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The identification of flow patterns in multiphase systems is crucial in hydrocarbon 
production engineering, as they determine the behavior of crude oil transport 
through pipelines and flowlines in oil fields. Proper classification of these patterns 
contributes to improved hydraulic design, optimal selection of separation 
equipment, and effective field operation strategies. This study proposes a 
model based on a Transformer neural network for identifying flow patterns in 
two-phase liquid–liquid (water–oil) systems in horizontal pipelines. A database 
containing 2,146 data points was used, including variables such as pipe diameter, 
mixture velocity, superficial velocities of each phase, and oil viscosity. The results 
show excellent model performance, with accuracies of 95.55% during training, 
91.28% in validation, and 90% in the final test. These findings demonstrate the 
model’s ability to capture complex relationships between hydrodynamic variables 
and flow topologies, making it a promising alternative tool for the analysis, 
monitoring, and optimization of multiphase transport in the oil industry.
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Highlights

• Transformer-based neural networks were implemented to classify oil–water flow 
patterns in horizontal pipelines, demonstrating the applicability of deep learning to 
multiphase flow problems.

• A structured database was developed using experimental data and key hydraulic and 
physical parameters from benchmark studies.

• The proposed model achieved high classification accuracy, particularly for stratified 
and annular flow patterns, confirming its ability to capture complex 
interface dynamics.

• Validation with multiple experimental datasets confirmed the model’s generalization 
capability and robustness across different operating conditions.
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• The results contribute to advancing the integration of artificial 
intelligence in multiphase flow research, supporting improved 
design and monitoring of transport systems in the oil and 
gas industry.

1 Introduction

The oil and gas industry faces increasingly complex flow 
assurance challenges, mainly due to the presence of multiphase 
flows in wells, transport lines, and production systems. Flow 
patterns, understood as the spatial configurations of the 
interfaces between immiscible phases (gas, oil, and water), are 
decisive in the design and optimization of production and 
transport operations. Accurate prediction of these patterns 
improves operational efficiency, reduces the risk of failure, and 
mitigates environmental impacts (Vargas et al., 2019; Trallero et al., 
1997; Shi et al., 2021; Rodriguez and Oliemans, 2006). In particular, 
in two-phase liquid–liquid systems, such as water and oil flows, 
identifying the flow pattern is essential for estimating design 
parameters such as pressure drop, phase retention fraction, and 
transport stability.

Accurate identification of flow patterns not only has 
implications for operational performance but also for the 
integrity of conveyance systems. Some flow patterns can lead to 
conditions that favor localized corrosion on the inner wall of 
pipelines, which can lead to structural failure (Al-Sarkhi et al., 
2017). In particular, carbon dioxide (CO2)-induced corrosion is a 
critical factor in the degradation of materials in the oil and gas 
industry that favors the occurrence of stress corrosion cracking 
(SCC-CO2), a phenomenon accelerated in the presence of 
mechanical stresses and CO2-rich, humid environments (Meng 
et al., 2024; Huang et al., 2025; Liu et al., 2024). This type of 
deterioration compromises the structural integrity of 
transmission lines, especially in systems operating under high- 
pressure and high-temperature conditions. In addition, 
mechanisms such as erosion–corrosion, sediment deposition, and 
flow pattern fluctuations contribute significantly to pipeline 
deterioration in two-phase systems (Liu et al., 2025). The precise 
characterization of these flow patterns under real operating 
conditions is therefore essential to ensure the efficient and safe 
transportation of hydrocarbons (Izwan Ism et al., 2015; Camperos 
et al., 2023; Álvarez-Pacheco et al., 2024).

Transitions between flow patterns directly affect the pressure 
gradient and the spatial and temporal distribution of phases (Ruiz- 
Diaz et al., 2026), and therefore, the safety and efficiency of 
transportation through pipelines (Yang et al., 2021). The ability 
to accurately predict the transition limits between flow patterns is an 
essential aspect of operational risk management in oil production 
and transportation processes, as it influences the dynamic response 
of control systems and the performance of critical components such 
as valves, pumps, and sensors (Perera et al., 2017). In typical 
multiphase systems in the oil industry, the oil–water flow may 
experience variations along the line due to changes in slope, 
diameter, roughness, or the presence of chokes, resulting in the 
evolution and continuous transition of the flow pattern (Li and Fan, 
2020). These transitions not only affect the hydraulic stability of the 
system but can also alter the stress distribution on the pipeline walls, 

increasing the risk of corrosive and erosive phenomena. Therefore, 
their identification and accurate modeling are essential for 
optimizing transport and the integrity of the production system.

With technological advancements and the development of 
artificial intelligence (AI) based techniques, machine learning 
approaches have been widely applied in the characterization and 
prediction of flow behaviors in pipelines and multiphase systems 
(dos Santos Ambrosio et al., 2022; Hernandez Cely et al., 2024; 
Gómez-Camperos et al., 2026). Several recent studies have 
demonstrated the effectiveness of intelligent models in improving 
the accuracy of flow pattern identification. For example, a 
lightweight multipath neural network (FPRnet), based on 
multidomain feature fusion, has been developed that achieved 
98.4% accuracy in the classification of horizontal two-phase oil 
and water flow patterns, significantly outperforming conventional 
models in efficiency and accuracy (OuYang et al., 2023). Similarly, a 
model based on a backpropagation neural network optimized by a 
genetic algorithm (GA-BP) achieved an accuracy of 87.25%, 
demonstrating its applicability for interpreting production profile 
data in horizontal wells (Shi et al., 2023).

Other approaches have explored hybrid methods and deep 
networks to improve the identification of flow patterns and 
modeling of transport variables. For example, a fuzzy inference 
system (FIS) showed greater accuracy and reliability than BP neural 
networks, facilitating real-time monitoring and reducing 
operational costs (Wu et al., 2022). Long short-term memory 
(LSTM) networks have also been used for pattern recognition in 
standpipes, achieving accurate results even under dynamic flow 
variations (Ruiz-Díaz et al., 2024a). Convolutional networks (CNN) 
and artificial neural networks (ANN) have also been proposed with 
logarithmic normalization techniques, improving the robustness 
and generalization of the models (Chen et al., 2023; Al-Naser 
et al., 2016). Convolutional approaches rely on local receptive 
fields and typically require deep and dilated stacks to span long, 
multi-scale dependencies, whereas LSTM models remain sequential 
at inference and cope poorly with non-stationary flow pattern 
transitions unless long input windows are used. In contrast, 
Transformer architectures leverage global self-attention, enabling 
parallel training and efficient inference with moderate windows, 
which is advantageous for liquid–liquid flow pattern identification.

Recently, the application of artificial intelligence in pipelines has 
extended beyond flow pattern recognition to include predicting and 
monitoring operating conditions. Çolak (2025a) developed an 
artificial neural network model to estimate the apparent viscosity 
of kerosene oil, achieving a correlation coefficient of 0.9985, while 
Çolak (2025b) implemented neural models with different training 
algorithms to predict the kerosene formation distance in pipelines, 
highlighting Bayesian regularization as the most accurate method. 
These studies confirm the feasibility and growing relevance of AI 
techniques for addressing challenges in crude oil transportation and 
complex flow management, strengthening the motivation of the 
present work, oriented to the intelligent identification of two-phase 
oil–water flow patterns using Transformer neural networks.

This study focuses on the application of Transformer neural 
networks (TNNs) for the classification of water–oil flow patterns in 
horizontal pipes of different diameters. Unlike previous research 
employing conventional neural networks, support vector machines 
(SVMs), or other artificial intelligence techniques, this work 
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proposes a TNN-based architecture to capture the nonlinear and 
spatiotemporal dependencies present in multiphase flow data.

This approach represents a novel contribution, as the application 
of TNNs for liquid–liquid flow pattern identification remains limited 
in the literature. Furthermore, the study aims to reduce the existing gap 
in the automatic and accurate identification of multiphase flow 
patterns, demonstrating that these networks can deliver high levels 
of accuracy and robustness even with limited experimental datasets, 
positioning them as a promising tool for the monitoring and intelligent 
analysis of multiphase transport in the petroleum industry.

The proposed approach targets online monitoring of oil–water 
flow patterns in transport lines and production systems, providing 
both flow pattern prediction and a confidence indicator suitable for 
operational use. Scalability is achieved through lightweight 
adaptation of a pre-trained model using a representative subset 

of local data, while preserving the core architecture and inference 
times compatible with continuous operation.

2 Materials and methods

2.1 Database structuring and processing

For the development of the present study, a database containing 
2,146 samples was structured. The information is characterized by 
the following parameters: internal diameter of the pipe, superficial 
velocity of the water and oil phases, velocity of the mixture, and 
viscosity of the oil. All data vary within a certain range and have a 
specific type of flow pattern associated with them. These properties 
are shown in Table 1.

TABLE 1 General database information.

Feature Representation Range Units

Oil superficial velocity JO 0.01–2.7 m/s

Water superficial velocity JW 0.01–3.8 m/s

Mixing speed JO+W 0.02–5.5 m/s

Internal diameter of the pipe D 0.015–0.1 m

Oil viscosity µo 0.002–5.6 Pa·s

The six types of flow patterns studied and contained in the database are stratified (ST), stratified with interface mixing (ST & MI), water-in-oil dispersion (D w/o), oil-in-water dispersion (D o/ 
w), intermittent (I), and annular (A), as shown in Figure 1.

TABLE 2 References selected for structuring the database.

Author D (m) µo 
(Pa·s)

Superficial velocity range 
(m/s)

Flow 
pattern

Identification technique Sample

Al-Sarkhi et al. (2017) 0.0508 0.013 
0.0288

Jw = 0.01–1 
Jo = 0.01–0.7

3 Kelvin–Helmholtz stability analysis 224

Cai et al. (2012) 0.1 0.002 Jw = 0–0.22 
Jo = 0.5–2.5

5 Visualization and conductivity pins 99

Shi et al. (2017) 0.026 5.6 Jw = 0.03–1 
Jo = 0.04–0.56

4 Visual observation with a digital video 
camera

69

Al-Wahaibi et al. 
(2014)

0.019 
0.0254

0.012 Jw = 0.1–2.6 
Jo = 0.1–2

6 Observation and high-speed camera 464

Dasari et al. (2013) 0.025 0.107 Jw = 0.1–1.1 
Jo = 0.015–1.25

6 Visual and imaging techniques 536

Ibarra et al. (2015) 0.032 0.0054 Jw = 0.1–0.9 
Jo = 0.15–1.15

5 Visual with a high-speed camera 57

Shi and Yeung (2017) 0.026 5 Jw = 0.1–1.2 
Jo = 0.05–0.6

2 Visual observation 64

Wang et al. (2013) 0.0257 
0.0406 
0.0501

0.62 
0.3254 
0.061 

0.0296

Jw = 0.01–2.8 
Jo = 0.01–2.7

4 Theoretical transition model 274

Tan et al. (2022) 0.0254 0.0106 Jw = 0.1–1.6 
Jo = 0.1–1.5

6 Visual with a high-speed camera 106

Tan et al. (2018) 0.0146 0.02 
0.237 
0.456

Jw = 0.1–2.4 
Jo = 0.1–2.5

4 High-speed camera and pressure gradient 253
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The studies selected to structure the database correspond to ten 
investigations carried out by various authors in recent years. One of 
the main objectives of these studies is the identification of flow 
patterns in two-phase oil and water flows in horizontal pipelines. 
The investigations differ in terms of the pipeline geometry, the 
viscosity of the oil used, the range of superficial velocities studied, 
the number of patterns found, and the technique used for their 
identification. Table 2 presents the general information of each of 
the selected references.

2.1.1 Data scaling
To train the neural network, it is necessary to adjust the 

information to be used as model inputs to a specific range, 
providing accurate data that allow the network to relate the 
supplied variables to the predicted pattern. The input vector to 
the network X was scaled in a range from 0 to 1, using the 
Min–Max scaling technique. Equation 1 presents the 
mathematical definition to perform the scaling of that 
numerical information. 

Xscaled �
X - Xmin

Xmax - Xmin
, (1)

where X represents the original values, Xmin and Xmax are the 
minimum and maximum values of each feature, respectively, and 
Xscaled is the scaled value (Ruiz-Díaz et al., 2024a). This process 
ensured that all values of each feature were within the range [0, 1], 
facilitating the analysis and improving the performance of the 
machine learning algorithm.

2.1.2 Target variable coding
The categorical variable in this study represents six different 

flow patterns. One-hot encoding was applied to this variable for 
use in the machine learning models. This technique transforms 
each of the six examples of the variable into a 6-position binary 
vector. In each vector, a single position has the value 1, 
indicating the presence of the respective flow pattern, while 
the other positions have the value 0. This ensures that each flow 
pattern is represented uniquely and without introducing 
artificial order, allowing machine learning algorithms to 
process the data effectively and without implicit assumptions 
about the relationship between categories. Table 3 presents the 
coding applied to each of the flow patterns.

2.2 Development of the model based on the 
Transformer architecture

An architecture based on Transformers, known for its efficiency 
in handling data sequences, was used in the development of the 
predictive model for the identification of flow patterns. Several 
essential hyperparameters were selected for the model 
configuration: number of classes, model size, number of attention 
heads, dropout, number of layers, feed-forward network size, and 

FIGURE 1 
Liquid-liquid two-phase flow patterns in horizontal pipes.

TABLE 3 Target variable coding.

Flow pattern Coding

A 1 0 0 0 0 0

D o/w 0 1 0 0 0 0

D w/o 0 0 1 0 0 0

I 0 0 0 1 0 0

ST 0 0 0 0 1 0

ST & MI 0 0 0 0 0 1

TABLE 4 Parameter settings for the best model performance.

Parameter Value

Optimizer Adam

Loss Categorical_crossentropy

Activation function Exponential linear unit

Vector dimensions 16

Number of samples per iteration 32

Number of layers 5

Attention heads 4

Layer dimensions 4

Dropout 0.002

Epochs 900

Learning rate 0.0008
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activation function. Table 4 presents the configuration and 
parameter settings for the best performance obtained for the model.

An empirical tuning process was conducted to determine the 
optimal hyperparameters. Various combinations of the number of 
layers, attention heads, vector dimensions, feed-forward network 
size, dropout rate, activation function, batch size, learning rate, and 
number of epochs were iteratively tested using a parameter sweep 
approach. Each configuration was trained and validated on the same 
dataset split, and the model achieving the highest validation 
accuracy was selected as the final configuration. This empirical 
optimization procedure is commonly employed in deep learning 
when analytical optimization is infeasible due to the model’s 
complexity and nonlinearity.

The training and evaluation processes were performed in the 
Google Colab environment using Python with the TensorFlow and 
Keras frameworks. The experiments were executed with GPU 
acceleration (NVIDIA Tesla T4, 16 GB VRAM) and 12.7 GB of 
available RAM. Each epoch required approximately 1.1 s on average 
after initialization, resulting in a total training time of approximately 
17 min for the 900 epochs.

The model starts with an input layer that accepts fixed- 
dimensional feature vectors. This initial layer is transformed by a 
dense layer to obtain a higher-dimensional representation. This 
representation is then converted to a three-dimensional form 
suitable for multi-head attention. The encoder block, a 
fundamental component of the Transformer architecture, consists 
of several multi-head attention layers followed by feed-forward 
layers. Multi-head attention is mathematically defined as 

MultiHeadAttention Q,K,V( ) �Concat head1,head2, . . . ,headh( )WO,

(2)

where Q, K, and V are the vectors corresponding to queries, 
keys, and values, WO is the matrix of weights (Zhang et al., 2024). 
Each attention head is calculated as 

headi � Attention QWi
Q,KWi

K,VWi
V( 􏼁 (3)

The attention function is expressed as 

Attention Q,K,V( ) � softmax
QKT
��
dk

􏽰􏼠 􏼡V, (4)

where dk is the dimension of the key vector K (Ruiz-Díaz et al., 
2024b). After applying attention, a residual connection is added, and 
the result is normalized. This process is represented as 

FFN x( ) � max 0, xW1 + b1( )W2 + b2, (5)

where x represents the input vector to the network, and b is a 
bias vector (Vaswani, 2017). This block also includes a residual 
connection and a normalization layer: 

Norm X +Dropout( 􏼁 FFN X( )( ), (6)

where X represents the input vector to the layer (Zhang et al., 
2024). This process is repeated over five layers, each contributing to 
the transformation and refinement of the representations.

The decoder block follows a similar structure to the encoder 
block, also applying multi-head attention and feed-forward layers 
with residual connections and normalization, which allows refining 

the representations generated by the encoder. Before the output 
layer, a flattening layer is applied to convert the three-dimensional 
representations into a single dimension. Finally, the output layer is a 
dense layer with a SoftMax activation function that produces the 
probabilities of membership to each of the six defined classes (Zhang 
et al., 2024): 

Output � softmax XW + b( ) (7)

The model was trained using the Adam optimizer and 
categorical cross-entropy loss function. The dataset was split into 
training and validation sets, applying regularization techniques such 
as dropout to prevent overfitting. This meticulous approach ensures 
that the Transformer model can identify flow patterns effectively 
and accurately, providing a robust solution for the proposed task. 
Figure 2 shows the architectural schematic of the developed model.

2.3 Evaluation and optimization of the 
developed model

A rigorous methodology was implemented to evaluate and 
optimize the performance of the Transformer neural network 
model for the identification of flow patterns in two-phase 
oil–water systems in horizontal conduits. Optimization began 
with the implementation of the Adam algorithm, a stochastic 
gradient descent method based on adaptive estimation of first- 
and second-order moments. A learning rate of 0.0008, 
empirically determined to balance convergence and stability 
during training, was selected. A series of simulations was 
performed where all related hyperparameters were modified and 
adjusted. The initial split of the training and test data was 
standardized to 80% and 20%, respectively, and 20% of the 
training data were used for validation. The loss function chosen 
was the categorical cross-entropy, defined as 

L �􏽘
N

i�1
yi log pi( 􏼁, (8)

where yi is the true label (1 if the class is the correct one, 
0 otherwise) and pi, is the predicted probability for class i. In this 
formula, N represents the total number of classes (Li et al., 2025). 
Categorical cross-entropy measures the discrepancy between the 
predicted and true probability distributions, penalizing incorrect 
predictions and adjusting the model to improve its classification 
accuracy. Model evaluation was performed in a stratified manner on 
the training, validation, and test sets, allowing for a comprehensive 
evaluation of model generalization. Loss and accuracy were 
calculated for each set. Accuracy is defined as 

Accuracy �
TP + TN

TP + TN + FP + FN
, (9)

where TP, TN, FP, and FN represent true positives, true negatives, 
false positives, and false negatives, respectively (Gómez-Camperos 
et al., 2026). For further comprehensive analysis, a confusion 
matrix was generated, and class-wise performance metrics were 
calculated. Precision, recall, and F1-score were computed for each 
class and on a weighted average, respectively (Ruiz-Diaz et al., 2026). 
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Precision �
TP

TP + FP
, (10)

Recall �
TP

TP + FN
, (11)

F1-Score � 2 ×
Precision × Recall
Precision + Recall

(12)

These metrics provide a balanced assessment of model 
performance, especially in unbalanced class situations common 
in two-phase flow patterns. Additionally, a heat map visualization 
of the confusion matrix was implemented, facilitating the 
identification of systematic error patterns in the classification of 
flow patterns. This multifaceted evaluation approach allows for a 
robust quantitative characterization of model performance in 
discriminating two-phase flow patterns. The methodology 
provides a solid basis for iterative model optimization, crucial for 
improving accuracy in the identification of flow patterns in 
oil–water systems in horizontal conduits.

3 Results

In this section, the results obtained from the training, validation, 
and testing of the Transformer neural network model for the 

identification of flow patterns in two-phase oil–water systems in 
horizontal conduits are presented. The influence of key 
hyperparameters on the model’s performance is analyzed. An 
initial parameter sweep was conducted to evaluate the effect of 
different configurations (such as the number of layers, neurons, 
learning rate, and dropout rate) on the model’s accuracy. As 
expected, these preliminary experiments yielded lower accuracy 
values because they correspond to the exploratory phase prior to 
optimization.

The hyperparameter tuning stage revealed that variations in 
learning rate, dropout rate, number of attention heads, and layer 
dimensions produced moderate effects on model performance, with 
accuracies ranging from 35.17% to 58.14% across the training, 
validation, and test sets (Table 5). These results indicate that 
increasing model complexity (such as adding more attention 
heads or enlarging layer dimensions) did not consistently 
enhance accuracy. Instead, relatively compact configurations were 
sufficient to capture the main characteristics of the two-phase flow 
patterns, guiding the subsequent optimization phase that led to the 
highest performance values reported later.

The variation of the input vector dimension (dmodel) allowed a 
substantial improvement in the model performance, reaching its 
best performance with a value of 16. Under this configuration, 
accuracies of 87.1%, 86.63%, and 87.21% were reached for the 

FIGURE 2 
Schematic of the architecture of the developed model.
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training, validation, and test sets, respectively, which is a 30% 
improvement compared to previous configurations. This result 
suggests that a proper representation of the flow features 
improves the model’s ability to discriminate between 
different patterns.

The analysis of the performance obtained from the modification 
of the layers used shows a consistent behavior (see Figure 3). Similar 
behavior is observed for the training, validation, and test curves, 
indicating good generalization of the model and consistency and 
stability between the phases. There is a pronounced drop in accuracy 
when more than six layers were trialed, suggesting that excessive 
complexity causes overfitting or problems in gradient propagation 
and, therefore, loss of generalization capacity; an optimum point is 
identified between four and five layers to balance complexity and 
performance. Maximum accuracies of 86.88%, 85.47%, and 85.51% 
were achieved for the training, validation, and test sets when using 
five, three, and six layers, respectively.

The number of samples used for training has a significant impact 
on the model’s stability and accuracy, as evidenced by the results 
presented in Figure 4. Pronounced fluctuations are observed in all 
three curves, particularly in the early stages, indicating instability in 
the learning process, possibly associated with a high learning rate or 
suboptimal weight initialization. The accuracy of the training set 

TABLE 5 Maximum accuracies obtained for hyperparameters with low 
impact on flow pattern identification.

Hyperparameter Value Accuracy

Training Validation Test

Learning rate 0.0008 43.59% 43.90% 42.09%

Dropout 0.002 40.16% 41.57% 40.47%

Attention heads 4 35.2% 35.17% 34.88%

Layer dimensions 4 55.25% 53.2% 58.14%

FIGURE 3 
Accuracy results obtained for the change in the number of layers.

FIGURE 4 
Accuracy results obtained for modification of the number of samples.
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tends to increase, while the validation and test sets exhibit a 
decreasing trend, suggesting a progressive overfitting process. 
This behavior suggests that the model successfully fits the 
training data but loses generalization capability when exposed to 
unseen data, highlighting the need for improved regularization or 
hyperparameter tuning to stabilize learning.

The configuration achieved maximum accuracies of 89.58%, 
89.24%, and 87.21% for the training, validation, and test sets, 
respectively.

The variation in the number of epochs reveals a consistent upward 
trend in the training accuracy curve, indicating that the model 
continues to improve its fit to the training data as the number of 
epochs increases (Figure 5). In contrast, the validation and test curves 
show moderate fluctuations and a slight divergence from the training 
curve, suggesting the onset of mild overfitting. This behavior reflects a 
common phenomenon in deep learning, where prolonged training 

enhances performance on the training set while yielding marginal or 
unstable improvements on unseen data. Nevertheless, the model 
maintains a stable generalization capacity, as the validation and test 
accuracies remain close to each other. Overall, the learning process 
appears stable but could benefit from improved regularization to 
further reduce the gap between training and validation. For 
900 epochs, the model reaches a maximum training accuracy of 
95.26%, while validation and test accuracies peak at 90.09% and 
90.47% for 800 and 700 epochs, respectively.

Figure 6 presents the comparison of the performance obtained 
with the different activation functions considered in the model. The 
accuracies achieved in the training, validation, and test sets for each 
function are shown, allowing visual identification of the 
performance variations between them. In general, it is observed 
that nonlinear functions, especially those with smooth activations, 
provide better performance than linear or saturation functions. This 

FIGURE 5 
Accuracy results obtained for modification of the number of epochs.

FIGURE 6 
Performance comparison of activation functions.
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trend suggests that properly selecting the activation function 
significantly influences the model’s ability to represent complex 
relationships and generalize effectively.

The exploration of different activation functions has revealed 
that the linear exponential unit (ELU) function offers the highest 
performance, achieving a training accuracy of 95.55%, a validation 
accuracy of 91.28%, and a test accuracy of 90%. This result even 
exceeds the maximum obtained in the previous optimization, which 
is the highest performance in all the training performed. The 

superiority of the ELU function can be attributed to its unique 
properties, which include mitigation of the gradient fading problem 
and the ability to produce negative activations, which can be 
especially beneficial for modeling complex patterns in two-phase 
flows (see Figure 7).

Analysis of the confusion matrix (see Figure 8) reveals 
particularly outstanding performance in identifying two specific 
types of flow patterns: annular (A) and stratified (ST). For the 
annular pattern, the model achieved 249 correct predictions, while 

FIGURE 7 
Training and validation performance using the ELU activation function: (a) Accuracy and (b) loss.

FIGURE 8 
Confusion matrix for training.
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for the stratified pattern, 256 hits were achieved, out of the total 
number of examples available for each respective class. This high hit 
rate in these categories suggests that the model has effectively 
captured the distinctive characteristics of these flow patterns.

Table 6 summarizes the model’s performance for each flow pattern 
class, reporting accuracy, sensitivity, and F1-score metrics derived 
from the confusion matrix. The model achieved maximum values of 
97% for the annular (A) flow pattern across all three metrics, 
confirming its strong ability to detect and classify this category.

Overall, the metrics range between 81% and 97% across classes, 
indicating robust and consistent generalization of the model. The 
annular (A) pattern exhibits the best overall performance, while the 
dispersed water-in-oil (D w/o) and intermittent (I) patterns also 
show solid results, with accuracy and sensitivity values above 88%. 
The macro and weighted averages (92% accuracy, 91% sensitivity, 
and 91% F1-score) further demonstrate the model’s effectiveness in 
the multiclass classification of oil–water flow patterns, underscoring 
its potential as a reliable tool for petroleum and multiphase flow 
applications.

The validation of the developed model was carried out using 
external datasets from experimental work done by Trallero and of 
Tulsa (1995), Nädler and Mewes (1997), Gras et al. (2008), and 
Wegmann and Rudolf von Rohr (2006), ensuring that all validation 
samples were entirely independent from those used in the training 
phase, thus avoiding any potential data leakage. The validation 
dataset extracted from Trallero and of Tulsa (1995) comprises 
134 experimental points, obtained under specific conditions 
including a 0.05 m diameter pipe and an oil viscosity of 
0.0288 Pa·s. These data are particularly relevant because they 
represent well-characterized and widely recognized experimental 
conditions in two-phase oil–water flow research. The reference 
dataset includes four flow pattern types: stratified & mixed 
interface (ST & MI), stratified (ST), dispersion oil-in-water (D o/ 
w), and dispersion water-in-oil (D w/o), while the model was 
originally trained with six flow pattern categories.

When comparing the model predictions with the reference 
classifications, an overall accuracy of 92.53% was obtained, 
indicating a high degree of consistency between the predicted 
and experimental flow patterns (see Figure 9). Minor 
discrepancies were mainly found near the transition regions 
between stratified and dispersed patterns, which may be 
attributed to the intrinsic overlap between classes and the limited 
number of samples in those boundaries within the training dataset. 
Overall, the model shows strong generalization capability for this 
validation case, accurately reproducing the global topology of 
the flow map.

The validation set extracted from Nädler and Mewes (1997)
comprises 61 data points, obtained under specific experimental 
conditions including a 0.059 m diameter pipe and an oil with a 
viscosity of 0.022 Pa s. Comparing the predictions made by the 
model with the reference categorical values, the calculated accuracy 
percentage is 32.79%, and the number of model hits for this dataset 
was 20 (see Figure 10). This relatively low accuracy suggests that the 
model exhibits limited generalization for this dataset, likely due to 
the restricted representation of similar operating conditions in the 

TABLE 6 Classification report for training.

Class Accuracy Sensibility F1- 
score

Sample

A 0.97 0.97 0.97 257

D o/w 0.95 0.91 0.93 239

D w/o 0.88 0.94 0.91 195

I 0.88 0.93 0.90 162

ST 0.85 0.93 0.89 274

ST & MI 0.97 0.81 0.88 245

Macro average 0.92 0.91 0.91 1,372

Weighted 
average

0.92 0.91 0.91 1,372

FIGURE 9 
Flow map from Trallero and of Tulsa (1995). (a) Original flow map (modified from the reference). (b) Predicted flow patterns generated by the 
proposed model for this dataset.
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training data and the imbalance among flow pattern categories. 
Nevertheless, the model is able to correctly capture the transition 
trend between stratified and dispersed flow regions, indicating 
partial learning of the underlying physical behavior.

The validation dataset extracted from Gras et al. (2008)
comprises 138 experimental points, obtained under conditions 
that include a 0.021 m internal diameter pipe and an oil viscosity 
of 0.799 Pa·s. When comparing the model predictions with the 
reference flow patterns, an overall accuracy of 80.43% was achieved, 
corresponding to 111 correctly classified samples (see Figure 11). 
The high viscosity of the oil in this dataset promotes more complex 
interfacial behaviors, such as thicker films and irregular dispersion 
zones, which challenge the model’s generalization capability. The 

moderate discrepancies observed in the transition regions between 
annular (A) and dispersed oil-in-water (D o/w) flow patterns are 
likely due to the limited representation of such high-viscosity cases 
within the training dataset. Nevertheless, the model successfully 
reproduces the dominant flow structure and the overall topological 
distribution of flow patterns, confirming its ability to extrapolate to 
operating conditions not explicitly included during training.

The validation dataset extracted from Wegmann and Rudolf von 
Rohr (2006) comprises 213 data points, obtained under 
experimental conditions that include a 0.0056 m internal 
diameter pipe and an oil viscosity of 0.0052 Pa·s. When 
comparing the model predictions with the reference 
classifications, an overall accuracy of 58.22% was achieved, 

FIGURE 10 
Flow map from Nädler and Mewes (1997). (a) Original flow map (modified from the reference). (b) Predicted flow patterns generated by the proposed 
model for this dataset.

FIGURE 11 
Flow map from Gras et al. (2008). (a) Original flow map (modified from the reference). (b) Predicted flow patterns generated by the proposed model 
for this dataset.
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corresponding to 124 correctly identified samples (see Figure 12). 
The reduced accuracy observed for this dataset can be attributed to 
the distinct flow conditions, particularly the very small pipe 
diameter and low oil viscosity, which induce capillary-dominated 
flow structures that differ significantly from those represented in the 
training data. Despite these limitations, the model adequately 
captures the global distribution of flow patterns and preserves 
the main transition trends between stratified (ST) and dispersed 
(D w/o) regions, indicating partial extrapolation capability beyond 
the primary training domain.

4 Conclusion

This study represents a significant advancement in the 
application of deep learning to the prediction of two-phase flow 
patterns. The developed Transformer-based model achieved high 
classification accuracy, demonstrating its potential as a valuable tool 
for both industrial applications and academic research in multiphase 
flow analysis.

Hyperparameter optimization indicated that a learning rate of 
0.0008 and a dropout rate of 0.002 yielded the best model 
performance, while an input vector dimension of 16 resulted in 
training and validation accuracies of 87.10% and 86.63%, 
respectively. Furthermore, employing the exponential linear unit 
(ELU) activation function enhanced the network’s capability to 
capture nonlinear behaviors, achieving a maximum training 
accuracy of 95.55%.

The model exhibited strong performance in identifying annular and 
stratified flow patterns, with accuracies reaching up to 97%, confirming 
its robustness and reliability. Validation using independent 
experimental datasets demonstrated satisfactory generalization and 
consistency under real operating conditions, positioning the model 
as a promising tool for the oil and gas industry in the design and 
optimization of multiphase transport systems.

Despite its strong performance, some discrepancies with 
experimental observations remain, revealing opportunities for 
further improvement. Future work should focus on enhancing 
the model’s capability to characterize transition regions between 
flow patterns and extending its applicability to a broader range of 
flow conditions and geometrical configurations.
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Glossary
TNN Transformer neural networks

A Annular

b Bias vector

CO2 Carbon dioxide

D Internal diameter of the pipe

D w/o Water-in-oil dispersion

D o/w Oil-in-water dispersion

dk Dimension of the key vector K

dmodel Input vector dimension

ELU Exponential linear unit

FIS Fuzzy inference system

FN False negatives

FP False positives

FPRnet Lightweight multi-stream neural network

GA-BP Backpropagation neural network optimized with a genetic algorithm

I Intermittent

JO Oil superficial velocity

JW Water superficial velocity

JO+W Mixing velocity

K Vector corresponding to keys

L Loss function

LSTM Long short-term memory

N Total number of classes

pi Predicted probability for class

Q Vector corresponding to queries

SCC-CO2 Stress corrosion cracking

SVM Support vector machine

ST Stratified

ST & MI Stratified with interface mixing

TP True positives

TN True negatives

V Vector corresponding to values

WO Matrix of weights

X Original values

Xmin Minimum value

Xmax Maximum value

Xscaled Scaled value

yi True label

µO Oil viscosity

Frontiers in Mechanical Engineering frontiersin.org15

Quintero-Arias et al. 10.3389/fmech.2025.1710934

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1710934

	Application of Transformer neural networks for the classification of two-phase oil–water flow patterns in horizontal pipelines
	Highlights
	1 Introduction
	2 Materials and methods
	2.1 Database structuring and processing
	2.1.1 Data scaling
	2.1.2 Target variable coding

	2.2 Development of the model based on the Transformer architecture
	2.3 Evaluation and optimization of the developed model

	3 Results
	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary


