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Introduction: Plate Heat Exchangers (PHEs) play a crucial role in industrial
thermal processes, particularly in the brewing industry, where precise
temperature regulation influences fermentation efficiency and product quality.
In Uganda, PHE performance is constrained by fouling, variable thermal loads,
and resource limitations. These challenges highlight the need for advanced
optimization approaches tailored to tropical climates and resource-
limited settings.

Methods: A systematic review was conducted to evaluate the use of
thermodynamic modeling and machine learning (ML) for optimizing PHE
operation in industrial applications. A total of 199 studies were screened, of
which 112 met predefined methodological and quality criteria. Extracted data
were synthesized to compare traditional approaches with hybrid physical-ML
models, including Artificial Neural Networks (ANN), Particle Swarm Optimization
(PSO), and Genetic Algorithms (GA). Performance indicators assessed included
predictive accuracy, energy efficiency, fouling behavior, and operational
responsiveness.

Results: Hybrid models integrating thermodynamic principles with ML
techniques consistently outperformed conventional modeling approaches.
Significant gains were observed in predictive accuracy across included studies,
although effect sizes varied due to dataset diversity and differing evaluation
metrics. Real-time fouling prediction using ML contributed to a 22% reduction
in  maintenance costs and a 15% decrease in operational downtime.
Implementations of digital twin architectures and adaptive control algorithms
achieved an 18% improvement in energy efficiency and enhanced system
responsiveness by up to 30% under dynamic thermal load conditions.
Discussion: Findings demonstrate the strong potential of combining
thermodynamic modeling with Al-driven methodologies to enhance PHE
performance in the brewing sector and related industries. While substantial
technological improvements have been reported, context-specific barriers
persist, particularly the adaptation of advanced models to tropical
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environmental conditions and the cost-effective integration of renewable energy
sources. Addressing these challenges will be essential for unlocking the full
potential of self-optimizing PHE systems that promote energy efficiency,
product quality, and sustainable industrial growth in regions such as Uganda.

plate heat exchangers (PHEs), machine learning, fouling mitigation, hybrid optimization,
energy efficiency, and adaptive control

1 Introduction

Plate heat exchangers (PHEs) are fundamental components in
industrial thermal management due to their high efficiency,
compact design, and flexibility in handling a wide range of
operating conditions. Composed of thin, corrugated metal plates
stacked to separate fluid streams, PHEs enable effective heat transfer
without direct fluid mixing, offering high heat transfer coefficients,
low fluid hold-up volumes, and scalable capacity through modular
plate arrangements (Shah and Sekulic, 2003). These advantages have
driven their widespread adoption across sectors, including HVAC,
food
production, and power generation (Kaka¢ et al, 2012). Within

chemical processing, pharmaceuticals, and beverage
the brewing industry, precise temperature control during
processes such as wort cooling is critical to yeast activity,
fermentation kinetics, and product quality, highlighting the
strategic importance of PHEs in ensuring consistent flavor,
stability, and operational efficiency.

Recent industrial trends toward sustainability and energy
efficiency have intensified the need for advanced optimization of
PHE performance (Sadineni et al., 2011). While traditional
design approaches rely on empirical heuristics, contemporary
methods increasingly integrate high-fidelity thermodynamic
modeling to predict fluid flow and heat transfer phenomena,
enabling precise optimization of plate geometry, flow
configurations, and operating conditions (Anderson et al,
2020). Concurrently, machine learning (ML) and artificial
intelligence (AI) offer transformative opportunities for real-
time performance optimization, predictive maintenance, and
fault detection, leveraging operational datasets to enhance
process control (Gao et al., 2020). Nevertheless, persistent
challenges such as fouling, flow maldistribution, and multi-
objective trade-offs in thermal efficiency and pumping costs
necessitate hybrid optimization frameworks that combine
physical modeling with data-driven decision-making (Miiller-
Steinhagen et al, 2011; Patel and Shah, 2023; Khorram
et al., 2021).

This systematic review makes distinct contributions that
differentiate it from prior literature. First, it provides a context-
specific analysis of PHE optimization for Uganda’s brewing sector,
addressing the paucity of studies on tropical industrial
environments. Second, it critically evaluates the integration of
thermodynamic modeling and ML-based hybrid optimization,
highlighting approaches that have not been systematically
compared or synthesized in earlier reviews. Third, it emphasizes
measurable operational outcomes, including energy savings,
improved heat transfer coefficients, and predictive maintenance
strategies, linking theoretical insights to practical industrial
applications.  Finally, scalable

by outlining implementation
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pathways and localized strategies, the review provides actionable
guidance for engineers, researchers, and industry stakeholders
aiming to adopt energy-efficient, adaptive PHE systems in
resource-constrained settings. In doing so, it bridges a gap
theoretical innovation
knowledge
modernization in developing countries.

between and practical deployment,

advancing the base for sustainable industrial

2 Methodology
2.1 Research design

This study adopts a systematic review approach aimed at

synthesizing the current state, challenges, and emerging
innovations in PHE technology, with an emphasis on integration
of artificial intelligence (AI), hybrid optimization methods, and
digital twin frameworks. The methodology encompasses a broad
evaluation of scientific literature, industrial reports, and case studies,
particularly focusing on applications relevant to tropical climates
and resource-constrained environments such as Uganda’s brewing
industry. By consolidating findings from experimental research,
computational modeling, and Al-based predictive maintenance,
this review provides a comprehensive assessment of technological
advancements, operational challenges, and prospects for sustainable

and intelligent PHE systems.

2.2 Study evaluation and categorization
using PRISMA framework

The review process followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) framework to
enhance transparency, reproducibility, and methodological rigor.
The framework was implemented in the following four phases.

2.2.1 ldentification

A systematic search was performed across multidisciplinary
databases, including IEEE Xplore, ScienceDirect, Scopus, Web of
Science, Google Scholar, and specialized industrial and engineering
repositories. Search keywords comprised terms and combinations

» <«

such as “Plate Heat Exchanger,” “heat exchanger fouling,” “Al-based
“digital

learning  predictive

thermal  system twin in thermal

management,” “machine

optimization,”
maintenance,”
“metaheuristic algorithms in heat exchangers,” and “industrial
heat The
199 documents predominantly published within the last decade,

exchanger performance.” initial search yielded
reflecting the rapid integration of computational methods in

PHE research.
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TABLE 1 Quality assessment dimensions and scoring criteria.

10.3389/fmech.2025.1696957

Criterion Description Score range
Al integration Extent of machine learning or hybrid optimization techniques integrated into thermodynamic or heat exchanger models | 0-5
Climate adaptability Applicability of the methodology to tropical or industrial operating environments 0-5
Operational improvement | Degree of verified performance enhancement (e.g., heat transfer efficiency, pressure drop, or energy efficiency) 0-5
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FIGURE 1
Distribution of publications by year, indicating research trends over time.

2.2.2 Screening

Titles and abstracts were screened to exclude studies that (i) were
unrelated to PHE technologies, (ii) focused exclusively on other heat
exchanger types without transferable insights, (iii) lacked discussion on
Al, computational optimization, or fouling mitigation, or (iv) were
theoretical without practical or industrial context. This step narrowed
the dataset to 199 articles for full-text evaluation.

2.2.3 Eligibility assessment

Full-text articles were critically assessed for methodological
soundness, relevance to dynamic or Al-driven PHE optimization,
inclusion of fouling and flow maldistribution analysis, and
applicability to tropical or resource-constrained industrial
settings. Studies missing empirical data, lacking integration of Al
or computational frameworks, or outdated without relevance to
current digital trends were excluded. A total of 87 studies were

excluded, resulting in 112 articles retained for detailed analysis.

2.2.4 Inclusion

The final review included 112 high-quality peer-reviewed
journal articles, conference proceedings, industrial technical
reports, and case studies. These sources formed the basis for
synthesizing knowledge on hybrid modeling approaches, Al-
enabled fouling prediction, real-time sensor integration, digital
twin applications, and adaptive control strategies to enhance PHE
performance and reliability.

2.3 Quality assessment tools
A rigorous quality assessment was undertaken to ensure both

the methodological robustness and contextual relevance of the
studies reviewed. Two complementary instruments were applied:
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the Critical Appraisal Skills Programme (CASP) checklist and a
customized appraisal framework specifically developed to evaluate
the integration of artificial intelligence (AI) and hybrid optimization
techniques in the thermodynamic modeling of PHEs. The CASP
checklist assessed the methodological soundness of each study,
emphasizing the clarity of research objectives, appropriateness of
design, transparency of data collection and analysis, and validity of
conclusions. Each criterion was scored as Yes (1 point), Partially
(0.5 points), or No (0 points), with a maximum possible score of five
points. To complement this, the customized framework evaluated
three core dimensions as illustrated in Table 1.

Each dimension was rated from 0 (not addressed) to 5 (strongly
demonstrated), producing a maximum of five points. The combined
CASP and custom framework scores were normalized to a 10-point
composite scale, and studies attaining a minimum of 8/10 were
classified as high-quality for inclusion in the thematic synthesis,
thereby ensuring both methodological integrity and contextual
applicability.

Figure 1 shows that (48.4%) of the studies were published in the
last decade (2016-2025), with 27.8% from 2021 to 2025, 20.6% from
2016 to 2020, 17.5% from 2011 to 2015, and 23.1% before 2011. This
highlights strong recent research activity in thermodynamic
modeling, nanofluid heat transfer, magnetohydrodynamics, and
machine learning for plate heat exchanger optimization (Kun-
Quan and Jing, 2006; Pak and Cho, 1998; Piel, 2017; Qureshi
and Ashraf, 2018; Qureshi et al., 2016).

2.4 Thematic coding and data
categorization

Using NVivo software, a thematic analysis was performed to
systematically code and categorize data across multiple domains: (i)

frontiersin.org
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PRISMA diagram

Hybrid Modeling and AI Optimization, including physics-informed
thermodynamic models integrated with machine learning and
metaheuristic algorithms for real-time performance enhancement,
(ii) Digital Twin and Real-Time Monitoring, development of sensor
networks and digital twin frameworks enabling predictive
maintenance, fouling detection, and operational adaptability, (iii)
Fouling Mitigation and Cleaning Protocols-Al-driven fouling
prediction models, materials innovation, and cleaning strategy
local Industrial
Application and Sustainability, case studies focusing on tropical

optimization tailored to conditions, (iv)
industrial sectors, energy efficiency improvements, and lifecycle
management of PHEs in resource-constrained environments. The
synthesized findings highlight the convergence of classical
with
supporting actionable recommendations for transitioning towards

thermodynamics advanced computational intelligence,
self-optimizing, resilient PHE systems. Figure 2 is the PRISMA
diagram showing the systematic rigor evaluations and screening of

the data used for this review.

3 Literature review
3.1 Plate heat exchangers in industry

Plate heat have established themselves as

indispensable components across numerous industrial sectors due

exchangers

to their superior thermal efficiency, modularity, and compact
footprint. Their unique design, which employs a series of thin
metal plates arranged in parallel with narrow flow channels,
facilitates efficient heat transfer between two fluids while
maintaining complete separation (Cengel, 1985; Chandrasekhar,
1961; Elsasser, 1955; Esfahani and Feshalami, 2018). This design
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principle ensures minimal fluid contamination and enables rapid
thermal response, making PHEs particularly attractive for industries
demanding precise temperature control and energy-efficient
operation. PHEs find extensive applications in Heating,
Ventilation, and Air Conditioning (HVAC), chemical and
petrochemical processing, food and beverage manufacturing,
pharmaceutical production, refrigeration, and power generation
industries. Their widespread adoption is underpinned by the
versatility of plate configurations, which may be gasketed for ease
of maintenance and plate replacement, brazed to enhance durability
under high temperatures and pressures, or welded to handle
aggressive fluids and demanding environments (Andreazza et al,
2021). Each design variant is selected to best suit the operational
requirements and fluid properties involved, highlighting the
adaptability of PHE technology.

Over the past decades, significant advancements in plate
geometry and materials science have propelled PHE performance
to new heights. Innovations such as chevron or corrugated plate
patterns have been engineered to increase the effective heat transfer
surface area while simultaneously inducing fluid turbulence. This
turbulence disrupts thermal boundary layers, thereby substantially
enhancing convective heat transfer coefficients (Laitinen, 2023;
Miroshnichenko et al., 2019). These geometric enhancements also
contribute to reduced fouling propensity by minimizing stagnant
zones where deposits tend to accumulate, thereby improving
exchanger longevity and reliability. Within the brewing industry,
PHE:s play a pivotal role in the critical wort cooling process. Wort
cooling rapidly reduces the temperature of the sweet liquid extracted
from malted grains, preparing it for fermentation by yeast. The
temperature control during this stage directly impacts yeast
metabolism, fermentation kinetics, and consequently, the sensory
properties such as aroma, flavor, and mouthfeel of the final beer. The
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precise thermal management facilitated by advanced PHEs ensures
batch-to-batch  quality,
contamination risk, and supports energy-efficient operations, key

consistent minimizes  microbial
factors in maintaining competitive advantage in brewing (Jangid
et al., 2025; He et al., 2025a; Kishore et al., 2024).

The integration of Computational Fluid Dynamics (CFD) into
the design and optimization processes of PHEs has revolutionized
the industry’s approach to thermal management. CFD simulations
provide detailed insights into fluid velocity profiles, temperature
gradients, pressure drops, and turbulence effects within the complex
flow paths of plate exchangers. These tools enable engineers to
experiment virtually with plate geometries, flow arrangements, and
operating conditions, leading to optimized designs that maximize
heat transfer while minimizing energy consumption and material
costs (Laitinen, 2023). The predictive capability of CFD also
supports proactive fouling management by identifying regions
prone to deposit buildup and enabling targeted cleaning
strategies. Despite these advances, fouling remains one of the
most significant operational challenges affecting PHE efficiency.
Fouling manifests as unwanted deposits such as scale, biofilms, or
sediment on heat transfer surfaces, causing a marked reduction in
heat transfer rates and increased pressure drops that elevate
pumping energy requirements. The financial and environmental
costs associated with fouling-related downtime and maintenance are
substantial (Zitouni et al., 2025; Fguiri et al., 2021; Zitouni et al,,
2023). Accordingly, ongoing research efforts focus on elucidating
fouling mechanisms specific to various fluids and operating
conditions, developing fouling-resistant materials and coatings,
and optimizing cleaning protocols, including chemical cleaning
and mechanical methods, to extend PHE service life and
performance (Rajendran et al., 2025).

In alignment with global sustainability goals and the imperative
to reduce industrial carbon footprints, there is a growing trend to
couple PHEs with renewable energy systems such as solar thermal
and geothermal sources. These hybrid systems leverage the high
efficiency of PHEs to transfer thermal energy derived from
renewable sources to industrial processes, thereby reducing
reliance on fossil fuels and enhancing overall system
sustainability. However, integrating renewable energy with PHEs
introduces new challenges in terms of variable heat source
temperatures, intermittent operation, and control complexity
(Eze, 2025; Eze et al., 2025; Eze et al., 2024; Eze et al., 2024a; Eze
et al, 2024b). Researchers are actively investigating innovative
control algorithms, adaptive operational strategies, and materials
capable of withstanding fluctuating thermal loads to overcome these
challenges and unlock the full potential of renewable-integrated

PHE systems (Arsenyeva et al., 2023).

3.2 Cooling systems in the brewing industry

Efficient cooling systems are fundamental to the brewing
process, playing a crucial role in maintaining product quality,
consistency, and shelf life. Temperature regulation during
fermentation, maturation, and storage phases is vital, as it
directly affects yeast metabolism, biochemical reaction rates, and
the overall sensory profile of the beer. Precise cooling ensures
optimal yeast activity, minimizes off-flavors, and stabilizes the
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product before packaging, thereby safeguarding brand integrity
and consumer satisfaction (Boulton and Quain, 2013). The
design and operation of brewery cooling systems significantly
influence the facility’s energy consumption and operational
expenditures. Cooling systems traditionally rely on refrigeration
units coupled with heat exchangers, often plate heat exchangers, to
remove excess heat generated during fermentation and other stages.
As breweries scale production, the cooling load varies dynamically,
requiring systems capable of adapting to fluctuating thermal
demands without compromising efficiency or beer quality. Recent
technological advancements in brewery cooling have emphasized
sustainability and energy efficiency to meet both environmental
regulations and economic incentives. Glycol chillers have become a
staple in modern breweries due to their use of secondary refrigerants
like propylene or ethylene glycol mixtures, which provide safer and
more environmentally friendly cooling media compared to direct
refrigerants. These chillers not only enhance energy performance
but also allow flexible distribution of chilled fluid to various process
points, optimizing heat removal (Kunze, 2010).

Complementing refrigeration advancements, heat recovery
technologies have gained traction as an energy-saving strategy.
By capturing and repurposing waste heat from refrigeration
condensers or fermentation tanks, breweries can reduce their
overall energy footprint and operating costs. This recovered heat
can serve auxiliary functions such as pre-heating water for
integrated energy
management and circular process design (Olajire, 2012). CFD

cleaning or brewing, contributing to
modeling has emerged as a powerful tool for optimizing brewery
cooling system design and operation. By simulating complex
thermal and fluid dynamic interactions within fermentation
vessels and cooling circuits, CFD enables precise prediction
and control of temperature distributions, identifying hotspots
and ensuring uniform cooling critical for consistent
fermentation quality (Ozguc et al, 2025). This modeling
approach supports informed decisions on vessel geometry,
cooling jacket design, and process control strategies.
However, as production scales increase, managing peak
cooling loads and variable thermal demands poses ongoing
challenges. To address these, breweries are increasingly
implementing advanced control technologies such as variable
frequency drives (VFDs) for pumps and compressors, allowing
dynamic adjustment of cooling capacity in response to real-time
process conditions. Intelligent control systems, incorporating
sensor networks and automation algorithms, enable proactive
energy management by predicting cooling demand fluctuations
and optimizing equipment operation accordingly (Lingom et al.,
2021). Maintaining cooling system performance through routine
preventive maintenance is equally critical. Fouling of heat
exchangers and blockages in cooling circuits can degrade
thermal transfer efficiency, increase energy consumption, and
lead to equipment failure. Scheduled cleaning, monitoring, and
condition-based maintenance extend system lifespan and ensure
reliability, thus safeguarding continuous brewery operations
(Johnson, 2018). With the expansion of the craft beer market
and increasing consumer demand for sustainably produced
beverages, future brewery cooling solutions are expected to
integrate scalable, energy-efficient designs combined with
advanced control algorithms. Emerging trends include the
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adoption of low-global-warming-potential (GWP) refrigerants
in compliance with international environmental standards, and
the integration of renewable energy sources such as solar
thermal and geothermal heat pumps to further reduce carbon
footprints (Eze, 2025). These innovations aim to balance
operational environmental and

efficiency, sustainability,

product quality, core pillars for the evolving brewing industry.

3.3 Optimization techniques for heat
exchangers

Optimization of heat exchangers involves a multifaceted process
aimed at enhancing thermal performance, reducing capital and
operational costs, and minimizing environmental impact. The
intricate interplay of these factors necessitates a systematic and
rigorous  approach  beyond  conventional  trial-and-error
experimentation. Modern heat exchanger design increasingly
leverages advanced computational optimization techniques to
navigate complex multi-parameter design spaces effectively,
thereby achieving superior performance and economic feasibility

(Rao et al., 2020).

3.3.1 Evolution from conventional to metaheuristic
optimization

The design and optimization of heat exchangers have
traditionally relied on heuristic approaches and empirical
correlations derived from experimental data. While effective for
routine applications, these methods impose inherent limitations by
restricting the exploration of complex, high-dimensional design
spaces. Consequently, critical trade-offs between performance
metrics, such as thermal efficiency, pressure drop, and cost, were
frequently neglected, often leading to suboptimal system
configurations.

The emergence of metaheuristic optimization algorithms has
catalyzed a significant paradigm shift in heat exchanger design.
Algorithms such as Genetic Algorithms (GA), Simulated Annealing
(SA), and Particle Swarm Optimization (PSO) have demonstrated
strong capabilities in navigating nonlinear, multimodal, and
constrained optimization problems typical of thermal systems
(Alsagri and Alrobain, 2022; Ramalingam R. et al., 2024; Jebreili
and Goli, 2024; Rao et al,, 2020). These population-based and
stochastic search methods allow for comprehensive exploration of
design landscapes, making them well-suited for identifying near-

global optimal solutions.

3.3.1.1 Genetic algorithms

GA is inspired by the principles of natural selection and genetic
evolution. It employs iterative processes of selection, crossover, and
mutation to evolve a population of candidate solutions over
successive generations. In the context of heat exchanger
optimization, GA has been widely applied to shell-and-tube as
well as plate heat exchanger designs (Marzouk et al, 2023;
Saldanha et al., 2021). Parameters such as tube diameter, tube
pitch, baffle spacing, flow rates, and inlet temperatures are
optimized to enhance heat transfer coefficients while minimizing
pressure losses (Han et al., 2025; Oztop and Abu-Nada, 2008; Oztop
and Varol, 2009).
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3.3.1.2 Simulated annealing

SA mimics the physical process of annealing in metallurgy,
where a material is slowly cooled to reach a low-energy crystalline
state. This method allows probabilistic acceptance of inferior
solutions at early stages, enabling the algorithm to escape local
optima. SA has shown efficacy in optimizing both continuous and
discrete variables in compact heat exchanger configurations,
achieving an effective balance between operational cost and
thermal performance (Rao et al, 2020; Liao et al, 2021; Yang
et al., 2022; Li et al., 2024).

3.3.1.3 Particle swarm optimization

PSO is based on the collective behavior of decentralized systems
such as bird flocks or fish schools. It utilizes a swarm of particles that
share information about their individual and collective performance
in the search space. PSO is particularly advantageous in problems
requiring rapid convergence, and it has been successfully applied to
optimize complex geometrical features, including fin arrays and
microchannel structures, thereby improving overall thermo-
hydraulic efficiency (Han et al., 2025; Maheswari et al, 2025;
Bagherighajari et al., 2022; Pandey and Kumar, 2024; Kishore
et al, 2024). Table 2 is the summary of the characteristics and
applications of GA, SA, and PSO in heat exchanger design
optimization.

The
metaheuristic optimization represents a significant advancement

transition from traditional design techniques to
in heat exchanger engineering, enabling more robust, flexible,
and high-performance system configurations. The metaheuristic
algorithms have significantly enhanced the ability to identify
globally optimal heat exchanger designs. Their adaptability,
robustness to nonlinearity, and capacity for handling mixed-
variable optimization render them indispensable in the modern
thermal system design landscape. Figure 3 provides a comparative
performance overview of GA, SA, and PSO applied to a benchmark
shell-and-tube heat exchanger design problem (Siddheshwar and
Lakshmi, 2019; Sheikholeslami and Shamlooei, 2017; Straughan,
2004; Straughan, 2008).

Figure 3 illustrates the comparative convergence performance of
Genetic Algorithm (GA), Simulated Annealing (SA), and PSO over
100 iterations. The results reveal that PSO exhibits the fastest
convergence rate, primarily due to its global information-sharing
mechanism that facilitates rapid progression toward optimal
solutions. GA shows a moderate convergence speed, effectively
balancing exploration and exploitation through its evolutionary
operators. In contrast, SA converges more slowly, reflecting its
inherent strategy of emphasizing extensive exploration during the
initial phases to minimize the risk of entrapment in local minima.
These distinct convergence behaviors highlight the trade-offs
between exploration and exploitation inherent in each
algorithm’s design (Afsharzadeh et al., 2025; Hai et al, 2025;
Yadu et al., 2025).

3.3.2 Multi-objective optimization: balancing
trade-offs

The design of heat exchangers inherently involves managing
trade-offs among competing performance metrics, including
thermal

effectiveness, pressure drop, economic cost, and

environmental impact. Multi-objective optimization (MOO)
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TABLE 2 Comparison of Metaheuristic Optimization Algorithms for Heat Exchanger Design (Rao et al., 2020; Liao et al., 2021; Yang et al., 2022; Li et al., 2024;
Marzouk et al., 2023; Saldanha et al., 2021; Han et al., 2025; Maheswari et al., 2025; Bagherighajari et al., 2022; Pandey and Kumar, 2024; Kishore et al., 2024).

Criteria

Genetic algorithm (GA)

Simulated annealing (SA)

Particle swarm

optimization (PSO)

Inspiration

Search strategy

Natural selection and genetics

Population-based, stochastic, evolutionary

Metallurgical annealing process

Single-solution-based, probabilistic

Social behavior of swarms (birds/fish)

Population-based, stochastic, cooperative

Key mechanisms

Selection, crossover, mutation

Probabilistic acceptance of worse solutions

Velocity and position updates based on
individual and global bests

Convergence speed

Escaping local optima

Moderate

Good via diversity in population

Slower, but thorough exploration

Strong due to probabilistic jumps

Fast, especially in the early stages

Moderate; may get trapped without tuning

Design parameters

Tube diameter, pitch, baffle spacing, flow rate,

Discrete and continuous variables; compact

Fin shapes, microchannel dimensions, complex

optimized inlet/outlet temperatures geometry features geometric layouts

Computational Moderate to high High for smaller problem sizes High, especially in parallel computing
efficiency environments

Strengths Robust for complex, multimodal problems; Effective for fine-tuning solutions and handling = Rapid convergence; easy to implement and

widely applicable

discrete variables

parallelize

Limitations

Heat exchanger
applications

Optimization goals

May require tuning of many parameters;
premature convergence possible

Shell-and-tube, plate-type optimization (IHan
et al., 2025)

Maximize heat transfer, minimize pressure drop
and cost

0.6

Objective Function Value

0.4

0.0

Convergence can be slow; solution quality
sensitive to cooling schedule

Compact and mini heat exchangers (Rao et al,,
2020)

Minimize cost and pressure drop, maximize
efficiency

May converge prematurely without diversity
management

Microchannel, fin-array, and geometry
optimization (Han et al.,, 2025)

Improve thermo-hydraulic performance,
reduce material usage

Genetic Algorithm (GA)
Simulated Annealing (SA)
Particle Swarm Optimization (PSO)
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Comparative convergence performance of GA, SA, and PSO in optimizing heat exchanger design (Afsharzadeh et al,, 2025).

frameworks provide a systematic approach to resolving these
conflicts by generating Pareto-optimal fronts, enabling designers
to select configurations that best align with specific design priorities
and constraints (Fan et al., 2025).

3.3.2.1 Thermal effectiveness vs. pressure drop

A common design dilemma lies in enhancing heat transfer
performance  while limiting the  associated  pressure
drop. Increasing the heat transfer area or flow velocity can
improve thermal effectiveness; however, these changes typically

Frontiers in Mechanical Engineering

incur higher pumping power requirements and operational costs.
Advanced MOO algorithms, such as genetic algorithms and particle
swarm optimization, are employed to simultaneously maximize
thermal effectiveness and minimize pressure drop, thereby
improving the overall energy efficiency of the system (Sonowal
et al.,, 2025).

3.3.2.2 Economic cost considerations

Optimization models frequently incorporate both capital and
operational cost functions to capture the economic dimension of
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heat exchanger design. These functions reflect factors such as

material  selection, fabrication  complexity, maintenance
requirements, and long-term energy consumption. For instance,
Han et al. (2025) applied a life-cycle cost-based optimization to
shell-and-tube heat exchangers, demonstrating that substantial cost

savings can be achieved without sacrificing thermal performance.

3.3.2.3 Environmental impact metrics

Contemporary MOO frameworks are increasingly integrating
environmental performance indicators, derived from life cycle
assessment (LCA) methodologies. These include metrics such as
carbon footprint, embodied energy, and resource depletion (Zhou
et al, 2024). By embedding sustainability indicators within the
optimization process, designers can achieve environmentally
responsible solutions in line with green engineering practices and
regulatory standards.

Overall, multi-objective optimization represents a robust and
holistic methodology for advancing heat exchanger design, allowing
for the concurrent evaluation of performance, economic, and
ecological parameters. This integrative approach is essential for
meeting the growing demand for sustainable, efficient, and cost-
effective thermal systems.

3.3.3 Topology optimization: innovative
structural design

Topology optimization, a rigorous mathematical method for
optimal material distribution within a predefined design domain,
has recently gained prominence in heat exchanger design. This
approach facilitates the creation of innovative geometries that
heat performance simultaneously
minimizing material consumption and structural weight (Fawaz

enhance transfer while
et al, 2022). By concurrently solving the governing partial
differential equations of fluid flow and heat transfer, topology
optimization pinpoints critical regions where material placement
most effectively promotes thermal conduction and convective heat
transfer. This enables the identification of non-intuitive shapes and
flow pathways that outperform traditional design heuristics. For
example, Fawaz et al. (2022) demonstrated that topology-optimized
heat heat
improvements of up to 30% while using approximately 20% less
These

advancements translate into significant cost reductions and

microchannel exchangers can achieve transfer

material compared to conventional counterparts.
diminished environmental impacts, highlighting the potential of
topology optimization as a transformative tool in sustainable heat

exchanger engineering.

3.3.4 Emerging trends: real-time and adaptive
optimization with machine learning

Although metaheuristic and topology optimization techniques
their
implementation is predominantly confined to offline and static

have substantially advanced heat exchanger design,
operating conditions. In contrast, practical heat exchanger
systems frequently encounter dynamic variations in load demand,
fluid properties, fouling rates, and ambient environment. These
fluctuations necessitate adaptive optimization methodologies
capable of real-time response to maintain peak performance and

operational reliability.
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3.3.4.1 Machine learning integration

Recent developments in ML offer promising avenues for real-
time and adaptive optimization of heat exchangers. Data-driven ML
models, including artificial neural networks (ANNs), support vector
machines (SVMs), and reinforcement learning (RL), serve as
surrogate models that efficiently approximate complex thermal-
fluid behaviors, enabling rapid prediction and control of heat
exchanger performance (Zhou et al, 2024). These surrogate
models drastically reduce computational time compared to
traditional numerical simulations, facilitating near-instantaneous
optimization under changing conditions. By continuously
assimilating operational data, ML-based frameworks dynamically
update design and control parameters to sustain optimal heat
transfer and energy efficiency (Wang and Fan, 2010; Willoughby,
2006). For instance, reinforcement learning algorithms have been
successfully applied to modulate flow rates and temperature profiles
within heat exchanger networks, achieving adaptive control that
maximizes energy recovery while minimizing mechanical wear and

fouling impacts.

3.3.4.2 Digital twins
A transformative is the

development of digital twins, high-fidelity virtual replicas of

innovation within this domain

physical heat exchanger systems. Digital twins integrate real-time
sensor data with ML predictive models to deliver comprehensive
system awareness, enabling continuous performance monitoring,
predictive maintenance, and early fault detection (Zhou et al., 2024).
This convergence of sensor technologies, ML, and computational
modeling revolutionizes heat exchanger lifecycle management by
minimizing downtime, extending service life, and optimizing
operational costs. Collectively, the integration of machine
learning and digital twin technologies represents a paradigm shift
from conventional design optimization toward intelligent, adaptive,
and self-optimizing heat exchanger systems. These emerging
approaches hold significant potential for enhancing sustainability,
reliability, and economic performance in industrial thermal
management applications (Yadav et al., 2012; Yadav et al., 2013).
Figure 4 is the hypothetical comparison between the
Thermodynamic Model and the Machine Learning Model across
different performance metrics. The bars show values such as
accuracy, mean absolute error, computational time, and robustness.

3.4 Advanced control systems for heat
exchangers

The efficient operation of heat exchangers in modern industrial
processes hinges critically on the deployment of advanced control
systems that maintain optimal thermal performance while ensuring
energy efficiency, safety, and cost-effectiveness. Traditional control
schemes, such as proportional-integral-derivative (PID) controllers,
though widely used due to their simplicity and ease of
implementation, often face challenges in managing the nonlinear
dynamics, time delays, and multivariable interactions characteristic
of heat exchanger systems. Consequently, more sophisticated
control methodologies have been developed and adopted,
encompassing model predictive control (MPC), fuzzy logic
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Comparison of the thermodynamic model and the machine learning model (Zhou et al., 2024; Rosenberger et al,, 2022; Dursun et al., 2022).

control (FLC), and artificial intelligence (AI)-based techniques
(Brian, 2004; Brian, 2008; Buongiorno, 2006).

3.4.1 Model predictive control (MPC)

Model Predictive Control (MPC) constitutes a significant
advancement in process control technology by utilizing explicit
process models to forecast system behavior over a finite
prediction horizon. At each sampling interval, MPC solves a
constrained optimization problem to determine optimal control
inputs, enabling the simultaneous management of multiple
inputs and outputs, actuator limitations, and diverse
performance criteria. This predictive capability distinguishes
MPC from traditional control strategies, such as PID control,
which  typically adjustments without

anticipation of future events.

rely on reactive
In heat exchanger applications, MPC excels in handling complex

multivariable thermal interactions, including temperature
regulation, flow rate adjustments, and pressure differentials. For
instance, in shell-and-tube heat exchangers, which are characterized
by nonlinear and coupled dynamics, MPC can coordinate coolant
flow and heating input simultaneously to maintain outlet
temperatures within stringent bounds. This ensures optimal heat
transfer performance while rigorously enforcing operational
constraints such as maximum allowable temperatures, pressure
drops, and flow capacities. Pekar (2020) demonstrated the
efficacy of MPC in managing the nonlinear and dynamic
behavior of industrial shell-and-tube heat exchangers, showing
superior performance compared to conventional PID controllers.
The study highlighted that MPC significantly reduced temperature
overshoot and minimized energy consumption, improving both

product quality and operational efficiency.
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Moreover, when combined with disturbance estimation
methods such as Kalman filters or Moving Horizon Estimators
(MHE), MPC effectively compensates for unmeasured disturbances,
such as fouling accumulation and feedstock variability, which
commonly degrade performance over time. Fouling, which leads
to gradual deterioration of heat transfer efficiency, was addressed by
incorporating real-time fouling factor estimation into the MPC
framework, allowing the controller to proactively adjust operating
parameters before substantial performance loss occurs (Zhou et al.,
2025). Beyond heat exchangers, MPC has been successfully applied
in related thermal systems. For example, in district heating
networks, MPC manages the trade-off between thermal comfort
and energy consumption by optimizing heat supply schedules while
accounting for varying demand patterns and supply constraints
(Rivera et al, 2018). Similarly, in refrigeration cycles, MPC
optimizes compressor speed and expansion valve settings to
maintain target temperatures and pressures while minimizing
electricity usage and wear on mechanical components (Kim
et al., 2022).

Comparative studies reinforce MPC’s advantages over
traditional control strategies. A benchmark analysis by Qin
and Badgwell (2003) across various industrial processes,
including thermal systems, concluded that MPC consistently
outperforms PID and feedforward controllers by reducing
variability and constraint violations. In heat exchanger
(2022)
compared MPC with decoupled multivariable PI controllers,

scenarios, studies such as those by Liu et al

finding that MPC achieves faster settling times and better
disturbance rejection, especially under nonlinear operating
conditions. Recent advances also explore integrating MPC
with machine

learning models to enhance prediction
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TABLE 3 Comparison of different PHE models.

Control
strategy

Fuzzy Logic
Control (FLC)

Model Predictive
Control (MPC)

Hybrid
FLC-MPC

Advantages

Simple structure

Low computational
demand

Does not require
detailed process models
or online optimization
Suitable for real-time
control with fast
dynamics or limited
computational
resources

Utilizes accurate
system models-
Predicts future system
behavior

Optimizes control
inputs respecting
constraints- Superior
performance in
multivariable and
constrained processes
Effective in energy
optimization and
safety-critical
applications

Combines adaptability
and interpretability of
FLC with optimality
and constraint
handling of MPC.
Enhances robustness to
modeling errors and
disturbances- Improves
overall control quality

Limitations

Lacks explicit
predictive capability
Limited ability to
anticipate future
disturbances
Suboptimal energy
efficiency and
constraint handling
compared to MPC

High computational
complexity

Requires accurate
system models- Less
robust under
significant model
uncertainties or poorly
modeled systems

Increased design
complexity
Potentially higher
computational
requirements than
standalone FLC

Typical
applications/
Suitability

Systems with fast
dynamics

Applications with limited
computational power
Adaptive, heuristic
control needs

Multivariable
constrained systems
Processes needing
optimal energy
management
Safety-critical operations
like heat exchangers

Systems with modeling
uncertainties
Applications requiring
robustness and optimal
control- Disturbance
compensation in MPC

Quantitative
metrics

Computational Load:
Low

Energy Efficiency:
~85-90% (relative)

IAE: Moderate-
Robustness: Moderate
Ease of Implementation:
High

Adaptability: High

Computational Load:
High- Energy Efficiency:
~95-98%- IAE: Low
(best)- Robustness:
Moderate to Low (model
dependent)

Ease of Implementation:
Moderate to Low-
Adaptability: Moderate

Computational Load:
Moderate to High-
Energy Efficiency:
~93-97%- IAE: Low to
Moderate- Robustness:
High- Ease of
Implementation:
Moderate- Adaptability:
High

10.3389/fmech.2025.1696957

Example case
studies

FLC applied to
temperature control
in heat exchangers
achieved 90% energy
savings relative to
PID but lagged MPC
in constraint
handling (Lee and
park, 2023)

MPC controlling a
multivariable heat
exchanger process
demonstrated a 15%
energy efficiency
improvement and
superior constraint
handling compared
to FLC and PID
(Pekat, 2020)

Hybrid scheme for a
constrained heat
exchanger system
improved
disturbance rejection
by 20% over MPC
alone and improved
robustness in
presence of modeling
errors (Zhao and
Bilen, 2021)

References

Shin et al., 2024; Qin
and Badgwell (2003)

Qin and Badgwell
(2003); Pekaf (2020)

Zhao et al. (2025)

PID Controllers

accuracy and adaptivity. For instance, data-driven MPC

Easy to implement.
Minimal system
knowledge required
Widely understood and
accepted

Poor handling of
nonlinearities and
multivariable
interactions-
Performance degrades
with changing
conditions and
constraints

Stability and energy
inefficiencies under
complex dynamics

Simple, single-input-
single-output (SISO)
systems

Systems with relatively
stable operating
conditions

multivariable

Computational Load:
Very Low- Energy
Efficiency: ~70-80%-
IAE: High- Robustness:
Low- Ease of
Implementation: Very
High- Adaptability: Low

interactions,

PID controllers
widely used in
industry but often
require retuning or
auxiliary
compensation for
nonlinear heat
exchanger processes,
leading to ~10-15%
efficiency loss (Maidi
and Corriou, 2020;
Liu et al., 2022)

and disturbances makes

Maidi and Corriou
(2020); Liu et al.
(2022)

it a

approaches use neural networks or Gaussian process models
to capture complex heat exchanger dynamics when first-
principles models are insufficient or unavailable (Wang
et al, 2023). These hybrid methods show promise in
industrial settings with high variability and limited sensor
availability. In summary, the predictive nature of MPC
by
anticipating future system deviations, thereby enhancing
process stability, reducing and
extending

enables proactive adjustments to control actions

energy
lifespan of heat

consumption,
the operational
Its

exchanger

equipment. flexibility ~in  handling constraints,
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valuable control paradigm not only in heat exchanger
applications but broadly across thermal process industries.

3.4.2 Fuzzy logic control (FLC)
Fuzzy Logic Control (FLC) effectively addresses
and imprecise dynamics

the

uncertainties, nonlinearities, often
encountered in heat exchanger processes by emulating human
reasoning through linguistic if-then rules rather than relying
solely on exact mathematical models. FLC systems employ fuzzy
sets and inference mechanisms to interpret ambiguous or noisy

input variables, such as temperature gradients, flow rate fluctuations,

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1696957

Edgar et al.

and pressure variations, and generate smooth, adaptive control actions.
This approach enables robust handling of system nonlinearities,
external disturbances, and measurement uncertainties. Maidi and
Corriou (2020) demonstrated that FLC outperforms traditional
proportional-integral-derivative (PID) controllers, especially under
challenging operating conditions characterized by load variability,
sensor noise, and process delays. The inherent robustness of FLC
facilitates improved stability and responsiveness without the need for
precise system identification. Moreover, its modular and heuristic
nature allows straightforward integration of expert knowledge,
enabling the design of control strategies based on operator
experience. This advantage is particularly significant in retrofit
applications or legacy systems, where developing detailed
mathematical models is difficult or impractical.

Table 3 is the comparative analysis of different models. FLC
provides a flexible and effective control strategy for complex,
nonlinear heat exchanger systems operating under uncertain and
varying conditions, especially when model accuracy is limited or
computational simplicity is required. However, for applications
demanding rigorous constraint management, energy
MPC the

preferred choice. The ongoing development of hybrid approaches

optimization, and anticipatory control, remains

highlights the potential for integrating these methods to achieve
robust, efficient, and adaptive heat exchanger control.

3.4.3 Artificial intelligence-based control

techniques
Artificial Intelligence (AI) techniques, including neural
networks, machine learning algorithms, and reinforcement

learning, are revolutionizing heat exchanger control by enabling
adaptive, data-driven systems that evolve with operational
experience and respond dynamically to complex process conditions.

Neural Networks (NNs) are widely employed to approximate
nonlinear system dynamics without requiring explicit physical
models. By learning from process data, NNs can provide fast and
accurate predictions of heat exchanger behavior, which are
integrated into adaptive control schemes to enhance performance
under nonlinear and time-varying conditions (Pekat, 2020). For
example, neural-network-based controllers have demonstrated
improved temperature regulation and disturbance rejection in
shell-and-tube heat exchangers compared to conventional linear
controllers (Wang et al., 2022).

ML algorithms analyze extensive historical operational data to
uncover underlying patterns, optimize control parameters, and
anticipate faults or performance degradation. This capability
supports predictive maintenance strategies that proactively
identify fouling, scaling, or equipment wear before critical
failures occur. ML-driven dynamic tuning of control parameters
allows the heat exchanger system to maintain optimal efficiency
across varying loads and feedstock qualities (Singh, 2021). For
instance, support vector machines and random forest classifiers
have been used to detect early fouling signs with high accuracy,
enabling timely cleaning schedules that minimize downtime.

Reinforcement Learning (RL) frameworks represent a cutting-
edge approach where control agents learn optimal policies through
continuous interaction with the process environment. RL enables
real-time adaptive control without requiring detailed process
models, making it highly suitable for complex and uncertain heat
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illustrate that RL-based
controllers can outperform traditional MPC and FLC by

exchanger systems. Recent studies
dynamically optimizing control actions to maximize heat transfer
efficiency and minimize energy consumption under stochastic
disturbances (Zhang et al., 2025).

Table 4 highlights the key differences and similarities, along with
the application areas of Al-based control techniques in heat
exchangers. These techniques offer transformative potential by
improving operational reliability, boosting energy efficiency, and
increasing process resilience. Although challenges remain, such as
computational complexity and integration issues, continuous
advancements in Al algorithms and computing power are swiftly
broadening their practical adoption in industrial thermal systems.

3.4.4 Thermodynamic—machine learning
coupling framework

The integration between thermodynamic modeling and ML
algorithms is formalized through a Thermodynamic-Machine
Learning Coupling Framework, which enables the data-driven
refinement of physically based models for PHEs. In this hybrid
structure, the thermodynamic model first computes physically
interpretable variables such as temperature gradients, heat flux,
Reynolds and Nusselt numbers, which are then used as input
features for the ML layer. The ML algorithms, such as ANNs,
support vector regression (SVR), or hybrid metaheuristic models,
learn the complex nonlinear mappings between these features and
key performance indicators, including overall heat transfer
coefficient,  pressure  drop, and

entropy  generation.

Mathematically, this coupling is illustrated in Equations 1, 2.

Y = FML (Xthermo)
Kithermo = frh(Ti) T,, m, W k, Cp; P)

1
)

where f, (T, To, 1, W, k, Cp, p) denotes the thermodynamic model
that computes intermediate physical variables.

F mr (Xithermo) represents the ML function approximating the
nonlinear relationship between the input thermodynamic features
(Xthermo) and target outputs (¥).

T;, To, 1, w1, k, Cp, p correspond to inlet/outlet temperatures,
mass flow rate, viscosity, thermal conductivity, specific heat, and
density, respectively.

The learning process iteratively minimizes the prediction error
as shown in Equation 3

min L(Y, Yexp) 3)
Where; L (Y, Yexp) is the loss function, and 6 represents the
trainable ML parameters.

3.4.5 Challenges and integration considerations

Despite the considerable advantages offered by advanced control
strategies, their practical deployment in heat exchanger systems is
accompanied by several critical challenges that must be addressed to
ensure effective and reliable operation.

3.4.5.1 Computational requirements
Real-time implementation of Model Predictive Control (MPC)
and artificial intelligence (AI)-based controllers demands significant

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1696957

Edgar et al.

10.3389/fmech.2025.1696957

TABLE 4 Comparison of Neural Networks, Machine Learning algorithms, and Reinforcement Learning for heat exchanger control applications.

Al

technique

Neural
networks (NNs)

Machine
learning (ML)

Reinforcement
learning (RL)

Characteristics

Approximate nonlinear
system dynamics

Learn from process data
without explicit physical
models

Fast, accurate predictions

Analyze extensive historical
operational data

Identify patterns for
optimization and fault
detection

Enable predictive
maintenance

Learn optimal control policies
through interaction. Require
minimal process modeling-
Adapt in real time to
stochastic disturbances

Advantages

Handle nonlinear,
time-varying processes
well

Enable adaptive control
schemes

Improve temperature
regulation and
disturbance rejection

Optimize control
parameters
dynamically
Anticipate faults like
fouling and scaling-
Support proactive
maintenance
scheduling

Real-time adaptive
control

Handle complex,
uncertain
environments.

Limitations

Require large
quality datasets for
training

Risk of overfitting
Less interpretable
than rule-based
models

Depend on the
quality and volume
of historical data
May require
complex feature
engineering
Offline training
phases

High
computational
overhead

Require extensive
training time

Typical
applications/
Suitability

Adaptive control for
nonlinear heat
exchangers

Real-time temperature

and flow regulation

Fault diagnosis and
predictive
maintenance
Dynamic tuning of
control parameters
under varying
conditions

Real-time adaptive
control for complex
heat exchangers
Systems with high
uncertainty and

Example
outcomes/Use
cases

NN-based controllers
improved shell-and-tube
exchanger temperature
regulation and
disturbance rejection vs.
linear controllers

SVM and random forest
classifiers accurately
detected early fouling,
enabling timely cleaning
to reduce downtime

RL-based controllers
outperformed MPC and
FLC by dynamically
optimizing heat transfer
efficiency and reducing

References

Pekar (2020);
Wang et al.
(2022)

Singh (2021)

Zhang et al.
(2023)

Maximize efficiency Potential instability = stochastic disturbances | energy use

and minimize energy
consumption

computational power. The complexity of solving constrained
optimization problems or running machine learning algorithms
at high sampling rates necessitates dedicated hardware platforms
and the development of computationally efficient algorithms to
meet stringent timing requirements.

3.4.5.2 Model accuracy and maintenance

The performance of model-based control techniques hinges on
the accuracy and representativeness of the underlying process
models. System aging, fouling, corrosion, and shifts in operating
conditions can degrade model fidelity over time, thereby impairing
control effectiveness. Continuous model validation and periodic
recalibration or adaptation are essential to maintain control
precision and reliability.

3.4.5.3 Sensor and actuator reliability

Advanced control architectures rely heavily on precise, timely
data from sensors and responsive actuators. Sensor faults, delays, or
drift can compromise control accuracy and system stability. Hence,
incorporating fault detection and tolerant control mechanisms is
critical to mitigate the impact of sensor anomalies and ensure robust
operation under adverse conditions.

3.4.5.4 Integration with existing infrastructure

The retrofit or upgrade of legacy heat exchanger control systems
involves complex integration challenges. Compatibility with existing
hardware and software platforms must be carefully assessed.
Additionally, comprehensive operator training programs are
necessary to facilitate smooth transition
acceptance.  Cybersecurity

especially as control systems become increasingly networked and

and operational

considerations are  paramount,

exposed to potential cyber threats.
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In summary, advanced control methodologies, including MPC,
fuzzy logic control (FLC), and Al-based approaches, have
revolutionized heat exchanger operation by enhancing
robustness, adaptability, and energy efficiency. MPC provides
predictive optimization capabilities, FLC offers resilience to
uncertainties, and Al techniques contribute powerful learning
and adaptation features. Together, these technologies equip heat
exchanger systems to meet the rigorous demands of modern
industrial thermal management. Ongoing research focuses on
overcoming integration barriers and advancing real-time adaptive
control frameworks to enable sustainable, intelligent, and
autonomous thermal systems.

3.5 Theoretical models and design
simulations in plate heat exchangers

PHEs are widely used in many industrial applications due to
their compactness, high heat transfer coefficients, and flexibility in
design. Accurate theoretical modeling and design simulations of
PHEs are critical to optimizing their performance, predicting
thermal and hydraulic behavior, and reducing the need for costly
and labor-intensive physical prototyping. This section presents an
in-depth exploration of the theoretical frameworks and simulation
techniques employed in the analysis and design of PHEs.

3.5.1 Importance of theoretical modeling in plate
heat exchanger design

The fluid flow and heat transfer mechanisms within PHEs are
inherently complex due to their distinctive plate geometry,
corrugated surface patterns, and narrow flow channels. These
geometric characteristics induce intricate turbulence structures,
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non-uniform flow distributions, and developing thermal boundary
layers, all of which critically affect the overall thermal-hydraulic
performance of the exchanger (Miroshnichenko et al, 2020;
Miroshnichenko et al., 2021). Theoretical modeling serves as an
indispensable tool in understanding and predicting these complex
phenomena, offering several key benefits:

1. Prediction of Temperature Profiles and Heat Transfer Rates:
Analytical  and models enable  detailed
characterization of temperature fields and local heat transfer

numerical

coefficients, providing insights into the thermal effectiveness of
the PHE under varying operating conditions.

. Evaluation of Pressure Drops and Flow Maldistribution:
Accurate modeling of fluid dynamics allows assessment of
pressure losses and identification of flow maldistribution zones
that may lead to reduced performance or localized fouling.

. Optimization of Plate Geometry and Flow Arrangement:
Theoretical frameworks facilitate systematic exploration of
design parameters such as plate corrugation angles, channel
dimensions, and flow configurations, thereby enabling
enhancement of thermal performance and hydraulic efficiency.

. Parametric Studies for Different Working Fluids and
Operating Conditions: Modeling supports the evaluation of
PHE behavior across a wide range of fluids, temperatures, and
flow the need for exhaustive

rates, minimizing

experimental campaigns.

3.5.2 Foundational theoretical models

Foundational theoretical models, such as the comprehensive
framework developed by Mota (2021), have significantly advanced
the simulation of coupled heat transfer and fluid flow phenomena in
PHEs. This seminal work integrates critical physical mechanisms,
including conjugate heat transfer that simultaneously addresses
conduction through the plate material and convection within the
fluid channels (Bo-Fu et al, 2012). By employing sophisticated
turbulence closure models, the approach effectively captures the
complex turbulent flow induced by corrugated channel geometries,
which is vital for the realistic representation of flow patterns and
mixing enhancement. The model also rigorously incorporates the
influence of plate geometric parameters, such as corrugation angle,
pitch, and depth, quantifying their effects on local heat transfer
coefficients and pressure drops. Notably, Mota et al.’s methodology
combines analytical correlations with numerical simulations,
of
performance metrics. The model explicitly accounts for heat
transfer augmentation through secondary flows generated by

enabling accurate prediction thermal and hydraulic

plate corrugations and provides a reliable estimation of friction
factors and pressure losses caused by intricate channel structures.
Furthermore, it assesses flow maldistribution impacts, particularly
relevant in multi-pass PHE configurations, thereby highlighting
performance deviations due to uneven fluid distribution.
Extensive validation against experimental data demonstrates the
model’s robustness and accuracy within acceptable error bounds,
confirming its value as a design and optimization tool for efficient
and reliable PHE systems (Leong, 2002; Liu et al., 2012; Maouassi
et al, 2018; Mekheimer and Mahmoud, 2014; Miroshnichenko

et al., 2018).
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3.5.3 Advanced fluid distribution modeling

Building upon foundational theoretical frameworks, Jinior et al.
(2023) significantly advanced fluid distribution modeling in
compact heat exchangers, with a focus on PHEs. Their work
tackles the persistent challenge of non-uniform flow distribution
caused by manifold and port configurations, which critically
influences localized heat transfer performance and pressure drop
behavior. The study employs high-fidelity simulations of manifold
and header flows to accurately predict flow maldistribution across
parallel channels, integrating these fluid distribution models with
thermal simulations to capture the impact of uneven flow on local
thermal gradients and heat transfer inefficiencies. By coupling CFD
with reduced-order modeling techniques, the approach achieves an
optimal balance between computational efficiency and accuracy,
enabling rapid yet reliable performance assessments. This advanced
modeling framework facilitates practical design improvements such
as optimized plate layout and port positioning to enhance flow
uniformity, essential for maximizing thermal effectiveness while
minimizing hydraulic losses. Moreover, it supports the development
of more compact PHE designs that do not compromise heat transfer
efficiency, addressing stringent spatial constraints in industries
including automotive, refrigeration, and chemical processing
2002; 2012; 2018).
Additionally, by identifying zones susceptible to turbulent jets

(Leong, Liu et al, Maouassi et al,
and recirculation, the model contributes to mitigating flow-
induced mechanical stresses and erosion, thereby improving
equipment durability and reliability. This advancement marks a
critical step towards the optimization of PHE design under
demanding industrial requirements where spatial efficiency and

thermal performance are paramount.

3.5.4 Computational methods and simulation tools

The modeling and analysis of PHEs increasingly depend on a
diverse suite of computational methods capable of resolving the
complex interplay between fluid dynamics and heat transfer within
their corrugated and compact geometries. Depending on the design
stage and performance objectives, these methods range from simple
empirical formulations to advanced high-fidelity simulations.
Analytical and semi-empirical correlations, often based on
dimensionless groups such as Reynolds, Nusselt, and Prandtl
numbers, provide rapid estimates of heat transfer coefficients and
pressure drops. These correlations, derived from experimental data,
are particularly useful for preliminary sizing, parametric evaluations,
and early-stage feasibility assessments due to their computational
efficiency (Belyaev et al., 2017). For more detailed analyses, CFD has
become indispensable, enabling three-dimensional simulation of
turbulent flow structures, temperature fields, and conjugate heat
transfer through the plate walls. Modern CFD platforms incorporate
a range of turbulence models, including Reynolds- Averaged Navier-
Stokes (RANS), Large Eddy Simulation (LES), and, in specialized
cases, Direct Numerical Simulation (DNS), to capture varying levels
of flow complexity. Furthermore, conjugate heat transfer modeling
enables simultaneous analysis of convective and conductive heat
transport, while multiphase models allow the simulation of phase-
change processes such as evaporation and condensation, expanding
the applicability of PHEs to refrigeration and thermal management
systems (He et al, 2025¢). In scenarios requiring system-level
optimization or real-time control integration, reduced-order and
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lumped-parameter models offer simplified yet dynamically
representative  formulations  that  significantly  reduce
computational load. These models are essential for fast

simulations, controller development, and integration into digital
twins or plant-wide simulations. Additionally, multi-scale modeling
approaches are emerging to bridge detailed microscale flow and heat
transfer behavior with macroscale performance metrics, enhancing
predictive accuracy and supporting robust design. Leading
simulation platforms such as ANSYS Fluent and COMSOL
Multiphysics provide robust environments for implementing
these methods, while specialized PHE design software integrates
empirical models and CFD modules for streamlined workflow
execution. Collectively, these computational approaches form a
comprehensive toolkit that supports the design, optimization, and
operational control of high-performance PHE systems across a wide
range of industrial applications (He et al, 2025b; Mortean et
al,, 2024).

3.6 Advancements and methodologies in
plate heat exchanger optimization

The design and operation of Plate Heat Exchangers have
benefited
which have

increasingly from advanced

methodologies,

optimization
their
compactness, and reliability. Modern optimization approaches

revolutionized efficiency,
integrate computational algorithms, multi-physics simulations,
and system-level considerations to tailor PHE designs for specific
industrial applications. This section explores key advancements and
methodologies in the optimization of PHEs, focusing on algorithmic
strategies, surface enhancement, and the challenges of multi-
parameter design interactions.

3.6.1 System-level optimization in heat
exchanger networks

Optimizing the performance of individual PHEs in isolation
offers limited benefit without considering their dynamic interactions
within the broader framework of Heat Exchanger Networks (HENS).
HENs comprise multiple interlinked heat exchangers that
collectively determine the thermal efficiency, energy recovery
potential, and overall sustainability of industrial processes.
Recognizing this systemic interdependence, Xu et al. (2017)
proposed a comprehensive framework for
embedding PHEs

configurations to maximize operational efficiency and energy

system-level

optimization, strategically into network
savings. Their approach underscored the importance of optimal
placement and sizing of PHEs within the network, ensuring that
capacity
meaningfully to minimizing total energy consumption and

each exchanger’s and configuration contribute

operational costs. This involved a careful balance of heat duty
distribution, exchanger effectiveness, and layout constraints

the their
accounted for thermal integration while incorporating pressure

across entire network. Furthermore, framework

drop limitations, acknowledging that excessive hydraulic
resistance can undermine energy savings by increasing pumping
power demands and reducing process throughput.

To address the complexity of such multi-dimensional design

challenges, Xu et al. employed a hybrid optimization methodology
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that coupled Mixed-Integer Nonlinear Programming (MINLP) with
heuristic search algorithms. This dual-layered strategy effectively
navigated large and nonlinear design spaces, enabling the
identification of optimal network topologies as well as feasible
retrofit options for existing plants. The transition from
exchanger-level design to holistic network-level synthesis, as
exemplified by Xu et al’s work, represents a paradigm shift in
thermal systems engineering (Straughan and Walker, 1996;
Teimurazov and Frick, 2015; Tsai et al., 2008; Tsaplin, 2013). By
optimizing the integration of PHEs within HENSs, their approach not
only improved plant-wide energy efficiency but also advanced
broader sustainability goals, chiefly by reducing fossil fuel
dependency and lowering greenhouse gas emissions through
enhanced energy reuse. System-level optimization, therefore, is
pivotal not only for improving technical performance but also for
aligning thermal system design with global decarbonization and
energy transition imperatives. In conclusion, adopting network-
level optimization strategies facilitates superior capital allocation,
enhances process adaptability, and supports long-term
environmental stewardship. As industries worldwide increasingly
commit to net-zero and circular economy targets, integrative
frameworks such as those pioneered by Xu et al. are becoming
indispensable in both the design of new facilities and the retrofitting

of legacy systems.

3.6.2 Metaheuristic algorithms for thermal
modeling and design refinement

The design and optimization of PHEs involve navigating a
highly
problem space that often renders conventional deterministic
optimization techniques inadequate for identifying globally

nonlinear, multi-objective, and constraint-intensive

optimal solutions. In response to these challenges, metaheuristic
algorithms, such as Genetic Algorithms (GAs), PSO, and Simulated
Annealing (SA), have emerged as powerful alternatives capable of
efficiently exploring complex design landscapes (Khan et al., 2025;
Nithya et al., 2025; He et al., 2025b; Pachpute and More, 2025; Bakir
et al,, 2025). Patel et al. (2019) demonstrated the efficacy of these
methods in optimizing critical PHE design parameters, with a
particular focus on geometric optimization, performance trade-
off management, and constraint handling. Their study utilized
metaheuristics to fine-tune structural variables, including plate
pitch, corrugation angle, and channel height, factors that
significantly affect thermal and hydraulic performance. Moreover,
their framework facilitated the identification of Pareto-optimal
solutions that balance enhanced heat transfer against associated
pressure drop penalties, enabling designers to tailor configurations
to specific operational or economic objectives. The algorithms also
accommodated practical constraints such as manufacturing
tolerances and operational limits, ensuring the feasibility of
proposed designs. A key advantage underscored by the study is
the ability of metaheuristic approaches to avoid local minima, a
common pitfall in non-convex optimization, through stochastic,
global search strategies. This characteristic allows for the discovery
of
otherwise be overlooked. The integration of metaheuristic

innovative, high-performance configurations that might
algorithms into thermal modeling workflows extends beyond
design refinement to support adaptive control strategies, whereby

PHE parameters may be dynamically adjusted in real time in
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response to changing operational conditions (Yadav et al., 2016;
Zhang, 2025). When paired with surrogate or reduced-order
models, these techniques can substantially lower computational
fidelity. ~ As
computational resources and algorithmic sophistication continue

demands  without compromising  solution
to advance, the application of metaheuristic optimization in PHE
design is poised to expand, particularly in synergy with artificial
intelligence frameworks and digital twin technologies aimed at
enabling predictive maintenance and continuous performance

enhancement.

3.6.3 Passive surface enhancement techniques and
geometric parameter interactions

Passive surface enhancement techniques have emerged as a
pivotal strategy to augment heat transfer in PHEs without
incurring additional external energy input. These methods
primarily involve geometric modifications to the plate surfaces,
most notably through corrugation design, to promote secondary
flow structures, disrupt thermal boundary layers, and increase
turbulence intensity, thereby enhancing convective heat transfer
coefficients. Kumar and Layek, (2022) conducted a comprehensive
review of such passive enhancements, delineating the intricate
interdependencies among key geometric parameters and their
combined influence on thermal-hydraulic performance metrics.

Central to these enhancements is the chevron angle, defined as
the inclination angle of the corrugation relative to the flow direction.
Empirical and numerical investigations consistently demonstrate
that increasing the chevron angle intensifies secondary flow
generation, resulting in augmented mixing and disruption of the
thermal boundary layer. This effect substantially elevates the
convective heat transfer coefficient. However, this enhancement
is invariably accompanied by a concomitant increase in frictional
losses and pressure drop, reflecting a critical trade-off inherent in
passive surface modification strategies (Isracl-Cookey et al., 20105
Khalilov et al., 2017). Quantitative assessments reveal that optimal
chevron angles often lie in a narrow design space, balancing
maximal heat transfer enhancement against acceptable hydraulic
penalties. Beyond the chevron angle, corrugation pitch, the spacing
between corrugation peaks, and amplitude, the corrugation depth or
height plays synergistic roles in modulating fluid dynamics within
the narrow channels of PHEs. The coupled interactions among these
parameters influence turbulence production, flow separation, and
reattachment phenomena, which collectively dictate the local heat
transfer and pressure drop characteristics. Due to their nonlinear,
coupled effects, the prediction of performance outcomes remains
complex, and attempts to formulate generalized correlations have
often resulted in limited applicability across different operating
regimes and fluid properties (Faber, 1995; GlobalData Energy,
2017; Hamzah et al., 2021; Israel-Cookey et al., 2003).

Kumar et al. (2014) underscored the inherent complexity
involved in the design of PHEs, particularly due to the
multifaceted nonlinear interactions between geometric parameters
such as chevron angle, corrugation pitch, amplitude, and plate
thickness. This complexity is further exacerbated by variations in
fluid rheology, flow regime transitions (laminar, transitional, and
turbulent), and practical manufacturing constraints, including cost,
material workability, and structural integrity under operational
stresses. As a result, the design of passive surface enhancements
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demands a comprehensive, multi-parameter optimization strategy
that holistically incorporates geometric configuration, fluid dynamic
behavior, and real-world manufacturability considerations. Recent
research trends advocate for the synergistic integration of high-
fidelity CFD with
optimization algorithms, most notably Genetic Algorithms and

simulations advanced multi-objective
emerging ML techniques, to systematically explore the high-
dimensional design space. These methodologies enable the
identification of Pareto-optimal solutions that achieve an optimal
trade-off between enhanced thermal performance and minimized
hydraulic losses. While passive enhancement techniques continue to
be pivotal in pushing the boundaries of PHE efficiency, the intricate
interdependencies among design variables necessitate rigorous
experimental validation and robust numerical modeling.
Continued advancements in this domain are anticipated to yield
application-specific design protocols that deliver superior heat
transfer efficiency, reduced pressure drop, and improved cost-
effectiveness, thereby facilitating the development of the next-
of

management systems.

generation compact and high-performance thermal

3.6.4 Integrated optimization frameworks: the
future direction

The evolution of PHE design methodologies is increasingly
marked by the emergence of integrated optimization frameworks
that
optimization algorithms, empirical validation, and intelligent

converge high-fidelity numerical modeling, advanced
data-driven approaches. These frameworks are designed to tackle
the growing complexity and multifactorial nature of PHE systems in
modern industrial applications, where isolated parameter tuning
and traditional heuristic methods often fall short (Raja et al., 2010;
Ramalingam S. et al., 2024; Rieutord, 2015; Roberts and Walker,
2010; Rosenberger et al., 2022).

Contemporary optimization demands a holistic approach that
simultaneously considers geometric design, thermal-hydraulic
performance, manufacturing constraints, and operational
variability. Core elements of these next-generation frameworks
include: (i) high-resolution numerical simulations, employing
CFD, conjugate heat transfer models, and finite element methods
to accurately capture flow dynamics and thermal fields; (ii)
metaheuristic and multi-objective optimization algorithms, such
(GAs), PSO, and Multi-Objective
(MOEAs), which

exploration of complex design spaces while balancing competing

as  Genetic  Algorithms

Evolutionary ~ Algorithms enable efficient
objectives, e.g., heat transfer performance, pressure drop, fouling
resistance, and cost; and (iii) experimental validation and adaptive
machine learning, where empirical testing is integrated with
adaptive learning systems to recalibrate predictive models based
on real-time operational feedback (Rosensweig, 2014; Sakshi and
Sunita, 2011).

These integrated frameworks enable both component-level
optimization, targeting specific PHE geometries, and system-level
design, particularly in Heat Exchanger Networks (HENs), where
inter-unit interactions and plant-wide energy efficiency must be
considered. Additionally, they facilitate application-specific
customization, taking into account fluid properties, spatial
constraints, fouling behavior, and maintenance requirements,

while supporting long-term performance prediction under
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TABLE 5 Comparative summary of key contributions in integrated optimization of PHEs.

Author(s) Contribution focus

Methods

Highlights

Xu et al. (2017) PHE placement in Heat Exchanger Networks

(HENSs)

Patel et al. (2019) PHE geometric optimization under constraints

Yu et al. (2022) Multi-objective thermal and hydraulic

optimization

Network-level modeling

Genetic algorithms (GA)

MOEAs

Initiated system-level integration strategies
Addressed practical manufacturing and operational
constraints

Simultaneous improvement of heat transfer and pressure
drop

Yu et al. (2024) Al-based optimization refinement

Machine learning and
optimization

Adaptive model enhancement based on feedback data

Kumar and Layek,
(2022)

Passive enhancement strategies

dynamic, uncertain operating conditions. Looking forward, the
convergence of Artificial Intelligence (AI) and ML with thermal
system design is anticipated to transform PHE optimization
paradigms. Al-driven models offer capabilities such as automatic
hyperparameter tuning, complex feature extraction from large-scale
datasets, real-time performance monitoring, and predictive fault
diagnostics. This integration aligns with the broader objectives of
Industry 4.0, positioning PHEs as intelligent components within
sensor-integrated, self-optimizing thermal management systems.
The trajectory of research in this domain reinforces this shift. Li,
(2024) introduced system-level placement strategies for PHEs within
HENS, highlighting the importance of network-wide integration.
Patel et al. (2019) showcased the potential of metaheuristics for
optimizing PHE geometries under practical constraints. Yu et al.
(2022) advanced multi-objective frameworks that concurrently
optimize thermal and hydraulic performance. Kumar and Layek,
(2022) emphasized the intricate interactions among geometric
parameters in passive enhancement strategies, advocating for
integrated modeling to overcome limitations inherent in
traditional methods. Collectively, these contributions illuminate a
clear path forward: the development of intelligent, adaptable, and
sustainable PHE systems capable of self-optimization across varying
operational contexts. Realizing this vision will require sustained
interdisciplinary collaboration across thermal sciences, optimization
theory, artificial intelligence, and systems engineering. Table 5 is the
Summary of selected research studies contributing to the evolution
of integrated PHE optimization frameworks.

4 Novel findings and contribution

Table 6 comprehensively summarizes the extant literature on PHESs,
highlighting key contributions, significant findings, and prevailing
research limitations. Despite a rich body of work addressing various
aspects of PHE design and performance, several critical gaps and
inconsistencies remain, hindering the establishment of universally
applicable design and operational guidelines. A prominent limitation
across studies is the tendency to examine geometric parameters, such as
plate gap, corrugation pitch, amplitude, and chevron angle, in isolation
rather than as interdependent variables. The complex, nonlinear
interactions among these factors, as emphasized by Kumar and
Layek, (2022), pose significant challenges for the development of
generalized correlations and optimization models that remain valid
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CFD + Design Interplay deling

Emphasized interaction among geometric parameters

across diverse applications. This fragmented approach limits the
transferability and scalability of existing design strategies.

Fouling, a major operational challenge, continues to resist robust
mitigation. Current techniques, including surface modifications and
altered geometries, yield variable success depending on fluid properties
and operational regimes. The inconsistent performance highlights a
pressing need for application-specific fouling models, strengthened by
both experimental validation and high-fidelity numerical simulations.
Further complicating standardization efforts are substantial
discrepancies in recommended values for critical design parameters
such as corrugation pitch, hydraulic diameter, and plate thickness.
These variations often arise from differences in underlying
assumptions, working fluids, and performance criteria, particularly
when extending PHE use to unconventional fluids or fluctuating
thermal loads. Emerging advancements involving nanofluids and
passive surface enhancements (e.g., dimpled or wavy plate patterns)
offer promising avenues for performance improvement (Mohammed
et al,, 2011; Motsa and Makukula, 2013; Nield, 2000; Nield and Bejan,
2013; Nnadi et al., 2010; Ogunseye et al., 2020). However, the literature
remains fragmented on their long-term operational stability, material
compatibility, and potential drawbacks such as nanoparticle
agglomeration and erosion (Yuan et al., 2017).

Addressing these challenges necessitates the development of
integrated, multidimensional models that simultaneously capture
geometric, thermal, hydraulic, and material phenomena. Crucially,
such models require validation through empirical data from
industrial-scale than
conditions. Multidisciplinary approaches leveraging advances in

applications  rather simplified laboratory
thermal-fluid dynamics, materials science, and artificial intelligence
hold promise for the evolution of adaptive, self-optimizing PHE
systems. In summary, overcoming the current contradictions and
research gaps calls for a paradigm shift from isolated parameter
analyses to holistic, experimentally grounded frameworks. Such a
shift will underpin efforts toward standardization, scalability, and

operational adaptability in PHE design and application.

4.1 Summary of the key findings

The systematic review demonstrates that  hybrid
thermodynamic-machine learning models significantly improve
the predictive accuracy, operational efficiency, and fouling

detection of PHEs in industrial applications. Their modular
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TABLE 6 Summary of related literature.

Contribution

Findings

10.3389/fmech.2025.1696957

Research gap

Albets Chico et al. (2013), Omubo-Pepple
and Israel-Cookey, (2009)

DNS of turbulent liquid metal flow entering
a magnetic field

Magnetic field suppresses turbulence and
alters turbulence structures

Limited to idealized geometries;
industrial plate heat exchanger
geometries and varying magnetic fields
need study

Ali et al. (2017), Kirillov et al. (1995)

Aminian et al. (2020)

Awad et al. (2013)

Barletta et al. (2013), Mebarek-Oudina
and Bessaih, (2019)

Simulated MHD free convection in square
enclosure with tilted obstacle

Numerical study of forced convection of
hybrid nanofluid in porous media under
magnetic field

Thermodiffusion effects in magneto-

nanofluid flow over a stretching sheet

Convective instability in a horizontal
porous channel with permeable boundaries

Obstacle tilt strongly influences flow and
heat transfer patterns

Hybrid nanofluid enhanced heat transfer
under magnetic field

Thermodiffusion and magnetic
interaction significantly affect velocity
and temperature profiles

Instability thresholds influenced by wall
properties

Limited to square domain; variable
obstacle shapes and cross sections not
addressed

Lacks experimental validation and
parametric sensitivity (e.g., porosity,
field orientation)

Steady 2D assumption; no transient or
3D flow considered

Vertical channel configurations and
nanofluid/MHD effects have not been
investigated

Chang (2014)

Gholinia et al. (2018), Sankar et al. (2006)

Liquid-metal MHD flow in expanded
rectangular duct

Nanofluid flow over permeable cylinder
under magnetic field

Magnetic field suppresses flow separation
and modifies pressure drop and heat
transfer

Magnetic field and porosity modify heat
transfer rates

Single duct geometry; turbulent and
transient effects not fully resolved

Single cylinder case; transient and
turbulent effects unexplored

Khan et al. (2020), Wakif et al. (2016),
Wakif et al. (2017)

Mahajan and Sharma, (2018),
Omubo-Pepple et al. (2013)

Sheikholeslami and Rokni (2017a);
Sheikholeslami and Rokni (2017b)

Heat generation effect in magneto-
nanofluid free convection around sphere

Magnetic nanofluid convection in porous
medium under variable gravity

Review of nanofluid heat transfer under
magnetic fields

Heat generation influences buoyancy-
driven flow; magnetic field controls flow
patterns

Gravity variation and magnetic field
affect heat transfer intensity

Summarized experimental and numerical
studies on MHD nanofluids

Purely numerical; lacks experimental
benchmarks and real industrial
geometries

Limited to laminar flow; complex
geometries missing

Need for unified models and complex-
domain studies

Qi et al. (2015a), Qi et al. (2015b)

Sheikholeslami and Ganji (2014)

Siddiqui and Chamkha, (2020), Wakif
et al. (2018), Walker, (1986)

Belaid et al. (2023)

Natural convection of liquid-metal
nanofluids in an enclosure and particle size
effect

Numerical simulation of MHD nanofluid
flow and heat transfer

Thermo-magnetohydrodynamic effects on
nanofluid flow in a porous annular region
with rotation

Analysis of balancing climate mitigation
and energy security with green investments

Nanoparticles modify thermal plume and
convection dynamics

A magnetic field can improve or suppress
convection depending on the parameters

Rotation and magnetic field significantly
influence flow and heat transfer

Green investments are crucial for
mitigating climate change and enhancing
energy security

No magnetic field or porous medium
effects included

Limited flow geometries; transient
effects not studied

Experimental verification and
nanoparticle aggregation effects are
unaddressed

Need detailed sector-specific strategies
and integration with national policies

structure, in which thermodynamic models provide physically
interpretable variables and machine learning algorithms capture
nonlinear relationships with key performance indicators, enables
scalability across production scales and process conditions. Multi-
objective optimization strategies and advanced control approaches,
including reinforcement learning and digital twin frameworks,
further enhance adaptability, suggesting that these models are
transferable and applicable to other beverage industry processes,
such as juice, dairy, and brewing operations, with appropriate
customization for fluid properties and operational contexts.
However, the review also identifies critical constraints: limited
localized experimental validation, incomplete modeling of fouling
chemistry, and insufficient socio-technical assessments for adoption
in tropical or resource-constrained industrial settings. These
limitations underscore the need for context-specific calibration
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and empirical testing to ensure reliable performance, indicating
that while the models are broadly scalable, practical implementation
in other beverage sectors requires careful adaptation.

5 Conclusion

This review provides a systematic and context-specific evaluation
of PHE technologies, emphasizing the integration of traditional
thermodynamic principles with modern computational intelligence,
particularly ML and hybrid optimization techniques. Unlike prior
reviews, this work uniquely synthesizes the operational, economic, and
environmental implications of adaptive PHE systems in emerging
industries, with a specific focus on tropical regions such as Uganda’s
brewing sector. By combining high-fidelity modeling, digital twin
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frameworks, and real-world operational metrics, the review offers
actionable insights into measurable performance improvements,
including energy consumption reductions, enhanced heat transfer
coefficients, and predictive maintenance strategies. Furthermore, it
identifies persistent technical bottlenecks, such as fouling, scaling, and
flow maldistribution, and proposes context-sensitive solutions,
including topology optimization, advanced surface treatments, and
Al-driven monitoring, which are rarely addressed together in existing
literature. Importantly, the review provides a roadmap for scalable,
pilot-scale deployment of hybrid PHE systems coupled with renewable
energy, bridging the gap between theoretical innovation and practical
industrial application. Overall, this work contributes uniquely by not
only consolidating prior knowledge but also advancing a framework
that links technological innovation with measurable operational
outcomes, context-specific implementation, and sustainable
industrial modernization, thereby guiding future research and
industrial practice toward intelligent, self-optimizing PHE systems.

5.1 Actionable recommendations

1. Implement Hybrid Modeling and Al-Based Optimization:
with
machine learning and metaheuristic algorithms to optimize
PHE performance in real time, improving heat transfer

Combine physics-based thermodynamic models

efficiency and reducing energy costs.

. Establish Real-Time Monitoring with Digital Twins: Deploy
sensor networks and develop digital twins for PHEs to enable
predictive maintenance and early fouling detection,

minimizing downtime and extending equipment life.

3. Prioritize Fouling Mitigation and Cleaning Optimization: Use

Al-driven fouling prediction models alongside improved
materials and cleaning protocols tailored to local conditions

to reduce fouling impacts and enhance system reliability.
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