying each pixel of an object. The U-Net
network is a precise and efficient semantic segmentation network
(Ronneberger et al., 2015). It improves upon the FCN network by
using a concatenation method to combine deep and shallow image
features instead of the summation method used in FCN (Long et al.,
2015). The advantage of U-Net lies in its ability to achieve high
segmentation accuracy with a smaller dataset and shorter training
time, which addresses the issue of limited dataset availability in power
transmission line engineering.
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FIGURE 3
Centroid selection after fitting.

The U-Net network structure is a U-shaped symmetric
architecture. The left side consists of an encoder made up of four
convolution blocks. In each convolution block, convolutional layers
and pooling layers downsample the image information. As the
sampling channels of the image pixels are doubled, the feature
map size is reduced to half of the original. The right side structure is
the decoder, which has a similar design to the encoder. The key
difference is that the pooling layers in the convolution blocks are
replaced by deconvolution layers, which restore the image
dimensions. Through upsampling, the decoder classifies and
segments each pixel of the image. Skip connections concatenate
the processed images with the same pixel size from both sides of the
network, achieving the fusion of edge information across different
scales. Finally, a single convolution layer outputs the semantic
segmentation results. The structure is shown in Figure 2.

2.2.2 Semantic segmentation nerwork integrated
with level sets

Level set methods, as traditional image segmentation
techniques, have been widely used in engineering practices,
typically for segmenting foreground and background. Therefore,
they are well-suited for segmenting a single target, such as
transmission line conductor components. The level set method
constructs an energy function based on image pixel information,
such as grayscale values, and iteratively moves the segmentation line
toward the target object until the segmentation is completed. To
improve the accuracy of edge segmentation in magnified images, a
global level set segmentation method is combined with the loss
entropy from semantic segmentation. The level set energy function

EC is shown in Equation 7:

Ec=X JJ|I(X, y) -l H(¢)dxdy +

(7)
AZJJ|I(x, y) -z |* (1~ H(¢))dxdy

The parameters c;;, ¢, and H,(¢) in Equation 7 are given by
Equations 8-10, respectively.

[ K (3 y)He (¢ (%, y))dxdy
T Ho($(xy)dxdy
[ Ki(x ) (1= He( (. y))dxdy
T [ (= H($ (e ))dxdy

(8)

Ci2
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H.(¢) = %(1 + %arctan%) (10)

Here, K (x,y) represents the Gaussian kernel function, A1, A1, and w
represents the weights, ¢;; and ¢, represents the mean pixel grayscale
values inside and outside the segmentation boundary, ¢ represents the
level set distance function, H(¢) represents the approximate expression
of the step function, and ¢ represents a constant, ¢ tends to be close to 0.

Deep learning-based semantic segmentation methods can
output intuitive segmentation results, but they are prone to issues
with data imbalance. Therefore, it is necessary to introduce a loss
function to adjust the deep learning segmentation model. Using only
the loss value from the U-Net semantic segmentation network for
error backpropagation can result in unclear boundary segmentation
of the enlarged object. To address this, the level set energy functional
is introduced as a loss term for backpropagation, which enhances
robustness against noise and the contours of the target object.

The loss function of the level set is as shown in Equation 11:

1 ¢ 2
L= Egllyl—ezll (11)

Here, y, represents the pixel true value, and e, represents the pixel
predicted value. The final goal of this study is to segment the cable
images for result processing. Therefore, artifacts and background are
considered noise, and the segmentation task is converted into a
binary classification with a single-label task. For the case of evenly
distributed binary classification samples, we use the Cross-Entropy
loss function L, as shown in Equation 12:

C
Ly = =) y (x)log(q(x,)) (12)

Here,C represents the number of samples, y (x;) represents the
true pixel, and q (x;) represents the predicted pixel probability. In
this paper, a binary classification method is used, so the cross-
entropy is Equation 13:

Ly = ~(ylogy + (1 - y)log(1- 7)) (13)

Here, y represents the true distribution probability of the pixel
for the transmission line component,  represents the predicted
probability of the pixel for the transmission line component by the
U-Net network, and 1-y and 1-§ represent the true distribution
probability of the pixels for non-transmission line components
(background, artifacts) and the predicted probability of the non-
transmission line components’ pixels, respectively.

The final loss function is shown in Equation 14:

LR = EC +ﬁLU (14)

Here, f3 represents the weight value.

2.3 Vibration and centroid extraction of the
cable component

2.3.1 Edge fitting and centroid extraction of the
cable component

When the cable component is subjected to environmental
excitation, it generates random vibrations in the normal
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direction. During image capture, this can be viewed as motion on a
plane. Based on this, a displacement coordinate system for the cable
can be established, and the cable component can be segmented using
a semantic segmentation network. To extract its displacement, this
paper uses the centroid of the binary image after segmentation as a
statistical value.

Since the edge of the cable component is not a smooth straight

line, using the centroid
displacement coordinates
network may introduce
employs the least squares

as a reference point to extract its
through the semantic segmentation
some errors. Therefore, this paper
method to fit the edge points of the

cable component. The fitting formula is as follows in Equation 15:

f(x)=ae+aix+ax* + +a,x" (15)

Here, ag, oy, 5 ..., a, represents the coefficients of the fitting
equation, x and f(x) represent the coordinate information of the
cable component’s edge.

The fitted image recognition can reach sub-pixel accuracy. After
selecting the Region of Interest (ROI), the center of centroid of the fitted
cable image is found. After binarizing the image, the result is shown in
Figure 3. The red pixels (representing the identified cable structure
pixels) are located at the average y-coordinate of the vertical axis, while

the green point represents the extracted center of centroid. This green
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point is used as the center of centroid, and the segmented images, frame
by frame, are processed to track its displacement over time. The
displacement time series can then be transformed into frequency
domain data using the Fast Fourier Transform (FFT) method.

2.3.2 Frequency method measurement

Under environmental excitation, transmission line cables
undergo small random transverse vibrations (Yunlong et al,
2023). Treating the environmental excitation as white noise, the
modal parameter identification peak-picking method can be used to
recognize the natural frequency of transmission line cable
components.

Using cable vibration theory, the relationship between the
vibration frequency and tension of transmission line cables can
be established. Let the direction of the cable installation be the x-axis,
and the direction perpendicular to the cable be the y-axis. The
vibration equilibrium equation of the cable can be derived as
Equation 16:

LU 164—)’ =0

o Mo Haa (16)

Here, T represents the tension of the cable component; t is time;
m is the centroid per unit length of the cable; EJ represents the
bending stiffness of the cable component. When the cable is
relatively long, its bending stiffness can be neglected. The above
equation can be simplified to the classical wave Equation 17:
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TABLE 1 Different magnification tension identification.

10.3389/fmech.2025.1712049

Zoom scale Accelerometer tension (kN) Vision-based tension (kN) Error (%)
5 15.485 14.620 5.59
10 15.485 14.930 3.58
15 15.485 14.838 418
20 15.485 16.409 -5.97
g
~
0.00 i L L 1
50 100 150 200 250 300 350
Epoch
FIGURE 7
Loss curve.
T
w=""4~ (18)
I \m
Acmal From the natural frequency f, = 5%, EJ << TL? the bending
stiffness of such members can be considered negligible. The
POt Negative following can be obtained as Equation 19:
4 lZ 2
T= anf - (19)
Here, n is the order of the natural frequency of the cable
vibration; f, is the nth-order natural frequency of the cable, and [
is the length of the cable.
FCURE 2.4 Tension calculation process
Confusion matrix.
The method for calculating the tension of transmission line
cables in this paper is divided into three parts, as shown in Figure 4:
o’y 9y ) .
32 Map s 0 (17) Step 1: Dataset Collection: Due to the lack of semantic

By using the method of separation of variables, the spatial
equation of the above equation can be solved. Since the two ends
of the cable are fixed (displacement is 0 at x = 0 and x = I), the
relationship between the angular frequency w and the tension T can
be obtained as Equation 18:

Frontiers in Mechanical Engineering
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segmentation datasets for transmission line cables, this
paper creates a new dataset. Video images of cable
vibrations under environmental excitation are collected
and magnified using the broadband phase magnification
algorithm. The magnified video images are then
decomposed frame by frame, and part of the images are
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TABLE 2 Evaluation index comparison. After selecting the ROI area, the center of centroid of the

image is used to extract the cable displacement time

Evaluation metrics

series, which is then transformed into the frequency

Accuracy domain. The tension is calculated using the frequency
method formula.
FCN 0.092 0.832 0.867
U-net 0.013 0.924 0.974

3 Expeprimental validation

manually annotated with the edges of the cable 3.1 Dataset creation
components to create the dataset.

Step 2: Network Processing and Segmentation: The manually The dataset was collected at an outdoor experimental site, as
annotated dataset is input into a network combining  shown in Figure 5, where steel-core aluminum-stranded wires were
the level-set and U-Net loss functions for training,  installed between two iron towers. The steel-core aluminum-stranded
achieving network fitting. wire consists of 24 aluminum strands and 7 steel strands, with an outer

Step 3: Tension Calculation: The magnified video images are  diameter of 16.67 mm and a unit length centroid of 0.549 kg/m. These
decomposed frame by frame and processed through the  wires were used to simulate the operating conditions of overhead
trained network. The semantic segmentation network  conductors, and the tension of the wires was adjusted by controlling
converts the magnified cable image into a binary image.  the tensioning device.

The first group The second group Third group

Semantic segmentation
network after training

Centroid tracking

4

Frequency
domain analysis

J

Tension
calculation

FIGURE 9
Network usage.
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FIGURE 10

Time history of centroid displacement for 3 groups of image
recognition. (a) Displacement time history of the first group. (b)
Displacement time history of the second group. (c) Displacement time
history of the third group.

To verify the accuracy of the tension measurement method
proposed in this paper, a tension sensor was installed between the
line clamp and the tensioner to obtain the force values, which were
then compared with the tension results obtained from the
proposed method.

A camera (Canon EOS RP) with a frame rate of 60 frames per
second and a resolution of 1920 x 1,080 was used for the video
capture. To reduce image distortion caused by the lens, the camera
was positioned approximately 1 m away from the target wire during
each capture. The shooting angle in this article is kept as parallel as
possible to the suspension components. When it is not possible to
shoot in parallel, drones will be used to assist in the filming. The
dataset was divided into three groups, with tension controlled by the
tensioner. The groups were filmed under three tension conditions:
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2673N, 7703N, and 9261N. For each group, 7 sets of 10-s vibration
video images of the wire under environmental excitation were
captured from different angles and lighting conditions. During
the experimental testing period, the environmental excitation was
predominantly aeolian vibration, with frequencies ranging from
10 Hz to 40 Hz. The lighting conditions were controlled to be
well-lit in the morning and insufficiently lit in the evening, with a
filming ratio of 5:2 for daytime and evening shots.

The 21 sets of 10-s video images collected were magnified using
the BPMM algorithm with a magnification factor of 10. To balance
the workload and network fitting accuracy, one frame was selected
every 30 frames from the magnified video images to create the
dataset, resulting in a total of 420 original images. A part of the
dataset is shown in Figure 6. The edges of the wire in the images were
manually annotated using Labelme, and the original JSON files were
converted into JPG images with mask masks, which were then fed
into the network for training.

To validate the robustness of the proposed method across
different magnification scales, we selected zoom levels of 5, 10,
15, and 20 as comparative conditions. Videos at these four different
magnification scales were input into the network, and the centroid
pixel variation was statistically calculated to determine the tension.
The measured results were compared with those from the
acceleration sensor, as shown in Table 1.

Based on the results presented in Table 1, the proposed
method
features of cable components even when affected by artifacts

effectively extracts the pixel-level morphological
and accurately calculates their tension values, with all errors
falling within acceptable ranges for engineering applications.
The data

undergo minor vibrations. When the zoom scale is relatively

indicate that under ambient excitation, cables
small (a < 10), the measurement error is more pronounced. At
zoom scales of 10 or 15, the cable tension can be measured with
higher accuracy. Therefore, for cable vibration analysis, it is
concluded that maintaining a zoom scale around 10 enables
accurate identification while avoiding image distortion caused
by excessive magnification.

To prevent overfitting, the initial dataset was augmented by
random rotations, random cropping, and random  resizing,
generating a total of 3220 augmented images. The original dataset
and augmented dataset were combined, totaling 3640 images, and they

were randomly split into training and validation sets at an 8:2 ratio.

3.2 Network training

The experiment in this paper was conducted on a Windows
system, based on the GPU version of the PyTorch deep learning
framework, using an RTX3060Ti 8G graphics card as the
experimental environment. The labeled training set images
were input into the network for training, with the learning
parameters configured as a learning rate of 0.001, a maximum
of 500 epochs, and a batch size of 2. To avoid overfitting due to
excessive training, the early stopping method was used to control
the network. Training was stopped after 8 consecutive epochs
without improvement in the validation loss. The total training
time for the network was 6 h and 17 min, and the network
stabilized and converged.
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TABLE 3 Results of 4 groups of experiments.

10.3389/fmech.2025.1712049

Tension sensor displays the Image recognition frequency Image recognition Error/%
tension value/N value/Hz tension value/N
1 2673 1.267 2608 243
2 7703 2.148 7496 2.69
3 9261 2345 8934 353
4 9261 2292 8534 7.84

The U-Net experiment was conducted in a Windows environment
utilizing a GPU-accelerated Py Torch deep learning framework, with
an RTX 3060 Ti 8G graphics card serving as the hardware platform.
The annotated training set images were fed into the network for
training with the following hyperparameters: a learning rate of 0.001,
maximum of 500 epochs, and a batch size of 4. An early stopping
mechanism was implemented, halting the training process if the
validation loss showed no improvement over eight consecutive
epochs. The total training duration was 6 h and 27 min, by which
point the network had stabilized and converged. The corresponding
loss trajectory during training is illustrated in Figure 7.

The four values in the confusion matrix are critical parameters
for evaluating the performance of the network model, as illustrated
in Figure 8.

Specifically: TP denotes the number of samples correctly
predicted as positive; FP represents the number of samples
incorrectly predicted as positive; FN indicates the number of
samples incorrectly predicted as negative; TN corresponds to the
number of samples correctly predicted as negative.

The metric MIoU (Mean Intersection over Union) quantifies
model accuracy by measuring the overlap between the predicted
segmentation and the ground truth labels. It is mathematically
defined as Equation 20:

MIoU = i TP
* TK+1&FP+FN + TP

i=

Here, k denotes the total number of classes.

The metric Accuracy quantifies the proportion of correctly
predicted samples relative to the total number of samples. It is
calculated using the Equation 21:

TP+ TN

A - 21
CUracy = Tp TN + FP+ EN 1)

The training evaluation metrics for the FCN and U-Net
networks are presented in Table 2 below.

As shown in Table 2, the improved U-Net achieves superior
performance over the FCN network in terms of both MIoU and
Accuracy, validating that its adoption can significantly enhance
segmentation performance.

3.3 Measurement results

After the network training is completed, the magnified video
images under three different tension levels are decomposed frame by
frame and input into the trained semantic segmentation network.

Frontiers in Mechanical Engineering

The displacement of their centroids is then statistically measured.
The measurement process is shown in Figure 9.

The centroid displacement time histories for the three groups are
shown in Figure 10. From the displacement time history graph, it can
be observed that the maximum centroid displacement for the three
groups of magnified images is about 3 pixels. The corresponding
frequency spectra of the three groups after fast Fourier transform (FFT)
are shown in Figures 11la—c. The first peak value in the spectrum
corresponds to the fundamental frequency of the conductor. By
substituting this value into Equation 17, the calculation results are
presented in Table 3. The measurement errors for the three groups of
tension are all below 4%, verifying the effectiveness of the proposed
method for micro-vibration tension identification.

To explore the effect of lighting on the proposed method, a fourth
group of experiments was added. The video for this group was captured
in the evening under poor lighting conditions, and the tension sensor
reading was 9261N. The magnified image videos were decomposed
frame by frame and input into the network. The results for the fourth
group are shown in Table 3. By calculating the error between the image
recognition results and the tension sensor readings for the fourth group,
it was found that the error was relatively large, reaching 7.84%. This could
be due to the semantic segmentation network’s poor recognition ability
under low lighting conditions, where the image pixel contrast is not high.

To verify the applicability of the proposed method for detecting
small vibrations, a video image captured during a well-lit period was
tested, as shown in Figure 12. The video was magnified using the
broadband phase algorithm and input into the semantic segmentation
network to extract the centroid. The displacement time histories before
and after amplification were compared, as shown in Figure 12a.

By comparing the centroid displacement maps before and after
amplification, it can be observed that the vibration amplitude of the
conductor without the amplification algorithm is relatively small
under environmental excitation. The image displacement is within
0.6 pixels, and in many cases, no displacement change is detected,
leading to little difference in pixel displacement between adjacent
frames. However, after applying broadband phase amplification, the
centroid displacement extracted through semantic segmentation can
reach approximately 2 pixels.

The Fourier-transformed frequency spectrum analysis, as shown
in Figure 12b, indicates that the frequency spectrum of the image not
processed by the magnification algorithm struggles to detect the
fundamental frequency peak. However, the image processed by the
method presented in this paper allows for the identification of the
natural frequency through peak detection, enabling tension
calculation. This validates that the proposed method can
effectively amplify small vibrations and accurately extract the
displacement-time history, thus solving the issue of machine

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1712049

Zhiming et al. 10.3389/fmech.2025.1712049

’“\
8

4

+«— 1.267

N

E

Amplitude(m/s?

0 10 20 30

Frequency(Hz)

S

<« 2184

Amplitude(m/s?
- F

NS

0 10 20 30
Frequency(Hz)

~
S

<+— 2345

Amplitude(m/s?
+ (@)}

o
T

0 10 20 30
Frequency(Hz)

FIGURE 11
3 groups of image recognition spectrum. (a) Spectrum of the first group. (b) Spectrum of the second group. (c) Spectrum of the third group

Frontiers in Mechanical Engineering 11 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1712049

Zhiming et al. 10.3389/fmech.2025.1712049

1
| ——— AFTER
= 4 g
B BEFORE 2
4 o
: {38
g 2 En
= o
E E
E o
b= l =
£o 124
- 3
= 5
S0k 11 k-4
[~ -
g B
7} =
o o
£ g
& 2
A £

Time (s)

(@)

8
—— AFTER
= BEFORE

6 S

p—

KN

E

Ey

L

-

2

=)
<

& Frequency(Hz)

FIGURE 12

Network segmentation results before and after magnification algorithm. (a) Comparison of displacement time histories before and after
magnification. (b) Comparison of frequency spectra before and after magnification.

(@) (b)

Performance Comparison of Low-light Adaptation: Pre-vs. Post-Improvement. (a) Original low-light image. (b) Enhanced low-light image.

Frontiers in Mechanical Engineering 12 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1712049

Zhiming et al.

vision recognition unable to obtain accurate natural frequencies due
to the small displacement pixels in images without magnification.

The primary source of error in the proposed method stems from
a significant reduction in contrast between the conductor and the
background, which leads to a decreased image signal-to-noise ratio
(SNR). Experimental data indicate that during evening hours, the
grayscale difference between the conductor and the background
drops from 80 to 120 under normal lighting conditions to 20-40,
accompanied by an approximately 70% attenuation in edge gradient
magnitude. This degradation in image quality directly compromises
the accuracy of subsequent edge detection and centroid localization.
Furthermore, despite the use of fixed mounting brackets, minor
environmental vibrations can still induce image jitter, thereby
introducing additional measurement errors.

3.4 Improved adaptation to low-light
conditions

To address the performance degradation of image segmentation
under low-light conditions, this paper introduces an adaptive
contrast enhancement mechanism and an illumination-invariant
feature extraction method during the image preprocessing stage, as
shown in Figure 13. These improvements enhance feature extraction
in low-light scenarios at the level of physical imaging mechanisms.

3.4.1 Adaptive contrast enhancement mechanism

The Contrast-Limited Adaptive Histogram Equalization
(CLAHE) method is employed, which operates by dividing the
image into sub-regions and performing histogram equalization
independently on each. This approach effectively enhances local
contrast without The can be

amplifying noise. process

mathematically represented as follows:

Tenanced (%, ¥) = CLAHE (Iorigina (%, y), clipLimit, tileGridSize )

where the clip limit is set to 2.0 and the tile grid size is 8 x 8. This
configuration maximizes contrast enhancement while suppressing
noise amplification. By constraining the height of local histograms, it
limits the degree of contrast enhancement to prevent over-
enhancement in homogeneous regions.

3.4.2 Illumination-invariant feature extraction
Based on the Retinex theory, the image is decomposed into an
illumination component and a reflection component as Equation 22:

I(x,y)=L(x,y)-R(x,) (22)

The
transformation and Gaussian filtering,

two components are separated via logarithmic

with emphasis on
enhancing the intrinsic object features contained within the

reflection component as Equation 23:

R(x,y) = exp (logI(x, y) -log [G,(x, y)*I(x,y)])  (23)

Where G represents the Gaussian kernel function as

X2+ 2
e (-0

Equation 24:

G, (x,y) = (24)

270’
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Multi-scale processing (using oy, 65, 63) is applied to integrate
detail information from different frequency bands, resulting in the
final reflection component as Equation 25:

3
R(x,y) = Zkak (%) (25)
k=1
Following the aforementioned enhancement process,

experimental results demonstrate that the segmentation error
under low-light conditions is reduced from 7.84% to 3.75%. This
improvement significantly enhances the all-weather applicability of
the method and provides reliable technical support for nighttime
maintenance of transmission lines.

4 Conclusion

1. This paper achieves high-precision, non-contact tension
measurement for transmission line cable components by
accurately extracting the centroid of the cable member
using a segmentation method that combines the deep
learning U-Net network with a level set loss entropy
function. This enables precise acquisition of the vibration

history. Subsequently, the

frequency is obtained through frequency domain analysis,

displacement time natural
from which the cable tension is derived. The measured

cable tension values exhibit errors within 8% when
compared to sensor-based measurements.

. The non-contact cable tension measurement method proposed
in this paper demonstrates errors within 8% compared to
sensor measurements. Furthermore, by applying image
enhancement techniques to improve the contrast between
the conductor and the background in images captured
under low-light conditions, the measurement error under
such conditions was reduced from 7.84% to 3.75%.

3. Limited by the current number of learning samples, the
generalization capability of the proposed algorithm under
extreme operating conditions requires further improvement.
In subsequent research, we will focus on constructing a large-
scale and diverse visual database for transmission lines. This
will involve systematically collecting conductor images under
various meteorological conditions, geographical

environments, and line structure configurations, thereby

further enhancing the generalization performance of the

proposed method in complex scenarios.
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