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In order to address the technical challenges of detecting defects in high-speed 
railway wheelsets under complex conditions such as dynamic lighting, foreign 
object occlusion, and microscale anomalies, this paper proposes a dual-mode 
deep learning framework that integrates PointNet++ and Swin Transformer. This 
paper enhances defect recognition through cross modal feature collaboration, 
and combines cross modal attention (CMA) mechanism for dynamic feature 
alignment and geometric guidance suppression strategy for reducing occlusion 
noise. The experimental results showed an accuracy of 0.985, an F1 value of 
0.982, and a recognition rate of 0.938 for defects smaller than 1 millimeter. 
Research has shown that the model maintains robust accuracy under different 
lighting conditions (strong/weak/reflective) and up to 40% occlusion, while 
optimized deployment on edge devices can achieve 23FPS with only 12M 
parameters. This work significantly improves the intelligence and reliability of 
the high-speed railway wheelset detection system.
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1 Introduction

High-speed rail wheelsets (Deng et al., 2021; Guo et al., 2020) are core components for 
train power transmission and contact with tracks. Their surface defects (Liao et al., 2023; 
Zhang et al., 2021) directly affect operational safety and the safety of passengers’ lives and 
property. The structural integrity of high-speed train wheelsets directly determines their 
operational safety and stability. During long-term, high-load, and high-frequency service, 
wheelset surfaces are prone to defects such as cracks, abrasions, spalling, and pitting due to 
contact fatigue, wear, impact, or environmental corrosion. If these defects are not detected 
in time, they may lead to stress concentration, crack propagation, or even wheelset failure, 
seriously threatening the operational safety of high-speed trains. Therefore, achieving 
accurate and automated detection of wheelset defects is a crucial prerequisite for ensuring 
the reliable operation and intelligent maintenance upgrades of the high-speed train system.

Traditional manual inspection (Zhang et al., 2022a; Deng et al., 2024) relies on the 
experience and judgment of maintenance personnel and has bottlenecks such as low 
efficiency and high missed detection rate, making it difficult to meet the high-frequency and 
high-precision operation and maintenance requirements of high-speed railways. With the 
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development of deep learning technology, automated defect 
detection methods based on images or point clouds (Shaikh 
et al., 2025; Wang et al., 2025) are gradually being applied to 
industrial scenarios, but the complexity of high-speed rail wheels 
still leads to significant challenges: 1) Dynamic lighting interference, 
such as alternating strong/weak light inside and outside the tunnel, 
and reflection interference that invalidates image texture features; 2) 
Foreign matter occlusion, oil stains, and sand coverage lead to partial 
loss of defective areas; 3) It is difficult to identify tiny defects, and 
cracks <1 mm are easily masked by point cloud sparsity or image 
noise. The above problems urgently require an intelligent detection 
framework that integrates multi-modal data and has both geometric 
structure sensitivity and texture robustness to break through the 
performance bottleneck of traditional single-modal methods.

Existing high-speed rail wheel defect detection methods can be 
divided into two categories: single-mode and multi-mode. Among 
the single-mode methods, the point cloud driven model (Geng et al., 
2023; Yu et al., 2022) extracts geometric features through 
hierarchical abstraction, which is robust to occlusion and 
illumination changes but has difficulty in capturing surface 
texture details; the image driven model (Song et al., 2024; Zhang 
et al., 2022b) is good at identifying texture anomalies but is easily 
disturbed by dynamic illumination. Under the trend of multi-modal 
fusion, early fusion strategies lead to defect localization deviation 
due to the loss of geometric information, while late fusion 
introduces redundant noise due to the cross-modal semantic 
gap. The continuous progress of railway technology system is 
inseparable from a large amount of in-depth research and the 
application of new maintenance methods. The fundamental goal 
of these efforts is to provide higher quality equipment, thereby 
achieving more reliable and efficient railway transportation services. 
Especially in the field of high-speed railway, wheelsets are the core of 
train operation safety, and the intelligent upgrading of their 
condition monitoring and defect identification technology is an 
important manifestation of this development trend. By integrating 
advanced sensing technology and artificial intelligence methods, the 
automated and accurate detection of wheelset defects is achieved, 
which is of key significance for improving the reliability and 
operation and maintenance efficiency of the entire railway system 
(Vuković and Kovalevskyy, 2024). Recent studies have attempted to 
introduce a cross-modal attention mechanism to align image and 
text/point cloud features through a Query-Key-Value architecture 
but face problems such as high computational complexity and 
insufficient alignment accuracy in industrial scenarios. In 
addition, existing methods generally lack targeted optimization 
for small defects, such as not designing geometric consistency 
constraints to enhance the curvature abnormal response of 
cracks <1 mm, resulting in a high missed detection rate. 
Therefore, a new fusion framework that takes into account both 
multi-modal feature alignment efficiency and defect sensitivity is 
urgently needed.

This paper applies a dual-modal deep learning classification 
framework that integrates PointNet++ and Swin Transformer to 
systematically solve the problem of missed detection of high-speed 
rail wheel defects under dynamic lighting, foreign object occlusion, 
and micro-scale. A two-stream feature extraction network is 
designed: PointNet++ extracts point cloud geometric features 
through a hierarchical Set Abstraction module, and Swin 

Transformer performs a multi-scale window attention 
mechanism on the image after the illumination invariance is 
enhanced to capture texture features such as edges. CMA is 
applied to map image features to the point cloud density of each 
level of PointNet++ through a multi-granularity alignment strategy, 
and the association weights between geometric queries and texture 
key-values are calculated to dynamically suppress noise interference 
in oil/silt occlusion areas. A geometric consistency regularization 
term is applied to constrain the second-order derivative of the point 
cloud curvature change. CMA guides texture weight allocation 
through geometric features and applies geometric consistency 
regularization terms to constrain the second-order derivative of 
curvature so that the recognition rate of defects <1 mm reaches 
0.938; the accuracy rates of strong light/weak light/reflective scenes 
reach 0.968, 0.962, and 0.956, respectively, and it can accurately 
identify defects under different occlusion conditions. Through 
channel pruning and 8-bit quantization, the model is deployed to 
the Jetson AGX Xavier edge device, achieving an inference speed of 
23 FPS, meeting the real-time detection requirements of high-speed 
rail (≥20 FPS) and promoting the upgrade of manual detection to 
intelligent detection.

2 Related work

As a direct representation of three-dimensional geometric 
information, point cloud has irreplaceable advantages in 
industrial defect detection. The early MLP (Multilayer 
Perceptron)-based PointNet achieved point cloud classification 
through global feature pooling, but its defect of ignoring local 
neighborhood relationships led to insufficient sensitivity to tiny 
defects. PointNet++ (Zeng et al., 2023) applied local structure 
perception capabilities through the hierarchical Set Abstraction 
module, making breakthroughs in tasks such as part recognition. 
Its sampling and Ball Query grouping strategies can abstract multi- 
scale geometric features layer by layer. However, its fixed-radius ball 
query mechanism is prone to local feature loss in sparse point cloud 
scenarios. PointTransformer (Jing and Wang, 2023; Wan et al., 
2023) applies the Transformer architecture to point cloud 
processing and models the local geometric relationship of 
disordered point clouds through a position-aware self-attention 
mechanism. PCT (Point Cloud Transformer) (Kang et al., 2023) 
combines learnable kernel functions with spatially aware attention 
to significantly improve the recognition rate of small defects. 
PointNeXt (Huaiyu et al., 2024; Yang et al., 2025) surpasses 
PointNet++ in point cloud classification tasks through ResNet- 
style modules and enhanced data augmentation strategies. 
Although the above methods perform well in single-modal point 
cloud processing, their robustness to foreign object occlusion is still 
limited, and they need to be combined with image texture features 
for complementary enhancement. In addition, existing methods 
mostly focus on static scenes and it is difficult to deal with point 
cloud deformation caused by vibration in dynamic acquisition of 
high-speed rail wheelsets, which urgently needs to be combined with 
modal registration technology for optimization.

Visual transformer has shown its potential in industrial defect 
detection under complex backgrounds due to its global modeling 
capabilities. Swin Transformer (Li et al., 2022; Tang et al., 2023) 
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effectively balances computational complexity and multi-scale 
feature extraction capabilities through a sliding window attention 
mechanism and hierarchical feature map design, and outperforms 
traditional CNN (Convolutional Neural Network) models in tasks 
such as surface defect detection. Its multi-head self-attention 
mechanism can capture long-range dependencies and identify 
fracture features and patchy peeling patterns at crack edges in 
images. The further improved Swin Transformer (Zheng and Lin, 
2023; Wang et al., 2024) applies an illumination invariant 
embedding layer and suppresses strong/weak light interference 
through a channel attention module, making it suitable for 
dynamic lighting scenes. Another type of model, such as 
FocalNet (Li B. et al., 2024), uses a dynamic sparse attention 
mechanism to reduce the amount of computation while 
maintaining high-resolution details, but its complexity is still 
limited by the global interaction requirement of O(n2). CrossViT 
(Xu et al., 2024) extracts multi-scale features of images through a 
dual-branch architecture and combines cross-attention to fuse 
global and local information, but it is easily disturbed by foreign 
textures in occluded scenes. Although the visual Transformer has 
significant advantages in image texture modeling, its robustness to 
dynamic lighting and occlusion still needs to be optimized in 
coordination with geometric features.

Multi-modal fusion, by combining point cloud geometric 
features with image texture features, has become a key direction 
to break through the limitations of single modality in the field of 
industrial quality inspection. Existing fusion strategies can be 
divided into three categories according to the interaction stage: 
early fusion (data level) renders the point cloud into a pseudo depth 
map or normal vector map and then inputs it into CNN processing 
(Guo et al., 2023), but the dimensionality reduction loss of geometric 
information leads to defect localization deviation; mid-term fusion 
(feature level) integrates modal information in the middle layer of 
the model. For example, simple feature concatenation introduces 
redundant noise due to the cross-modal semantic gap (Yang et al., 
2023; He et al., 2022), while attention-based fusion (the multi-modal 
CrossViT framework proposed by Kang et al. (2025), which 
integrates image features with 3D spatial information and 
optimizes through contrastive learning) or point cloud-image 
spatial attention module (Sun et al., 2024) can screen key 
features; late fusion (decision level) (Xie et al., 2024) processes 
the post-modal fusion results independently, which is 
computationally efficient but difficult to resolve inter-modal 
conflicts. However, existing methods generally lack targeted 
optimization for minor defects and have insufficient cross-modal 
alignment efficiency. The CMA applied in this paper belongs to the 
mid-term fusion paradigm, and its innovation lies in: 1) Multi- 
granularity alignment strategy: The multi-scale image features (C1- 
C3) output by Swin Transformer are accurately mapped to the point 
cloud density of each level of PointNet++ through bilinear 
interpolation to achieve spatial adaptation of geometric structure 
and texture details; 2) Dynamic occlusion suppression mechanism: 
The geometric features are used as the query to dynamically 
calculate the association weight with the texture key-value, and 
the geometric guidance weight based on the curvature gradient is 
applied to suppress the noise response of the oil/silt occlusion area; 
3) The joint geometric consistency regularization term is used to 
constrain the abnormal curvature changes of small defects, thereby 

significantly improving the robustness of defect recognition while 
maintaining computational efficiency.

3 Methods

This study employs a research paradigm combining 
experimental and computational methods, comprehensively 
utilizing core technologies such as 3D visual perception, deep 
learning, and multimodal information fusion. At the data 
acquisition level, a synchronous acquisition system consisting of 
a line laser scanner and a high-speed camera was used, with a 
hardware trigger controller ensuring spatiotemporal alignment. 
Data processing and algorithm development were primarily based 
on the PyTorch deep learning framework, with model training and 
optimization performed on an NVIDIA A100 GPU cluster. 
Furthermore, the model was compressed using channel pruning 
and 8-bit quantization techniques, and finally deployed on the Jetson 
AGX Xavier edge computing platform to verify its feasibility for real- 
time inference in industrial settings. This synergistic application of 
methods, technologies, and tools constitutes the complete 
methodological system of this study.

3.1 Data preprocessing and registration

To ensure strict alignment of point cloud and image data in time 
and space, a synchronous acquisition system of line laser scanner + 
high-speed camera is used. The core parameters are shown 
in Table 1.

When the laser scanner emits the laser beam, the trigger 
controller generates a pulse signal, which synchronously triggers 
the high-speed camera to expose, ensuring that the point cloud and 
image are strictly aligned in the space-time coordinate system.

To eliminate the coordinate deviation between LiDAR (Light 
Detection and Ranging) and the camera, a two-stage registration 
strategy of rigid transformation matrix calibration + ICP (Iterative 
Closest Point) algorithm optimization is adopted.

Calibration target: chessboard (10 × 7 corner points, grid 
spacing 20 mm) + spherical target (diameter 50 mm). Multi-view 
chessboard point cloud and image are collected, and the 3D 
coordinates and pixel coordinates of the corner points are 
extracted by minimizing the reprojection error of the 
sphere center. 

Lreproj �􏽘
i

‖ π R · Ci + t( )− ci‖22 (1)

In Equation 1, Ci is the center of the sphere detected by LiDAR; 
ci is the pixel coordinates of the center of the sphere detected by the 
image; and π is the camera projection function. R, t is the rotation 
and translation matrix.

Calibrated LiDAR point cloud P � pi ∈ R3􏼈 􏼉
N

i�1 and camera 
depth map D � dj ∈ R3􏽮 􏽯

M

j�1
.

Minimizing the sum of squared distances between 
corresponding points in the point cloud and the depth map: 

min
R,t

􏽘

N

i�1
‖ R·i + t( )−N pi( 􏼁‖

2
2 (2)
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In Equation 2, N (pi) is the point closest to pi in the depth map.
To improve the quality of feature extraction, targeted 

preprocessing is performed on the point cloud and image, 
respectively. The local density mean and standard deviation of 
the point cloud are calculated to remove outliers, as shown in 
the Equation 3: 

‖ pi − μ ‖> 3σ (3)

Photo-invariant enhancement: Based on the single-scale Retinex 
theory, logarithmic domain enhancement is performed on the 
image, as shown in the Equation 4: 

Ienhanced x, y( 􏼁 � log I x, y( 􏼁( 􏼁− log Gσ*I x, y( 􏼁( 􏼁 (4)

3.2 Two-stream feature extraction network

The two-stream feature extraction network is shown in Figure 1.
This paper proposes a dual-stream feature extraction network 

based on PointNet++ and Swin Transformer to realize multi-modal 
feature fusion analysis of high-speed rail wheel defects. The 
PointNet++ branch extracts point cloud geometric features step 

by step through the hierarchical Set Abstraction module: the first 
layer (L1) uses the farthest point sampling to obtain 1,024 points, 
combines the ball query to build a local neighborhood, and outputs 
128-dimensional geometric features through MLP ([64, 64, 128]); 
the second layer (L2) is further downsampled to 512 points, and the 
MLP is upgraded to 256 dimensions; the third layer (L3) extracts 
256 points (r = 40 mm, K = 128) of global features 
(1,024 dimensions). The Swin Transformer branch takes a 224 × 
224 image as input and generates multi-scale texture features 
through a 4-stage sliding window attention mechanism: Stage 
1 outputs C1 (56 × 56 × 96) to capture edge gradients, Stage 2’s 
C2 (28 × 28 × 192) models patch textures, Stage 3’s C3 (14 × 14 × 
384) extracts directional textures, and Stage 4’s C4 (7 × 7 × 768) fuses 
global context. The cross-modal fusion module adopts a multi- 
granularity alignment strategy: C1-C3 features are mapped to the 
point cloud density of each level of PointNet++ through bilinear 
interpolation, and occlusion noise is dynamically suppressed 
through the cross-modal attention mechanism. The fused 
features are globally pooled and input into the fully connected 
layer, combined with Focal Loss to alleviate the category 
imbalance problem, and a geometric consistency regularization 
term is applied to constrain the second-order derivative of the 
point cloud curvature change for defect identification.

TABLE 1 Synchronous acquisition information.

Components Model/Parameter Function

Line laser scanner Keyence LJ-V7000 (accuracy ±0.1 mm) Acquire the 3D point cloud of the wheelset surface at a frequency of 200 Hz (density ≥104 points/m2) 
and output point cloud data

High-speed camera Basler ace acA2440-35uc (2,448 × 2048 pixels, 
200 fps)

Synchronize the capture of wheelset images (resolution 224 × 224)

Trigger controller National instruments PXIe-6660 Synchronize the acquisition timing of the laser scanner and camera through the hardware trigger 
signal, and the clock synchronization error is <1 μs

Data storage Capacity ≥2 TB Store point cloud and image data in real time to support subsequent offline processing

FIGURE 1 
Two-stream feature extraction network.
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PointNet++ (Xiang et al., 2025; Huang et al., 2023) abstracts the 
geometric features of point clouds layer by layer through a 
hierarchical Set Abstraction module. Its core process includes 
farthest point sampling → ball query grouping → multi-layer 
perceptron feature extraction, and finally outputs multi-scale 
geometric features {L1, L2, L3}, corresponding to the levels of 
point cloud density of 1,024, 512, and 256, respectively.

In farthest point sampling, for a given point cloud 
P � pi ∈ R3􏼈 􏼉

N

i�1, the point farthest from the selected point set is 
iteratively selected as the sampling point to ensure the uniformity of 
the point cloud distribution: 

FPS P, K( ) � arg max
pj∈P

min
q∈S
‖ pj − q‖2 (5)

In Equation 5, S is the set of selected points, and K is the number 
of target points.

For the sampling point qj ∈ S, search for the neighborhood 
point N (qj) � {pi∈ P |‖pi − qj‖2 ≤ r} within the radius r to build a 
local neighborhood relationship. The radius r is dynamically 
adjusted according to the defect scale.

For each set of neighborhood point N (qj), features are 
extracted through MLP with shared weights: 

fj � MLP qj; MaxPool pi − qj􏽮 􏽯
pi ∈ N qj( )i

􏼒 􏼓􏼔 􏼕􏼒 􏼓 (6)

In Equation 6, the MaxPool operation aggregates the local 
geometric information of the neighborhood points relative to the 
coordinates pi − qj, and finally outputs the feature fj ∈ Rd.

Hierarchical feature output:
L1 (1,024 points): The original point cloud is sampled at 

1,024 points at the farthest point, and MLP outputs 64- 
dimensional geometric features.

L2 (512 points): The L1 features are sampled at 512 points at the 
farthest point, and the MLP is upgraded to 128 dimensions.

L3 (256 points): The L2 features are sampled at 256 points at the 
farthest point, and the MLP is upgraded to 256 dimensions.

The geometric features output by PointNet++ include point 
cloud normal vector, curvature, and neighborhood point distance 
distribution. The normal vector estimates the surface direction 
through the difference in coordinates of the neighborhood 
points. The Equation 7 is as following: 

nj �
∂f
∂x

×
∂f
∂y

(7)

The curvature feature is usually simplified to the minimum 
eigenvalue of the neighborhood point covariance matrix.

The average Euclidean distance from the neighborhood point to 
the center point is calculated, and the neighborhood distance 
distribution is as the Equation 8: 

μj �
1

N qj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

pi∈N qj( )

‖ pi − qj‖2 (8)

Swin Transformer (Li Y. et al., 2024; Si et al., 2024) extracts 
global texture features of images through a multi-scale sliding 
window attention mechanism. Its architecture is based on the 
Swin-Tiny configuration, with an input image of resolution 
224 × 224 and an output multi-scale feature map C1, C2, C3, C4{ }.

The input image is divided into 4 × 4 non-overlapping 
blocks, each of which is flattened into a one-dimensional 
vector, and the embedded features are generated by linear 
projection: 

E0 � Linear Patch x( )( ) ∈ R H/4( ) W/4( )×C0 (9)

In Equation 9, H �W � 224, C0 � 96.
The core innovation of Swin Transformer (Irsal et al., 2024; 

Ma et al., 2025) lies in the sliding window mechanism, which 
divides the feature map into multiple windows. Through multi- 
head self-attention, for each point i in the window, the Query (Q), 
Key (K), and Value (V) are calculated, as following Equation 10
and 11: 

MSA E( ) � Concat Head1, . . . ,Headh( )WO (10)

Headk � Softmax
QkK

T
k��

dk
􏽰􏼠 􏼡Vk (11)

The next layer shifts the window by half to achieve cross- 
window interaction and multi-scale feature map output:

C1 (56 × 56): shallow features, capturing edge gradients.
C2 (28 × 28): mid-level features, extracting patch textures.
C3 (14 × 14): high-level features, modeling directional textures.
C4 (7 × 7): global features, integrating multi-scale contexts.
Edge features capture crack boundaries through gradient 

amplitude, and the Equation 12 is as following: 

G �
�������
G2
x + G

2
y

􏽱
(12)

Using local binary pattern statistics to calculate texture 
repeatability, the patch formula is as the Equation 13: 

LBP p( 􏼁 �􏽘
7

i�0
s gi −gc( 􏼁2i (13)

Directional texture: The scratch direction is detected by Gabor 
filter response, and the filter kernel is as the Equation 14: 

g x, y( 􏼁 � exp −
x′2 + γ2y′2

2σ2􏼠 􏼡 cos 2πfx′( 􏼁 (14)

The parameter information of the PointNet++ + Swin 
Transformer model is shown in Table 2.

3.3 Cross-modal attention fusion

In order to achieve cross-modal interaction between point cloud 
geometric features and image texture features, a multi-granularity 
alignment strategy is designed to map the multi-scale texture 
features {C1, C2, C3, C4} output by Swin Transformer to the 
point cloud density of each level of PointNet++ through bilinear 
interpolation. Specifically:

C1→L1: The C1 feature map (56 × 56 × 96) is mapped to 
1,024 points of the L1 level through bilinear interpolation to 
generate 1,024 × 96 texture features.

C2→L2: The C2 feature map (28 × 28 × 192) is mapped to 
512 points of the L2 level, and 512 × 192 features are output.

C3→L3: The C3 feature map (14 × 14 × 384) is mapped to 
256 points of the L3 level to generate 256 × 384 features.
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C4 global fusion: The C4 feature map (7 × 7 × 768) is flattened 
into a 1-dimensional vector and concatenated with the global 
features of L3.

Mapping formula: 

F l( )
tex � Bilinear Cl( ) ∈ RNl×Dl (15)

In Equation 15, l represents the level; Nl is the number of points 
in the lth layer of PointNet++; and Dl is the texture 
feature dimension.

For the multi-scale feature maps {C1, C2, C3} output by Swin 
Transformer, this paper maps them to the spatial coordinates of 
PointNet++point clouds at various levels through bilinear 
interpolation. The interpolation process is based on the 
normalized image coordinates (u, v) of each sampling point in 
the point cloud, weighted and summed by the eigenvalues of the 
surrounding four pixels, where F(l)tex(p) �􏽘

4

i�1
wi · Cl(xi, yi). (xi, yi)

is the coordinate of adjacent pixels in the image, and wi is the weight 
based on the relative position between point p and the pixel. This 
process achieves precise mapping from image feature space to point 
cloud geometric space, ensuring spatial consistency of texture 
features in geometric structure and providing a reliable feature 
alignment foundation for subsequent cross modal attention fusion.

The CMA module (Shi et al., 2024) dynamically calculates the 
association weights between geometric features and texture features 
through the Query-Key-Value architecture. Query generates the 
geometric features F(l)geo of PointNet++, and generates the Query 
matrix through linear projection to obtain, as shown in the 
Equation 16: 

Q �WqF
l( )

geo ∈ RNl×dk (16)

The texture feature projection of Swin Transformer (Gao et al., 
2022; Zhu et al., 2023) is as shown in Equation 17, 18: 

K �WkF
l( )

tex ∈ RNl×dk (17)

V �WvF
l( )

tex ∈ RNl×dv (18)

The similarity matrix between Query and Key is calculated, and 
the attention weight is generated through Softmax normalization. 
The attention weight A is used to perform weighted summation on 
the Value feature V to generate the fusion feature, as shown in the 
Equation 19: 

F
l( )

fusion � A · V ∈ RNl×dv (19)

In order to solve the texture feature interference caused by oil/ 
silt occlusion, a geometry-guided attention weight suppression 
strategy is designed. Dynamic weights are generated based on the 
geometric features (curvature κi) of PointNet++, as shown in the 
Equation 20: 

αi � σ
κi

‖ ∇κi‖2 + ϵ
􏼠 􏼡 (20)

Multiply the geometric weight αi with the attention weight to 
suppress the response of the occluded area: 

Ãij � αi · Aij (21)

In Equation 21, Ãij is the corrected attention weight, i is the Query 
point index, and j is the Key point index.

The corrected attention weight is used to weight the Value 
feature, as shown in the Equation 22: 

F̃
l( )

fusion � Ã · V (22)

The final fusion feature is the concatenation of the weighted 
results layer by layer, as shown in the Equation 23: 

Ffinal � Concat F̃ 1( )
fusion, F̃

2( )
fusion, F̃

3( )
fusion􏼒 􏼓 ∈ R N1+N2+N3( )×dv (23)

TABLE 2 Model parameter information.

Components Parameter name Values/Configuration

PointNet++ Set abstraction layers 3

Farthest point sampling L1: 1,024 points, L2: 512 points, L3: 256 points

Ball query Radius r: L1 = 10 mm, L2 = 20 mm, L3 = 40 mm

Number of neighboring points K L1 = 32, L2 = 64, L3 = 128

MLP structure L1: [64, 64, 128], L2: [128, 128, 256], L3: [256, 512, 1,024]

Activation function ReLU

Swin transformer Architecture type Swin-tiny

Input resolution 224 × 224

Patch size 4 × 4

Stages 4 stages

Window size 7 × 7

Number of self-attention heads 8

MLP expansion ratio 4
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3.4 Classification head and loss function

After the fused features are output by the cross-modal attention 
module, the feature dimensions need to be further compressed and 
mapped to the defect category space. The classification head in this 
paper adopts a two-stage fully connected network (Zhou et al., 2025; 
Zhang et al., 2023). Global maximum pooling is performed on the 
fused features to extract the maximum response value of each 
channel, as shown in the Equation 24: 

fglobal � GMP Ffusion( ) ∈ R1×d (24)

This operation retains key characteristic responses (such as high 
curvature areas at the crack edge) and generates a 1 × 1024- 
dimensional global feature vector.

Dropout (dropout rate 0.5) is inserted between fully connected 
layers to prevent overfitting, and the Xavier initialization strategy is 
adopted to ensure training stability.

In order to solve the problems of category imbalance and micro- 
defect recognition, this paper designs a dual-objective loss function 
to jointly optimize classification accuracy and geometric constraints.

In order to solve the problem of unbalanced distribution of 
high-speed rail wheel defect samples, Focal Loss is used to alleviate 
the impact of category imbalance: 

Lcls � −
1
N
􏽘

N

i�1
αi 1 −pi( 􏼁

γlog pi( 􏼁 (25)

In Equation 25, pi is the predicted probability of the i-th sample, 
and αi is the category weight.

In order to enhance the geometric sensitivity of small defects, the 
L2 regularization term of the point cloud curvature change is introduced: 

Lgeo � λ ·
1
N
􏽘

N

i�1
‖ ∇2κi ‖

2
2 (26)

In Equation 26, κi is the curvature of the i-th point.
The total loss is the weighted sum of the classification loss and 

the geometric constraint, as shown in the Equation 27: 

L � Lcls + Lgeo (27)

The joint training uses the AdamW optimizer (learning rate 5 × 
10−4, weight decay 10–4) to jointly optimize the classification and 
geometric constraints.

4 Experiment

4.1 Dataset construction

The dataset used in this study was constructed based on the 
publicly available FaultSeg dataset through large-scale expansion 
and enhancement. The FaultSeg dataset provides an image 
foundation for train wheel defects. To meet the requirements of 
the multimodal fusion method proposed in this article, 3D point 
cloud data strictly paired with each defect image was synchronously 
collected, and the sample size and diversity of defect scenes were 
significantly expanded. The final dataset consists of 10,918 strictly 
paired image point cloud samples, as shown in Table 3. Compared 

with the original FaultSeg, the main extensions of this dataset 
include: (1) the introduction of point cloud mode, which 
achieves the upgrade of data from 2D to 3D; (2) Added defect 
categories to make defect types more complete; (3) Systematically 
collected data under dynamic lighting conditions (strong light, weak 
light, reflection) and simulated foreign object occlusion conditions; 
(4) The total sample size has significantly increased from thousands 
of images in FaultSeg to over 10,000 paired samples. This enhanced 
dataset provides a solid foundation for validating cross modal defect 
detection algorithms under complex operating conditions.

The dataset in this paper is based on the FaultSeg dataset and 
synchronously collects point cloud data information. It contains 
10,918 sets of samples, covering dynamic lighting, foreign object 
occlusion and small defect scenes. The distribution of the dataset is 
shown in Table 3.

The definition of tiny defects is a diameter of <1 mm, small-scale 
defects (1–3 mm), and medium-to-large defect sizes (>3 mm). Strong light 
environment refers to an extreme brightness scene with a light intensity 
exceeding 100,000 lux, simulating the working conditions of high-speed rail 
wheelsets under direct sunlight or strong reflective light interference outside 
the tunnel. Weak light environment refers to a low-light scene with a light 
intensity below 1,000 lux, simulating the complex working conditions of 
high-speed rail wheelsets during maintenance in tunnels or at night. 
Reflective environment refers to a scene where the metal surface of the 
wheelset is partially too bright due to specular reflection, simulating the 
working conditions of the wheelset in a humid environment.

The reflection scene is clearly defined and strictly controlled in 
data collection: it refers to the saturation highlight appearing in local 
areas due to the mirror reflection characteristics of the metal surface 
of the wheel, with pixel brightness values exceeding 200 (in the gray 
range of 0–255), and the highlight area accounting for 5%–30% of the 
area of interest of the wheel. This condition is accurately simulated in 
a laboratory environment by adjusting a point light source at a 
specific angle to reproduce the real working conditions of the wheel 
under wet or specific lighting conditions. All samples labeled as 
“reflection” in the dataset were screened using this standard, ensuring 
the uniformity and measurability of the testing conditions.

The dataset is divided into two parts: image and point cloud 
data. The wheelset image information is shown in Figure 2.

The five key surface conditions of high-speed rail wheels are 
categorized as follows: Crack, characterized by narrow fissures 
potentially propagating due to fatigue and stress concentration, 
posing a high hazard level risk of structural failure. Scuffing, 
appearing as linear wear marks typically caused by braking 
slippage, is assessed as a medium-level hazard. Spalling, where 
surface metal layers detach due to contact fatigue or thermal stress, 
represents a medium-high hazard by exacerbating vibration and noise. 
Pit, manifesting as small yet deep depressions from foreign matter 
intrusion or corrosion, is a medium-hazard defect that can initiate 
crack formation. Normal denotes a defect-free surface, indicating a safe 
operational state. This classification system comprehensively covers 
typical failure modes, from micro-damage to macro-defects, providing 
a clear basis for automated defect identification and safety assessment.

During long-term operation, high-speed rail wheelsets (i.e., the 
combination of wheels and axles) may suffer from various types of 
surface or structural defects due to the huge loads, friction, and 
impact. The dataset is divided into training set, test set, and 
validation set in the form of 8:1:1.
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The comparison of high-speed rail wheel set type information is 
shown in Table 4.

4.2 Experimental environment and index 
evaluation

To ensure the efficiency of model training and deployment, this 
experiment uses a graphics card cluster: NVIDIA A100 × 4, which 
supports mixed precision training. The processor uses Intel Xeon 
Gold 6,330, with 1 TB of memory, to accelerate data preprocessing 

and multi-threaded loading. PyTorch 1.13 is used to build a deep 
learning framework. And Jetson AGX Xavier is deployed.

The training hyperparameters in this paper are set as:
Optimizer: AdamW (learning rate 5 × 10−4, β1 = 0.9, β2 = 0.999).
Learning rate schedule: Cosine annealing (initial learning rate = 

5××10–4, final 10–6).
Regularization: weight decay 10–4, dropout rate 0.5.
Batch size: batch size = 64 during training, batch size = 1 during 

deployment (single frame processing).
In order to comprehensively evaluate the performance of the 

model in high-speed rail wheel defect detection, this paper adopts an 

TABLE 3 Dataset distribution.

Category Specific 
category

Number of 
samples

Defect size 
distribution

Lighting conditions Occlusion 
rate

Defect Crack 880 <1 mm (400) Strong light (293), weak light (293), 
reflection (294)

0%–50%

Scuffing 1,050 <1 mm (500) Strong light (350), weak light (350), 
reflection (350)

Spalling 950 <1 mm (300) Strong light (317), weak light (317), 
reflection (316)

Pit 1,038 <1 mm (400) Strong light (346), weak light (346), 
reflection (346)

Normal Normal 7,000 - Strong light (2,333), weak light (2,333), 
reflection (2,334)

0%

FIGURE 2 
High-speed rail wheelset image.

TABLE 4 Comparison of high-speed rail wheel set type information.

Category Description Causes Hazard level

Crack Narrow cracks, which may extend Fatigue, stress concentration High

Scuffing Linear wear marks Braking skidding, slipping Medium

Spalling Surface metal layer has fallen off Contact fatigue, thermal stress Medium-high

Pit Small but deep depressions Foreign matter intrusion, corrosion Medium

Normal No defect Normal use Safe
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evaluation system that combines macro-level indicators with 
category-level indicators. The accuracy measures the overall 
classification performance of the model and is defined as the 
ratio of the number of samples predicted correctly to the total 
number of samples, as shown in the Equation 28: 

Acc �
TP + TN

TP + TN + FP + FN
(28)

Macro precision measures the average precision of the model for 
all categories to avoid the impact of category imbalance, as shown in 
the Equation 29: 

Precisionmacro �
1
C
􏽘

C

i�1

TPi
TPi + FPi

(29)

Macro recall measures the average recall of the model for all 
categories, as shown in the Equation 30: 

Recallmacro �
1
C
􏽘

C

i�1

TPi
TPi + FNi

(30)

The macro F1 score is the harmonic mean of the macro 
precision and the macro recall, which comprehensively 
measures the model performance, as shown in the 
Equation 31: 

F1macro �
2

􏽐
C

i�1
1

Precisioni
+ 1

Recalli

(31)

5 Results and analysis

5.1 t-SNE visualization of data features

t-SNE (t-Distributed Stochastic Neighbor Embedding) 
visualization is used to analyze the distribution separability of 
geometric features, global texture features, and fusion features, 
and verify that the inter-class separation is improved after cross- 
modal fusion. The t-SNE visualization results are shown 
in Figure 3.

Figure 3a shows that the geometric features of the five types of 
samples in the t-SNE space overlap significantly, and the boundaries 
between normal samples and defective samples are blurred, 
indicating that the local geometric features (such as curvature 
and normal vector) extracted by PointNet++ have limitations in 
class distinction. Although defects such as cracks and scratches have 
slight differences in local density distribution, the overall 
distribution is loosely mixed and no obvious independent 
clustering structure is formed, indicating that the geometric 
features have a weak ability to characterize small surface defects, 
which may be limited by the sparsity of point clouds or the sampling 
bias of neighborhood information.

Figure 3b shows that the distribution of normal samples and 
defective samples in the global texture features gradually separates, 
and defects such as cracks and pits tend to form weak clustering 
locally, reflecting the Swin Transformer’s ability to model image 
edge gradients and patch repeatability. However, there is still overlap 
in categories such as scratches and peeling, indicating that texture 
features are easily affected by lighting changes or foreign body 
occlusion, leading to misjudgment of similar texture patterns.

In Figure 3c, the five types of samples show tight and separated 
clusters in the fusion feature space, with clear boundaries between 
classes and significantly enhanced compactness within classes, 
verifying the effective integration of geometric and texture 
features by the cross-modal attention mechanism. The weight 
distribution guided by geometric features strengthens the 
response of the defective area, suppresses the interference of oil/ 
sand occlusion, and completely decouples the distribution of normal 
samples from defective samples, supporting more robust 
classification performance.

5.2 Changes in model loss values

The model in this paper is compared with the existing 
mainstream models to analyze the changes in loss values. The 
results are shown in Figure 4.

The initial training loss value of the model in this paper is the 
smallest and converges the fastest. The fundamental reason is the 

FIGURE 3 
t-SNE visualization results. (a) Geometric features. (b) Global texture features. (c) Fusion features.
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synergistic optimization effect of the cross-modal attention 
mechanism and the geometric consistency regularization term. 
The multi-granularity alignment strategy maps the texture features 
of Swin Transformer to the point cloud density of each level of 
PointNet++ through bilinear interpolation, so that the geometric 
features and texture features can be aligned with high precision at the 
beginning of feature interaction, avoiding redundant calculations 
caused by dimensional mismatch in traditional early fusion. The 
cross-modal attention module uses geometric features to dominate 
the attention weight allocation for query, dynamically suppresses 
noise interference in oil/silt occlusion areas, and enables the loss 
function to accurately focus on key defect areas in the early stages of 
training, significantly reducing initial classification losses. In 
addition, the geometric consistency regularization term constrains 
the change of the second-order derivative of curvature, forcing the 
model to prioritize learning the local geometric anomalies in the 
defect area, reducing the oscillation in the gradient direction and 
accelerating parameter convergence. The model in this paper has 
both fast convergence and low loss characteristics under complex 
working conditions, verifying the advantages of the cross-modal 

fusion architecture in gradient direction optimization and feature 
space alignment.

5.3 Overall classification performance

The overall classification performance of the test set is shown 
in Figure 5.

From the overall classification performance of the test set, the 
proposed model significantly outperforms other comparison models 
with an accuracy of 0.985 and a macro F1 of 0.982, verifying its excellent 
performance in high-speed rail wheel defect classification. PointNeXt 
(accuracy 0.972, macro F1 0.974) and PCT (accuracy 0.969, macro F1 
0.951) rank second and third, respectively, indicating that the improved 
version of PointNet++ (PointNeXt) is better than the traditional 
Transformer architecture (such as PointTransformer, accuracy 0.939, 
macro F1 0.942) in geometric feature modeling, but is still limited by 
occlusion interference. Swin Transformer++ (accuracy 0.968, macro F1 
0.945) performs better than FocalNet (accuracy 0.965, macro F1 0.953), 
reflecting that its sliding window attention mechanism is more stable in 
strong light/reflective scenes. Among the multi-modal models, 
CrossViT (accuracy 0.948, macro F1 0.943) and PVRNet (Point- 
View Relation Neural Network) (accuracy 0.943, macro F1 0.936) 
perform worse than the model in this paper, mainly due to the 
redundant calculation and registration error of early fusion. It is 
worth noting that the macro F1 (0.942) of PointTransformer is 
higher than the accuracy (0.939), indicating that it has a strong 
recall ability for minority classes, but the overall classification 
performance is limited by the sparsity of point clouds and occlusion 
interference. The proposed model dynamically suppresses occlusion 
noise through a cross-modal attention mechanism and uses a geometric 
consistency regularization term to constrain curvature changes, making 
both accuracy and macro F1 better than other models.

The ROC-AUC index further reveals the global discrimination 
ability of the proposed model under complex working conditions: the 
proposed model has an AUC of 0.936, which is significantly higher 

FIGURE 4 
Changes in loss value.

FIGURE 5 
Overall classification performance. (a) Accuracy and macro F1 of different models. (b) ROC (Receiver Operating Characteristic)- AUC (Area Under the 
Curve) curve.
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than PointNeXt (0.856) and PCT (0.853), indicating that its robustness 
to category imbalance and occlusion interference is better than that of 
the point cloud single-modality method. The AUC values of Swin 
Transformer++ (AUC = 0.813) and FocalNet (AUC = 0.807) are lower 
than those of the proposed model, reflecting the limitations of image 
single-modality under illumination changes. Among the multi-modal 
models, the AUC values of CrossViT (AUC = 0.754) and PVRNet 
(AUC = 0.769) are significantly lower than that of the proposed model. 
PointTransformer (AUC = 0.746) and CrossViT have the lowest AUC 

values, indicating the shortcomings of the traditional Transformer 
architecture in local geometric modeling and the bottleneck of cross- 
modal alignment efficiency. The AUC advantage of the proposed 
model directly reflects the synergy of cross-modal fusion (geometric 
features guide attention weight allocation) and geometric consistency 
regularization (curvature second-order derivative constraint).

In order to systematically verify the performance of each 
component of the model in this paper, an ablation experiment is 
designed, and the comparison information is shown in Table 5.

TABLE 5 Ablation experiment comparison information.

Abbreviation Model Data modality Fusion strategy

M1 PointNet++ Point cloud (geometric features) Unimodal processing

M2 Swin transformer Image (texture features) Unimodal processing

M3 PointNet++ + swin transformer (feature concatenation only) Point cloud + image Early fusion

M4 This paper model Point cloud + image Cross-modal attention fusion

FIGURE 6 
Confusion matrix. (a) M1 confusion matrix. (b) M2 confusion matrix. (c) M3 confusion matrix. (d) M4 confusion matrix.
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The confusion matrix of the model involved in the ablation 
experiment is shown in Figure 6.

The total number of test samples is 1,092 and the number of 
samples correctly classified by each model shows that the model 
performance is ranked as follows: M4 (1,067) > M3 (1,034) > M2 
(1,023) > M1 (996). M4 is significantly better than M3, with 33 more 
correct samples than M3, reflecting the substantial improvement of the 
classification performance by the dynamic alignment strategy 
(geometric feature-guided weight allocation) and the CMA module. 
Image texture features (M2) are better than point cloud geometric 
features (M1): M2 has 27 more correct samples than M1, indicating 
that texture features have a stronger ability to capture surface details in 
high-speed rail wheel defect detection. M3 has limited optimization of 
single-modal performance: M3 has only 38 more correct samples than 
M1 (M3-M1 = 38), indicating that simple feature splicing fails to fully 
exploit the potential of multi-modal collaboration.

5.4 Robustness test

To ensure the statistical validity of the evidence, all accuracy 
indicators of the reports are calculated based on independent test 
sets randomly divided from the complete dataset (accounting for 
10% of the total, i.e. 1092 sample groups). For robustness testing of 
lighting and occlusion, specific subsets are extracted from the test 
set. Each subset contains a sufficient number of samples to avoid 
indicator fluctuations caused by too few samples.

The robustness of the model is analyzed through lighting 
environment and occlusion, and the change in accuracy is 
observed. The results are shown in Figure 7.

Figure 7a Classification accuracy across different lighting 
environments. The test subset comprises samples captured under 
strictly defined strong light (>100,000 lux), weak light (<1,000 lux) 
and reflected light.

Figure 7b Classification accuracy under increasing levels of 
occlusion. The occlusion rate is synthetically generated by 

applying random masks to the image and point cloud data, 
simulating foreign object coverage.

From the lighting robustness test, it can be seen that the 
model in this paper maintains the optimal accuracy in strong 
light (0.968), weak light (0.962) and reflection (0.956) scenes, 
and the difference between the three is small, indicating that the 
cross-modal attention mechanism guides the weight allocation 
through geometric features, effectively suppressing strong light 
overexposure, weak light low contrast and reflection saturation 
interference. In contrast, the accuracy of image unimodal 
models (such as Swin Transformer++, FocalNet) drops 
significantly in reflective scenes (Swin: 0.941→0.920; 
FocalNet: 0.935→0.912), reflecting their sensitivity to lighting 
fluctuations; point cloud unimodal models (such as PointNeXt, 
PCT) perform more stably (PointNeXt: 0.945→0.925; PCT: 
0.932→0.917), but are weaker than the model in this paper. 
Early fusion methods (such as CrossViT and PVRNet) have 
limited illumination adaptability due to feature redundancy and 
semantic gap (CrossViT: 0.923→0.902; PVRNet: 0.928→0.910). 
The model in this paper dynamically compensates for the 
influence of illumination through a multi-granularity 
alignment strategy and a geometric consistency regularization 
term, which reduces the accuracy fluctuation in strong light/low 
light/reflective scenes.

The accuracy of our model changes from 0% to 50% in the 
range of occlusion rate (0.968→3), which is significantly better 
than other models. Its cross-modal attention mechanism guides 
texture weight allocation through geometric features and still 
maintains an accuracy of 0.905 under 40% occlusion, verifying 
the effectiveness of dynamic occlusion suppression. The multi- 
granularity alignment strategy (such as L1-L3 hierarchical 
mapping) of the model in this paper is coordinated with the 
geometric consistency regularization term to maintain the 
optimal inter-class separation in occlusion scenarios, supporting 
the stability of high-speed railway wheelset defect detection under 
foreign object coverage conditions.

FIGURE 7 
Robustness test results. (a) Lighting environment. (b) Occlusion.
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5.5 Defect size recognition effect

Defect sizes include: micro defects (<1 mm), small-scale defects 
(1–3 mm), and medium-to-large-scale defects (>3 mm). The defect 
recognition performance for different sizes is shown in Figure 8.

The proposed model maintains the best accuracy 
(0.938→0.976→0.991) in the classification of defects <1 mm, 
1–3 mm and >3 mm, reflecting the targeted optimization of the 
CMA module and the geometric consistency regularization term for 
small defects. Among defects <1 mm, the accuracy of the proposed 
model is significantly higher than PointNeXt (0.912) and Swin 
Transformer++ (0.910), verifying that the texture weight allocation 
guided by geometric features effectively enhances the curvature 
abnormal response. The performance of each model is close to that 
of the medium- and large-scale defects (>3 mm) (0.960–0.991), but the 
proposed model still leads with an accuracy of 0.991, reflecting the 
accurate modeling of macroscopic structural damage by fusion 
features. In contrast, the single-modal model is limited by the lack 
of local information (such as PointTransformer is only 0.893 for 
defects <1 mm), and the early fusion models (such as CrossViT 
and PVRNet) have lower accuracy than the proposed model due to 
redundant calculations and registration errors. This result 
systematically proves that cross-modal attention fusion can 
significantly improve the ability to identify tiny defects by 
dynamically aligning geometric-texture features, while maintaining 
stable judgment of medium and large-scale defects, supporting the full- 
size coverage requirements of high-speed rail wheelset defect detection.

5.6 Parameter quantity and 
inference efficiency

The feasibility and effectiveness of deployment on industrial 
edge devices are verified by comprehensive analysis of parameter 
quantity, inference speed, and recognition accuracy. The results are 
shown in Figure 9.

The model in this paper significantly outperforms other models 
while maintaining a macro precision of 0.982 through channel 
pruning and 8-bit quantization (inference speed increased to 

23 FPS). Although PointNeXt (42M, 15 FPS) and Swin 
Transformer++ (30M, 20 FPS) have moderate parameter counts, 
they do not solve the sensitivity of single-modal features to 
occlusion/illumination changes. CrossViT (50M, 10 FPS) is 
limited in edge device deployment due to redundant 
computation of cross-modal splicing. The cross-modal attention 
mechanism of this model maintains high macro accuracy through 
dynamic weight allocation (geometric feature dominance) and 
multi-granularity alignment strategy, and channel pruning and 
quantization reduce the number of parameters to 12M, which 
meets the computing power constraints of Jetson AGX Xavier 
and verifies its feasibility of industrial edge device deployment.

6 Conclusion

This study presents a dual-stream cross-modal defect 
classification framework that integrates PointNet++ for point 
cloud geometric feature extraction and Swin Transformer for 
image texture analysis. By employing a Cross-Modal Attention 
(CMA) mechanism, the framework achieves dynamic alignment 
of geometric and texture features, while a geometry consistency 
regularization term is introduced to enhance sensitivity to micro- 
defect curvature anomalies. Evaluated on a dedicated dataset of 
10,918 multimodal samples, the model achieves an overall 
accuracy of 0.985 and a macro F1-score of 0.982. Notably, it 
attains a recognition rate of 0.938 for defects smaller than 1 mm 
and maintains 0.905 accuracy under 40% occlusion. Through 
channel pruning and 8-bit quantization, the model is compressed 
to 12M parameters and achieves real-time inference at 23 FPS on a 
Jetson AGX Xavier edge device, demonstrating its practical 
deployability. The proposed geometry-guided fusion strategy 
shows superior performance compared to state-of-the-art models 
such as PointNeXt and CrossViT, facilitating the transition from 
manual to intelligent defect inspection in high-speed rail wheelset 
maintenance.

FIGURE 8 
Defect size recognition effect.

FIGURE 9 
Deployment performance.
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This study holds significant scientific value by advancing the 
paradigm of multimodal fusion in industrial inspection, establishing 
a novel geometry-texture alignment mechanism that enhances both 
interpretability and robustness in defect detection under complex 
conditions. It contributes methodologically to the fields of 3D vision 
and deep learning by integrating structured point cloud processing with 
vision transformer-based feature learning. Socially, the work directly 
supports the safety, efficiency, and intelligence of high-speed railway 
operations. By enabling accurate and real-time defect identification 
even in challenging environments, the proposed system helps prevent 
potential failures, reduces maintenance downtime, and promotes the 
transition from labor-intensive manual checks toward automated, data- 
driven predictive maintenance, thereby enhancing rail transport 
reliability and public safety.

Despite these advances, the model exhibits performance 
degradation in extreme occlusion scenarios (>40%) and remains 
dependent on high-quality multimodal registration. Future work will 
focus on integrating unsupervised domain adaptation techniques to 
improve generalization across varying operational environments. 
Furthermore, extending the framework to support multi-task 
learning and broader multimodal collaborative prediction could 
enhance its applicability and robustness, thereby contributing to 
the further intelligence of industrial quality inspection systems.
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