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Optimizing sandwich foam floats
for amphibious aircraft:
enhancing performance under
water impact

Fauzan Djamaluddin* and Zaini Ahmad?

‘Department of Mechanical Engineering, Faculty of Engineering, Hasanuddin University, Makassar,
Indonesia, 2Department of Applied Mechanics & Design, Faculty of Mechanical Engineering, Universiti
Teknologi Malaysia, Skudai, Malaysia

Improving amphibian aircraft landing performance is the primary goal of this
paper, which aims to optimize the design of sandwich aluminum foam (SAF)
energy absorbers. To determine how various configurations of the sandwich
structure’s layers affected landing performance, extensive transient dynamic
simulations were used. Using simulation methodologies, the impact
performance of the SAF's design parameters was rigorously investigated. The
first step of the study was to characterize the SAF as a material for use in impact
applications. The three SAF samples were subjected to testing in a water impact
environment with a 3.5-ton airplane weight and a landing speed of 76 knots. The
core thicknesses of the samples were 3 mm, 5 mm, and 7 mm, respectively. The
numerical simulation findings showed that crash behavior indicators like peak
crushing force (PCF) and total energy absorption (TEA) are greatly affected by
core thickness and material density. Finite element model compares with
experiment test, it is found that the differences less than 5%. These meshes
are simulated to obtain convergent points of the simulated model mesh size with
the error value is 3.08%. Surrogate models based on the Radial Basis Function
(RBF) and the Non-dominated Sorting Genetic Algorithm Il (NSGA-II) were used
in @ multi-objective optimization strategy to improve the float's crashworthiness.
According to the optimization findings, the SAF float was far more crashproof
than the previous float design. These optimal results differ from those derived
solely from crushing analyses in prior studies, providing a more robust reference
for practical engineering applications.

KEYWORDS

float, optimization, crashworthiness, sandwich aluminium foam, amphibian aircraft

1 Introduction

In recent years, the demand for amphibious aircraft has increased due to their ability to
operate on both land and water, making them ideal for remote or coastal regions with
limited airport infrastructure. One of the most critical components in these aircraft is the
float or pontoon, which ensures buoyancy and absorbs the impact energy during water
landings. The floats are equipped with water rudders for navigation and must contain at
least four watertight compartments to prevent sinking in case of structural failure. During
landing, the float is the first component that comes into contact with the water, and any
hydrodynamic interaction leads to significant structural deformation (Carcaterra et al,
1999; Yu et al,, 2022; Wang and Soares, 2017). The structural integrity of these floats is
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determined by their ability to withstand peak hydrodynamic forces,
critical stress distributions, and maximum displacement. To study
these phenomena, researchers have employed both experimental
testing and numerical modeling. While experimental testing offers
high accuracy, it is cost-intensive and requires specialized facilities
(Hassoon et al., 2017; Judge et al., 2004; Stenius et al., 2013). In
contrast, numerical modelling especially with finite element
methods, offers a cost-effective alternative, though it demands
considerable computational resources (Lu et al., 2000; Engle and
Lewis, 2003; dong Xu et al,, 2009). For high-fidelity simulations,
fluid-structure interaction is often necessary but also
computationally expensive. To address this, multi-scale modeling
approaches such as complete shell, complete solid, multi-stage, and
concurrent multi-scale modeling are employed (Shankar et al., 20205
Curreli et al., 2018; Said et al.,, 2018; Arai et al., 2015; Narvydas
et al., 2021).

Multi-scale modeling increases computational efficiency while
preserving accuracy. In multi-stage models, small zones of interest
are refined using submodels, while concurrent models dynamically
couple macro and micro-scale simulations to capture detailed
structural behavior (Sun et al, 2019; He et al,, 2020; He et al,
2021; Ali and Shimoda, 2022). For example, in modeling aircraft
floats, shell elements can represent the skin, and solid elements can
represent internal structures. ABAQUS software is widely used to
simulate these configurations, providing tools for mesh refinement,
contact interactions, and dynamic explicit analysis (Niknafs et al,
2022). The hydrodynamic impact problem is not limited to
amphibious aircraft but also it appears in other sectors such as
naval, offshore, and defense engineering (Abraham et al., 2014; Sun
et al, 2021; Chen et al,, 2023). High-speed water impact can cause
severe structural damage, and accurate prediction of these forces is
crucial for safety. Numerical methods such as Finite Element
Method (FEM) and Smoothed Particle Hydrodynamics (SPH) are
often combined for more robust simulations (Fernandez et al., 2023;
Zhang et al., 2020; Panciroli et al., 2012). Validating these models
with experimental data ensures accuracy and enhances prediction
capabilities (Engle and Lewis, 2003; Francesconi, 2009; Feng et al.,
2021; Yan et al., 2018; Liu et al., 2023; Lu et al., 2000; Xia et al., 2023;
Chaudhry et al., 2020; Li et al., 2021; Wu and Earls, 2022).

Given their lightweight and high-strength properties, composite
materials especially those with sandwich configurations, are widely
used in aerospace applications (Tao et al., 2019; Hernandez et al.,
2017; Li et al,, 2020). Sandwich panels consist of two stiff face sheets
and a lightweight core, typically made from foam, honeycomb, or
wood (Banhart and Seeliger, 2012; Banhart and Seeliger, 2008; Harte
et al., 2000; Schwingel et al,, 2007). Sandwich Aluminum Foam
(SAF) structures offer high energy absorption and improved
durability, especially when manufactured using integral-forming
methods (Xia et al., 2013; Wang et al, 20155 Crupi and
Montanini, 2007; Zhang et al., 2022; Xu et al., 2022; Liu et al,

Abbreviations: CFE, Crush Force Efficiency; DOE, Design of Experiments; FEA,
Finite Element Analysis; FEM, Finite Element Method; FSI, Fluid-Structure
Interaction; MOD, Multi-objective Optimization Design; NSGA-II, Non-
dominated Sorting Genetic Algorithm II; PCF, peak crushing force; RBF,
Radial Basis Function; SAF, Sandwich Aluminum Foam; SEA, Specific
Energy Absorption; SPH, Smoothed Particle Hydrodynamics; TEA, Total
Energy Absorption.
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2022; Yang et al., 2020). Recent studies have focused on optimizing
these structures to enhance crashworthiness including marine
structures (Catapano and Montemurro, 2014; Briickmann et al.,
2017; Klanac et al., 2009; Dayyani et al., 2013) for weight reduction
and structural efficiency.

Despite these advances, limited work has been done to optimize
sandwich aluminum foam (SAF) structures for amphibious aircraft
floats under water impact conditions. Most previous studies have
focused on axial or blast impact on dry land (Patel and Patel, 2024;
Patel et al., 2023; Sawant and Patel, 2024; Ma et al., 2023; Kumar
et al,, 2021; Nagarjun et al,, 2020; Kumar et al,, 2019), lacking a
specific investigation into Fluid-Structure Interaction (FSI) during
water landings. Additionally, studies on hierarchical and auxetic
structures (Fu et al., 2025; Xu et al., 2025; Fu et al., 2024; Guang et al.,
2025) show potential for improved energy absorption but have not
been fully explored in amphibious applications.

This study aims to fill that gap by investigating the
crashworthiness of SAF floats under hydrodynamic impact
using ABAQUS simulations. Multi-objective optimization is
performed using Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and Radial Basis Function (RBF) surrogate modeling
to analyze the effects of core thickness and material density on
crash parameters such as peak crushing force (PCF) and Specific
Energy Absorption (SEA). The goal is to identify the most
effective SAF configuration that balances structural integrity,
energy absorption,
amphibious applications.

and weight efficiency for real-world

2 Methods and materials

2.1 Crashworthiness indicator of float
impact water

Crashworthiness indicators are critical parameters used to
evaluate the ability of a structure to protect its occupants and
minimize damage during a crash or impact event. Below are
some of the key crashworthiness indicators:

a. Energy Absorption:

o Total Energy Absorption (TEA): The amount of energy a
structure can absorb during a crash or impact. A higher
value indicates better performance in terms of protecting the
occupants by reducing the impact force.

§
TEA = JF(&)dS (1)
0

o Energy Absorption Efficiency: The amount of energy that a
material or structure is able to absorb, as a percentage of the
total energy that an impact causes.

b. Peak Crushing Force (PCF):

o The greatest amount of force that a building or its inhabitants
may endure in the event of an accident. A lower peak force is
preferable as it signifies reduced acceleration and injury risk
to the occupants.

c. Crush Force Efficiency (CFE):
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FIGURE 1
Float of amphibious aircraft.

TABLE 1 Float dimension (Shankar et al., 2020).

Parameter Value

TABLE 2 Mechanical properties of aluminum 6061 T6 (Dayyani et al., 2013).

Property Value

Length (mm) 8.56 Density (kg/m?) 2700
Width (mm) 1.20 Young’s Modulus (GPa) 68.9
Height (mm) 1.05 Yield Strength (MPa) 276
Dead Rise 25° Ultimate Tensile Strength (MPa) 310
Poisson’s Ratio 0.33

o A measure of how much energy a building can absorb relative
to the force needed to crush it. Higher CFE values indicate a
more effective energy absorption capability.

2.2 Finite element models of the float

The amphibian aircraft designed for 19 passengers features twin
floats, positioned on either side of the fuselage. The first series of
floats for this aircraft is an imported product manufactured by
WIPAIRE, Inc., a U.S.-based company specializing in floats for
floatplanes and amphibious aircraft (Figure 1). The Twin Otter
300 series (Patel and Patel, 2024) has made use of these aluminum
floats, which can sustain loads up to 6.5 tons apiece (see table 1 for
dimensions).

Because of its low weight, high strength-to-weight ratio, and
great energy-absorbing qualities, sandwich foam constructions are
finding more and more uses in amphibious aircraft. These floats are
designed for water impact situations with a lightweight foam core
sandwiched between two durable face sheets. They provide
structural integrity and buoyancy as needed. Tables 2 and 3 show

Frontiers in Mechanical Engineering

TABLE 3 Mechanical properties of aluminum foam (Patel and Patel, 2024).

Property Value

Density (kg/m?) 710
Young’s Modulus (GPa) 2.7
Yield Strength (MPa) 10
Compressive Strength (MPa) 2.53
Poisson’s Ratio 0.33

the mechanical characteristics of the core and face sheets used in
sandwich foam systems (Dayyani et al., 2013; Patel and Patel, 2024).

The plastic behavior responses of the aluminum core and
aluminum face sheet materials used in the sandwich aluminum
foam (SAF) structures (Figures 2, 3). The foam core absorbs energy
primarily through progressive plastic collapse and aluminum face
sheets contribute by plastically deforming under tensile and
bending loads. The foam core plays a crucial role in absorbing
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FIGURE 2
Design float (a) Configuration 1 (b) Configuration 2 (c)
Configuration 3 (d) Configuration 4.

0

FIGURE 3
Mesh of float.

impact energy, reducing peak crushing force and maintaining
stability during operations. Additionally, the choice of materials
and the optimization of parameters such as core density, thickness,
and face sheet properties significantly influence the performance of
the sandwich structure in crashworthiness and hydrodynamic
contexts. The effectiveness and security of amphibious aircraft
depend on these specialized sandwich foam floats. The float
structure’s hydrodynamic influence on the water was simulated
in this research using the ABAQUS finite element program.
Accurately defining contact interactions such as cohesive or
surface-to-surface bonding between dissimilar materials is
essential to realistically capture interfacial behavior under
dynamic loading. Moreover, the absence of a description of the
mesh elements such as solid elements (C3D8R) for foam, shell
elements (S4R) for face sheets and Eulerian elements for fluid
domains. To ensure realistic simulation of hydrodynamic impact,
specific boundary and loading conditions were defined. The float
structure was assigned Lagrangian elements to model solid
material deformation, while the surrounding water was modeled
using Eulerian elements within a predefined Eulerian domain. The
loading condition of the float was positioned above the water

TABLE 4 Configuration of SAF.

FIGURE 4
Simulation of float impact water.

then initial  vertical

corresponding to 76 knots (approximately 39 m/s), representing

surface and imparted an velocity
the aircraft’s typical water landing speed. Gravity was applied as a
body force, and no external constraints were applied to the float
structure, enabling free-body motion during the initial contact
phase. The float’s motion and impact behavior were governed by
dynamic explicit analysis over a 0.01-s simulation period. The core
and face sheet interaction is surface-to-surface contact and
frictionless or low-friction contact to simulate realistic test
conditions. For this study, there were 3 configuration of SAF
and 1 original material in Table 4 and Figure 2.

Figure 4 shows the distribution of 500 data points dispersed
uniformly across the course of the simulation, which pertain to
speed. The data was taken at four nodes located at the top corners of

the base frame.

2.3 Multi-objective optimization

Sectional design parameters such as core thickness (t.), foam
density (0,), yield stress of skin (o), and a constant tube length of
120 mm were used in the multi-objective optimization design
(MOD) procedure. improve specific energy
absorption (SEA) and decrease crush force efficiency (CFE)

In order to
under transverse impact loads, previous research (Djamaluddin,
2024) investigated two crashworthiness indicators concurrently.
Because it may search for a global optimum without ever
reaching a local one, the Genetic Algorithm (GA) has become
one of the most popular optimization methods (Djamaluddin,
2023b). For ranking solutions, awarding fitness scores, and
handling multi-objective issues, the Non-dominated Sorting

Foam thickness (mm)

Al thickness (mm)

Configuration Material
1 Aluminum 6061 T6
2 ‘ Sandwich Aluminum Foam
: |
4 |

Frontiers in Mechanical Engineering

04

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1701456

Djamaluddin and Ahmad 10.3389/fmech.2025.1701456

:’ PhaseI \:

i Initialization of design D — Optimal experiment E

i variable design variable ,

1 1

\ L S
PhaseIl 3

1
1
1
Construct Radial Basis Function 2
metamodel of SEA and PCF .

1

v

Y Phaselll R
] i

imizati i YES :
Optimization using - Converge? :
NSGA II J i

1

1

NO .

1

1

1

:

1

[ Add DOE sampling point } [ Pareto front of the MOD problems ] ’

~

FIGURE 5
Flowchart of crashworthiness multi-objective optimization for tubes (Djamaluddin and Mat, 2023).

+
+
T
H
e
e

(c) (d)

Deformation of float configurations impact water.

Frontiers in Mechanical Engineering 05 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1701456

Djamaluddin and Ahmad

10.3389/fmech.2025.1701456

w
by
S

300 ......"....m.............................:;.’.yo
-

= 250 /'

S .

< 200 ,’ - @ = Al 6061 T6

[

2 4 i — = 4= SAF 3

2 V= =

S 150 ’ —# -SAFS5

g 7

> 100 SAF 7
------ Allowable

i

!
G 3\
™\

0 025 05 075 1 125 1,5 1,75 2
Time (s)

FIGURE 7
Von misses of float configurations.

Genetic Algorithm (NSGA) provides a more effective technique,
including versions I and II (Djamaluddin and Mat, 2023;
Djamaluddin, 2023a).

Figure 5 shows the procedure for making the double fender
more impact resistant. Determining the design space and creating
sample sites for different loading angles using the Design of
Experiments (DOE) approach were the first steps. Phase two
included using Finite Element Analysis (FEA) to find solutions
for the design goals’ early D-optimal models. Phase three concluded
with the determination of Pareto-optimal solutions for stressed
systems by the use of the NSGA-II method to maximize
performance under varying loads.

3 Result and discussion

3.1 Finite element analysis of float
impact water

The deformation of float configurations during water impact is a
critical aspect of evaluating their performance and safety (Figure 6).
When the float structure comes into contact with the water surface, a
combination of hydrodynamic and structural forces acts on it. The
initial impact generates a high-pressure region, causing localized
deformation, particularly at the leading edge of the float. This
deformation is influenced by the material properties, structural
design, and impact velocity.

The foam core in sandwich structures absorbs a significant
portion of the impact energy, reducing peak forces transmitted
to the aircraft. Simultaneously, the face sheets resist bending
and prevent excessive structural collapse. The deformation
pattern can vary, ranging from elastic bending to plastic
deformation, depending on the float’s design and material
configuration.

The Von Mises stress distribution in sandwich foam aluminum
structures for float configurations is a key indicator of their
mechanical performance under load (Figure 7). During water
impact, the stress is distributed across the foam core and
aluminum face sheets, with the Von Mises criterion used to
predict yielding within the material. This analysis is crucial for
understanding how the float structure withstands the combined
hydrodynamic and structural forces.
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FIGURE 9
SEA of float configurations.

In such configurations, the aluminum face sheets typically
experience higher Von Mises stresses, especially in regions
subjected to bending and direct impact. The foam core, on the
other hand, helps to distribute and absorb stresses, preventing
localized failure. By examining the Von Mises stress distribution,
engineers can identify critical stress points, optimize material
thickness, and enhance the overall structural integrity of the float.
This ensures the design meets safety standards while maintaining a
lightweight and efficient configuration suitable for amphibious
aircraft applications.

3.2 Crashworthiness parameters

When it comes to float arrangements, the Total Energy
Absorption (TEA) and Specific Energy Absorption (SEA) of
sandwich aluminum foam constructions change a lot depending
on the thickness of the core. An important factor in a structure’s
ability to dissipate energy is the thickness of its foam core, as this
determines how much material is available to absorb impact forces
(Figures 8, 9).

For thinner cores, the TEA and SEA is generally lower because
there is less foam material to undergo deformation and dissipate
energy during impact. While such configurations may be lighter,
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FIGURE 10
Panel deformation (a) simulation result and (b) experiment result.

they often result in higher stress concentrations and reduced

crashworthiness. Conversely, increasing the core thickness
enhances the TEA, as the additional material allows for more
progressive crushing and energy absorption. This reduces the
peak forces transmitted to the structure and improves its ability
to withstand repeated impacts.

However, excessively thick cores may lead to a significant
increase in weight, which can compromise the buoyancy and
efficiency of the float. Therefore, optimizing core thickness is
essential to achieve a balance between lightweight design and
maximum energy absorption. Analyzing TEA for different core
thicknesses enables engineers to tailor sandwich aluminum foam
configurations for improved safety and performance in amphibious

aircraft applications.

3.3 Model verification

In both the experimental setup and the finite element simulation
for validation, a three-point bending test configuration was adopted
to evaluate the mechanical response of the sandwich aluminum
foam (SAF) panel. The specimen dimensions matched those used in
the float structure. In the experimental setup, the panel was simply
supported at two ends, with a central load applied using a
displacement-controlled actuator. The boundary conditions in the
experiment replicated simply supported edges and a centrally
applied quasi-static load, simulating impact-induced bending.

In the simulation using ABAQUS/Standard, the same boundary
conditions were modeled: two ends of the panel were constrained in
the vertical direction using pinned supports, while a concentrated
vertical displacement load was applied at the mid-span using a
reference point connected to a rigid loading surface. The loading rate
in the simulation matched the experimental displacement speed to
ensure comparability. The face sheet—core interface was modeled
with surface-to-surface contact and frictionless behavior to allow
delamination, while solid (C3D8R) and shell (S4R) elements were
used for the foam and face sheets, respectively. The panel
deformation, core crushing, and peak force values were then
compared between the simulation and experimental results, with
less than 5% deviation, confirming model accuracy. To validate the
model, the simulation results were compared with experimental data
of foam core sandwich specimens for float in Figure 10.
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bre Crack

Figure 10 shows the numerical simulation result showing
Von Mises stress distribution in a bending test, and the
experimental result where a core crack is visibly initiated
under the same loading condition. In Table 5, the small
percentage deviations (<5%) confirm that the FEA model
accurately captures the mechanical response of the sandwich
structure during water impact. These discrepancies because in
experimental setups, measurements are subject to uncertainties
and calibration limits of sensors and data acquisition systems,
particularly in high-speed impact tests. Simulation results can be
continued for optimization.

Convergence testing is very important to determine the effect of
the number of elements used on the results obtained. In the float
analysis, element sizes were tested ranging from 30 to 150 with an
increase of 10 in each test (Figure 11). The element size itself is the
general length of the element on a surface. The larger the value of the
selected element size, the fewer the number of elements will be, and
vice versa. The convergence investigation found that mesh sizes
between 70 and 110 yielded the convergence value. However, when
viewed from the error value, as the element size decreases, the error
value becomes larger. The error on the graph is the difference in
results between the current element measurement and the previous
element. Therefore, in this modeling, an element size of 90 is used
because it has the smallest error value (Figure 12) (Ardiansyah and
Adhitya, 2019).

The development of a radial basis function (RBF) meta-
model allowed for the precise identification of the sample
Also, five additional
produced inside the design area. The cost-effective finite
element (FE) and RBF models were validated using the SEA
and PCF responses. In order to assess the degree to which the RBF

locations. random locations were

meta-model resembles the outcomes of the finite element analysis
(FEA), the following method was used:

RE(%) = ‘u x 100% ©)

i

In Figure 13, we can see the five randomly selected starting
positions for the FEA and RBF samples. Because the validation
values fall below 5% in the SAF float for this RBF meta-model
estimate, we may infer that the RBF model achieves an acceptable
level of accuracy for optimizing the design with respect to the
objective functions (SEA and PCF).
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TABLE 5 Differences between simulation and experiment.

10.3389/fmech.2025.1701456

Parameter FEA result Experimental result % difference
Peak Impact Force (N) 12,8 13,2 3.03%
Maximum Core Compression (mm) 6.2 6.0 3.3%
Energy Absorbed (J) 852 88.1 3.3%

m) (Ardiansyah and Adhitya, 2019).

FIGURE 11
Mesh size (m
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FIGURE 12
Convergence study.

3.4 Crashworthiness optimization design

The SAF float’s multi-objective optimization (MOD) equations
were developed with the use of several parameters. Addressing
trade-offs between conflicting objectives was done via multi-
objective optimization. Design characteristics including core
thickness (t), foam density (p f), and yield stress (0y), were used
to develop additional constraint functions and goals for SAF float.
Objective functions like Peak Crushing Force (PCF) and Specific
Energy Absorption (SEA) were also defined. For MOD equations,
the Pareto fronts that were computed are detailed in Equation 3.

{SEA(pt0,), PCF(0y, 0, )}

200kg/m’ <p, <700kg/m’ 3)
235 MPa<a,<245MPa

8mm<ty<16mm
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Using the NSGA-II optimization method, the design space was
explored using Radial Basis Function (RBF) meta-models. The
Design of Experiments (DoE) technique was used to develop a
collection of 200 design points for all MOD situations. Next, the SAF
7 mm model’s PCF vs. SEA Pareto front graphs were constructed
using the NSGA-II approach. These graphs were based on the
convergence of optimizations repeated over 20 generations. There
was an unintended trade-off between the PCF and SEA criterion,
since the data showed that increasing SEA caused PCF to rise.

In order to find inconsistencies between the RBF models and
Finite Element Analysis (FEA), multi-objective optimization was
used to the section design parameters, which core thickness (), foam
density (p(), and yield stress (o), In Figure 11, we can see that the
NSGA-II technique and the RBF methodology were used to produce
Pareto fronts using five randomly selected sample points. To test the
crashworthiness of fenders with foam fillers, all of them were fine-
tuned for transverse loads using the right RBF models and taking
MOD into account. From Figure 14, It was observed that increasing
core density from 2,700 kg/m’® to 7,100 kg/m* improved impact
resistance by approximately 23%, but at the expense of a 12%
increase in total float mass. On the other hand, increasing core
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FIGURE 14
Optimum values.

thickness had a more favorable effect, with a 30% increase in
thickness resulting in a 27% improvement in energy absorption
while only adding 7% to the float mass. It can be concluded that the
thickness of the core has a greater influence than increasing the
density of the foam (Harte et al., 2000). The SAF 7 mm represent
solutions with the highest PCF, reaching up to 65 kN, and
correspondingly higher SEA values up to 8 kJ/kg. However, in
real-world applications, particularly in vehicle crash scenarios, a
very high PCF may transmit excessive force to critical components,
which can be unsafe. The SAF 3 mm provide lower PCF (20-35 kN)
with moderate to high SEA (up to 7 kJ/kg). These configurations are
more suitable for applications where minimizing transmitted force
is crucial

4 Conclusion

This study has demonstrated the effectiveness of sandwich
(SAF)
crashworthiness of amphibious aircraft floats under water impact

aluminum  foam structures in  enhancing the
conditions. Through a combination of material characterization,
finite element simulations, and experimental validation, the impact
response of various core thickness configurations was thoroughly
analyzed. The results highlight that core thickness and material
density are critical parameters influencing the Total Energy
Absorption (TEA) and peak crushing force (PCF). Among the
three tested configurations (3 mm, 5 mm, and 7 mm core
thickness), the exhibited
absorption maintaining

structural integrity.

7 mm sample superior energy

performance  while acceptable

o Based on simulations, experiments, and multi-objective
optimization, the following conclusions can be drawn: The
simulation results showed a difference of less than 5%
compared to the experimental data.

o Effect of Core Thickness such as the 7 mm core gave the
highest SEA (8 kJ/kg) and Peak Crushing Force (PCF) up to
65 kN and the 3 mm core showed lower PCF (20-35 kN) with
still good SEA (up to 7 kJ/kg). From optimization results
found that increasing foam density from 2,700 to 7,100 kg/m’
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improved impact resistance by 23%, but also increased
weight by 12%.

o The optimized SAF float is a lightweight, strong, and safe
solution for amphibious aircraft. These results provide a
strong reference for the development of hybrid marine-
aerospace structures and future experimental studies.
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