:' frontiers ‘ Frontiers in Mechanical Engineering

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Georgios Mavropoulos,

School of Pedagogical and Technological
Education, Greece

REVIEWED BY
Aleksandar Asonja,

Business Academy University (Novi Sad), Serbia
Il Song Han,

Independent researcher, United Kingdom

*CORRESPONDENCE
Jun Ma,
Junmal59689@hotmail.com

RECEIVED 23 September 2025
REVISED 19 December 2025
ACCEPTED 19 December 2025
PUBLISHED 09 January 2026

CITATION
Ma J, Xue X and Chen B (2026) Automatic
identification of high-speed railway wheelset
defects by integrating PointNet++ and

Swin Transformer.

Front. Mech. Eng. 11:1708579.

doi: 10.3389/fmech.2025.1708579

COPYRIGHT

© 2026 Ma, Xue and Chen. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Mechanical Engineering

TvpE Original Research
PUBLISHED 09 January 2026
pol 10.3389/fmech.2025.1708579

Automatic identification of
high-speed railway wheelset
defects by integrating
PointNet++ and Swin
Transformer

Jun Ma™, Xu Xue? and Bingzhi Chen*

1School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning, China, 2School of
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In order to address the technical challenges of detecting defects in high-speed
railway wheelsets under complex conditions such as dynamic lighting, foreign
object occlusion, and microscale anomalies, this paper proposes a dual-mode
deep learning framework that integrates PointNet++ and Swin Transformer. This
paper enhances defect recognition through cross modal feature collaboration,
and combines cross modal attention (CMA) mechanism for dynamic feature
alignment and geometric guidance suppression strategy for reducing occlusion
noise. The experimental results showed an accuracy of 0.985, an F1 value of
0.982, and a recognition rate of 0.938 for defects smaller than 1 millimeter.
Research has shown that the model maintains robust accuracy under different
lighting conditions (strong/weak/reflective) and up to 40% occlusion, while
optimized deployment on edge devices can achieve 23FPS with only 12M
parameters. This work significantly improves the intelligence and reliability of
the high-speed railway wheelset detection system.

KEYWORDS

automatic defect recognition, dynamic lighting, foreign object occlusion, high-speed
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1 Introduction

High-speed rail wheelsets (Deng et al., 2021; Guo et al., 2020) are core components for
train power transmission and contact with tracks. Their surface defects (Liao et al., 2023;
Zhang et al., 2021) directly affect operational safety and the safety of passengers’ lives and
property. The structural integrity of high-speed train wheelsets directly determines their
operational safety and stability. During long-term, high-load, and high-frequency service,
wheelset surfaces are prone to defects such as cracks, abrasions, spalling, and pitting due to
contact fatigue, wear, impact, or environmental corrosion. If these defects are not detected
in time, they may lead to stress concentration, crack propagation, or even wheelset failure,
seriously threatening the operational safety of high-speed trains. Therefore, achieving
accurate and automated detection of wheelset defects is a crucial prerequisite for ensuring
the reliable operation and intelligent maintenance upgrades of the high-speed train system.

Traditional manual inspection (Zhang et al., 2022a; Deng et al., 2024) relies on the
experience and judgment of maintenance personnel and has bottlenecks such as low
efficiency and high missed detection rate, making it difficult to meet the high-frequency and
high-precision operation and maintenance requirements of high-speed railways. With the
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development of deep learning technology, automated defect
detection methods based on images or point clouds (Shaikh
et al, 2025; Wang et al, 2025) are gradually being applied to
industrial scenarios, but the complexity of high-speed rail wheels
still leads to significant challenges: 1) Dynamic lighting interference,
such as alternating strong/weak light inside and outside the tunnel,
and reflection interference that invalidates image texture features; 2)
Foreign matter occlusion, oil stains, and sand coverage lead to partial
loss of defective areas; 3) It is difficult to identify tiny defects, and
cracks <1 mm are easily masked by point cloud sparsity or image
noise. The above problems urgently require an intelligent detection
framework that integrates multi-modal data and has both geometric
structure sensitivity and texture robustness to break through the
performance bottleneck of traditional single-modal methods.
Existing high-speed rail wheel defect detection methods can be
divided into two categories: single-mode and multi-mode. Among
the single-mode methods, the point cloud driven model (Geng et al.,
2023; Yu et al, 2022) extracts geometric features through
which
illumination changes but has difficulty in capturing surface

hierarchical abstraction, is robust to occlusion and
texture details; the image driven model (Song et al., 2024; Zhang
et al,, 2022b) is good at identifying texture anomalies but is easily
disturbed by dynamic illumination. Under the trend of multi-modal
fusion, early fusion strategies lead to defect localization deviation
due to the loss of geometric information, while late fusion
introduces redundant noise due to the cross-modal semantic
gap. The continuous progress of railway technology system is
inseparable from a large amount of in-depth research and the
application of new maintenance methods. The fundamental goal
of these efforts is to provide higher quality equipment, thereby
achieving more reliable and efficient railway transportation services.
Especially in the field of high-speed railway, wheelsets are the core of
train operation safety, and the intelligent upgrading of their
condition monitoring and defect identification technology is an
important manifestation of this development trend. By integrating
advanced sensing technology and artificial intelligence methods, the
automated and accurate detection of wheelset defects is achieved,
which is of key significance for improving the reliability and
operation and maintenance efficiency of the entire railway system
(Vukovi¢ and Kovalevskyy, 2024). Recent studies have attempted to
introduce a cross-modal attention mechanism to align image and
text/point cloud features through a Query-Key-Value architecture
but face problems such as high computational complexity and
insufficient alignment accuracy in industrial scenarios. In
addition, existing methods generally lack targeted optimization
for small defects, such as not designing geometric consistency
constraints to enhance the curvature abnormal response of
cracks <1 mm, resulting in a high missed detection rate.
Therefore, a new fusion framework that takes into account both
multi-modal feature alignment efficiency and defect sensitivity is
urgently needed.

This paper applies a dual-modal deep learning classification
framework that integrates PointNet++ and Swin Transformer to
systematically solve the problem of missed detection of high-speed
rail wheel defects under dynamic lighting, foreign object occlusion,
and micro-scale. A two-stream feature extraction network is
designed: PointNet++ extracts point cloud geometric features
through a hierarchical Set Abstraction module, and Swin
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Transformer performs a multi-scale window attention
mechanism on the image after the illumination invariance is
enhanced to capture texture features such as edges. CMA is
applied to map image features to the point cloud density of each
level of PointNet++ through a multi-granularity alignment strategy,
and the association weights between geometric queries and texture
key-values are calculated to dynamically suppress noise interference
in oil/silt occlusion areas. A geometric consistency regularization
term is applied to constrain the second-order derivative of the point
cloud curvature change. CMA guides texture weight allocation
through geometric features and applies geometric consistency
regularization terms to constrain the second-order derivative of
curvature so that the recognition rate of defects <1 mm reaches
0.938; the accuracy rates of strong light/weak light/reflective scenes
reach 0.968, 0.962, and 0.956, respectively, and it can accurately
identify defects under different occlusion conditions. Through
channel pruning and 8-bit quantization, the model is deployed to
the Jetson AGX Xavier edge device, achieving an inference speed of
23 FPS, meeting the real-time detection requirements of high-speed
rail (>20 FPS) and promoting the upgrade of manual detection to

intelligent detection.

2 Related work

As a direct representation of three-dimensional geometric
information, point cloud has irreplaceable advantages in
defect The MLP (Multilayer

Perceptron)-based PointNet achieved point cloud classification

industrial detection. early
through global feature pooling, but its defect of ignoring local
neighborhood relationships led to insufficient sensitivity to tiny
defects. PointNet++ (Zeng et al., 2023) applied local structure
perception capabilities through the hierarchical Set Abstraction
module, making breakthroughs in tasks such as part recognition.
Its sampling and Ball Query grouping strategies can abstract multi-
scale geometric features layer by layer. However, its fixed-radius ball
query mechanism is prone to local feature loss in sparse point cloud
scenarios. PointTransformer (Jing and Wang, 2023; Wan et al,
2023) applies the Transformer architecture to point cloud
processing and models the local geometric relationship of
disordered point clouds through a position-aware self-attention
mechanism. PCT (Point Cloud Transformer) (Kang et al., 2023)
combines learnable kernel functions with spatially aware attention
to significantly improve the recognition rate of small defects.
PointNeXt (Huaiyu et al, 2024; Yang et al, 2025) surpasses
PointNet++ in point cloud classification tasks through ResNet-
style modules and enhanced data augmentation strategies.
Although the above methods perform well in single-modal point
cloud processing, their robustness to foreign object occlusion is still
limited, and they need to be combined with image texture features
for complementary enhancement. In addition, existing methods
mostly focus on static scenes and it is difficult to deal with point
cloud deformation caused by vibration in dynamic acquisition of
high-speed rail wheelsets, which urgently needs to be combined with
modal registration technology for optimization.

Visual transformer has shown its potential in industrial defect
detection under complex backgrounds due to its global modeling
capabilities. Swin Transformer (Li et al., 2022; Tang et al., 2023)
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effectively balances computational complexity and multi-scale
feature extraction capabilities through a sliding window attention
mechanism and hierarchical feature map design, and outperforms
traditional CNN (Convolutional Neural Network) models in tasks
such as surface defect detection. Its multi-head self-attention
mechanism can capture long-range dependencies and identify
fracture features and patchy peeling patterns at crack edges in
images. The further improved Swin Transformer (Zheng and Lin,
2023; Wang et al, 2024) applies an illumination invariant
embedding layer and suppresses strong/weak light interference
through a channel attention module, making it suitable for
dynamic lighting scenes. Another type of model, such as
FocalNet (Li B. et al., 2024), uses a dynamic sparse attention
mechanism to reduce the amount of computation while
maintaining high-resolution details, but its complexity is still
limited by the global interaction requirement of O(n®). CrossViT
(Xu et al., 2024) extracts multi-scale features of images through a
dual-branch architecture and combines cross-attention to fuse
global and local information, but it is easily disturbed by foreign
textures in occluded scenes. Although the visual Transformer has
significant advantages in image texture modeling, its robustness to
dynamic lighting and occlusion still needs to be optimized in
coordination with geometric features.

Multi-modal fusion, by combining point cloud geometric
features with image texture features, has become a key direction
to break through the limitations of single modality in the field of
industrial quality inspection. Existing fusion strategies can be
divided into three categories according to the interaction stage:
early fusion (data level) renders the point cloud into a pseudo depth
map or normal vector map and then inputs it into CNN processing
(Guo etal., 2023), but the dimensionality reduction loss of geometric
information leads to defect localization deviation; mid-term fusion
(feature level) integrates modal information in the middle layer of
the model. For example, simple feature concatenation introduces
redundant noise due to the cross-modal semantic gap (Yang et al.,
2023; He et al., 2022), while attention-based fusion (the multi-modal
CrossViT framework proposed by Kang et al. (2025), which
integrates image features with 3D spatial information and
optimizes through contrastive learning) or point cloud-image
spatial attention module (Sun et al, 2024) can screen key
features; late fusion (decision level) (Xie et al, 2024) processes
results
computationally efficient but difficult to resolve inter-modal

the post-modal fusion independently, which is
conflicts. However, existing methods generally lack targeted
optimization for minor defects and have insufficient cross-modal
alignment efficiency. The CMA applied in this paper belongs to the
mid-term fusion paradigm, and its innovation lies in: 1) Multi-
granularity alignment strategy: The multi-scale image features (C1-
C3) output by Swin Transformer are accurately mapped to the point
cloud density of each level of PointNet++ through bilinear
interpolation to achieve spatial adaptation of geometric structure
and texture details; 2) Dynamic occlusion suppression mechanism:
The geometric features are used as the query to dynamically
calculate the association weight with the texture key-value, and
the geometric guidance weight based on the curvature gradient is
applied to suppress the noise response of the oil/silt occlusion area;
3) The joint geometric consistency regularization term is used to
constrain the abnormal curvature changes of small defects, thereby
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significantly improving the robustness of defect recognition while
maintaining computational efficiency.

3 Methods

This
experimental

study employs a research paradigm combining

and computational methods, comprehensively
utilizing core technologies such as 3D visual perception, deep
learning, and multimodal information fusion. At the data
acquisition level, a synchronous acquisition system consisting of
a line laser scanner and a high-speed camera was used, with a
hardware trigger controller ensuring spatiotemporal alignment.
Data processing and algorithm development were primarily based
on the PyTorch deep learning framework, with model training and
optimization performed on an NVIDIA A100 GPU cluster.
Furthermore, the model was compressed using channel pruning
and 8-bit quantization techniques, and finally deployed on the Jetson
AGX Xavier edge computing platform to verify its feasibility for real-
time inference in industrial settings. This synergistic application of
and tools

methods, technologies, constitutes the complete

methodological system of this study.

3.1 Data preprocessing and registration

To ensure strict alignment of point cloud and image data in time
and space, a synchronous acquisition system of line laser scanner +
high-speed camera is used. The core parameters are shown
in Table 1.

When the laser scanner emits the laser beam, the trigger
controller generates a pulse signal, which synchronously triggers
the high-speed camera to expose, ensuring that the point cloud and
image are strictly aligned in the space-time coordinate system.

To eliminate the coordinate deviation between LiDAR (Light
Detection and Ranging) and the camera, a two-stage registration
strategy of rigid transformation matrix calibration + ICP (Iterative
Closest Point) algorithm optimization is adopted.

Calibration target: chessboard (10 x 7 corner points, grid
spacing 20 mm) + spherical target (diameter 50 mm). Multi-view
chessboard point cloud and image are collected, and the 3D
coordinates and pixel coordinates of the corner points are
extracted by minimizing the of the

reprojection error

sphere center.

l:reproj = z ” ﬂ(R'Ci +t)_Ci"§ (1)

In Equation 1, C; is the center of the sphere detected by LIDAR;
¢; is the pixel coordinates of the center of the sphere detected by the
image; and 7 is the camera projection function. R, t is the rotation
and translation matrix.

Calibrated LiDAR point cloud P = {p; € ]RS};’\:]1 and camera
depth map D = {dj € ]RS}»;V:II.

Minimizing the between

sum of squared distances

corresponding points in the point cloud and the depth map:

N
min Y | (Ri+0)-N (p)l; @
> i=1
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TABLE 1 Synchronous acquisition information.
Components Model/Parameter

Line laser scanner Keyence LJ-V7000 (accuracy +0.1 mm)

10.3389/fmech.2025.1708579

Function

Acquire the 3D point cloud of the wheelset surface at a frequency of 200 Hz (density >10* points/m?)

and output point cloud data

High-speed camera | Basler ace acA2440-35uc (2,448 x 2048 pixels,

200 fps)

Synchronize the capture of wheelset images (resolution 224 x 224)

Trigger controller National instruments PXIe-6660

Synchronize the acquisition timing of the laser scanner and camera through the hardware trigger

signal, and the clock synchronization error is <1 ps

Data storage Capacity >2 TB

Store point cloud and image data in real time to support subsequent offline processing

PointNet++

Original point
cloud

Farthest point
sampling 1

Ball query L1:
r=10mm, K=32

Ball query L2:
4

MLP [64,64,128]

MLP
[128,128,256]

Farthest point
sampling 2

sampling 3 [256,512,1024]

Geometry L1:
1024x128

Geometry L.2:
512x256

Farthest point - Ball query L. . MLP ' Geometry L3:

256x1024

Cross-modal attention fusion

Cross-modal attention

C1 dimension (Q=L1, K/V=C1)

Cross-modal attention ) _
Feature fusion

Cross-i al attention

C3 dimension (Q=L3, K/V=C3)

Swin Transformer

FIGURE 1
Two-stream feature extraction network.

In Equation 2, N (p;) is the point closest to p; in the depth map.

To improve the quality of feature extraction, targeted
preprocessing is performed on the point cloud and image,
respectively. The local density mean and standard deviation of
the point cloud are calculated to remove outliers, as shown in
the Equation 3:

| pi—pl>30 (3)

Photo-invariant enhancement: Based on the single-scale Retinex
theory, logarithmic domain enhancement is performed on the
image, as shown in the Equation 4:

Lenhanced (%, ¥) = log (I (x, y)) ~log (G,*I(x, y)) 4

3.2 Two-stream feature extraction network

The two-stream feature extraction network is shown in Figure 1.
This paper proposes a dual-stream feature extraction network
based on PointNet++ and Swin Transformer to realize multi-modal
feature fusion analysis of high-speed rail wheel defects. The
PointNet++ branch extracts point cloud geometric features step

Frontiers in Mechanical Engineering

by step through the hierarchical Set Abstraction module: the first
layer (L1) uses the farthest point sampling to obtain 1,024 points,
combines the ball query to build a local neighborhood, and outputs
128-dimensional geometric features through MLP ([64, 64, 128]);
the second layer (L2) is further downsampled to 512 points, and the
MLP is upgraded to 256 dimensions; the third layer (L3) extracts
K = 128) of global features
(1,024 dimensions). The Swin Transformer branch takes a 224 x

256 points (r = 40 mm,
224 image as input and generates multi-scale texture features
through a 4-stage sliding window attention mechanism: Stage
1 outputs C1 (56 x 56 x 96) to capture edge gradients, Stage 2’s
C2 (28 x 28 x 192) models patch textures, Stage 3’s C3 (14 x 14 x
384) extracts directional textures, and Stage 4’s C4 (7 x 7 x 768) fuses
global context. The cross-modal fusion module adopts a multi-
granularity alignment strategy: C1-C3 features are mapped to the
point cloud density of each level of PointNet++ through bilinear
interpolation, and occlusion noise is dynamically suppressed
through the cross-modal attention mechanism. The fused
features are globally pooled and input into the fully connected
layer, combined with Focal Loss to alleviate the category
imbalance problem, and a geometric consistency regularization
term is applied to constrain the second-order derivative of the
point cloud curvature change for defect identification.

frontiersin.org
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PointNet++ (Xiang et al., 2025; Huang et al., 2023) abstracts the
geometric features of point clouds layer by layer through a
hierarchical Set Abstraction module. Its core process includes
farthest point sampling — ball query grouping — multi-layer
perceptron feature extraction, and finally outputs multi-scale
geometric features {L1, L2, L3}, corresponding to the levels of
point cloud density of 1,024, 512, and 256, respectively.

In farthest point sampling, for a given point cloud
P={p eR’ }Zl, the point farthest from the selected point set is
iteratively selected as the sampling point to ensure the uniformity of
the point cloud distribution:

FPS(P,K) = arg max min | p; —qll ®)
PP qeS

In Equation 5, S is the set of selected points, and K is the number
of target points.

For the sampling point g; € S, search for the neighborhood
point N'(g;) = {pi€ P lllpi — gjll» <r} within the radius r to build a
local neighborhood relationship. The radius r is dynamically
adjusted according to the defect scale.

For each set of neighborhood point A(g;), features are
extracted through MLP with shared weights:

fi= MLP( [qj; MaxPool({Pi - q;}P,. EN(q,v)i)]) ©

In Equation 6, the MaxPool operation aggregates the local
geometric information of the neighborhood points relative to the
coordinates p; —gj, and finally outputs the feature f; € R

Hierarchical feature output:

L1 (1,024 points): The original point cloud is sampled at
1,024 points at the farthest point, and MLP outputs 64-
dimensional geometric features.

L2 (512 points): The L1 features are sampled at 512 points at the
farthest point, and the MLP is upgraded to 128 dimensions.

L3 (256 points): The L2 features are sampled at 256 points at the
farthest point, and the MLP is upgraded to 256 dimensions.

The geometric features output by PointNet++ include point
cloud normal vector, curvature, and neighborhood point distance
distribution. The normal vector estimates the surface direction
through the difference in coordinates of the neighborhood
points. The Equation 7 is as following:

n=L @
ox 0dy

The curvature feature is usually simplified to the minimum
eigenvalue of the neighborhood point covariance matrix.

The average Euclidean distance from the neighborhood point to
the center point is calculated, and the neighborhood distance
distribution is as the Equation 8:

1
B =T\ Z

‘N(qf)| pieN (a;)

Swin Transformer (Li Y. et al.,, 2024; Si et al., 2024) extracts
global texture features of images through a multi-scale sliding

I pi—qjll2 (8)

window attention mechanism. Its architecture is based on the
Swin-Tiny configuration, with an input image of resolution
224 x 224 and an output multi-scale feature map {C;,C,,Cs,Cq4}.
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The input image is divided into 4 x 4 non-overlapping
blocks, each of which is flattened into a one-dimensional
vector, and the embedded features are generated by linear
projection:

&y = Linear (Patch (x)) € Rf4WAxCo 9)

In Equation 9, H =W =224, C, = 96.

The core innovation of Swin Transformer (Irsal et al., 2024;
Ma et al., 2025) lies in the sliding window mechanism, which
divides the feature map into multiple windows. Through multi-
head self-attention, for each point i in the window, the Query (Q),
Key (K), and Value (V) are calculated, as following Equation 10
and 11:

MSA (€) = Concat(Head,, ..., Head,)W° (10)
QKT

Head, = Soft \%4 11

ead, = So max< NzA X (11)

The next layer shifts the window by half to achieve cross-
window interaction and multi-scale feature map output:

C1 (56 x 56): shallow features, capturing edge gradients.

C2 (28 x 28): mid-level features, extracting patch textures.

C3 (14 x 14): high-level features, modeling directional textures.

C4 (7 x 7): global features, integrating multi-scale contexts.

Edge features capture crack boundaries through gradient
amplitude, and the Equation 12 is as following:

Using local binary pattern statistics to calculate texture

(12)

repeatability, the patch formula is as the Equation 13:

LBP(p) = Y s(gi-g.)2 (13)

Directional texture: The scratch direction is detected by Gabor
filter response, and the filter kernel is as the Equation 14:

x'2 + yZy’Z

Y= (14)

g(x,y)zexp(— >cos (2nfx")
The parameter information of the PointNet++ + Swin
Transformer model is shown in Table 2.

3.3 Cross-modal attention fusion

In order to achieve cross-modal interaction between point cloud
geometric features and image texture features, a multi-granularity
alignment strategy is designed to map the multi-scale texture
features {Cl, C2, C3, C4} output by Swin Transformer to the
point cloud density of each level of PointNet++ through bilinear
interpolation. Specifically:

C1—-L1: The C1 feature map (56 x 56 x 96) is mapped to
1,024 points of the L1 level through bilinear interpolation to
generate 1,024 x 96 texture features.

C2—12: The C2 feature map (28 x 28 x 192) is mapped to
512 points of the L2 level, and 512 x 192 features are output.

C3—L3: The C3 feature map (14 x 14 x 384) is mapped to
256 points of the L3 level to generate 256 x 384 features.
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TABLE 2 Model parameter information.
Components Parameter name

PointNet++ Set abstraction layers

10.3389/fmech.2025.1708579

Values/Configuration

3

Farthest point sampling

Ball query

L1: 1,024 points, L2: 512 points, L3: 256 points

Radius r: L1 = 10 mm, L2 = 20 mm, L3 = 40 mm

Number of neighboring points K

MLP structure

L1=32,12=064,13=128

L1: [64, 64, 128], L2: [128, 128, 256], L3: [256, 512, 1,024]

Activation function ReLU
Swin transformer Architecture type Swin-tiny
Input resolution 224 x 224
Patch size 4x4
Stages 4 stages
Window size 7x7
Number of self-attention heads 8
MLP expansion ratio 4

C4 global fusion: The C4 feature map (7 x 7 x 768) is flattened
into a 1-dimensional vector and concatenated with the global
features of L3.

Mapping formula:

Ft(el))( = Bilinear (C;) € RN (15)

In Equation 15, ] represents the level; N; is the number of points
in the Ith layer of PointNet++; and D; is the texture
feature dimension.

For the multi-scale feature maps {C1, C2, C3} output by Swin
Transformer, this paper maps them to the spatial coordinates of
PointNet++point clouds at various levels through bilinear
interpolation. The interpolation process is based on the
normalized image coordinates (u, v) of each sampling point in
the point cloud, weighted and summed by, the eigenvalues of the
surrounding four pixels, where Ft(el,)( (p) = Zwi - Cyr(xi, yi). (x5, i)
is the coordinate of adjacent pixels in the infalge, and w; is the weight
based on the relative position between point p and the pixel. This
process achieves precise mapping from image feature space to point
cloud geometric space, ensuring spatial consistency of texture
features in geometric structure and providing a reliable feature
alignment foundation for subsequent cross modal attention fusion.

The CMA module (Shi et al., 2024) dynamically calculates the
association weights between geometric features and texture features
through the Query-Key-Value architecture. Query generates the
geometric features Fg@o of PointNet++, and generates the Query
matrix through linear projection to obtain, as shown in the
Equation 16:

Q=W,F) e RN

geo

(16)

The texture feature projection of Swin Transformer (Gao et al.,
2022; Zhu et al., 2023) is as shown in Equation 17, 18:
() ¢ RNk

K =WF_, (17)

Frontiers in Mechanical Engineering

V =W,FD ¢ RN (18)

The similarity matrix between Query and Key is calculated, and
the attention weight is generated through Softmax normalization.
The attention weight A is used to perform weighted summation on
the Value feature V to generate the fusion feature, as shown in the
Equation 19:

Filon = AV eRN

fusion

(19)

In order to solve the texture feature interference caused by oil/
silt occlusion, a geometry-guided attention weight suppression
strategy is designed. Dynamic weights are generated based on the
geometric features (curvature x;) of PointNet++, as shown in the

=0 o
1 I Vil + €

Multiply the geometric weight «; with the attention weight to

Equation 20:

(20)

suppress the response of the occluded area:

Aij = - A,‘j (21)
In Equation 21, A; jis the corrected attention weight, i is the Query
point index, and j is the Key point index.

The corrected attention weight is used to weight the Value
feature, as shown in the Equation 22:

10

Sfusion = A 4 (22)

The final fusion feature is the concatenation of the weighted
results layer by layer, as shown in the Equation 23:

(1) =~ (2) ~(3) Ny +Ny+N3)xd,
Fﬁml = Concat(Ffusion’ Ffusion’ Ffusion) € ]R( 1NN ) (23)
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3.4 Classification head and loss function

After the fused features are output by the cross-modal attention
module, the feature dimensions need to be further compressed and
mapped to the defect category space. The classification head in this
paper adopts a two-stage fully connected network (Zhou et al., 2025;
Zhang et al., 2023). Global maximum pooling is performed on the
fused features to extract the maximum response value of each
channel, as shown in the Equation 24:

fglobal = GMP (Ffusion) € RIXd (24)

This operation retains key characteristic responses (such as high
curvature areas at the crack edge) and generates a 1 x 1024-
dimensional global feature vector.

Dropout (dropout rate 0.5) is inserted between fully connected
layers to prevent overfitting, and the Xavier initialization strategy is
adopted to ensure training stability.

In order to solve the problems of category imbalance and micro-
defect recognition, this paper designs a dual-objective loss function
to jointly optimize classification accuracy and geometric constraints.

In order to solve the problem of unbalanced distribution of
high-speed rail wheel defect samples, Focal Loss is used to alleviate
the impact of category imbalance:

N

_%Z a; (1- p;)'log (p;)

i=1

Lays = (25)

In Equation 25, p; is the predicted probability of the i-th sample,
and «; is the category weight.

In order to enhance the geometric sensitivity of small defects, the
L2 regularization term of the point cloud curvature change is introduced:

1 N
Lo = A5 2 1V (26)
i=1

In Equation 26, «; is the curvature of the i-th point.
The total loss is the weighted sum of the classification loss and
the geometric constraint, as shown in the Equation 27:

L=Ly+ Egeo (27)

The joint training uses the AdamW optimizer (learning rate 5 x
107*, weight decay 107*) to jointly optimize the classification and
geometric constraints.

4 Experiment
4.1 Dataset construction

The dataset used in this study was constructed based on the
publicly available FaultSeg dataset through large-scale expansion
and enhancement. The FaultSeg dataset provides an image
foundation for train wheel defects. To meet the requirements of
the multimodal fusion method proposed in this article, 3D point
cloud data strictly paired with each defect image was synchronously
collected, and the sample size and diversity of defect scenes were
significantly expanded. The final dataset consists of 10,918 strictly
paired image point cloud samples, as shown in Table 3. Compared

Frontiers in Mechanical Engineering

10.3389/fmech.2025.1708579

with the original FaultSeg, the main extensions of this dataset
include: (1) the introduction of point cloud mode, which
achieves the upgrade of data from 2D to 3D; (2) Added defect
categories to make defect types more complete; (3) Systematically
collected data under dynamic lighting conditions (strong light, weak
light, reflection) and simulated foreign object occlusion conditions;
(4) The total sample size has significantly increased from thousands
of images in FaultSeg to over 10,000 paired samples. This enhanced
dataset provides a solid foundation for validating cross modal defect
detection algorithms under complex operating conditions.

The dataset in this paper is based on the FaultSeg dataset and
synchronously collects point cloud data information. It contains
10,918 sets of samples, covering dynamic lighting, foreign object
occlusion and small defect scenes. The distribution of the dataset is
shown in Table 3.

The definition of tiny defects is a diameter of <1 mm, small-scale
defects (1-3 mm), and medium-to-large defect sizes (>3 mm). Strong light
environment refers to an extreme brightness scene with a light intensity
exceeding 100,000 lux, simulating the working conditions of high-speed rail
wheelsets under direct sunlight or strong reflective light interference outside
the tunnel. Weak light environment refers to a low-light scene with a light
intensity below 1,000 lux, simulating the complex working conditions of
high-speed rail wheelsets during maintenance in tunnels or at night.
Reflective environment refers to a scene where the metal surface of the
wheelset is partially too bright due to specular reflection, simulating the
working conditions of the wheelset in a humid environment.

The reflection scene is clearly defined and strictly controlled in
data collection: it refers to the saturation highlight appearing in local
areas due to the mirror reflection characteristics of the metal surface
of the wheel, with pixel brightness values exceeding 200 (in the gray
range of 0-255), and the highlight area accounting for 5%-30% of the
area of interest of the wheel. This condition is accurately simulated in
a laboratory environment by adjusting a point light source at a
specific angle to reproduce the real working conditions of the wheel
under wet or specific lighting conditions. All samples labeled as
“reflection” in the dataset were screened using this standard, ensuring
the uniformity and measurability of the testing conditions.

The dataset is divided into two parts: image and point cloud
data. The wheelset image information is shown in Figure 2.

The five key surface conditions of high-speed rail wheels are
categorized as follows: Crack, characterized by narrow fissures
potentially propagating due to fatigue and stress concentration,
posing a high hazard level risk of structural failure. Scuffing,
appearing as linear wear marks typically caused by braking
slippage, is assessed as a medium-level hazard. Spalling, where
surface metal layers detach due to contact fatigue or thermal stress,
represents a medium-high hazard by exacerbating vibration and noise.
Pit, manifesting as small yet deep depressions from foreign matter
intrusion or corrosion, is a medium-hazard defect that can initiate
crack formation. Normal denotes a defect-free surface, indicating a safe
operational state. This classification system comprehensively covers
typical failure modes, from micro-damage to macro-defects, providing
a clear basis for automated defect identification and safety assessment.

During long-term operation, high-speed rail wheelsets (i.e., the
combination of wheels and axles) may suffer from various types of
surface or structural defects due to the huge loads, friction, and
impact. The dataset is divided into training set, test set, and
validation set in the form of 8:1:1.
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TABLE 3 Dataset distribution.

Number of
samples

Category

Specific
category

Defect size
distribution

10.3389/fmech.2025.1708579

Occlusion
rate

Lighting conditions

Defect Crack 880 <1 mm (400) Strong light (293), weak light (293), 0%-50%
reflection (294)
Scuffing 1,050 <1 mm (500) Strong light (350), weak light (350),
reflection (350)
Spalling 950 <1 mm (300) Strong light (317), weak light (317),
reflection (316)
Pit 1,038 <1 mm (400) Strong light (346), weak light (346),
reflection (346)
Normal Normal 7,000 Strong light (2,333), weak light (2,333), 0%
reflection (2,334)
Crack Scuffing Spalling
FIGURE 2

High-speed rail wheelset image.

TABLE 4 Comparison of high-speed rail wheel set type information.

Category Description Causes Hazard level
Crack Narrow cracks, which may extend Fatigue, stress concentration High
Scuffing Linear wear marks Braking skidding, slipping Medium
Spalling Surface metal layer has fallen off Contact fatigue, thermal stress Medium-high
Pit Small but deep depressions Foreign matter intrusion, corrosion Medium
Normal No defect Normal use Safe

The comparison of high-speed rail wheel set type information is
shown in Table 4.

4.2 Experimental environment and index
evaluation

To ensure the efficiency of model training and deployment, this
experiment uses a graphics card cluster: NVIDIA A100 x 4, which
supports mixed precision training. The processor uses Intel Xeon
Gold 6,330, with 1 TB of memory, to accelerate data preprocessing

Frontiers in Mechanical Engineering

and multi-threaded loading. PyTorch 1.13 is used to build a deep
learning framework. And Jetson AGX Xavier is deployed.

The training hyperparameters in this paper are set as:

Optimizer: AdamW (learning rate 5 x 107%, 8, = 0.9, 8, = 0.999).

Learning rate schedule: Cosine annealing (initial learning rate =
5%x107, final 107°).

Regularization: weight decay 10™, dropout rate 0.5.

Batch size: batch size = 64 during training, batch size = 1 during
deployment (single frame processing).

In order to comprehensively evaluate the performance of the
model in high-speed rail wheel defect detection, this paper adopts an
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t-SNE visualization results. (a) Geometric features. (b) Global texture features. (c) Fusion features.

evaluation system that combines macro-level indicators with
category-level indicators. The accuracy measures the overall
classification performance of the model and is defined as the
ratio of the number of samples predicted correctly to the total
number of samples, as shown in the Equation 28:

TP+ TN

A E e —————
T TP+TN+FP+FN

(28)

Macro precision measures the average precision of the model for
all categories to avoid the impact of category imbalance, as shown in
the Equation 29:

_1i TP,
" C4 TP, + FP;

i=1

Precision o (29)

Macro recall measures the average recall of the model for all
categories, as shown in the Equation 30:

1C

c2

i=1

TP,

Recallyacro = m

(30)
The macro F1 score is the harmonic mean of the macro
precision and the macro recall, which comprehensively

the the
Equation 31:

measures model performance, as shown in

2

Flmacro = (31)

) .
i=1 Precision; Recall;

5 Results and analysis
5.1 t-SNE visualization of data features

t-SNE  (t-Distributed Stochastic Neighbor Embedding)
visualization is used to analyze the distribution separability of
geometric features, global texture features, and fusion features,
and verify that the inter-class separation is improved after cross-
modal fusion. The t-SNE visualization results are shown
in Figure 3.

Frontiers in Mechanical Engineering

Figure 3a shows that the geometric features of the five types of
samples in the t-SNE space overlap significantly, and the boundaries
between normal samples and defective samples are blurred,
indicating that the local geometric features (such as curvature
and normal vector) extracted by PointNet++ have limitations in
class distinction. Although defects such as cracks and scratches have
slight differences in local density distribution, the overall
distribution is loosely mixed and no obvious independent
clustering structure is formed, indicating that the geometric
features have a weak ability to characterize small surface defects,
which may be limited by the sparsity of point clouds or the sampling
bias of neighborhood information.

Figure 3b shows that the distribution of normal samples and
defective samples in the global texture features gradually separates,
and defects such as cracks and pits tend to form weak clustering
locally, reflecting the Swin Transformer’s ability to model image
edge gradients and patch repeatability. However, there is still overlap
in categories such as scratches and peeling, indicating that texture
features are easily affected by lighting changes or foreign body
occlusion, leading to misjudgment of similar texture patterns.

In Figure 3c, the five types of samples show tight and separated
clusters in the fusion feature space, with clear boundaries between
classes and significantly enhanced compactness within classes,
verifying the effective integration of geometric and texture
features by the cross-modal attention mechanism. The weight
distribution guided by geometric features the
response of the defective area, suppresses the interference of oil/

strengthens

sand occlusion, and completely decouples the distribution of normal

samples from defective samples, supporting more robust

classification performance.

5.2 Changes in model loss values

The model in this paper is compared with the existing
mainstream models to analyze the changes in loss values. The
results are shown in Figure 4.

The initial training loss value of the model in this paper is the
smallest and converges the fastest. The fundamental reason is the
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Changes in loss value.

synergistic optimization effect of the cross-modal attention
mechanism and the geometric consistency regularization term.
The multi-granularity alignment strategy maps the texture features
of Swin Transformer to the point cloud density of each level of
PointNet++ through bilinear interpolation, so that the geometric
features and texture features can be aligned with high precision at the
beginning of feature interaction, avoiding redundant calculations
caused by dimensional mismatch in traditional early fusion. The
cross-modal attention module uses geometric features to dominate
the attention weight allocation for query, dynamically suppresses
noise interference in oil/silt occlusion areas, and enables the loss
function to accurately focus on key defect areas in the early stages of
training, significantly reducing initial classification losses. In
addition, the geometric consistency regularization term constrains
the change of the second-order derivative of curvature, forcing the
model to prioritize learning the local geometric anomalies in the
defect area, reducing the oscillation in the gradient direction and
accelerating parameter convergence. The model in this paper has
both fast convergence and low loss characteristics under complex
working conditions, verifying the advantages of the cross-modal

(a)
This paper model

FocalNet PointTransformer

/
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g
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FIGURE 5
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fusion architecture in gradient direction optimization and feature
space alignment.

5.3 Overall classification performance

The overall classification performance of the test set is shown
in Figure 5.

From the overall classification performance of the test set, the
proposed model significantly outperforms other comparison models
with an accuracy of 0.985 and a macro F1 of 0.982, verifying its excellent
performance in high-speed rail wheel defect classification. PointNeXt
(accuracy 0.972, macro F1 0.974) and PCT (accuracy 0.969, macro F1
0.951) rank second and third, respectively, indicating that the improved
version of PointNet++ (PointNeXt) is better than the traditional
Transformer architecture (such as PointTransformer, accuracy 0.939,
macro F1 0.942) in geometric feature modeling, but is still limited by
occlusion interference. Swin Transformer++ (accuracy 0.968, macro F1
0.945) performs better than FocalNet (accuracy 0.965, macro F1 0.953),
reflecting that its sliding window attention mechanism is more stable in
strong light/reflective scenes. Among the multi-modal models,
CrossViT (accuracy 0.948, macro F1 0.943) and PVRNet (Point-
View Relation Neural Network) (accuracy 0.943, macro F1 0.936)
perform worse than the model in this paper, mainly due to the
redundant calculation and registration error of early fusion. It is
worth noting that the macro F1 (0.942) of PointTransformer is
higher than the accuracy (0.939), indicating that it has a strong
recall ability for minority classes, but the overall classification
performance is limited by the sparsity of point clouds and occlusion
interference. The proposed model dynamically suppresses occlusion
noise through a cross-modal attention mechanism and uses a geometric
consistency regularization term to constrain curvature changes, making
both accuracy and macro F1 better than other models.

The ROC-AUC index further reveals the global discrimination
ability of the proposed model under complex working conditions: the
proposed model has an AUC of 0.936, which is significantly higher

(b)
1.0 4
0.8+
g j
I3
= 0.6
% / — This paper model (AUC=0.936)
z 0.4 1 y PointTransformer (AUC=0.746)
£ - PCT (AUC=0.853)
Swin Transformer++ (AUC=0.813)
02 4 / CrossViT (AUC=0.754)
—— PVRNet (AUC=0.769)
4/ PointNeXt (AUC=0.856)
=z FocalNet (AUC=0.807)
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Overall classification performance. (@) Accuracy and macro F1 of different models. (b) ROC (Receiver Operating Characteristic)- AUC (Area Under the

Curve) curve.
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TABLE 5 Ablation experiment comparison information.

10.3389/fmech.2025.1708579

Abbreviation Model Data modality Fusion strategy
M1 PointNet++ Point cloud (geometric features) Unimodal processing
M2 Swin transformer Image (texture features) Unimodal processing
M3 PointNet++ + swin transformer (feature concatenation only) Point cloud + image Early fusion
M4 This paper model Point cloud + image Cross-modal attention fusion
(a) (b)
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FIGURE 6

Confusion matrix. (@) M1 confusion matrix. (b) M2 confusion matrix. (c) M3 confusion matrix. (d) M4 confusion matrix.

than PointNeXt (0.856) and PCT (0.853), indicating that its robustness
to category imbalance and occlusion interference is better than that of
the point cloud single-modality method. The AUC values of Swin
Transformer++ (AUC = 0.813) and FocalNet (AUC = 0.807) are lower
than those of the proposed model, reflecting the limitations of image
single-modality under illumination changes. Among the multi-modal
models, the AUC values of CrossViT (AUC = 0.754) and PVRNet
(AUC =0.769) are significantly lower than that of the proposed model.
PointTransformer (AUC = 0.746) and CrossViT have the lowest AUC
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values, indicating the shortcomings of the traditional Transformer
architecture in local geometric modeling and the bottleneck of cross-
modal alignment efficiency. The AUC advantage of the proposed
model directly reflects the synergy of cross-modal fusion (geometric
features guide attention weight allocation) and geometric consistency
regularization (curvature second-order derivative constraint).

In order to systematically verify the performance of each
component of the model in this paper, an ablation experiment is
designed, and the comparison information is shown in Table 5.
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The confusion matrix of the model involved in the ablation
experiment is shown in Figure 6.

The total number of test samples is 1,092 and the number of
samples correctly classified by each model shows that the model
performance is ranked as follows: M4 (1,067) > M3 (1,034) > M2
(1,023) > M1 (996). M4 is significantly better than M3, with 33 more
correct samples than M3, reflecting the substantial improvement of the
classification performance by the dynamic alignment strategy
(geometric feature-guided weight allocation) and the CMA module.
Image texture features (M2) are better than point cloud geometric
features (M1): M2 has 27 more correct samples than M1, indicating
that texture features have a stronger ability to capture surface details in
high-speed rail wheel defect detection. M3 has limited optimization of
single-modal performance: M3 has only 38 more correct samples than
M1 (M3-MIl = 38), indicating that simple feature splicing fails to fully
exploit the potential of multi-modal collaboration.

5.4 Robustness test

To ensure the statistical validity of the evidence, all accuracy
indicators of the reports are calculated based on independent test
sets randomly divided from the complete dataset (accounting for
10% of the total, i.e. 1092 sample groups). For robustness testing of
lighting and occlusion, specific subsets are extracted from the test
set. Each subset contains a sufficient number of samples to avoid
indicator fluctuations caused by too few samples.

The robustness of the model is analyzed through lighting
environment and occlusion, and the change in accuracy is
observed. The results are shown in Figure 7.

Figure 7a Classification accuracy across different lighting
environments. The test subset comprises samples captured under
strictly defined strong light (>100,000 lux), weak light (<1,000 lux)
and reflected light.

Figure 7b Classification accuracy under increasing levels of
occlusion. The occlusion rate is synthetically generated by
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applying random masks to the image and point cloud data,
simulating foreign object coverage.

From the lighting robustness test, it can be seen that the
model in this paper maintains the optimal accuracy in strong
light (0.968), weak light (0.962) and reflection (0.956) scenes,
and the difference between the three is small, indicating that the
cross-modal attention mechanism guides the weight allocation
through geometric features, effectively suppressing strong light
overexposure, weak light low contrast and reflection saturation
interference. In contrast, the accuracy of image unimodal
models (such as Swin Transformer++, FocalNet) drops
(Swin:  0.941—0.920;
FocalNet: 0.935—0.912), reflecting their sensitivity to lighting
fluctuations; point cloud unimodal models (such as PointNeXt,
PCT) perform more stably (PointNeXt: 0.945—0.925; PCT:
0.932—0.917), but are weaker than the model in this paper.
Early fusion methods (such as CrossViT and PVRNet) have
limited illumination adaptability due to feature redundancy and
semantic gap (CrossViT: 0.923—0.902; PVRNet: 0.928—0.910).
The model in this paper dynamically compensates for the
of through
alignment strategy and a geometric consistency regularization

significantly in reflective scenes

influence illumination a  multi-granularity
term, which reduces the accuracy fluctuation in strong light/low
light/reflective scenes.

The accuracy of our model changes from 0% to 50% in the
range of occlusion rate (0.968—3), which is significantly better
than other models. Its cross-modal attention mechanism guides
texture weight allocation through geometric features and still
maintains an accuracy of 0.905 under 40% occlusion, verifying
the effectiveness of dynamic occlusion suppression. The multi-
granularity alignment strategy (such as LI1-L3 hierarchical
mapping) of the model in this paper is coordinated with the
geometric consistency regularization term to maintain the
optimal inter-class separation in occlusion scenarios, supporting
the stability of high-speed railway wheelset defect detection under
foreign object coverage conditions.
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5.5 Defect size recognition effect

Defect sizes include: micro defects (<1 mm), small-scale defects
(1-3 mm), and medium-to-large-scale defects (>3 mm). The defect
recognition performance for different sizes is shown in Figure 8.

The proposed model maintains the best accuracy
(0.938—0.976—0.991) in the classification of defects <1 mm,
1-3 mm and >3 mm, reflecting the targeted optimization of the
CMA module and the geometric consistency regularization term for
small defects. Among defects <1 mm, the accuracy of the proposed
model is significantly higher than PointNeXt (0.912) and Swin
Transformer++ (0.910), verifying that the texture weight allocation
guided by geometric features effectively enhances the curvature
abnormal response. The performance of each model is close to that
of the medium- and large-scale defects (>3 mm) (0.960-0.991), but the
proposed model still leads with an accuracy of 0.991, reflecting the
accurate modeling of macroscopic structural damage by fusion
features. In contrast, the single-modal model is limited by the lack
of local information (such as PointTransformer is only 0.893 for
defects <1 mm), and the early fusion models (such as CrossViT
and PVRNet) have lower accuracy than the proposed model due to
redundant calculations and registration This  result
systematically proves that cross-modal attention fusion can
significantly improve the ability to identify tiny defects by
dynamically aligning geometric-texture features, while maintaining
stable judgment of medium and large-scale defects, supporting the full-
size coverage requirements of high-speed rail wheelset defect detection.

errors.

5.6 Parameter quantity and
inference efficiency

The feasibility and effectiveness of deployment on industrial
edge devices are verified by comprehensive analysis of parameter
quantity, inference speed, and recognition accuracy. The results are
shown in Figure 9.

The model in this paper significantly outperforms other models
while maintaining a macro precision of 0.982 through channel
pruning and 8-bit quantization (inference speed increased to
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Deployment performance.
23 FPS). Although PointNeXt (42M, 15 FPS) and Swin

Transformer++ (30M, 20 FPS) have moderate parameter counts,
they do not solve the sensitivity of single-modal features to
occlusion/illumination changes. CrossViT (50M, 10 FPS) is
limited in edge device deployment due to redundant
computation of cross-modal splicing. The cross-modal attention
mechanism of this model maintains high macro accuracy through
dynamic weight allocation (geometric feature dominance) and
multi-granularity alignment strategy, and channel pruning and
quantization reduce the number of parameters to 12M, which
meets the computing power constraints of Jetson AGX Xavier

and verifies its feasibility of industrial edge device deployment.

6 Conclusion

This a dual-stream cross-modal defect

classification framework that integrates PointNet++ for point

study presents

cloud geometric feature extraction and Swin Transformer for
image texture analysis. By employing a Cross-Modal Attention
(CMA) mechanism, the framework achieves dynamic alignment
of geometric and texture features, while a geometry consistency
regularization term is introduced to enhance sensitivity to micro-
defect curvature anomalies. Evaluated on a dedicated dataset of
10,918 multimodal samples, the model achieves an overall
accuracy of 0.985 and a macro Fl-score of 0.982. Notably, it
attains a recognition rate of 0.938 for defects smaller than 1 mm
and maintains 0.905 accuracy under 40% occlusion. Through
channel pruning and 8-bit quantization, the model is compressed
to 12M parameters and achieves real-time inference at 23 FPS on a
Jetson AGX Xavier edge device, demonstrating its practical
deployability. The proposed geometry-guided fusion strategy
shows superior performance compared to state-of-the-art models
such as PointNeXt and CrossViT, facilitating the transition from
manual to intelligent defect inspection in high-speed rail wheelset
maintenance.
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This study holds significant scientific value by advancing the
paradigm of multimodal fusion in industrial inspection, establishing
a novel geometry-texture alignment mechanism that enhances both
interpretability and robustness in defect detection under complex
conditions. It contributes methodologically to the fields of 3D vision
and deep learning by integrating structured point cloud processing with
vision transformer-based feature learning. Socially, the work directly
supports the safety, efficiency, and intelligence of high-speed railway
operations. By enabling accurate and real-time defect identification
even in challenging environments, the proposed system helps prevent
potential failures, reduces maintenance downtime, and promotes the
transition from labor-intensive manual checks toward automated, data-
driven predictive maintenance, thereby enhancing rail transport
reliability and public safety.

Despite these advances, the model exhibits performance
degradation in extreme occlusion scenarios (>40%) and remains
dependent on high-quality multimodal registration. Future work will
focus on integrating unsupervised domain adaptation techniques to
improve generalization across varying operational environments.
Furthermore, extending the framework to support multi-task
learning and broader multimodal collaborative prediction could
enhance its applicability and robustness, thereby contributing to
the further intelligence of industrial quality inspection systems.
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