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Introduction: The long charging cycle, limited energy storage system, and short 
range of traditional batteries have constrained the further development of 
electric vehicles.
Methods: Given this, the paper constructs a regenerative braking control strategy for 
electric vehicles based on hierarchical fuzzy control, and optimizes it using an 
improved Particle Swarm Optimization (PSO) algorithm. The study aims to improve 
the energy recovery efficiency of electric vehicles while ensuring the safety and 
stability of vehicle braking by reasonably allocating motor and hydraulic braking forces.
Results: The results showed that the improved PSO exhibited faster convergence 
speed and higher accuracy in the optimization process, with the smallest 
difference in optimal solutions and the lowest loss function value of 10−5. In 
terms of regenerative braking control effect of electric vehicles, the control 
strategy built on improved PSO achieved an energy recovery rate of 16.8% and 
increased the contribution of driving range by 35 km. Its braking response time 
has been shortened to 0.71 s, the braking stability index has reached 95, and the 
energy consumption rate has been reduced to 150 Wh/km.
Discussion: The proposed hierarchical fuzzy control strategy based on improved 
PSO provides an efficient and stable solution for the design and optimization of 
regenerative braking systems in electric vehicles. This optimization scheme can 
enhance the energy utilization efficiency and endurance of electric vehicles, which is 
of great significance for promoting the development of electric vehicle technology.
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1 Introduction

Electric Vehicles (EVs) have become an important development direction in the future 
transportation industry due to their advantages such as zero emissions and low noise. 
However, EVs still face many challenges in their development process. Traditional batteries 
have long charging cycles and limited energy storage system capacity, making it difficult for 
EVs to meet long-distance driving needs (Beşkardeş et al., 2024; Re et al., 2023). In addition, 
as a key technology to improve the Energy Utilization Efficiency (EUE) of EVs, the 
performance optimization of the Braking Energy Recovery (BER) system has always been a 
hot and difficult research topic. The continuous development of EVs technology has led to 
the continuous expansion of its market size, but the issue of range is still one of the key 
factors restricting its widespread application. The range of EVs depends on the energy 
density of the battery and is also closely correlated with the efficiency of BER system. The 
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Regenerative Braking System (RBS) recovers energy during vehicle 
deceleration, converts it into electrical energy, and stores it in the 
battery, thereby extending the range of EVs. However, the current 
RBS still has shortcomings in Energy Recovery Efficiency (ERE) and 
braking performance, especially in terms of adaptability and stability 
under different operating conditions, which still need further 
improvement (Luo et al., 2024; Bingül and Yıldız, 2023). In the 
research of RBS in EVs, the optimization of control strategy is 
crucial. Traditional Regenerative Braking Control (RBC) strategies 
are mostly based on a single control algorithm, such as fuzzy logic 
control, neural networks, or model predictive control. These 
methods have improved ERE to some extent, but in complex 
operating conditions, it is often difficult to achieve optimal 
braking force distribution and energy recovery. Particle Swarm 
Optimization (PSO) is widely utilized in the optimization of RBC 
strategies for EVs since its efficient global search ability and fast 
convergence characteristics (Abd-Elhaleem et al., 2023; Pukkunnen 
et al., 2023).

In recent years, with the widespread application of EVs, their 
energy recovery and RBC strategy research have gradually become 
hot topics, and many scholars have conducted in-depth research on 
this issue. To solve the problems of long charging cycles, energy 
storage system limitations, and short range of EVs in traditional 
batteries, Chai et al. proposed a proportional-integral-controller 
method based on PSO algorithm. Compared with traditional 
methods, PSO-based energy management methods could achieve 
higher energy efficiency. This method increased the total driving 
distance of EVs by 6%, the maximum and peak speeds by 3.9%, and 
the average speed by 14.5% (Chai et al., 2022). To recover more 
braking energy while ensuring vehicle safety, Zhang et al. proposed 
an RBC strategy based on swarm intelligence prediction. This 
strategy adopted PSO as the main part, used ACO to improve 
the iterative process of PSO, avoided getting stuck in local optimal 
solutions, and applied model predictive control theory to achieve 
optimal control. Through simulation experiments, the stability and 
economy of the proposed strategy were tested under emergency 
braking and urban cycling conditions (Zhang et al., 2022). To 
improve the regenerative braking energy of EVs and the driving 
interval of vehicles, Saiteja et al. proposed various control 
architectures and main braking methods. This study reviewed the 
main subsystems of RBS in EVs and how they affect braking 
performance. It also systematically reviewed several RBC 
strategies including fuzzy logic control, neural networks, and 
model predictive control. In addition, the design process of RBS 
and its calibration variables, including vehicle velocity and braking 
force assessment, were also discussed, which could be utilized to lift 
braking performance (Saiteja et al., 2022). Ratchanyaraj and 
Ravindran proposed a method combining Improved Fractional- 

Order Darwinian PSO (IFODPSO) and fuzzy logic controller to 
optimize motor performance in RBC of EVs. The IFODPSO method 
outperformed traditional techniques in torque control. In addition, 
the fuzzy estimation could improve system efficiency at low speeds 
(Ratchanyaraj and Ravindran, 2024). To solve the problems of 
improving the motion performance and controlling the handling 
stability of distributed drive electric vehicles, Guo N et al. evaluated 
the driving state and generated a unified yaw velocity reference 
through a motion monitor that only relies on the feedback of the 
front wheel steering Angle. The direct yaw moment control is 
achieved by adopting the nonlinear model predictive control 
strategy based on Lyapunov, and the contraction constraint is 
added to ensure the closed-loop stability and provide a rigorous 
proof. Develop and improve the iterative linear quadratic regulator 
algorithm, combine the relaxed logarithmic obstacle function and 
the double-loop iterative processing of inequality constraints, and 
supplement with the auxiliary control law to generate the initial 
solution to reduce sensitivity. Simulation and hardware-in-the-loop 
experiments show that this strategy has better manipulation stability 
and higher computational efficiency (Guo et al., 2025). To address 
the optimization and real-time performance issues of energy 
management in fuel cell plug-in hybrid vehicles, Zhang W et al. 
proposed a predictive energy management strategy based on the 
Pontriagin minimum principle and costate boundary. The costate 
boundary range is determined in real time based on the feedback 
information. A heuristic rule for online iterative calibration of 
costates and an analytical method for finding the optimal 
solution of the Hamiltonian function are also proposed. 
Simulation and hardware-in-the-loop experiments show that this 
strategy can efficiently update costates, smooth control instructions, 
achieve expected state of charge tracking, improve fuel economy, 
and the sampling time in hardware-in-the-loop testing is short, 
making it applicable in real time (Guo et al., 2024). To solve the 
problem of performance improvement of the regenerative braking 
system of traditional electric vehicles, Valladolid J D et al. proposed 
an auxiliary control strategy. This strategy utilizes experimental data 
and a linear model for vehicle dynamics estimation, combined with 
the concept of model predictive control, to compensate for the target 
torque provided by the integrated brake assist unit and pressure 
source unit. The simulation was carried out through MATLAB/ 
Simulink software, and the results show that the proposed auxiliary 
braking torque controller is effective (Valladolid and Macas, 2023).

In summary, most existing studies only use PSO algorithm for 
parameter optimization, without fully considering its combination 
with other control algorithms, resulting in certain limitations in 
practical applications. There is still a certain research gap on how to 
achieve optimal braking force distribution under different operating 
conditions and how to further improve motor performance 
optimization. To overcome the constrains of existing research 
and further improve the EUE and endurance of EVs, this study 
adopts a Hierarchical Fuzzy Control (HFC) method to construct an 
EV-RBC strategy and applies an improved PSO to optimize it. The 
innovation points and contributions of the research are as follows:

1. Algorithm integration and innovation: For the first time, HFC 
and the improved PSO algorithm are deeply combined to form 
a complete technical path of control strategy construction - 
parameter optimization and upgrade, providing an efficient 

Abbreviations: PSO, Particle Swarm Optimization/; HFC, Hierarchical Fuzzy 
Control/; EVs, Electric Vehicles/; EUE, Energy Utilization Efficiency %; BER, 
Braking Energy Recovery/; RBS, Regenerative Braking System/; RBC, 
Regenerative Braking Control/; ERE, Energy Recovery Efficiency %; ERR, 
Energy Recovery Rate %; FABF, Front Axle Braking Force N; RABF, Rear Axle 
Braking Force N; MBF, Mechanical Braking Force N; HBF, Hydraulic Braking 
Force N; PMSM, Permanent Magnet Synchronous Motor/; SOC, State of 
Charge/; NoI, Number of Iterations Times; SA, Simulated Annealing/; GWO, 
Grey Wolf Optimizer/; WLTP, World Light-Duty Vehicle Test Cycle/; NEDC, 
New European Driving Cycle/.
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and stable new solution for the regenerative braking control 
strategy of electric vehicles and making up for the limitations of 
single algorithm application in existing research.

2. Innovation in braking force distribution mechanism: The HFC 
strategy achieves refined braking force distribution through a 
two-layer architecture design. The first layer rationally 
distributes the braking force of the front and rear axles 
based on the total braking force required by the entire 
vehicle. The second layer redistributes the braking force of 
the front axle according to the braking intensity, ensuring the 
braking stability of the vehicle while maximizing the energy 
recovery efficiency under different braking conditions.

3. Innovation in performance optimization of PSO Algorithm: By 
adjusting the particle update rule and inertia weight to improve 
the traditional PSO algorithm, a nonlinear function is 
introduced to control the ratio of individual extremum to 
global extremum, replacing the original random coefficient to 
enhance the algorithm’s optimization accuracy. The inertia 
weight is calculated by using a nonlinear inertia function to 
achieve a dynamic balance between global optimization and 
local optimization, further enhancing the parameter 
optimization capability of the fuzzy control system, thereby 
more efficiently improving the regenerative braking energy 
recovery efficiency and system stability.

The first part of the article serves as the introduction, elaborating 
on the development advantages of electric vehicles in terms of zero 
emissions and low noise, pointing out the shortcomings of 
traditional batteries, sorting out the limitations of the single 
algorithm in the existing regenerative braking control strategies, 
and proposing the idea and innovative direction of adopting the 
HFC construction strategy and combining it with the improved PSO 
optimization. The second part is about methods and materials, 
introducing the regenerative braking control method for electric 
vehicles based on HFC, elaborating on the particle initialization, 
position-velocity update rules, nonlinear function and inertia weight 
improvement methods and optimization processes of the improved 
PSO. The third part is the results, comparing the performance of the 
improved PSO in terms of the optimal solution, convergence speed, 
etc. Compare the regenerative braking index performance of 
different algorithms and analyze the performance differences of 
the strategies under urban, suburban and high-speed working 
conditions. The fourth part is the conclusion, summarizing the 
improvement effects of the strategy in terms of energy recovery rate, 
driving range and braking performance, and pointing out the 
shortcomings and future directions under high-speed working 
conditions.

2 Methods and materials

This study develops a RBC method for EVs. This method is 
based on HFC technology and adjusted with the help of optimized 
PSO. The HFC scheme maximizes ERE and guarantees the safety of 
the car braking process through precise braking force distribution 
between the hydraulic and motor braking system. The improved 
PSO algorithm further enhances the efficiency of BER and improves 

the stability and adaptability of the system by adjusting particle 
update rules and inertia weights.

2.1 RBC method for EVs based on HFC

This study uses HFC technology for EV-RBC strategy to 
improve the ERE during braking and ensure the reliability of 
service braking. This scheme divides RBC into a dual layer 
structure through a hierarchical architecture design: The primary 
level completes the reasonable distribution of braking force between 
the front and rear axles based on the overall braking force required 
by the vehicle; The second layer distributes the Front Axle Braking 
Force (FABF) twice based on the braking intensity to adapt to 
different braking conditions. The power system of EVs mainly 
includes a drive motor, a power battery, a transmission system, 
and a braking system. The driving motor transmits power to the 
wheels through the transmission system, achieving the driving of the 
car. The braking system recovers energy when the vehicle 
decelerates, converts kinetic energy into electrical energy through 
electric motor generation, and stores it in the power battery (Zhou 
et al., 2023; Nandakumar, 2024), as shown in Figure 1.

In Figure 1, the system includes a battery, motor, motor 
controller, transmission system, BER system, and vehicle control 
system. The battery section includes battery cells, battery and 
thermal management systems, and high-voltage DC bus. The 
motor part consists of a stator and a rotor, and is equipped with 
a cooling system. The motor controller is responsible for controlling 
the operation of the motor. The transmission system includes a 
reducer, transmission device, drive shaft, and universal joint. BER 
system recovers energy during vehicle deceleration through a BER 
controller and manages energy flow through coordination units. The 
vehicle control system includes vehicle stability control, energy 
management, and driver interface, responsible for the operation 
control and energy allocation of the entire vehicle. The braking 
system model adopted in the research is the cooperative control 
relationship of motor braking and hydraulic braking. When a 
vehicle brakes, the motor braking system first exerts force within 
its torque limit to prioritize energy recovery, while the hydraulic 
braking system compensates for the remaining required braking 
force in real time. The two are dynamically coordinated through the 
vehicle controller to avoid conflicts caused by superimposed or 
insufficient braking force, ensuring a smooth and shock-free braking 
process. To quantitatively evaluate the effect of motor energy 
recovery, the motor efficiency relationship is introduced. Motor 
efficiency is defined as the ratio of the electrical energy output by the 
motor in the power generation mode to the mechanical energy input 
by the wheel. Based on the EM150 motor experiment selected in the 
research, it is fitted as a binary function of the motor speed and 
torque, as shown in Equation 1. 

η � f n, T( ) (1)

In Equation 1, η represents the motor efficiency, n represents the 
motor speed (unit: rpm), and T represents the motor torque (unit: 
Nm). This function can be directly used to calculate the actual 
energy recovery under different braking conditions. The key to 
regenerative braking lies in the rational allocation of MBF and HBF 
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to achieve maximum energy recovery (Ponce et al., 2022; Anita et al., 
2024), as shown in Figure 2.

In Figure 2, when the vehicle requires power, the driving motor 
drives the vehicle in the form of outputting mechanical energy. 
When braking, the driving motor switches to the power generation 
mode, converting the car’s kinetic energy into electrical energy and 
storing it in the power battery. During this process, the reasonable 
distribution of MBF and HBF is used to maximize energy recovery, 
thereby improving the EUE and driving range of EVs. The EV-RBC 
strategy based on HFC is shown in Figure 3.

In Figure 3, the distribution scheme of FABF and Rear Axle 
Braking Force (RABF) is first calculated grounded on the braking 
force needed by the whole vehicle. The RABF is further divided into 
RABF and rear axle Mechanical Braking Force (MBF). The FABF is 
determined through primary and secondary distribution: the 
primary distribution is determined by a fuzzy controller based on 
input variables including brake pedal travel, battery, and car speed; 
The secondary allocation is further divided into three situations built 
on the braking intensity: mild, moderate, and emergency braking, 
corresponding to the MBF of the front axle and the braking force of 
the front axle motor. Among them, the membership function of the 

fuzzy logic controller adopts a mixed set of triangular and Gaussian 
types: for the three continuous input variables of brake pedal travel, 
battery state of charge, and vehicle speed, the middle intervals of the 
variables use triangular membership functions, taking advantage of 
their simplicity in calculation and fast response speed. The variable 
boundary intervals adopt Gaussian membership functions to reduce 
the sensitivity to extreme value fluctuations and avoid sudden 
changes in control output. The membership function of each 
input variable is divided into three language levels: low, medium 
and high. Together, they form a 3 × 3 × 3 rule base, which contains 
27 control rules, achieving precise mapping from the input variable 
to the braking force distribution ratio of the front axle.

To ensure braking safety, the vehicle dynamics I-J braking 
constraint is introduced: I represents the front axle braking force 
distribution coefficient, reflecting the proportion of the front axle 
braking force to the total braking force of the vehicle; J represents the 
utilization rate of the adhesion coefficient, reflecting the degree to 
which the total braking force utilizes the maximum adhesion 
capacity of the road surface. This constraint requires that the 
actual braking force distribution point must fall within the stable 
area enclosed by the I curve and the J curve, ensuring that both the 

FIGURE 1 
Structure diagram of EV power system.

FIGURE 2 
Process diagram of regenerative braking.
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front and rear axle wheels simultaneously reach the adhesion limit 
during braking, avoiding vehicle loss of control caused by single-axle 
wheel locking, and guaranteeing the stability of the 
braking direction.

In addition, the braking strength is determined by parameters 
such as braking pressure, braking coefficient, and vehicle mass to 
ensure optimal braking force distribution and energy recovery 
under different braking conditions (Shu, 2025). The required 
braking force of the entire vehicle is calculated from the brake 
pedal travel signal, multiplied by the FABF and RABF distribution 
coefficients to obtain the required braking force of the front and rear 
axles, as shown in Equation 2. 

Ffront � Freq × αfront
Frear � Freq × αrear

􏼨 (2)

In Equation 2, Ffront is the FABF. Freq is the braking force 
required for the entire vehicle. αfront and αrear are the FABF and 
RABF distribution coefficients. Frear is the RABF. According to the 

braking intensity, braking conditions are segmented into mild, 
moderate, and emergency braking, with secondary distribution of 
FABF. The calculation of braking strength is shown in Equation 3. 

z �
a

g
(3)

In Equation 3, z is the braking strength. a means the 
deceleration of the vehicle. g denotes the acceleration due to 
gravity. The design of the fuzzy controller is shown in Figure 4.

In Figure 4, the controller processes the input signal through 
fuzzy logic and generates control output u. This output is combined 
with system dynamics G, which in turn affects system output y. In 
addition, it also includes a feedback loop H, which is used to convert 
the system output into a feedback signal v to achieve closed-loop 
control. The design of the entire control system optimizes control 
performance through fuzzy logic, ensuring that the system output 
can accurately track the reference signal while improving the 
robustness and adaptability of the system. The input signal of the 

FIGURE 3 
Diagram of RBC for EVs based on HFC.

FIGURE 4 
Structure design drawing of fuzzy controller.
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controller is composed of the difference between the reference signal 
and the feedback signal, as shown in Equation 4. 

x1 � r− v (4)

In Equation 4, x1 is the input value of the control system. r is the 
reference value. v is the feedback value.

2.2 EV-RBC strategy optimization based on 
improved PSO

After proposing the HFC-based EV-RBC strategy, this study 
further focuses on optimizing the performance of the control 
strategy. Therefore, an improved PSO has been introduced to 
more effectively improve the ERE and system stability of 
regenerative braking. The improved PSO achieves a more 
effective balance between global and local optima by adjusting 
particle update rules and inertia weights, thereby improving the 
convergence and resolution quality of the algorithm (Suyambu and 
Vishwakarma, 2023; Azim et al., 2024; Heydari et al., 2023). This 
algorithm optimizes the core variables of the fuzzy logic controller, 
specifically including the characteristic parameters of the fuzzy 
membership function (the vertex coordinates of the triangular 
membership function, the mean and standard deviation of the 
Gaussian membership function) and the output weights of the 
fuzzy rule base. The optimization objective is set to minimize the 
regenerative braking energy loss rate and the fluctuation of vehicle 
braking deceleration, while maximizing the motor energy recovery 
efficiency. The constraints include: The parameters of the fuzzy 
membership function should be within a physically reasonable 
range, and the output weights of the fuzzy rules should meet the 
0–1 normalization requirement. During the optimization process, 
the braking intensity z should always be within 0–1.5 to avoid 
exceeding the physical limit of the vehicle braking system. The 
motor torque needs to be controlled within the range of the rated 
torque (180 Nm) and peak torque (300 Nm) of the EM150 motor. 
The improved PSO first initializes the position and speed of the PSO. 
The calculation of the initial position and particle velocity is shown 
in Equation 5. 

X
0( )
i � Xmin + Xmax −Xmin( ) · Ri

V
0( )
i � Vmin + Vmax −Vmin( ) · Ri

􏼨 (5)

In Equation 5, X(0)i and V(0)i are the initial positions and 
velocities of particle i. Xmin and Xmax mean the minimum and 
maximum of particle positions. Ri is a random number for particle i, 
used to initialize its position and velocity. Vmax and Vmin are the 
maximum and minimum of particle velocity. In each iteration, the 
position and velocity of the particles are updated as shown in 
Equation 6. 

V
t+1( )
i � ωV t( )

i + c1r1 P
t( )
i −X t( )

i􏼐 􏼑 + c2r2 G
t( ) −X t( )

i􏼐 􏼑

X
t+1( )
i � X

t( )
i + V

t+1( )
i

􏼨 (6)

In Equation 6, V(t+1)
i and X(t+1)

i are the velocity and position of 
particle i at t + 1 iterations. ω is the inertia weight. c1 and c2 are 
learning factors. r1 and r2 are random numbers utilized for updating 
speed. P(t)i and G(t) are the individual and global optimal position of 
i during iteration t. To improve the convergence and resolution 

quality of PSO, a nonlinear function is introduced to control the 
ratio of individual extremum to global extremum, replacing the 
original random coefficients r1 and r2, as shown in Equation 7. 

r1
′ � c1 min + c1 max − c1 min( ) ·

k

Tmax

p

r2
′ � c2 min + c2 max − c2 min( ) ·

k

Tmax

p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

In Equation 7, r1′ and r2′ are random numbers that represent 
the ratio of the values of the control individual extremum to the 
global extremum calculated through a nonlinear function. c1 min and 
c1 max are the minimum/maximum values of r1

′, and c2 min and c2 max

are the minimum/maximum values of r2
′. p is a nonlinear exponent, 

controlling the increasing curvature. In the early stage of iteration, 
the calculation result of trigonometric functions is close to 0. At this 
time, both r1 and r2 are approximately equal to 0.5, which means 
that the individual extremum and the global extremum contribute 
the same to the particle velocity. This enables the algorithm to search 
for the optimal solution over a wide range and avoid missing 
potential good results. With the increase of the number of 
iterations, the calculation results of trigonometric functions 
gradually become larger. r1 increases accordingly and r2

decreases accordingly. By the middle of the iteration, r1 is 
approximately 0.78 and r2 is approximately 0.22. At this time, 
the contribution of individual extremum is greater, guiding the 
particles to further search in the found better region. By the end of 
the iteration, when the current number of iterations reaches the 
maximum number of iterations, the trigonometric function 
calculation result is 1, r1 becomes 0.9, and r2 becomes 0.1. The 
contribution of individual extremum takes the leading role, ensuring 
that the algorithm converges precisely near the optimal solution and 
avoiding repeated oscillations. In addition, the improved PSO also 
adjusted the calculation method of inertia weights to achieve 
balanced adjustment of global and local optima, as shown in 
Equation 8. 

ω � ωmax − ωmax − ωmin( ) ·
k

Tmax

p

(8)

In Equation 8, ω is the inertia weight calculated through a 
nonlinear inertia function, which depends on the current Number of 
Iterations (NoI), the maximum NoI, and the minimum and 
maximum of the inertia weight. nonlinear inertia is a nonlinear 
function used to calculate inertia weights. At the beginning of the 
iteration, the current number of iterations is 0, and the calculation 
result of the exponential function is 1. At this time, the inertia weight 
is equal to 0.9, and the particle velocity is relatively large, which 
enables the particle to search in a wider parameter space and makes 
it easier to find a better solution in the global scope. In the middle of 
the iteration, when the current number of iterations increases to half 
of the maximum number of iterations, the calculation result of the 
exponential function significantly decreases to approximately 0.018, 
the inertia weight approaches 0.41, and the particle velocity 
decreases accordingly to avoid crossing the optimal solution due 
to excessive velocity. By the end of the iteration, when the current 
number of iterations reaches the maximum number of iterations, the 
calculation result of the exponential function approaches 0, the 
inertia weight approaches 0.4, the particle velocity further slows 
down, and the focus is on fine-tuning near the found optimal 
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FIGURE 5 
Flowchart for improving PSO.

FIGURE 6 
Optimization flowchart of EV-RBC strategy based on improved PSO.
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solution to ensure the accuracy of the final result. The flow for 
improving PSO is displayed in Figure 5.

In Figure 5, the algorithm is first initialized, including the initial 
position and velocity of randomly generated particles. Subsequently, 
fitness calculations are performed on each particle to evaluate its 
performance in optimization problems. On this basis, the algorithm 
calculates inertia weights and nonlinear parameters based on 
improved PSO rules to enhance dynamic balance during the 
search process. Next, it enters the particle update phase, where 
the velocity and location of each particle are updated sequentially, 
while also updating the individual and global optimal positions of 
the particles. After each iteration, the algorithm checks whether the 
preset stopping conditions are met. If the maximum NoI or the 
accuracy of the solution is reached, it indicates that the requirements 
are met (Mohammad and Jaber, 2022; Hasan et al., 2023). The 
optimization process of EV-RBC strategy based on improved PSO is 
exhibited in Figure 6.

In Figure 6, during the start-up phase, it is necessary to 
determine the size of the PSO, the activity range of particles, 
and the NoI in the loop, and to set the initial position and motion 
rate of the PSO. The next step is to start the iteration process, 
starting from the iteration counter i � 0, generating a new PSO, 
updating the position and velocity of each particle in the PSO after 
each iteration, and updating the individual and global extremum 
of each particle. After each iteration, it is necessary to check 
whether the termination condition is met. If the NoI exceeds the 
preset N times or a satisfactory solution has been found, the 
optimal solution is output and the process ends. If the termination 
condition is not met, the iteration will continue until the optimal 
solution is found. The improved PSO can effectively achieve 
efficient energy recovery and stable braking performance of 
RBS in EVs, providing support for the energy-saving and safe 
operation of EVs.

3 Results

This study evaluated the performance of a fuzzy control system 
based on improved PSO through a series of experiments, verifying 
its optimization effect in EVs regenerative braking. At the same time, 
a comparative analysis was conducted on the RBC effects of different 
algorithms under various operating conditions, comprehensively 
examining key indicators such as Energy Recovery Rate (ERR), 
braking response time, braking stability index, and energy 
consumption rate. The purpose was to reveal the impact of 
different algorithms and operating conditions on the regenerative 
braking performance of EVs.

3.1 Performance evaluation of fuzzy control 
system based on improved PSO

To comprehensively evaluate the performance of the fuzzy 
control system built on improved PSO in regenerative braking of 
EVs, a series of performance evaluation experiments are designed. 
These experiments will test and validate the fuzzy control system 
through precisely set parameters and configurations. Table 1 shows 
the experimental setup.

In Table 1, the EV model is selected as Model E6. This model has 
a typical EVs powertrain configuration, including a front mounted 
Permanent Magnet Synchronous Motor (PMSM) with a maximum 
power of 150 kW and a maximum torque of 300 Nm. The power 
battery is a lithium-ion battery with a total capacity of 60Ah and a 
nominal voltage of 350V. The battery management system is in 
charge of the management of battery charging and discharging, as 
well as temperature control. The driving motor is PMSM, with a 
rated power of 80 kW, a peak power of 150 kW, motor torque rating 
180 Nm, peak 300 Nm. A rated speed of 3000 rpm corresponds to a 
rated power of 80 kW, and a peak speed of 6000 rpm is suitable for a 
peak power of 150 kW. The input parameters of the fuzzy control 
unit include the displacement of the brake pedal, battery status, and 
car speed, and its output result is the proportion of MBF 
distribution. The fuzzy controller’s membership function adopts 
triangular and Gaussian types, and the rule library contains 27 rules. 
The PSO scale is 30, the maximum NoI is 200, the inertia weight 
varies linearly between 0.4 and 0.9, and the learning factors c1 and 
c2 are both set to 2. Under the improved PSO control, the motor 
braking torque response delay is only 80 m. It can smoothly rise 
from 0 to 120 Nm (66.7% of the rated torque) within 0.2 s after 
braking trigger, and the torque fluctuation range is controlled 
within ±5 Nm. The motor’s power generation capacity 
simultaneously rose from 0 to 35 kW (48.6% of the peak 
power), with no obvious peak impact on the power curve. The 
continuous stable output time accounted for more than 85% of the 
braking process. The improved PSO is compared with PSO, 
Simulated Annealing (SA), and Grey Wolf Optimizer (GWO). 
The optimal solution statistics of several algorithms are shown 
in Figure 7.

In Figure 7a, the improved PSO achieves the average optima 
after about 100 iterations, with the least NoI and the smallest 
difference in optima, which is about 10. PSO reaches the average 
optima after about 200 iterations, with a difference of about 
15 in optima. GWO reaches the average optima after about 
150 iterations, with a difference of approximately 12 optima. SA 
has the least NoI, about 100, but the maximum difference in 
optima is about 20. In Figure 7b, the improved PSO also shows 
the minimum NoI, about 100, and the optima difference is the 
smallest, about 5. The PSO iteration reaches the average optima 
about 200 times, with a difference of about 10 in the optima. 
GWO reaches the average solution after about 150 iterations, 
with an optima difference of approximately 8. SA has the least 
NoI, about 100, but the maximum difference in optima is about 
15. The improved PSO shows the fastest convergence speed and 
the smallest difference in optima on both datasets, 
demonstrating its efficiency and accuracy in optimizing 
problems. The accuracy and recall of several algorithms are 
shown in Figure 8.

In Figure 8a, the improved PSO quickly achieves high accuracy 
with fewer iterations and tends to stabilize after about 100 iterations, 
with a final accuracy close to 0.98. In Figure 8b, the improved PSO 
also quickly achieves a high recall rate with fewer iterations and 
stabilizes after about 100 iterations, with a final recall rate close to 
0.95. Improved PSO exhibits faster convergence speed and higher 
accuracy and recall during the iteration process, demonstrating its 
superior performance in optimizing problems. The loss function 
values of several algorithms are shown in Figure 9.
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In Figure 9a, PSO rapidly reduces the loss function value when 
the NoI is small, showing a fast convergence speed, and reaches the 
lowest loss function value at the end of the iteration, which is about 
10−5. The convergence speed of PSO, GWO, and SA is relatively 
slow, with PSO stabilizing after about 40 iterations and GWO and 
SA stabilizing after about 60 iterations. In Figure 9b, the improved 
PSO also demonstrates the fastest convergence speed, reaching the 
lowest loss value of approximately 10−6 after about 30 iterations. The 
improved PSO demonstrates superior convergence performance on 
both datasets, with fast convergence speed and the lowest final loss 
function value, demonstrating higher efficiency and accuracy in 
optimizing problems.

3.2 Evaluation of RBC effect of EVs based on 
improved PSO

After verifying the performance of the improved PSO, this study 
evaluates the RBC effect of EVs based on the improved PSO. To 
comprehensively understand the performance of different 
algorithms under different operating conditions, a detailed 
performance comparison analysis is conducted on the improved 
PSO, PSO, SA, and GWO, as listed in Table 2.

In Table 2, from the perspective of ERR, the improved PSO 
performs the best, reaching 16.8%. In terms of driving range 
contribution, the PSO has been improved to 35 km. The 

TABLE 1 Experimental parameters.

Parameters Parameter value Parameter description

Electric vehicle model Model E6 The curb weight of the entire vehicle is 1880 kg, and the drive form is front-engine front-wheel drive

Motor type EM150 This motor is a permanent magnet synchronous motor (PMSM), with a power of 150 kW and a torque of 300Nm

Motor power (kW) Rated 80, peak 150 The rated power of 80 kW refers to the output power of the motor during continuous and stable operation, and the peak 
power of 150 kW refers to the maximum power that the motor can output within a short period of time

Battery capacity (Ah) 60 The power battery is a lithium-ion battery pack with a total capacity of 60Ah (total battery energy = 350V × 60Ah = 21 kWh)

Battery voltage (V) 350 The nominal voltage of the battery pack. The electrical energy generated by the motor during regenerative braking needs to 
be stored in the battery through this voltage level

Brake pedal travel 0%–100% The input signal of the braking system directly reflects the driver’s braking requirements: 0% indicates no braking, 30%–70% 
corresponds to light to moderate braking, and over 70% indicates emergency braking

Battery 0–1 When the SOC is greater than 0.9, to prevent overcharging of the battery, the system will automatically reduce the 
regenerative braking intensity. This parameter, together with the battery capacity and voltage, constitutes the battery 

management logic

Speed of vehicle 0–120 km/h Regenerative braking is not activated when the vehicle speed is less than 3 km/h

Particle swarm size 30 Thirty particles can achieve the optimal balance between optimization accuracy and computational efficiency

Maximum iterations 200 When the number of iterations reaches 200, the algorithm terminates regardless of whether the optimal solution is updated 
or not, to avoid a decrease in experimental efficiency due to infinite iterations

Inertia weight 0.4–0.9 At the beginning of the iteration, take 0.9 (to enhance the global search ability of particles and avoid missing potential optimal 
solutions), and at the end of the iteration, take 0.4 (to enhance the local optimization ability of particles and ensure 

convergence accuracy)

Learning factor 2 In the initial state, the learning ability of particles to the individual optimal position is the same as that to the global optimal 
position

FIGURE 7 
Statistical values of optima of several algorithms. (a) Dataset 1; (b) Dataset 2.
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improved PSO has the shortest braking response time, taking only 
0.71 s. In terms of braking stability index, the improved PSO also has 
the highest score, at 95, PSO at 90, SA and GWO at 88 and 85. The 

energy consumption rate of improved PSO is the lowest, at 150 Wh/ 
km, SA is 155 Wh/km, PSO and GWO are 160 Wh/km and 162 Wh/ 
km. Improved PSO performs the best in ERR, braking response 

FIGURE 8 
Accuracy and recall rates of several algorithms in optimizing fuzzy control system parameters. (a) Accuracy ratio; (b) Recall rate.

FIGURE 9 
Loss function values of several algorithms. (a) Dataset 1; (b) Dataset 2.

TABLE 2 RBC performance of EVs with different algorithms under various working conditions.

Algorithm PSO SA GWO Improved PSO

ERR (%) 15.7 15.5 14.7 16.8

Driving range contribution (km) 30 32 28 35

Braking response time (s) 0.85 0.75 0.92 0.71

Braking stability index 90 88 85 95

Energy consumption rate (Wh/km) 160 155 162 150

Braking distance (m) 45 42 48 40

Brake comfort index 80 82 78 85

System response delay (ms) 120 110 130 100

Braking ERE (%) 85 83 80 88

Jitter degree during braking (g) 0.3 0.25 0.4 0.2
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time, and braking stability, while having the lowest energy 
consumption rate, demonstrating superior performance in EVs 
RBC. Table 3 compares the RBC performance of EVs under 
various operating conditions. The working conditions are based 
on the framework of the World Light-Duty Vehicle Test Cycle 
(WLTP) standard test profile, and the parameters are corrected in 
combination with the actual usage scenarios of the experimental 
vehicle. The specific driving conditions and overview are as follows: 
The urban working conditions are designed in reference to the “low- 
speed segment” (speed ≤50 km/h) in the WLTP standard. After 
correction, the average speed is 32 km/h, the maximum speed does 

not exceed 50 km/h, the braking frequency is 1.2 times per minute, 
the duration of each braking is 1.5–2 s, and the total test driving 
distance is 10 km. This working condition simulates the congested 
urban sections in China (the morning and evening rush hour traffic 
conditions in Yuzhong District, Chongqing City), with the reference 
basis being the 2024 Central Urban Area Road Driving 
Characteristics Report released by the Chongqing Municipal 
Commission of Transport. The suburban working conditions are 
designed in accordance with the “medium speed range” (50–80 km/ 
h) in the WLTP standard. After correction, the average speed is 
58 km/h, the maximum speed is 80 km/h, the braking frequency is 

TABLE 3 Comparison of RBC performance of EVs under different working conditions.

Type of working condition Urban conditions Suburban condition High speed condition

ERR (%) 16.5 15.2 14.9

Driving range contribution (km) 40 35 25

Braking response time (s) 0.65 0.71 0.83

Braking stability index 95 85 80

Energy consumption rate (Wh/km) 145 152 165

Braking distance (m) 40 42 48

Brake comfort index 85 82 78

System response delay (ms) 100 110 130

Braking ERE (%) 88 83 80

Jitter degree during braking (g) 0.2 0.25 0.3

Maximum deceleration during braking (m/s2) 5.5 5 4.5

Average deceleration during braking (m/s2) 3.5 3 2.5

TABLE 4 Performance Comparison of different Braking Strategies under standard operating conditions.

Braking 
strategy

Traditional 
hydraulic 
braking

Single fuzzy 
control 

regenerative 
braking

This study 
(improved PSO 
+ hierarchical 

fuzzy)

Traditional 
hydraulic 
braking

Single fuzzy 
control 

regenerative 
braking

This study 
(improved PSO 
+ hierarchical 

fuzzy)

Standard 
operating 
conditions

New European driving cycle (NEDC) WLTC

Energy recovery 
rate (%)

0 14.2 16.8 0 13.8 16.3

Driving range 
contribution 

(km)

0 28 35 0 26 33

Average braking 
torque (Nm)

180 (hydraulic) 110 (motor) +70 
(hydraulic)

120 (motor) +60 
(hydraulic)

190 (hydraulic) 105 (motor) +85 
(hydraulic)

115 (motor) +75 
(hydraulic)

Average power 
generation (kW)

0 28 35 0 26 33

Braking 
response 
time (s)

0.95 0.82 0.71 0.98 0.85 0.73

Energy 
consumption 
rate (Wh/km)

185 168 150 192 172 155
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0.6 times per minute, the duration of each braking is 2–2.5 s, and the 
total test driving distance is 15 km. This working condition 
simulates the scenario of a suburban expressway (the suburban 
ring road in Banan District, Chongqing City), with the reference 
basis being the WLTP test regulations and the speed limit 
regulations for suburban roads in Chongqing City. The high- 
speed operating condition is based on the “high-speed section” 
(vehicle speed ≥80 km/h) in the WLTP standard. After correction, 
the average speed is 85 km/h and the maximum speed is 110 km/h. 
This operating condition simulates a highway scenario (the 
Chongqing section of G85 Chengdu-Chongqing Expressway). For 
specific parameter calibration, please refer to the 2024 traffic flow 
data report of the Chongqing section of G85.

In Table 3, under urban working conditions, the highest ERR is 
16.5%, the contribution of driving range is 40 km, the braking 
response time is 0.65 s, the braking stability index is 95, and the 
energy consumption rate is 145 Wh/km. The values under suburban 
conditions are 15.2%, 35 km, 0.71 s, 85, and 152 Wh/km. The five 
values under high-speed conditions are 14.9%, 25 km, 0.83 s, 80, and 
165 Wh/km. Under urban working conditions, EVs exhibit the best 
ERR and braking stability, but have the lowest energy consumption 
rate. Under suburban conditions, although the ERR is slightly lower, 
the contribution of driving range is relatively high, and the braking 
response time and energy consumption rate are at a moderate level. 
Under high-speed conditions, although the contribution of driving 
range is the highest, the ERR and braking stability are poor, and the 
energy consumption rate is the highest. To further demonstrate the 
superiority of the research strategy, supplementary horizontal 
comparison data between standard operating conditions and 
conventional braking methods are provided, as shown in Table 4.

As shown in Table 4, under the two standard operating 
conditions of NEDC and WLTC, the improved PSO + 
hierarchical fuzzy braking strategy proposed in the research has 
an energy recovery rate that is 2.6% and 2.5% higher respectively 
compared to the single fuzzy control regenerative braking, an 
increase of 7–8 km in driving range contribution, and an 
increase of 6–7 kW in average power generation. The braking 
response time is shortened by 0.1–0.12 s, and the energy 
consumption rate is reduced by 18 to 17 Wh/km, which is 
significantly superior to traditional hydraulic braking (without 
energy recovery).

4 Conclusion

This study aims to address the challenges faced by EVs in ERE 
and range, by optimizing RBC strategy to optimize the EUE and 
braking performance of EVs. To this end, this study developed an 
EV-RBC strategy scheme based on HFC technology and adjusted 
through an optimized PSO algorithm. In the experiment, the 
improved strategy significantly increased the ERR of EVs to 
16.8% in energy recovery, which was about 1.1% higher than 
traditional methods. In terms of driving range, the contribution 
of driving range has increased to 35 km, indicating that this strategy 
has significant advantages in improving EUE. In terms of braking 
performance, the braking response time has been shortened to 
0.71 s, and the braking stability index has reached 95, 
demonstrating the superiority of this control strategy in ensuring 

vehicle braking safety and stability. In addition, the energy 
consumption rate was reduced to 150 Wh/km, further verifying 
the effectiveness of this strategy in energy conservation. The fuzzy 
control system based on improved PSO exhibited significant 
performance improvement during the optimization process. 
However, under high-speed operating conditions, the ERR and 
braking stability still need to be further improved, and the 
adaptability of this control strategy under different operating 
conditions still needs to be optimized. Future research will 
further optimize control strategies to improve their adaptability 
and robustness under different operating conditions.
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