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networks for the classification of
two-phase oil-water flow
patterns in horizontal pipelines

Leider Quintero-Arias?, Carlos Mauricio Ruiz-Diaz?*,
July A. Gémez-Camperos™?, Oscar M. H. Rodriguez? and
Aldo Pardo-Garcia®

*Mechanical Engineering Department, Universidad Francisco de Paula Santander, Seccional Ocafia, Via
Acolsure, Sede el Algodonal Ocafia, Ocafia, Colombia, ?2Industrial Multiphase Flow Laboratory (LEMI),
Mechanical Engineering Department, Sdo Carlos School of Engineering (EESC), University of Sdo Paulo
(USP), S&o Carlos, Brazil, *Grupo Automatizacion y Control (A&C), Universidad de Pamplona, Pamplona,
Colombia

The identification of flow patterns in multiphase systems is crucial in hydrocarbon
production engineering, as they determine the behavior of crude oil transport
through pipelines and flowlines in oil fields. Proper classification of these patterns
contributes to improved hydraulic design, optimal selection of separation
equipment, and effective field operation strategies. This study proposes a
model based on a Transformer neural network for identifying flow patterns in
two-phase liquid-liquid (water—oil) systems in horizontal pipelines. A database
containing 2,146 data points was used, including variables such as pipe diameter,
mixture velocity, superficial velocities of each phase, and oil viscosity. The results
show excellent model performance, with accuracies of 95.55% during training,
91.28% in validation, and 90% in the final test. These findings demonstrate the
model's ability to capture complex relationships between hydrodynamic variables
and flow topologies, making it a promising alternative tool for the analysis,
monitoring, and optimization of multiphase transport in the oil industry.

KEYWORDS

Transformer neural network, flow pattern identification, two-phase flow, liquid-liquid
flow, horizontal pipelines

Highlights

« Transformer-based neural networks were implemented to classify oil-water flow
patterns in horizontal pipelines, demonstrating the applicability of deep learning to
multiphase flow problems.

« A structured database was developed using experimental data and key hydraulic and
physical parameters from benchmark studies.

o The proposed model achieved high classification accuracy, particularly for stratified
and annular flow patterns, confirming its ability to capture complex
interface dynamics.

« Validation with multiple experimental datasets confirmed the model’s generalization
capability and robustness across different operating conditions.
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o The results contribute to advancing the integration of artificial
intelligence in multiphase flow research, supporting improved
design and monitoring of transport systems in the oil and
gas industry.

1 Introduction

The oil and gas industry faces increasingly complex flow
assurance challenges, mainly due to the presence of multiphase
flows in wells, transport lines, and production systems. Flow
of the
interfaces between immiscible phases (gas, oil, and water), are

patterns, understood as the spatial configurations
decisive in the design and optimization of production and
transport operations. Accurate prediction of these patterns
improves operational efficiency, reduces the risk of failure, and
mitigates environmental impacts (Vargas et al., 2019; Trallero et al.,
1997; Shi et al., 2021; Rodriguez and Oliemans, 2006). In particular,
in two-phase liquid-liquid systems, such as water and oil flows,
identifying the flow pattern is essential for estimating design
parameters such as pressure drop, phase retention fraction, and
transport stability.

Accurate identification of flow patterns not only has
implications for operational performance but also for the
integrity of conveyance systems. Some flow patterns can lead to
conditions that favor localized corrosion on the inner wall of
pipelines, which can lead to structural failure (Al-Sarkhi et al,
2017). In particular, carbon dioxide (CO,)-induced corrosion is a
critical factor in the degradation of materials in the oil and gas
industry that favors the occurrence of stress corrosion cracking
(SCC-CO;), a phenomenon accelerated in the presence of
mechanical stresses and CO,-rich, humid environments (Meng
et al, 2024; Huang et al, 2025; Liu et al, 2024). This type of
deterioration ~ compromises the structural integrity  of
transmission lines, especially in systems operating under high-
pressure addition,

mechanisms such as erosion-corrosion, sediment deposition, and

and  high-temperature conditions. In
flow pattern fluctuations contribute significantly to pipeline
deterioration in two-phase systems (Liu et al., 2025). The precise
characterization of these flow patterns under real operating
conditions is therefore essential to ensure the efficient and safe
transportation of hydrocarbons (Izwan Ism et al., 2015; Camperos
et al., 2023; Alvarez-Pacheco et al., 2024).

Transitions between flow patterns directly affect the pressure
gradient and the spatial and temporal distribution of phases (Ruiz-
Diaz et al, 2026), and therefore, the safety and efficiency of
transportation through pipelines (Yang et al, 2021). The ability
to accurately predict the transition limits between flow patterns is an
essential aspect of operational risk management in oil production
and transportation processes, as it influences the dynamic response
of control systems and the performance of critical components such
as valves, pumps, and sensors (Perera et al, 2017). In typical
multiphase systems in the oil industry, the oil-water flow may
experience variations along the line due to changes in slope,
diameter, roughness, or the presence of chokes, resulting in the
evolution and continuous transition of the flow pattern (Li and Fan,
2020). These transitions not only affect the hydraulic stability of the
system but can also alter the stress distribution on the pipeline walls,
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increasing the risk of corrosive and erosive phenomena. Therefore,
their identification and accurate modeling are essential for
optimizing transport and the integrity of the production system.

With technological advancements and the development of
artificial intelligence (AI) based techniques, machine learning
approaches have been widely applied in the characterization and
prediction of flow behaviors in pipelines and multiphase systems
(dos Santos Ambrosio et al., 2022; Hernandez Cely et al., 2024;
Gomez-Camperos et al, 2026). Several recent studies have
demonstrated the effectiveness of intelligent models in improving
the accuracy of flow pattern identification. For example, a
lightweight multipath neural network (FPRnet), based on
multidomain feature fusion, has been developed that achieved
98.4% accuracy in the classification of horizontal two-phase oil
and water flow patterns, significantly outperforming conventional
models in efficiency and accuracy (OuYang et al., 2023). Similarly, a
model based on a backpropagation neural network optimized by a
genetic algorithm (GA-BP) achieved an accuracy of 87.25%,
demonstrating its applicability for interpreting production profile
data in horizontal wells (Shi et al., 2023).

Other approaches have explored hybrid methods and deep
networks to improve the identification of flow patterns and
modeling of transport variables. For example, a fuzzy inference
system (FIS) showed greater accuracy and reliability than BP neural
networks, facilitating real-time monitoring and reducing
operational costs (Wu et al, 2022). Long short-term memory
(LSTM) networks have also been used for pattern recognition in
standpipes, achieving accurate results even under dynamic flow
variations (Ruiz-Diaz et al., 2024a). Convolutional networks (CNN)
and artificial neural networks (ANN) have also been proposed with
logarithmic normalization techniques, improving the robustness
and generalization of the models (Chen et al, 2023; Al-Naser
et al, 2016). Convolutional approaches rely on local receptive
fields and typically require deep and dilated stacks to span long,
multi-scale dependencies, whereas LSTM models remain sequential
at inference and cope poorly with non-stationary flow pattern
transitions unless long input windows are used. In contrast,
Transformer architectures leverage global self-attention, enabling
parallel training and efficient inference with moderate windows,
which is advantageous for liquid-liquid flow pattern identification.

Recently, the application of artificial intelligence in pipelines has
extended beyond flow pattern recognition to include predicting and
monitoring operating conditions. Colak (2025a) developed an
artificial neural network model to estimate the apparent viscosity
of kerosene oil, achieving a correlation coefficient of 0.9985, while
Colak (2025b) implemented neural models with different training
algorithms to predict the kerosene formation distance in pipelines,
highlighting Bayesian regularization as the most accurate method.
These studies confirm the feasibility and growing relevance of Al
techniques for addressing challenges in crude oil transportation and
complex flow management, strengthening the motivation of the
present work, oriented to the intelligent identification of two-phase
oil-water flow patterns using Transformer neural networks.

This study focuses on the application of Transformer neural
networks (TNNs) for the classification of water—oil flow patterns in
horizontal pipes of different diameters. Unlike previous research
employing conventional neural networks, support vector machines
(SVMs), or other artificial intelligence techniques, this work
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TABLE 1 General database information.

10.3389/fmech.2025.1710934

Feature Representation Range Units
Oil superficial velocity Jo 0.01-2.7 m/s
Water superficial velocity Jw 0.01-3.8 m/s
Mixing speed Jorw 0.02-5.5 m/s
Internal diameter of the pipe D 0.015-0.1 m
Oil viscosity Ho 0.002-5.6 Pa-s

The six types of flow patterns studied and contained in the database are stratified (ST), stratified with interface mixing (ST & MI), water-in-oil dispersion (D w/0), oil-in-water dispersion (D o/

w), intermittent (I), and annular (A), as shown in Figure 1.

TABLE 2 References selected for structuring the database.

Author po Superficial velocity range Flow Identification technique
(Pa-s) (m/s) pattern
Al-Sarkhi et al. (2017) 0.0508 0.013 Jw = 0.01-1 3 Kelvin-Helmholtz stability analysis 224
0.0288 Jo = 0.01-0.7
Cai et al. (2012) 0.1 0.002 Jw = 0-0.22 5 Visualization and conductivity pins 99
Jo = 0.5-2.5
Shi et al. (2017) 0.026 5.6 Jw = 0.03-1 4 Visual observation with a digital video 69
Jo = 0.04-0.56 camera
Al-Wahaibi et al. 0.019 0.012 Jw = 0.1-2.6 6 Observation and high-speed camera 464
(2014) 0.0254 Jo = 0.1-2
Dasari et al. (2013) 0.025 0.107 Jw=0.1-1.1 6 Visual and imaging techniques 536
Jo = 0.015-1.25
Ibarra et al. (2015) 0.032 0.0054 Jw = 0.1-0.9 5 Visual with a high-speed camera 57
Jo = 0.15-1.15
Shi and Yeung (2017) 0.026 5 Jw=0.1-1.2 2 Visual observation 64
Jo = 0.05-0.6
Wang et al. (2013) 0.0257 0.62 Jw = 0.01-2.8 4 Theoretical transition model 274
0.0406 0.3254 Jo = 0.01-2.7
0.0501 0.061
0.0296
Tan et al. (2022) 0.0254 0.0106 Jw=0.1-1.6 6 Visual with a high-speed camera 106
Jo = 0.1-1.5
Tan et al. (2018) 0.0146 0.02 Jw =0.1-2.4 4 High-speed camera and pressure gradient 253
0.237 Jo =0.1-25
0.456

proposes a TNN-based architecture to capture the nonlinear and
spatiotemporal dependencies present in multiphase flow data.

This approach represents a novel contribution, as the application
of TNNs for liquid-liquid flow pattern identification remains limited
in the literature. Furthermore, the study aims to reduce the existing gap
in the automatic and accurate identification of multiphase flow
patterns, demonstrating that these networks can deliver high levels
of accuracy and robustness even with limited experimental datasets,
positioning them as a promising tool for the monitoring and intelligent
analysis of multiphase transport in the petroleum industry.

The proposed approach targets online monitoring of oil-water
flow patterns in transport lines and production systems, providing
both flow pattern prediction and a confidence indicator suitable for
operational use. Scalability is achieved through lightweight
adaptation of a pre-trained model using a representative subset
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of local data, while preserving the core architecture and inference
times compatible with continuous operation.

2 Materials and methods
2.1 Database structuring and processing

For the development of the present study, a database containing
2,146 samples was structured. The information is characterized by
the following parameters: internal diameter of the pipe, superficial
velocity of the water and oil phases, velocity of the mixture, and
viscosity of the oil. All data vary within a certain range and have a
specific type of flow pattern associated with them. These properties
are shown in Table 1.
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ST I A
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FIGURE 1
Liquid-liquid two-phase flow patterns in horizontal pipes.

The studies selected to structure the database correspond to ten
investigations carried out by various authors in recent years. One of
the main objectives of these studies is the identification of flow
patterns in two-phase oil and water flows in horizontal pipelines.
The investigations differ in terms of the pipeline geometry, the
viscosity of the oil used, the range of superficial velocities studied,
the number of patterns found, and the technique used for their
identification. Table 2 presents the general information of each of
the selected references.

2.1.1 Data scaling

To train the neural network, it is necessary to adjust the
information to be used as model inputs to a specific range,
providing accurate data that allow the network to relate the
supplied variables to the predicted pattern. The input vector to
the network X was scaled in a range from 0 to 1, using the
Min-Max
mathematical definition to perform the scaling of that

scaling technique. Equation 1 presents the

numerical information.

X- Xmin

—— 1
Xmax - Xmin ( )

Kocaled =

where X represents the original values, X, and X,,.x are the

minimum and maximum values of each feature, respectively, and

Xscalea 18 the scaled value (Ruiz-Diaz et al., 2024a). This process

ensured that all values of each feature were within the range [0, 1],

facilitating the analysis and improving the performance of the
machine learning algorithm.

2.1.2 Target variable coding

The categorical variable in this study represents six different
flow patterns. One-hot encoding was applied to this variable for
use in the machine learning models. This technique transforms
each of the six examples of the variable into a 6-position binary
vector. In each vector, a single position has the value 1,
indicating the presence of the respective flow pattern, while
the other positions have the value 0. This ensures that each flow
pattern is represented uniquely and without introducing
artificial order, allowing machine learning algorithms to
process the data effectively and without implicit assumptions
about the relationship between categories. Table 3 presents the
coding applied to each of the flow patterns.
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TABLE 3 Target variable coding.

Flow pattern Coding

A 1 0 0 0 0 0

D o/w 0 1 0 0 0 0
D w/o 0 0 1 0 0 0
I 0 0 0 1 0 0

ST 0 0 0 0 1 0
ST & MI 0 0 0 0 0 1

TABLE 4 Parameter settings for the best model performance.

Parameter Value

Optimizer Adam
Loss Categorical_crossentropy

Activation function Exponential linear unit

Vector dimensions 16
Number of samples per iteration 32
Number of layers 5
Attention heads 4
Layer dimensions 4
Dropout 0.002
Epochs 900

Learning rate 0.0008

2.2 Development of the model based on the
Transformer architecture

An architecture based on Transformers, known for its efficiency
in handling data sequences, was used in the development of the
predictive model for the identification of flow patterns. Several
essential selected for the
configuration: number of classes, model size, number of attention

hyperparameters  were model

heads, dropout, number of layers, feed-forward network size, and
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activation function. Table 4 presents the configuration and
parameter settings for the best performance obtained for the model.

An empirical tuning process was conducted to determine the
optimal hyperparameters. Various combinations of the number of
layers, attention heads, vector dimensions, feed-forward network
size, dropout rate, activation function, batch size, learning rate, and
number of epochs were iteratively tested using a parameter sweep
approach. Each configuration was trained and validated on the same
dataset split, and the model achieving the highest validation
accuracy was selected as the final configuration. This empirical
optimization procedure is commonly employed in deep learning
when analytical optimization is infeasible due to the model’s
complexity and nonlinearity.

The training and evaluation processes were performed in the
Google Colab environment using Python with the TensorFlow and
Keras frameworks. The experiments were executed with GPU
acceleration (NVIDIA Tesla T4, 16 GB VRAM) and 12.7 GB of
available RAM. Each epoch required approximately 1.1 s on average
after initialization, resulting in a total training time of approximately
17 min for the 900 epochs.

The model starts with an input layer that accepts fixed-
dimensional feature vectors. This initial layer is transformed by a
dense layer to obtain a higher-dimensional representation. This
representation is then converted to a three-dimensional form
suitable for multi-head The block, a
fundamental component of the Transformer architecture, consists

attention. encoder

of several multi-head attention layers followed by feed-forward
layers. Multi-head attention is mathematically defined as

MultiHeadAttention (Q, K, V) = Concat (head,, head,, ..., head, )W©°,
(2)
where Q, K, and V are the vectors corresponding to queries,

keys, and values, W© is the matrix of weights (Zhang et al., 2024).
Each attention head is calculated as

head; = Attention (QW;%, KW,5, viv,") (3)

The attention function is expressed as

T
Attention (Q, K, V) = softmax (% >V, (4)

NEA

where dy is the dimension of the key vector K (Ruiz-Diaz et al.,
2024b). After applying attention, a residual connection is added, and
the result is normalized. This process is represented as

FFN (x) = max (0,xW; + b))W, +b,, (5)

where x represents the input vector to the network, and b is a
bias vector (Vaswani, 2017). This block also includes a residual
connection and a normalization layer:

Norm (X + Dropout) (FFN (X)), (6)

where X represents the input vector to the layer (Zhang et al.,
2024). This process is repeated over five layers, each contributing to
the transformation and refinement of the representations.

The decoder block follows a similar structure to the encoder
block, also applying multi-head attention and feed-forward layers
with residual connections and normalization, which allows refining

Frontiers in Mechanical Engineering

10.3389/fmech.2025.1710934

the representations generated by the encoder. Before the output
layer, a flattening layer is applied to convert the three-dimensional
representations into a single dimension. Finally, the output layer is a
dense layer with a SoftMax activation function that produces the
probabilities of membership to each of the six defined classes (Zhang
et al., 2024):

Output = softmax (XW + b) 7)

The model was trained using the Adam optimizer and
categorical cross-entropy loss function. The dataset was split into
training and validation sets, applying regularization techniques such
as dropout to prevent overfitting. This meticulous approach ensures
that the Transformer model can identify flow patterns effectively
and accurately, providing a robust solution for the proposed task.
Figure 2 shows the architectural schematic of the developed model.

2.3 Evaluation and optimization of the
developed model

A rigorous methodology was implemented to evaluate and
optimize the performance of the Transformer neural network
model for the identification of flow patterns in two-phase
oil-water systems in horizontal conduits. Optimization began
with the implementation of the Adam algorithm, a stochastic
gradient descent method based on adaptive estimation of first-
rate of 0.0008,
empirically determined to balance convergence and stability

and second-order moments. A learning
during training, was selected. A series of simulations was
performed where all related hyperparameters were modified and
adjusted. The initial split of the training and test data was
standardized to 80% and 20%, respectively, and 20% of the
training data were used for validation. The loss function chosen

was the categorical cross-entropy, defined as

N

L=y log(p,), (®)

i=1

where y; is the true label (1 if the class is the correct one,
0 otherwise) and p;, is the predicted probability for class i. In this
formula, N represents the total number of classes (Li et al., 2025).
Categorical cross-entropy measures the discrepancy between the
predicted and true probability distributions, penalizing incorrect
predictions and adjusting the model to improve its classification
accuracy. Model evaluation was performed in a stratified manner on
the training, validation, and test sets, allowing for a comprehensive
evaluation of model generalization. Loss and accuracy were
calculated for each set. Accuracy is defined as

TP+ TN

A L e 9
Y = TP Y TN + FP + N ©)

where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively (Gomez-Camperos
et al, 2026). For further comprehensive analysis, a confusion
matrix was generated, and class-wise performance metrics were
calculated. Precision, recall, and Fl-score were computed for each
class and on a weighted average, respectively (Ruiz-Diaz et al., 2026).
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FIGURE 2
Schematic of the architecture of the developed model.

Precision = — - (10)
recision = TP n FP,
TP
Recall = —— 1
T TP+ EN (1)
Precision x Recall
Fl-Score = 2 X recision X keca (12)

Precision + Recall

These metrics provide a balanced assessment of model
performance, especially in unbalanced class situations common
in two-phase flow patterns. Additionally, a heat map visualization
of the confusion matrix was implemented, facilitating the
identification of systematic error patterns in the classification of
flow patterns. This multifaceted evaluation approach allows for a
robust quantitative characterization of model performance in
The
provides a solid basis for iterative model optimization, crucial for

discriminating two-phase flow patterns. methodology

improving accuracy in the identification of flow patterns in
oil-water systems in horizontal conduits.

3 Results

In this section, the results obtained from the training, validation,
and testing of the Transformer neural network model for the

Frontiers in Mechanical Engineering
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identification of flow patterns in two-phase oil-water systems in
horizontal conduits are presented. The influence of key
hyperparameters on the model’s performance is analyzed. An
initial parameter sweep was conducted to evaluate the effect of
different configurations (such as the number of layers, neurons,
learning rate, and dropout rate) on the model’s accuracy. As
expected, these preliminary experiments yielded lower accuracy
values because they correspond to the exploratory phase prior to
optimization.

The hyperparameter tuning stage revealed that variations in
learning rate, dropout rate, number of attention heads, and layer
dimensions produced moderate effects on model performance, with
accuracies ranging from 35.17% to 58.14% across the training,
validation, and test sets (Table 5). These results indicate that
increasing model complexity (such as adding more attention
heads or enlarging layer dimensions) did not consistently
enhance accuracy. Instead, relatively compact configurations were
sufficient to capture the main characteristics of the two-phase flow
patterns, guiding the subsequent optimization phase that led to the
highest performance values reported later.

The variation of the input vector dimension (d,0q4e1) allowed a
substantial improvement in the model performance, reaching its
best performance with a value of 16. Under this configuration,
accuracies of 87.1%, 86.63%, and 87.21% were reached for the
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TABLE 5 Maximum accuracies obtained for hyperparameters with low
impact on flow pattern identification.

Hyperparameter Value Accuracy
Training Validation Test
Learning rate 0.0008 43.59% 43.90% 42.09%
Dropout 0.002 40.16% 41.57% 40.47%
Attention heads 4 35.2% 35.17% 34.88%
Layer dimensions 4 55.25% 53.2% 58.14%

training, validation, and test sets, respectively, which is a 30%
improvement compared to previous configurations. This result
suggests that a proper representation of the flow features

10.3389/fmech.2025.1710934

The analysis of the performance obtained from the modification
of the layers used shows a consistent behavior (see Figure 3). Similar
behavior is observed for the training, validation, and test curves,
indicating good generalization of the model and consistency and
stability between the phases. There is a pronounced drop in accuracy
when more than six layers were trialed, suggesting that excessive
complexity causes overfitting or problems in gradient propagation
and, therefore, loss of generalization capacity; an optimum point is
identified between four and five layers to balance complexity and
performance. Maximum accuracies of 86.88%, 85.47%, and 85.51%
were achieved for the training, validation, and test sets when using
five, three, and six layers, respectively.

The number of samples used for training has a significant impact
on the model’s stability and accuracy, as evidenced by the results
presented in Figure 4. Pronounced fluctuations are observed in all
three curves, particularly in the early stages, indicating instability in

improves the model's ability to discriminate between  the learning process, possibly associated with a high learning rate or
different patterns. suboptimal weight initialization. The accuracy of the training set
0.9 == Training == Validation Test
‘ -
0.8 =
0.7
g 0.6
g 0.5
0.4
0.3
0.2
2 3 4 5 6 7 8 9 10
Number of layers
FIGURE 3
Accuracy results obtained for the change in the number of layers.
0.90 == Training Validation == Test
0.88
> 0.86
8
3
3 0.84
<
0.82
0.80
4 14 24 34 44 54 64

Number of samples

FIGURE 4
Accuracy results obtained for modification of the number of samples.
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Accuracy results obtained for modification of the number of epochs.
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Performance comparison of activation functions.

tends to increase, while the validation and test sets exhibit a
decreasing trend, suggesting a progressive overfitting process.
This behavior suggests that the model successfully fits the
training data but loses generalization capability when exposed to
unseen data, highlighting the need for improved regularization or
hyperparameter tuning to stabilize learning.

The configuration achieved maximum accuracies of 89.58%,
89.24%, and 87.21% for the training, validation, and test sets,
respectively.

The variation in the number of epochs reveals a consistent upward
trend in the training accuracy curve, indicating that the model
continues to improve its fit to the training data as the number of
epochs increases (Figure 5). In contrast, the validation and test curves
show moderate fluctuations and a slight divergence from the training
curve, suggesting the onset of mild overfitting. This behavior reflects a
common phenomenon in deep learning, where prolonged training
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enhances performance on the training set while yielding marginal or
unstable improvements on unseen data. Nevertheless, the model
maintains a stable generalization capacity, as the validation and test
accuracies remain close to each other. Overall, the learning process
appears stable but could benefit from improved regularization to
further reduce the gap between training and validation. For
900 epochs, the model reaches a maximum training accuracy of
95.26%, while validation and test accuracies peak at 90.09% and
90.47% for 800 and 700 epochs, respectively.

Figure 6 presents the comparison of the performance obtained
with the different activation functions considered in the model. The
accuracies achieved in the training, validation, and test sets for each
function are shown, allowing visual identification of the
performance variations between them. In general, it is observed
that nonlinear functions, especially those with smooth activations,
provide better performance than linear or saturation functions. This
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trend suggests that properly selecting the activation function
significantly influences the model’s ability to represent complex
relationships and generalize effectively.

The exploration of different activation functions has revealed
that the linear exponential unit (ELU) function offers the highest
performance, achieving a training accuracy of 95.55%, a validation
accuracy of 91.28%, and a test accuracy of 90%. This result even
exceeds the maximum obtained in the previous optimization, which
is the highest performance in all the training performed. The

Frontiers in Mechanical Engineering

superiority of the ELU function can be attributed to its unique
properties, which include mitigation of the gradient fading problem
and the ability to produce negative activations, which can be
especially beneficial for modeling complex patterns in two-phase
flows (see Figure 7).

Analysis of the confusion matrix (see Figure 8) reveals
particularly outstanding performance in identifying two specific
types of flow patterns: annular (A) and stratified (ST). For the
annular pattern, the model achieved 249 correct predictions, while
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TABLE 6 Classification report for training.

Class Accuracy Sensibility F1-
D o/w 095 0.91 0.93 239
D w/o 0.88 0.94 091 195
1 0.88 0.93 0.90 162
ST 0.85 0.93 0.89 274
ST & MI 097 0.81 0.88 245
Macro average 0.92 0.91 0.91 1,372
Weighted 092 0.91 091 1,372
average

for the stratified pattern, 256 hits were achieved, out of the total
number of examples available for each respective class. This high hit
rate in these categories suggests that the model has effectively
captured the distinctive characteristics of these flow patterns.

Table 6 summarizes the model’s performance for each flow pattern
class, reporting accuracy, sensitivity, and Fl-score metrics derived
from the confusion matrix. The model achieved maximum values of
97% for the annular (A) flow pattern across all three metrics,
confirming its strong ability to detect and classify this category.

Opverall, the metrics range between 81% and 97% across classes,
indicating robust and consistent generalization of the model. The
annular (A) pattern exhibits the best overall performance, while the
dispersed water-in-oil (D w/o) and intermittent (I) patterns also
show solid results, with accuracy and sensitivity values above 88%.
The macro and weighted averages (92% accuracy, 91% sensitivity,
and 91% F1-score) further demonstrate the model’s effectiveness in
the multiclass classification of oil-water flow patterns, underscoring
its potential as a reliable tool for petroleum and multiphase flow
applications.
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The validation of the developed model was carried out using
external datasets from experimental work done by Trallero and of
Tulsa (1995), Nadler and Mewes (1997), Gras et al. (2008), and
Wegmann and Rudolf von Rohr (2006), ensuring that all validation
samples were entirely independent from those used in the training
phase, thus avoiding any potential data leakage. The validation
dataset extracted from Trallero and of Tulsa (1995) comprises
134 experimental points, obtained under specific conditions
including a 0.05 m diameter pipe and an oil viscosity of
0.0288 Pa-s. These data are particularly relevant because they
represent well-characterized and widely recognized experimental
conditions in two-phase oil-water flow research. The reference
dataset includes four flow pattern types: stratified & mixed
interface (ST & MI), stratified (ST), dispersion oil-in-water (D o/
w), and dispersion water-in-oil (D w/o), while the model was
originally trained with six flow pattern categories.

When comparing the model predictions with the reference
classifications, an overall accuracy of 92.53% was obtained,
indicating a high degree of consistency between the predicted
and experimental flow patterns (see Figure 9). Minor
discrepancies were mainly found near the transition regions
between stratified and dispersed patterns, which may be
attributed to the intrinsic overlap between classes and the limited
number of samples in those boundaries within the training dataset.
Opverall, the model shows strong generalization capability for this
validation case, accurately reproducing the global topology of
the flow map.

The validation set extracted from Nidler and Mewes (1997)
comprises 61 data points, obtained under specific experimental
conditions including a 0.059 m diameter pipe and an oil with a
viscosity of 0.022 Pa s. Comparing the predictions made by the
model with the reference categorical values, the calculated accuracy
percentage is 32.79%, and the number of model hits for this dataset
was 20 (see Figure 10). This relatively low accuracy suggests that the
model exhibits limited generalization for this dataset, likely due to
the restricted representation of similar operating conditions in the
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Flow map from Trallero and of Tulsa (1995). (a) Original flow map (modified from the reference). (b) Predicted flow patterns generated by the

proposed model for this dataset.
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for this dataset.

training data and the imbalance among flow pattern categories.
Nevertheless, the model is able to correctly capture the transition
trend between stratified and dispersed flow regions, indicating
partial learning of the underlying physical behavior.

The validation dataset extracted from Gras et al. (2008)
comprises 138 experimental points, obtained under conditions
that include a 0.021 m internal diameter pipe and an oil viscosity
of 0.799 Pas. When comparing the model predictions with the
reference flow patterns, an overall accuracy of 80.43% was achieved,
corresponding to 111 correctly classified samples (see Figure 11).
The high viscosity of the oil in this dataset promotes more complex
interfacial behaviors, such as thicker films and irregular dispersion
zones, which challenge the model’s generalization capability. The
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moderate discrepancies observed in the transition regions between
annular (A) and dispersed oil-in-water (D o/w) flow patterns are
likely due to the limited representation of such high-viscosity cases
within the training dataset. Nevertheless, the model successfully
reproduces the dominant flow structure and the overall topological
distribution of flow patterns, confirming its ability to extrapolate to
operating conditions not explicitly included during training.

The validation dataset extracted from Wegmann and Rudolf von
Rohr (2006)
experimental conditions that include a 0.0056 m internal

comprises 213 data points, obtained under
diameter pipe and an oil viscosity of 0.0052 Pas. When
the with  the

classifications, an overall accuracy of 58.22% was achieved,

comparing model predictions reference
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corresponding to 124 correctly identified samples (see Figure 12).
The reduced accuracy observed for this dataset can be attributed to
the distinct flow conditions, particularly the very small pipe
diameter and low oil viscosity, which induce capillary-dominated
flow structures that differ significantly from those represented in the
training data. Despite these limitations, the model adequately
captures the global distribution of flow patterns and preserves
the main transition trends between stratified (ST) and dispersed
(D w/o) regions, indicating partial extrapolation capability beyond
the primary training domain.

4 Conclusion

This study represents a significant advancement in the
application of deep learning to the prediction of two-phase flow
patterns. The developed Transformer-based model achieved high
classification accuracy, demonstrating its potential as a valuable tool
for both industrial applications and academic research in multiphase
flow analysis.

Hyperparameter optimization indicated that a learning rate of
0.0008 and a dropout rate of 0.002 yielded the best model
performance, while an input vector dimension of 16 resulted in
training and validation accuracies of 87.10% and 86.63%,
respectively. Furthermore, employing the exponential linear unit
(ELU) activation function enhanced the network’s capability to
capture nonlinear behaviors, achieving a maximum training
accuracy of 95.55%.

The model exhibited strong performance in identifying annular and
stratified flow patterns, with accuracies reaching up to 97%, confirming
its reliability. ~Validation using
experimental datasets demonstrated satisfactory generalization and

robustness and independent
consistency under real operating conditions, positioning the model
as a promising tool for the oil and gas industry in the design and

optimization of multiphase transport systems.
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Despite its strong performance, some discrepancies with
experimental observations remain, revealing opportunities for
further improvement. Future work should focus on enhancing
the model’s capability to characterize transition regions between
flow patterns and extending its applicability to a broader range of
flow conditions and geometrical configurations.
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