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Introduction: The long charging cycle, limited energy storage system, and short
range of traditional batteries have constrained the further development of
electric vehicles.

Methods: Given this, the paper constructs a regenerative braking control strategy for
electric vehicles based on hierarchical fuzzy control, and optimizes it using an
improved Particle Swarm Optimization (PSO) algorithm. The study aims to improve
the energy recovery efficiency of electric vehicles while ensuring the safety and
stability of vehicle braking by reasonably allocating motor and hydraulic braking forces.
Results: The results showed that the improved PSO exhibited faster convergence
speed and higher accuracy in the optimization process, with the smallest
difference in optimal solutions and the lowest loss function value of 107°. In
terms of regenerative braking control effect of electric vehicles, the control
strategy built on improved PSO achieved an energy recovery rate of 16.8% and
increased the contribution of driving range by 35 km. Its braking response time
has been shortened to 0.71 s, the braking stability index has reached 95, and the
energy consumption rate has been reduced to 150 Wh/km.

Discussion: The proposed hierarchical fuzzy control strategy based on improved
PSO provides an efficient and stable solution for the design and optimization of
regenerative braking systems in electric vehicles. This optimization scheme can
enhance the energy utilization efficiency and endurance of electric vehicles, which is
of great significance for promoting the development of electric vehicle technology.

KEYWORDS

electric vehicles, regenerative braking, fuzzy control, particle swarm optimization,
energy recovery

1 Introduction

Electric Vehicles (EVs) have become an important development direction in the future
transportation industry due to their advantages such as zero emissions and low noise.
However, EVs still face many challenges in their development process. Traditional batteries
have long charging cycles and limited energy storage system capacity, making it difficult for
EVs to meet long-distance driving needs (Beskardes et al., 2024; Re et al., 2023). In addition,
as a key technology to improve the Energy Utilization Efficiency (EUE) of EVs, the
performance optimization of the Braking Energy Recovery (BER) system has always been a
hot and difficult research topic. The continuous development of EVs technology has led to
the continuous expansion of its market size, but the issue of range is still one of the key
factors restricting its widespread application. The range of EVs depends on the energy
density of the battery and is also closely correlated with the efficiency of BER system. The
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Regenerative Braking System (RBS) recovers energy during vehicle
deceleration, converts it into electrical energy, and stores it in the
battery, thereby extending the range of EVs. However, the current
RBS still has shortcomings in Energy Recovery Efficiency (ERE) and
braking performance, especially in terms of adaptability and stability
under different operating conditions, which still need further
improvement (Luo et al., 2024; Bingtl and Yildiz, 2023). In the
research of RBS in EVs, the optimization of control strategy is
crucial. Traditional Regenerative Braking Control (RBC) strategies
are mostly based on a single control algorithm, such as fuzzy logic
control, neural networks, or model predictive control. These
methods have improved ERE to some extent, but in complex
operating conditions, it is often difficult to achieve optimal
braking force distribution and energy recovery. Particle Swarm
Optimization (PSO) is widely utilized in the optimization of RBC
strategies for EVs since its efficient global search ability and fast
convergence characteristics (Abd-Elhaleem et al., 2023; Pukkunnen
et al., 2023).

In recent years, with the widespread application of EVs, their
energy recovery and RBC strategy research have gradually become
hot topics, and many scholars have conducted in-depth research on
this issue. To solve the problems of long charging cycles, energy
storage system limitations, and short range of EVs in traditional
batteries, Chai et al. proposed a proportional-integral-controller
method based on PSO algorithm. Compared with traditional
methods, PSO-based energy management methods could achieve
higher energy efficiency. This method increased the total driving
distance of EVs by 6%, the maximum and peak speeds by 3.9%, and
the average speed by 14.5% (Chai et al., 2022). To recover more
braking energy while ensuring vehicle safety, Zhang et al. proposed
an RBC strategy based on swarm intelligence prediction. This
strategy adopted PSO as the main part, used ACO to improve
the iterative process of PSO, avoided getting stuck in local optimal
solutions, and applied model predictive control theory to achieve
optimal control. Through simulation experiments, the stability and
economy of the proposed strategy were tested under emergency
braking and urban cycling conditions (Zhang et al, 2022). To
improve the regenerative braking energy of EVs and the driving
interval of vehicles, Saiteja et al. proposed various control
architectures and main braking methods. This study reviewed the
main subsystems of RBS in EVs and how they affect braking
It also several RBC
strategies including fuzzy logic control, neural networks, and

performance. systematically reviewed

model predictive control. In addition, the design process of RBS
and its calibration variables, including vehicle velocity and braking
force assessment, were also discussed, which could be utilized to lift
braking performance (Saiteja et al, 2022). Ratchanyaraj and
Ravindran proposed a method combining Improved Fractional-

Abbreviations: PSO, Particle Swarm Optimization/; HFC, Hierarchical Fuzzy
Control/; EVs, Electric Vehicles/; EUE, Energy Utilization Efficiency %; BER,
Braking Energy Recovery/; RBS, Regenerative Braking System/; RBC,
Regenerative Braking Control/; ERE, Energy Recovery Efficiency %; ERR,
Energy Recovery Rate %; FABF, Front Axle Braking Force N; RABF, Rear Axle
Braking Force N; MBF, Mechanical Braking Force N; HBF, Hydraulic Braking
Force N; PMSM, Permanent Magnet Synchronous Motor/; SOC, State of
Charge/; Nol, Number of Iterations Times; SA, Simulated Annealing/; GWO,
Grey Wolf Optimizer/; WLTP, World Light-Duty Vehicle Test Cycle/; NEDC,
New European Driving Cycle/.
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Order Darwinian PSO (IFODPSO) and fuzzy logic controller to
optimize motor performance in RBC of EVs. The IFODPSO method
outperformed traditional techniques in torque control. In addition,
the fuzzy estimation could improve system efficiency at low speeds
(Ratchanyaraj and Ravindran, 2024). To solve the problems of
improving the motion performance and controlling the handling
stability of distributed drive electric vehicles, Guo N et al. evaluated
the driving state and generated a unified yaw velocity reference
through a motion monitor that only relies on the feedback of the
front wheel steering Angle. The direct yaw moment control is
achieved by adopting the nonlinear model predictive control
strategy based on Lyapunov, and the contraction constraint is
added to ensure the closed-loop stability and provide a rigorous
proof. Develop and improve the iterative linear quadratic regulator
algorithm, combine the relaxed logarithmic obstacle function and
the double-loop iterative processing of inequality constraints, and
supplement with the auxiliary control law to generate the initial
solution to reduce sensitivity. Simulation and hardware-in-the-loop
experiments show that this strategy has better manipulation stability
and higher computational efficiency (Guo et al.,, 2025). To address
the optimization and real-time performance issues of energy
management in fuel cell plug-in hybrid vehicles, Zhang W et al.
proposed a predictive energy management strategy based on the
Pontriagin minimum principle and costate boundary. The costate
boundary range is determined in real time based on the feedback
information. A heuristic rule for online iterative calibration of
costates and an analytical method for finding the optimal
solution of the Hamiltonian function are also proposed.
Simulation and hardware-in-the-loop experiments show that this
strategy can efficiently update costates, smooth control instructions,
achieve expected state of charge tracking, improve fuel economy,
and the sampling time in hardware-in-the-loop testing is short,
making it applicable in real time (Guo et al, 2024). To solve the
problem of performance improvement of the regenerative braking
system of traditional electric vehicles, Valladolid J D et al. proposed
an auxiliary control strategy. This strategy utilizes experimental data
and a linear model for vehicle dynamics estimation, combined with
the concept of model predictive control, to compensate for the target
torque provided by the integrated brake assist unit and pressure
source unit. The simulation was carried out through MATLAB/
Simulink software, and the results show that the proposed auxiliary
braking torque controller is effective (Valladolid and Macas, 2023).

In summary, most existing studies only use PSO algorithm for
parameter optimization, without fully considering its combination
with other control algorithms, resulting in certain limitations in
practical applications. There is still a certain research gap on how to
achieve optimal braking force distribution under different operating
conditions and how to further improve motor performance
optimization. To overcome the constrains of existing research
and further improve the EUE and endurance of EVs, this study
adopts a Hierarchical Fuzzy Control (HFC) method to construct an
EV-RBC strategy and applies an improved PSO to optimize it. The
innovation points and contributions of the research are as follows:

1. Algorithm integration and innovation: For the first time, HFC
and the improved PSO algorithm are deeply combined to form
a complete technical path of control strategy construction -
parameter optimization and upgrade, providing an efficient
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and stable new solution for the regenerative braking control
strategy of electric vehicles and making up for the limitations of
single algorithm application in existing research.

2. Innovation in braking force distribution mechanism: The HFC
strategy achieves refined braking force distribution through a
two-layer architecture design. The first layer rationally
distributes the braking force of the front and rear axles
based on the total braking force required by the entire
vehicle. The second layer redistributes the braking force of
the front axle according to the braking intensity, ensuring the
braking stability of the vehicle while maximizing the energy
recovery efficiency under different braking conditions.

3. Innovation in performance optimization of PSO Algorithm: By
adjusting the particle update rule and inertia weight to improve
the traditional PSO algorithm, a nonlinear function is
introduced to control the ratio of individual extremum to
global extremum, replacing the original random coefficient to
enhance the algorithm’s optimization accuracy. The inertia
weight is calculated by using a nonlinear inertia function to
achieve a dynamic balance between global optimization and

further

optimization capability of the fuzzy control system, thereby

local  optimization, enhancing the parameter
more efficiently improving the regenerative braking energy

recovery efficiency and system stability.

The first part of the article serves as the introduction, elaborating
on the development advantages of electric vehicles in terms of zero
emissions and low noise, pointing out the shortcomings of
traditional batteries, sorting out the limitations of the single
algorithm in the existing regenerative braking control strategies,
and proposing the idea and innovative direction of adopting the
HEFC construction strategy and combining it with the improved PSO
optimization. The second part is about methods and materials,
introducing the regenerative braking control method for electric
vehicles based on HFC, elaborating on the particle initialization,
position-velocity update rules, nonlinear function and inertia weight
improvement methods and optimization processes of the improved
PSO. The third part is the results, comparing the performance of the
improved PSO in terms of the optimal solution, convergence speed,
etc. Compare the regenerative braking index performance of
different algorithms and analyze the performance differences of
the strategies under urban, suburban and high-speed working
conditions. The fourth part is the conclusion, summarizing the
improvement effects of the strategy in terms of energy recovery rate,
driving range and braking performance, and pointing out the
shortcomings and future directions under high-speed working
conditions.

2 Methods and materials

This study develops a RBC method for EVs. This method is
based on HFC technology and adjusted with the help of optimized
PSO. The HFC scheme maximizes ERE and guarantees the safety of
the car braking process through precise braking force distribution
between the hydraulic and motor braking system. The improved
PSO algorithm further enhances the efficiency of BER and improves
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the stability and adaptability of the system by adjusting particle
update rules and inertia weights.

2.1 RBC method for EVs based on HFC

This study uses HFC technology for EV-RBC strategy to
improve the ERE during braking and ensure the reliability of
service braking. This scheme divides RBC into a dual layer
structure through a hierarchical architecture design: The primary
level completes the reasonable distribution of braking force between
the front and rear axles based on the overall braking force required
by the vehicle; The second layer distributes the Front Axle Braking
Force (FABF) twice based on the braking intensity to adapt to
different braking conditions. The power system of EVs mainly
includes a drive motor, a power battery, a transmission system,
and a braking system. The driving motor transmits power to the
wheels through the transmission system, achieving the driving of the
car. The braking system recovers energy when the vehicle
decelerates, converts kinetic energy into electrical energy through
electric motor generation, and stores it in the power battery (Zhou
et al., 2023; Nandakumar, 2024), as shown in Figure 1.

In Figure 1, the system includes a battery, motor, motor
controller, transmission system, BER system, and vehicle control
system. The battery section includes battery cells, battery and
thermal management systems, and high-voltage DC bus. The
motor part consists of a stator and a rotor, and is equipped with
a cooling system. The motor controller is responsible for controlling
the operation of the motor. The transmission system includes a
reducer, transmission device, drive shaft, and universal joint. BER
system recovers energy during vehicle deceleration through a BER
controller and manages energy flow through coordination units. The
vehicle control system includes vehicle stability control, energy
management, and driver interface, responsible for the operation
control and energy allocation of the entire vehicle. The braking
system model adopted in the research is the cooperative control
relationship of motor braking and hydraulic braking. When a
vehicle brakes, the motor braking system first exerts force within
its torque limit to prioritize energy recovery, while the hydraulic
braking system compensates for the remaining required braking
force in real time. The two are dynamically coordinated through the
vehicle controller to avoid conflicts caused by superimposed or
insufficient braking force, ensuring a smooth and shock-free braking
process. To quantitatively evaluate the effect of motor energy
recovery, the motor efficiency relationship is introduced. Motor
efficiency is defined as the ratio of the electrical energy output by the
motor in the power generation mode to the mechanical energy input
by the wheel. Based on the EM150 motor experiment selected in the
research, it is fitted as a binary function of the motor speed and
torque, as shown in Equation 1.

n=fnT) 1

In Equation 1, 5 represents the motor efficiency, n represents the
motor speed (unit: rpm), and T represents the motor torque (unit:
Nm). This function can be directly used to calculate the actual
energy recovery under different braking conditions. The key to
regenerative braking lies in the rational allocation of MBF and HBF
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FIGURE 2
Process diagram of regenerative braking.

to achieve maximum energy recovery (Ponce et al., 2022; Anita et al.,
2024), as shown in Figure 2.

In Figure 2, when the vehicle requires power, the driving motor
drives the vehicle in the form of outputting mechanical energy.
When braking, the driving motor switches to the power generation
mode, converting the car’s kinetic energy into electrical energy and
storing it in the power battery. During this process, the reasonable
distribution of MBF and HBF is used to maximize energy recovery,
thereby improving the EUE and driving range of EVs. The EV-RBC
strategy based on HFC is shown in Figure 3.

In Figure 3, the distribution scheme of FABF and Rear Axle
Braking Force (RABF) is first calculated grounded on the braking
force needed by the whole vehicle. The RABF is further divided into
RABF and rear axle Mechanical Braking Force (MBF). The FABF is
determined through primary and secondary distribution: the
primary distribution is determined by a fuzzy controller based on
input variables including brake pedal travel, battery, and car speed;
The secondary allocation is further divided into three situations built
on the braking intensity: mild, moderate, and emergency braking,
corresponding to the MBF of the front axle and the braking force of
the front axle motor. Among them, the membership function of the

Frontiers in Mechanical Engineering

fuzzy logic controller adopts a mixed set of triangular and Gaussian
types: for the three continuous input variables of brake pedal travel,
battery state of charge, and vehicle speed, the middle intervals of the
variables use triangular membership functions, taking advantage of
their simplicity in calculation and fast response speed. The variable
boundary intervals adopt Gaussian membership functions to reduce
the sensitivity to extreme value fluctuations and avoid sudden
changes in control output. The membership function of each
input variable is divided into three language levels: low, medium
and high. Together, they form a 3 x 3 x 3 rule base, which contains
27 control rules, achieving precise mapping from the input variable
to the braking force distribution ratio of the front axle.

To ensure braking safety, the vehicle dynamics I-] braking
constraint is introduced: I represents the front axle braking force
distribution coefficient, reflecting the proportion of the front axle
braking force to the total braking force of the vehicle; ] represents the
utilization rate of the adhesion coefficient, reflecting the degree to
which the total braking force utilizes the maximum adhesion
capacity of the road surface. This constraint requires that the
actual braking force distribution point must fall within the stable
area enclosed by the I curve and the ] curve, ensuring that both the
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front and rear axle wheels simultaneously reach the adhesion limit
during braking, avoiding vehicle loss of control caused by single-axle
locking, stability of the
braking direction.

In addition, the braking strength is determined by parameters

wheel and guaranteeing the

such as braking pressure, braking coefficient, and vehicle mass to
ensure optimal braking force distribution and energy recovery
under different braking conditions (Shu, 2025). The required
braking force of the entire vehicle is calculated from the brake
pedal travel signal, multiplied by the FABF and RABF distribution
coefficients to obtain the required braking force of the front and rear
axles, as shown in Equation 2.

anmt = Freq X & front
{ Frear = Freq X Qrear (2)

In Equation 2, F o is the FABE. Fry is the braking force
required for the entire vehicle. & .o, and & eq, are the FABF and
RABF distribution coefficients. F,,, is the RABF. According to the
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braking intensity, braking conditions are segmented into mild,
moderate, and emergency braking, with secondary distribution of
FABF. The calculation of braking strength is shown in Equation 3.

z=2 3)
g

In Equation 3, z is the braking strength. a means the
deceleration of the vehicle. g denotes the acceleration due to
gravity. The design of the fuzzy controller is shown in Figure 4.

In Figure 4, the controller processes the input signal through
fuzzy logic and generates control output u. This output is combined
with system dynamics G, which in turn affects system output y. In
addition, it also includes a feedback loop H, which is used to convert
the system output into a feedback signal v to achieve closed-loop
control. The design of the entire control system optimizes control
performance through fuzzy logic, ensuring that the system output
can accurately track the reference signal while improving the
robustness and adaptability of the system. The input signal of the
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controller is composed of the difference between the reference signal
and the feedback signal, as shown in Equation 4.

X, =r—-v (4)

In Equation 4, x; is the input value of the control system. r is the
reference value. v is the feedback value.

2.2 EV-RBC strategy optimization based on
improved PSO

After proposing the HFC-based EV-RBC strategy, this study
further focuses on optimizing the performance of the control
strategy. Therefore, an improved PSO has been introduced to
more effectively improve the ERE and system stability of
regenerative braking. The improved PSO achieves a more
effective balance between global and local optima by adjusting
particle update rules and inertia weights, thereby improving the
convergence and resolution quality of the algorithm (Suyambu and
Vishwakarma, 2023; Azim et al., 2024; Heydari et al., 2023). This
algorithm optimizes the core variables of the fuzzy logic controller,
specifically including the characteristic parameters of the fuzzy
membership function (the vertex coordinates of the triangular
membership function, the mean and standard deviation of the
Gaussian membership function) and the output weights of the
fuzzy rule base. The optimization objective is set to minimize the
regenerative braking energy loss rate and the fluctuation of vehicle
braking deceleration, while maximizing the motor energy recovery
efficiency. The constraints include: The parameters of the fuzzy
membership function should be within a physically reasonable
range, and the output weights of the fuzzy rules should meet the
0-1 normalization requirement. During the optimization process,
the braking intensity z should always be within 0-1.5 to avoid
exceeding the physical limit of the vehicle braking system. The
motor torque needs to be controlled within the range of the rated
torque (180 Nm) and peak torque (300 Nm) of the EM150 motor.
The improved PSO first initializes the position and speed of the PSO.
The calculation of the initial position and particle velocity is shown
in Equation 5.

{ Xi(O) = Xmin + (Xmax - Xmin) : Ri (5)

V'(O) = Vmin + (Vmax - Vmin) N Ri

i

In Equation 5, X” and V(* are the initial positions and
velocities of particle 7. Xy, and Xpax mean the minimum and
maximum of particle positions. R; is a random number for particle i,
used to initialize its position and velocity. Vo and Vi, are the
maximum and minimum of particle velocity. In each iteration, the
position and velocity of the particles are updated as shown in
Equation 6.

VI = oV 4 ory (PP - XP) + ey (GY - X
{ i i 1 1( i i ) 2 2( i ) (6)

Xi(t+1) - Xi(t> +Vi(t+1)

In Equation 6, V™ and X" are the velocity and position of
particle i at ¢ + 1 iterations. w is the inertia weight. ¢; and ¢, are
learning factors. r; and r, are random numbers utilized for updating
speed. Pi(t) and G are the individual and global optimal position of
i during iteration t. To improve the convergence and resolution
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quality of PSO, a nonlinear function is introduced to control the
ratio of individual extremum to global extremum, replacing the

original random coefficients r; and r;, as shown in Equation 7.

! k ?
71= Cimin + (C1max = Clmin) * T
max

(7)
' k ?
72= Camin + (C2max — C2min) * T
max

In Equation 7, ;" and r,’ are random numbers that represent
the ratio of the values of the control individual extremum to the
global extremum calculated through a nonlinear function. ¢; i, and
€1 max are the minimum/maximum values of 7}, and ¢3 min and ¢ max
are the minimum/maximum values of 5. p is a nonlinear exponent,
controlling the increasing curvature. In the early stage of iteration,
the calculation result of trigonometric functions is close to 0. At this
time, both r; and r, are approximately equal to 0.5, which means
that the individual extremum and the global extremum contribute
the same to the particle velocity. This enables the algorithm to search
for the optimal solution over a wide range and avoid missing
potential good results. With the increase of the number of
iterations, the calculation results of trigonometric functions
gradually become larger. r; increases accordingly and r;
decreases accordingly. By the middle of the iteration, r; is
approximately 0.78 and r, is approximately 0.22. At this time,
the contribution of individual extremum is greater, guiding the
particles to further search in the found better region. By the end of
the iteration, when the current number of iterations reaches the
maximum number of iterations, the trigonometric function
calculation result is 1, r; becomes 0.9, and r, becomes 0.1. The
contribution of individual extremum takes the leading role, ensuring
that the algorithm converges precisely near the optimal solution and
avoiding repeated oscillations. In addition, the improved PSO also
adjusted the calculation method of inertia weights to achieve
balanced adjustment of global and local optima, as shown in
Equation 8.

k P
W = Wnax = (Wmax = Ormin) * T (8)
max

In Equation 8, w is the inertia weight calculated through a
nonlinear inertia function, which depends on the current Number of
Iterations (Nol), the maximum Nol, and the minimum and
maximum of the inertia weight. nonlinear inertia is a nonlinear
function used to calculate inertia weights. At the beginning of the
iteration, the current number of iterations is 0, and the calculation
result of the exponential function is 1. At this time, the inertia weight
is equal to 0.9, and the particle velocity is relatively large, which
enables the particle to search in a wider parameter space and makes
it easier to find a better solution in the global scope. In the middle of
the iteration, when the current number of iterations increases to half
of the maximum number of iterations, the calculation result of the
exponential function significantly decreases to approximately 0.018,
the inertia weight approaches 0.41, and the particle velocity
decreases accordingly to avoid crossing the optimal solution due
to excessive velocity. By the end of the iteration, when the current
number of iterations reaches the maximum number of iterations, the
calculation result of the exponential function approaches 0, the
inertia weight approaches 0.4, the particle velocity further slows
down, and the focus is on fine-tuning near the found optimal
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solution to ensure the accuracy of the final result. The flow for
improving PSO is displayed in Figure 5.

In Figure 5, the algorithm is first initialized, including the initial
position and velocity of randomly generated particles. Subsequently,
fitness calculations are performed on each particle to evaluate its
performance in optimization problems. On this basis, the algorithm
calculates inertia weights and nonlinear parameters based on
improved PSO rules to enhance dynamic balance during the
search process. Next, it enters the particle update phase, where
the velocity and location of each particle are updated sequentially,
while also updating the individual and global optimal positions of
the particles. After each iteration, the algorithm checks whether the
preset stopping conditions are met. If the maximum Nol or the
accuracy of the solution is reached, it indicates that the requirements
are met (Mohammad and Jaber, 2022; Hasan et al., 2023). The
optimization process of EV-RBC strategy based on improved PSO is
exhibited in Figure 6.

In Figure 6, during the start-up phase, it is necessary to
determine the size of the PSO, the activity range of particles,
and the Nol in the loop, and to set the initial position and motion
rate of the PSO. The next step is to start the iteration process,
starting from the iteration counter i = 0, generating a new PSO,
updating the position and velocity of each particle in the PSO after
each iteration, and updating the individual and global extremum
of each particle. After each iteration, it is necessary to check
whether the termination condition is met. If the NoI exceeds the
preset N times or a satisfactory solution has been found, the
optimal solution is output and the process ends. If the termination
condition is not met, the iteration will continue until the optimal
solution is found. The improved PSO can effectively achieve
efficient energy recovery and stable braking performance of
RBS in EVs, providing support for the energy-saving and safe
operation of EVs.

3 Results

This study evaluated the performance of a fuzzy control system
based on improved PSO through a series of experiments, verifying
its optimization effect in EV's regenerative braking. At the same time,
a comparative analysis was conducted on the RBC effects of different
algorithms under various operating conditions, comprehensively
examining key indicators such as Energy Recovery Rate (ERR),
braking response time, braking stability index, and energy
consumption rate. The purpose was to reveal the impact of
different algorithms and operating conditions on the regenerative
braking performance of EVs.

3.1 Performance evaluation of fuzzy control
system based on improved PSO

To comprehensively evaluate the performance of the fuzzy
control system built on improved PSO in regenerative braking of
EVs, a series of performance evaluation experiments are designed.
These experiments will test and validate the fuzzy control system
through precisely set parameters and configurations. Table 1 shows
the experimental setup.
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In Table 1, the EV model is selected as Model E6. This model has
a typical EVs powertrain configuration, including a front mounted
Permanent Magnet Synchronous Motor (PMSM) with a maximum
power of 150 kW and a maximum torque of 300 Nm. The power
battery is a lithium-ion battery with a total capacity of 60Ah and a
nominal voltage of 350V. The battery management system is in
charge of the management of battery charging and discharging, as
well as temperature control. The driving motor is PMSM, with a
rated power of 80 kW, a peak power of 150 kW, motor torque rating
180 Nm, peak 300 Nm. A rated speed of 3000 rpm corresponds to a
rated power of 80 kW, and a peak speed of 6000 rpm is suitable for a
peak power of 150 kW. The input parameters of the fuzzy control
unit include the displacement of the brake pedal, battery status, and
car speed, and its output result is the proportion of MBF
distribution. The fuzzy controller’s membership function adopts
triangular and Gaussian types, and the rule library contains 27 rules.
The PSO scale is 30, the maximum Nol is 200, the inertia weight
varies linearly between 0.4 and 0.9, and the learning factors c1 and
c2 are both set to 2. Under the improved PSO control, the motor
braking torque response delay is only 80 m. It can smoothly rise
from 0 to 120 Nm (66.7% of the rated torque) within 0.2 s after
braking trigger, and the torque fluctuation range is controlled
within +#5 Nm. The motor’s power generation capacity
simultaneously rose from 0 to 35 kW (48.6% of the peak
power), with no obvious peak impact on the power curve. The
continuous stable output time accounted for more than 85% of the
braking process. The improved PSO is compared with PSO,
Simulated Annealing (SA), and Grey Wolf Optimizer (GWO).
The optimal solution statistics of several algorithms are shown
in Figure 7.

In Figure 7a, the improved PSO achieves the average optima
after about 100 iterations, with the least Nol and the smallest
difference in optima, which is about 10. PSO reaches the average
optima after about 200 iterations, with a difference of about
15 in optima. GWO reaches the average optima after about
150 iterations, with a difference of approximately 12 optima. SA
has the least Nol, about 100, but the maximum difference in
optima is about 20. In Figure 7b, the improved PSO also shows
the minimum Nol, about 100, and the optima difference is the
smallest, about 5. The PSO iteration reaches the average optima
about 200 times, with a difference of about 10 in the optima.
GWO reaches the average solution after about 150 iterations,
with an optima difference of approximately 8. SA has the least
Nol, about 100, but the maximum difference in optima is about
15. The improved PSO shows the fastest convergence speed and
in optima on both datasets,
demonstrating its efficiency and accuracy in optimizing

the smallest difference
problems. The accuracy and recall of several algorithms are
shown in Figure 8.

In Figure 8a, the improved PSO quickly achieves high accuracy
with fewer iterations and tends to stabilize after about 100 iterations,
with a final accuracy close to 0.98. In Figure 8b, the improved PSO
also quickly achieves a high recall rate with fewer iterations and
stabilizes after about 100 iterations, with a final recall rate close to
0.95. Improved PSO exhibits faster convergence speed and higher
accuracy and recall during the iteration process, demonstrating its
superior performance in optimizing problems. The loss function
values of several algorithms are shown in Figure 9.
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TABLE 1 Experimental parameters.

Parameters Parameter value

10.3389/fmech.2025.1697447

Parameter description

Electric vehicle model Model E6 The curb weight of the entire vehicle is 1880 kg, and the drive form is front-engine front-wheel drive
Motor type EM150 This motor is a permanent magnet synchronous motor (PMSM), with a power of 150 kW and a torque of 300Nm
Motor power (kW) Rated 80, peak 150 The rated power of 80 kW refers to the output power of the motor during continuous and stable operation, and the peak

power of 150 kW refers to the maximum power that the motor can output within a short period of time

Battery capacity (Ah) 60 The power battery is a lithium-ion battery pack with a total capacity of 60Ah (total battery energy = 350V x 60Ah = 21 kWh)

Battery voltage (V) 350 The nominal voltage of the battery pack. The electrical energy generated by the motor during regenerative braking needs to

be stored in the battery through this voltage level

Brake pedal travel 0%-100% The input signal of the braking system directly reflects the driver’s braking requirements: 0% indicates no braking, 30%-70%

corresponds to light to moderate braking, and over 70% indicates emergency braking

Battery 0-1 When the SOC is greater than 0.9, to prevent overcharging of the battery, the system will automatically reduce the

regenerative braking intensity. This parameter, together with the battery capacity and voltage, constitutes the battery

management logic

Speed of vehicle 0-120 km/h Regenerative braking is not activated when the vehicle speed is less than 3 km/h
Particle swarm size 30 Thirty particles can achieve the optimal balance between optimization accuracy and computational efficiency
Maximum iterations 200 When the number of iterations reaches 200, the algorithm terminates regardless of whether the optimal solution is updated

or not, to avoid a decrease in experimental efficiency due to infinite iterations

Inertia weight 0.4-0.9 At the beginning of the iteration, take 0.9 (to enhance the global search ability of particles and avoid missing potential optimal

solutions), and at the end of the iteration, take 0.4 (to enhance the local optimization ability of particles and ensure

convergence accuracy)

Learning factor 2 In the initial state, the learning ability of particles to the individual optimal position is the same as that to the global optimal
position
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» 400 - ) o S« 400 ) o =S
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FIGURE 7
Statistical values of optima of several algorithms. (a) Dataset 1; (b) Dataset 2.

In Figure 9a, PSO rapidly reduces the loss function value when
the Nol is small, showing a fast convergence speed, and reaches the
lowest loss function value at the end of the iteration, which is about
107°. The convergence speed of PSO, GWO, and SA is relatively
slow, with PSO stabilizing after about 40 iterations and GWO and
SA stabilizing after about 60 iterations. In Figure 9b, the improved
PSO also demonstrates the fastest convergence speed, reaching the
lowest loss value of approximately 10~ after about 30 iterations. The
improved PSO demonstrates superior convergence performance on
both datasets, with fast convergence speed and the lowest final loss
function value, demonstrating higher efficiency and accuracy in
optimizing problems.
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3.2 Evaluation of RBC effect of EVs based on
improved PSO

After verifying the performance of the improved PSO, this study
evaluates the RBC effect of EVs based on the improved PSO. To
comprehensively understand the performance of different
algorithms under different operating conditions, a detailed
performance comparison analysis is conducted on the improved
PSO, PSO, SA, and GWO, as listed in Table 2.

In Table 2, from the perspective of ERR, the improved PSO
performs the best, reaching 16.8%. In terms of driving range
contribution, the PSO has been improved to 35 km. The
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FIGURE 9
Loss function values of several algorithms. (a) Dataset 1; (b) Dataset 2.

TABLE 2 RBC performance of EVs with different algorithms under various working conditions.

Algorithm PSO SA GWO Improved PSO
ERR (%) 15.7 15.5 14.7 16.8
Driving range contribution (km) 30 32 28 35
Braking response time (s) 0.85 0.75 0.92 0.71
Braking stability index 90 88 85 95
Energy consumption rate (Wh/km) 160 155 162 150
Braking distance (m) 45 42 48 40
Brake comfort index 80 82 78 85
System response delay (ms) 120 110 130 100
Braking ERE (%) 85 83 80 88
Jitter degree during braking (g) 0.3 0.25 0.4 0.2

improved PSO has the shortest braking response time, taking only  energy consumption rate of improved PSO is the lowest, at 150 Wh/
0.71 s. In terms of braking stability index, the improved PSO also has ~ km, SA is 155 Wh/km, PSO and GWO are 160 Wh/km and 162 Wh/
the highest score, at 95, PSO at 90, SA and GWO at 88 and 85. The =~ km. Improved PSO performs the best in ERR, braking response
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TABLE 3 Comparison of RBC performance of EVs under different working conditions.

Type of working condition

Urban conditions

Suburban condition High speed condition

ERR (%) 16.5 15.2 14.9

Driving range contribution (km) 40 35 25
Braking response time (s) 0.65 0.71 0.83

Braking stability index 95 85 80

Energy consumption rate (Wh/km) 145 152 165
Braking distance (m) 40 42 48

Brake comfort index 85 82 78

System response delay (ms) 100 110 130
Braking ERE (%) 88 83 80

Jitter degree during braking (g) 0.2 0.25 0.3
Maximum deceleration during braking (m/s?) 5.5 5 4.5
Average deceleration during braking (m/s®) 3.5 3 2.5

TABLE 4 Performance Comparison of different Braking Strategies under standard operating conditions.

Braking Traditional Single fuzzy This study Traditional Single fuzzy This study
strategy hydraulic control (improved PSO hydraulic control (improved PSO
braking regenerative + hierarchical braking regenerative + hierarchical
braking fuzzy) braking fuzzy)
Standard New European driving cycle (NEDC) WLTC
operating
conditions
Energy recovery 0 14.2 16.8 0 13.8 16.3
rate (%)
Driving range 0 28 35 0 26 33
contribution
(km)

Average braking 180 (hydraulic) 110 (motor) +70

120 (motor) +60

190 (hydraulic) 105 (motor) +85 115 (motor) +75

rate (Wh/km)

torque (Nm) (hydraulic) (hydraulic) (hydraulic) (hydraulic)
Average power 0 28 35 0 26 33
generation (kW)
Braking 0.95 0.82 0.71 0.98 0.85 0.73
response
time (s)
Energy 185 168 150 192 172 155
consumption

time, and braking stability, while having the lowest energy
consumption rate, demonstrating superior performance in EVs
RBC. Table 3 compares the RBC performance of EVs under
various operating conditions. The working conditions are based
on the framework of the World Light-Duty Vehicle Test Cycle
(WLTP) standard test profile, and the parameters are corrected in
combination with the actual usage scenarios of the experimental
vehicle. The specific driving conditions and overview are as follows:
The urban working conditions are designed in reference to the “low-
speed segment” (speed <50 km/h) in the WLTP standard. After
correction, the average speed is 32 km/h, the maximum speed does
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not exceed 50 km/h, the braking frequency is 1.2 times per minute,
the duration of each braking is 1.5-2 s, and the total test driving
distance is 10 km. This working condition simulates the congested
urban sections in China (the morning and evening rush hour traffic
conditions in Yuzhong District, Chongqing City), with the reference
basis being the 2024 Central Urban Area Road Driving
Characteristics Report released by the Chongqing Municipal
Commission of Transport. The suburban working conditions are
designed in accordance with the “medium speed range” (50-80 km/
h) in the WLTP standard. After correction, the average speed is
58 km/h, the maximum speed is 80 km/h, the braking frequency is
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0.6 times per minute, the duration of each braking is 2-2.5 s, and the
total test driving distance is 15 km. This working condition
simulates the scenario of a suburban expressway (the suburban
ring road in Banan District, Chongqing City), with the reference
basis being the WLTP test regulations and the speed limit
regulations for suburban roads in Chongging City. The high-
speed operating condition is based on the “high-speed section”
(vehicle speed >80 km/h) in the WLTP standard. After correction,
the average speed is 85 km/h and the maximum speed is 110 km/h.
This operating condition simulates a highway scenario (the
Chonggqing section of G85 Chengdu-Chongqing Expressway). For
specific parameter calibration, please refer to the 2024 traffic flow
data report of the Chongqing section of G85.

In Table 3, under urban working conditions, the highest ERR is
16.5%, the contribution of driving range is 40 km, the braking
response time is 0.65 s, the braking stability index is 95, and the
energy consumption rate is 145 Wh/km. The values under suburban
conditions are 15.2%, 35 km, 0.71 s, 85, and 152 Wh/km. The five
values under high-speed conditions are 14.9%, 25 km, 0.83 s, 80, and
165 Wh/km. Under urban working conditions, EV's exhibit the best
ERR and braking stability, but have the lowest energy consumption
rate. Under suburban conditions, although the ERR is slightly lower,
the contribution of driving range is relatively high, and the braking
response time and energy consumption rate are at a moderate level.
Under high-speed conditions, although the contribution of driving
range is the highest, the ERR and braking stability are poor, and the
energy consumption rate is the highest. To further demonstrate the
superiority of the research strategy, supplementary horizontal
comparison data between standard operating conditions and
conventional braking methods are provided, as shown in Table 4.

As shown in Table 4, under the two standard operating
conditions of NEDC and WLTC, the improved PSO +
hierarchical fuzzy braking strategy proposed in the research has
an energy recovery rate that is 2.6% and 2.5% higher respectively
compared to the single fuzzy control regenerative braking, an
increase of 7-8 km in driving range contribution, and an
increase of 6-7 kW in average power generation. The braking
response time is shortened by 0.1-0.12 s, and the energy
consumption rate is reduced by 18 to 17 Wh/km, which is
significantly superior to traditional hydraulic braking (without
energy recovery).

4 Conclusion

This study aims to address the challenges faced by EVs in ERE
and range, by optimizing RBC strategy to optimize the EUE and
braking performance of EVs. To this end, this study developed an
EV-RBC strategy scheme based on HFC technology and adjusted
through an optimized PSO algorithm. In the experiment, the
improved strategy significantly increased the ERR of EVs to
16.8% in energy recovery, which was about 1.1% higher than
traditional methods. In terms of driving range, the contribution
of driving range has increased to 35 km, indicating that this strategy
has significant advantages in improving EUE. In terms of braking
performance, the braking response time has been shortened to
0.71 s, and the braking stability index has reached 95,
demonstrating the superiority of this control strategy in ensuring
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vehicle braking safety and stability. In addition, the energy
consumption rate was reduced to 150 Wh/km, further verifying
the effectiveness of this strategy in energy conservation. The fuzzy
control system based on improved PSO exhibited significant
performance improvement during the optimization process.
However, under high-speed operating conditions, the ERR and
braking stability still need to be further improved, and the
adaptability of this control strategy under different operating
conditions still needs to be optimized. Future research will
further optimize control strategies to improve their adaptability
and robustness under different operating conditions.
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