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Introduction: Plate Heat Exchangers (PHEs) play a crucial role in industrial 
thermal processes, particularly in the brewing industry, where precise 
temperature regulation influences fermentation efficiency and product quality. 
In Uganda, PHE performance is constrained by fouling, variable thermal loads, 
and resource limitations. These challenges highlight the need for advanced 
optimization approaches tailored to tropical climates and resource- 
limited settings.
Methods: A systematic review was conducted to evaluate the use of 
thermodynamic modeling and machine learning (ML) for optimizing PHE 
operation in industrial applications. A total of 199 studies were screened, of 
which 112 met predefined methodological and quality criteria. Extracted data 
were synthesized to compare traditional approaches with hybrid physical-ML 
models, including Artificial Neural Networks (ANN), Particle Swarm Optimization 
(PSO), and Genetic Algorithms (GA). Performance indicators assessed included 
predictive accuracy, energy efficiency, fouling behavior, and operational 
responsiveness.
Results: Hybrid models integrating thermodynamic principles with ML 
techniques consistently outperformed conventional modeling approaches. 
Significant gains were observed in predictive accuracy across included studies, 
although effect sizes varied due to dataset diversity and differing evaluation 
metrics. Real-time fouling prediction using ML contributed to a 22% reduction 
in maintenance costs and a 15% decrease in operational downtime. 
Implementations of digital twin architectures and adaptive control algorithms 
achieved an 18% improvement in energy efficiency and enhanced system 
responsiveness by up to 30% under dynamic thermal load conditions.
Discussion: Findings demonstrate the strong potential of combining 
thermodynamic modeling with AI-driven methodologies to enhance PHE 
performance in the brewing sector and related industries. While substantial 
technological improvements have been reported, context-specific barriers 
persist, particularly the adaptation of advanced models to tropical 
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environmental conditions and the cost-effective integration of renewable energy 
sources. Addressing these challenges will be essential for unlocking the full 
potential of self-optimizing PHE systems that promote energy efficiency, 
product quality, and sustainable industrial growth in regions such as Uganda.

KEYWORDS

plate heat exchangers (PHEs), machine learning, fouling mitigation, hybrid optimization, 
energy efficiency, and adaptive control

1 Introduction

Plate heat exchangers (PHEs) are fundamental components in 
industrial thermal management due to their high efficiency, 
compact design, and flexibility in handling a wide range of 
operating conditions. Composed of thin, corrugated metal plates 
stacked to separate fluid streams, PHEs enable effective heat transfer 
without direct fluid mixing, offering high heat transfer coefficients, 
low fluid hold-up volumes, and scalable capacity through modular 
plate arrangements (Shah and Sekulic, 2003). These advantages have 
driven their widespread adoption across sectors, including HVAC, 
chemical processing, pharmaceuticals, food and beverage 
production, and power generation (Kakaç et al., 2012). Within 
the brewing industry, precise temperature control during 
processes such as wort cooling is critical to yeast activity, 
fermentation kinetics, and product quality, highlighting the 
strategic importance of PHEs in ensuring consistent flavor, 
stability, and operational efficiency.

Recent industrial trends toward sustainability and energy 
efficiency have intensified the need for advanced optimization of 
PHE performance (Sadineni et al., 2011). While traditional 
design approaches rely on empirical heuristics, contemporary 
methods increasingly integrate high-fidelity thermodynamic 
modeling to predict fluid flow and heat transfer phenomena, 
enabling precise optimization of plate geometry, flow 
configurations, and operating conditions (Anderson et al., 
2020). Concurrently, machine learning (ML) and artificial 
intelligence (AI) offer transformative opportunities for real- 
time performance optimization, predictive maintenance, and 
fault detection, leveraging operational datasets to enhance 
process control (Gao et al., 2020). Nevertheless, persistent 
challenges such as fouling, flow maldistribution, and multi- 
objective trade-offs in thermal efficiency and pumping costs 
necessitate hybrid optimization frameworks that combine 
physical modeling with data-driven decision-making (Müller- 
Steinhagen et al., 2011; Patel and Shah, 2023; Khorram 
et al., 2021).

This systematic review makes distinct contributions that 
differentiate it from prior literature. First, it provides a context- 
specific analysis of PHE optimization for Uganda’s brewing sector, 
addressing the paucity of studies on tropical industrial 
environments. Second, it critically evaluates the integration of 
thermodynamic modeling and ML-based hybrid optimization, 
highlighting approaches that have not been systematically 
compared or synthesized in earlier reviews. Third, it emphasizes 
measurable operational outcomes, including energy savings, 
improved heat transfer coefficients, and predictive maintenance 
strategies, linking theoretical insights to practical industrial 
applications. Finally, by outlining scalable implementation 

pathways and localized strategies, the review provides actionable 
guidance for engineers, researchers, and industry stakeholders 
aiming to adopt energy-efficient, adaptive PHE systems in 
resource-constrained settings. In doing so, it bridges a gap 
between theoretical innovation and practical deployment, 
advancing the knowledge base for sustainable industrial 
modernization in developing countries.

2 Methodology

2.1 Research design

This study adopts a systematic review approach aimed at 
synthesizing the current state, challenges, and emerging 
innovations in PHE technology, with an emphasis on integration 
of artificial intelligence (AI), hybrid optimization methods, and 
digital twin frameworks. The methodology encompasses a broad 
evaluation of scientific literature, industrial reports, and case studies, 
particularly focusing on applications relevant to tropical climates 
and resource-constrained environments such as Uganda’s brewing 
industry. By consolidating findings from experimental research, 
computational modeling, and AI-based predictive maintenance, 
this review provides a comprehensive assessment of technological 
advancements, operational challenges, and prospects for sustainable 
and intelligent PHE systems.

2.2 Study evaluation and categorization 
using PRISMA framework

The review process followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) framework to 
enhance transparency, reproducibility, and methodological rigor. 
The framework was implemented in the following four phases.

2.2.1 Identification
A systematic search was performed across multidisciplinary 

databases, including IEEE Xplore, ScienceDirect, Scopus, Web of 
Science, Google Scholar, and specialized industrial and engineering 
repositories. Search keywords comprised terms and combinations 
such as “Plate Heat Exchanger,” “heat exchanger fouling,” “AI-based 
thermal system optimization,” “digital twin in thermal 
management,” “machine learning predictive maintenance,” 
“metaheuristic algorithms in heat exchangers,” and “industrial 
heat exchanger performance.” The initial search yielded 
199 documents predominantly published within the last decade, 
reflecting the rapid integration of computational methods in 
PHE research.
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2.2.2 Screening
Titles and abstracts were screened to exclude studies that (i) were 

unrelated to PHE technologies, (ii) focused exclusively on other heat 
exchanger types without transferable insights, (iii) lacked discussion on 
AI, computational optimization, or fouling mitigation, or (iv) were 
theoretical without practical or industrial context. This step narrowed 
the dataset to 199 articles for full-text evaluation.

2.2.3 Eligibility assessment
Full-text articles were critically assessed for methodological 

soundness, relevance to dynamic or AI-driven PHE optimization, 
inclusion of fouling and flow maldistribution analysis, and 
applicability to tropical or resource-constrained industrial 
settings. Studies missing empirical data, lacking integration of AI 
or computational frameworks, or outdated without relevance to 
current digital trends were excluded. A total of 87 studies were 
excluded, resulting in 112 articles retained for detailed analysis.

2.2.4 Inclusion
The final review included 112 high-quality peer-reviewed 

journal articles, conference proceedings, industrial technical 
reports, and case studies. These sources formed the basis for 
synthesizing knowledge on hybrid modeling approaches, AI- 
enabled fouling prediction, real-time sensor integration, digital 
twin applications, and adaptive control strategies to enhance PHE 
performance and reliability.

2.3 Quality assessment tools

A rigorous quality assessment was undertaken to ensure both 
the methodological robustness and contextual relevance of the 
studies reviewed. Two complementary instruments were applied: 

the Critical Appraisal Skills Programme (CASP) checklist and a 
customized appraisal framework specifically developed to evaluate 
the integration of artificial intelligence (AI) and hybrid optimization 
techniques in the thermodynamic modeling of PHEs. The CASP 
checklist assessed the methodological soundness of each study, 
emphasizing the clarity of research objectives, appropriateness of 
design, transparency of data collection and analysis, and validity of 
conclusions. Each criterion was scored as Yes (1 point), Partially 
(0.5 points), or No (0 points), with a maximum possible score of five 
points. To complement this, the customized framework evaluated 
three core dimensions as illustrated in Table 1.

Each dimension was rated from 0 (not addressed) to 5 (strongly 
demonstrated), producing a maximum of five points. The combined 
CASP and custom framework scores were normalized to a 10-point 
composite scale, and studies attaining a minimum of 8/10 were 
classified as high-quality for inclusion in the thematic synthesis, 
thereby ensuring both methodological integrity and contextual 
applicability.

Figure 1 shows that (48.4%) of the studies were published in the 
last decade (2016–2025), with 27.8% from 2021 to 2025, 20.6% from 
2016 to 2020, 17.5% from 2011 to 2015, and 23.1% before 2011. This 
highlights strong recent research activity in thermodynamic 
modeling, nanofluid heat transfer, magnetohydrodynamics, and 
machine learning for plate heat exchanger optimization (Kun- 
Quan and Jing, 2006; Pak and Cho, 1998; Piel, 2017; Qureshi 
and Ashraf, 2018; Qureshi et al., 2016).

2.4 Thematic coding and data 
categorization

Using NVivo software, a thematic analysis was performed to 
systematically code and categorize data across multiple domains: (i) 

TABLE 1 Quality assessment dimensions and scoring criteria.

Criterion Description Score range

AI integration Extent of machine learning or hybrid optimization techniques integrated into thermodynamic or heat exchanger models 0–5

Climate adaptability Applicability of the methodology to tropical or industrial operating environments 0–5

Operational improvement Degree of verified performance enhancement (e.g., heat transfer efficiency, pressure drop, or energy efficiency) 0–5

FIGURE 1 
Distribution of publications by year, indicating research trends over time.
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Hybrid Modeling and AI Optimization, including physics-informed 
thermodynamic models integrated with machine learning and 
metaheuristic algorithms for real-time performance enhancement, 
(ii) Digital Twin and Real-Time Monitoring, development of sensor 
networks and digital twin frameworks enabling predictive 
maintenance, fouling detection, and operational adaptability, (iii) 
Fouling Mitigation and Cleaning Protocols–AI-driven fouling 
prediction models, materials innovation, and cleaning strategy 
optimization tailored to local conditions, (iv) Industrial 
Application and Sustainability, case studies focusing on tropical 
industrial sectors, energy efficiency improvements, and lifecycle 
management of PHEs in resource-constrained environments. The 
synthesized findings highlight the convergence of classical 
thermodynamics with advanced computational intelligence, 
supporting actionable recommendations for transitioning towards 
self-optimizing, resilient PHE systems. Figure 2 is the PRISMA 
diagram showing the systematic rigor evaluations and screening of 
the data used for this review.

3 Literature review

3.1 Plate heat exchangers in industry

Plate heat exchangers have established themselves as 
indispensable components across numerous industrial sectors due 
to their superior thermal efficiency, modularity, and compact 
footprint. Their unique design, which employs a series of thin 
metal plates arranged in parallel with narrow flow channels, 
facilitates efficient heat transfer between two fluids while 
maintaining complete separation (Cengel, 1985; Chandrasekhar, 
1961; Elsasser, 1955; Esfahani and Feshalami, 2018). This design 

principle ensures minimal fluid contamination and enables rapid 
thermal response, making PHEs particularly attractive for industries 
demanding precise temperature control and energy-efficient 
operation. PHEs find extensive applications in Heating, 
Ventilation, and Air Conditioning (HVAC), chemical and 
petrochemical processing, food and beverage manufacturing, 
pharmaceutical production, refrigeration, and power generation 
industries. Their widespread adoption is underpinned by the 
versatility of plate configurations, which may be gasketed for ease 
of maintenance and plate replacement, brazed to enhance durability 
under high temperatures and pressures, or welded to handle 
aggressive fluids and demanding environments (Andreazza et al., 
2021). Each design variant is selected to best suit the operational 
requirements and fluid properties involved, highlighting the 
adaptability of PHE technology.

Over the past decades, significant advancements in plate 
geometry and materials science have propelled PHE performance 
to new heights. Innovations such as chevron or corrugated plate 
patterns have been engineered to increase the effective heat transfer 
surface area while simultaneously inducing fluid turbulence. This 
turbulence disrupts thermal boundary layers, thereby substantially 
enhancing convective heat transfer coefficients (Laitinen, 2023; 
Miroshnichenko et al., 2019). These geometric enhancements also 
contribute to reduced fouling propensity by minimizing stagnant 
zones where deposits tend to accumulate, thereby improving 
exchanger longevity and reliability. Within the brewing industry, 
PHEs play a pivotal role in the critical wort cooling process. Wort 
cooling rapidly reduces the temperature of the sweet liquid extracted 
from malted grains, preparing it for fermentation by yeast. The 
temperature control during this stage directly impacts yeast 
metabolism, fermentation kinetics, and consequently, the sensory 
properties such as aroma, flavor, and mouthfeel of the final beer. The 

FIGURE 2 
PRISMA diagram.
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precise thermal management facilitated by advanced PHEs ensures 
consistent batch-to-batch quality, minimizes microbial 
contamination risk, and supports energy-efficient operations, key 
factors in maintaining competitive advantage in brewing (Jangid 
et al., 2025; He et al., 2025a; Kishore et al., 2024).

The integration of Computational Fluid Dynamics (CFD) into 
the design and optimization processes of PHEs has revolutionized 
the industry’s approach to thermal management. CFD simulations 
provide detailed insights into fluid velocity profiles, temperature 
gradients, pressure drops, and turbulence effects within the complex 
flow paths of plate exchangers. These tools enable engineers to 
experiment virtually with plate geometries, flow arrangements, and 
operating conditions, leading to optimized designs that maximize 
heat transfer while minimizing energy consumption and material 
costs (Laitinen, 2023). The predictive capability of CFD also 
supports proactive fouling management by identifying regions 
prone to deposit buildup and enabling targeted cleaning 
strategies. Despite these advances, fouling remains one of the 
most significant operational challenges affecting PHE efficiency. 
Fouling manifests as unwanted deposits such as scale, biofilms, or 
sediment on heat transfer surfaces, causing a marked reduction in 
heat transfer rates and increased pressure drops that elevate 
pumping energy requirements. The financial and environmental 
costs associated with fouling-related downtime and maintenance are 
substantial (Zitouni et al., 2025; Fguiri et al., 2021; Zitouni et al., 
2023). Accordingly, ongoing research efforts focus on elucidating 
fouling mechanisms specific to various fluids and operating 
conditions, developing fouling-resistant materials and coatings, 
and optimizing cleaning protocols, including chemical cleaning 
and mechanical methods, to extend PHE service life and 
performance (Rajendran et al., 2025).

In alignment with global sustainability goals and the imperative 
to reduce industrial carbon footprints, there is a growing trend to 
couple PHEs with renewable energy systems such as solar thermal 
and geothermal sources. These hybrid systems leverage the high 
efficiency of PHEs to transfer thermal energy derived from 
renewable sources to industrial processes, thereby reducing 
reliance on fossil fuels and enhancing overall system 
sustainability. However, integrating renewable energy with PHEs 
introduces new challenges in terms of variable heat source 
temperatures, intermittent operation, and control complexity 
(Eze, 2025; Eze et al., 2025; Eze et al., 2024; Eze et al., 2024a; Eze 
et al., 2024b). Researchers are actively investigating innovative 
control algorithms, adaptive operational strategies, and materials 
capable of withstanding fluctuating thermal loads to overcome these 
challenges and unlock the full potential of renewable-integrated 
PHE systems (Arsenyeva et al., 2023).

3.2 Cooling systems in the brewing industry

Efficient cooling systems are fundamental to the brewing 
process, playing a crucial role in maintaining product quality, 
consistency, and shelf life. Temperature regulation during 
fermentation, maturation, and storage phases is vital, as it 
directly affects yeast metabolism, biochemical reaction rates, and 
the overall sensory profile of the beer. Precise cooling ensures 
optimal yeast activity, minimizes off-flavors, and stabilizes the 

product before packaging, thereby safeguarding brand integrity 
and consumer satisfaction (Boulton and Quain, 2013). The 
design and operation of brewery cooling systems significantly 
influence the facility’s energy consumption and operational 
expenditures. Cooling systems traditionally rely on refrigeration 
units coupled with heat exchangers, often plate heat exchangers, to 
remove excess heat generated during fermentation and other stages. 
As breweries scale production, the cooling load varies dynamically, 
requiring systems capable of adapting to fluctuating thermal 
demands without compromising efficiency or beer quality. Recent 
technological advancements in brewery cooling have emphasized 
sustainability and energy efficiency to meet both environmental 
regulations and economic incentives. Glycol chillers have become a 
staple in modern breweries due to their use of secondary refrigerants 
like propylene or ethylene glycol mixtures, which provide safer and 
more environmentally friendly cooling media compared to direct 
refrigerants. These chillers not only enhance energy performance 
but also allow flexible distribution of chilled fluid to various process 
points, optimizing heat removal (Kunze, 2010).

Complementing refrigeration advancements, heat recovery 
technologies have gained traction as an energy-saving strategy. 
By capturing and repurposing waste heat from refrigeration 
condensers or fermentation tanks, breweries can reduce their 
overall energy footprint and operating costs. This recovered heat 
can serve auxiliary functions such as pre-heating water for 
cleaning or brewing, contributing to integrated energy 
management and circular process design (Olajire, 2012). CFD 
modeling has emerged as a powerful tool for optimizing brewery 
cooling system design and operation. By simulating complex 
thermal and fluid dynamic interactions within fermentation 
vessels and cooling circuits, CFD enables precise prediction 
and control of temperature distributions, identifying hotspots 
and ensuring uniform cooling critical for consistent 
fermentation quality (Ozguc et al., 2025). This modeling 
approach supports informed decisions on vessel geometry, 
cooling jacket design, and process control strategies.

However, as production scales increase, managing peak 
cooling loads and variable thermal demands poses ongoing 
challenges. To address these, breweries are increasingly 
implementing advanced control technologies such as variable 
frequency drives (VFDs) for pumps and compressors, allowing 
dynamic adjustment of cooling capacity in response to real-time 
process conditions. Intelligent control systems, incorporating 
sensor networks and automation algorithms, enable proactive 
energy management by predicting cooling demand fluctuations 
and optimizing equipment operation accordingly (Lingom et al., 
2021). Maintaining cooling system performance through routine 
preventive maintenance is equally critical. Fouling of heat 
exchangers and blockages in cooling circuits can degrade 
thermal transfer efficiency, increase energy consumption, and 
lead to equipment failure. Scheduled cleaning, monitoring, and 
condition-based maintenance extend system lifespan and ensure 
reliability, thus safeguarding continuous brewery operations 
(Johnson, 2018). With the expansion of the craft beer market 
and increasing consumer demand for sustainably produced 
beverages, future brewery cooling solutions are expected to 
integrate scalable, energy-efficient designs combined with 
advanced control algorithms. Emerging trends include the 

Frontiers in Mechanical Engineering frontiersin.org05

Edgar et al. 10.3389/fmech.2025.1696957

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1696957


adoption of low-global-warming-potential (GWP) refrigerants 
in compliance with international environmental standards, and 
the integration of renewable energy sources such as solar 
thermal and geothermal heat pumps to further reduce carbon 
footprints (Eze, 2025). These innovations aim to balance 
operational efficiency, environmental sustainability, and 
product quality, core pillars for the evolving brewing industry.

3.3 Optimization techniques for heat 
exchangers

Optimization of heat exchangers involves a multifaceted process 
aimed at enhancing thermal performance, reducing capital and 
operational costs, and minimizing environmental impact. The 
intricate interplay of these factors necessitates a systematic and 
rigorous approach beyond conventional trial-and-error 
experimentation. Modern heat exchanger design increasingly 
leverages advanced computational optimization techniques to 
navigate complex multi-parameter design spaces effectively, 
thereby achieving superior performance and economic feasibility 
(Rao et al., 2020).

3.3.1 Evolution from conventional to metaheuristic 
optimization

The design and optimization of heat exchangers have 
traditionally relied on heuristic approaches and empirical 
correlations derived from experimental data. While effective for 
routine applications, these methods impose inherent limitations by 
restricting the exploration of complex, high-dimensional design 
spaces. Consequently, critical trade-offs between performance 
metrics, such as thermal efficiency, pressure drop, and cost, were 
frequently neglected, often leading to suboptimal system 
configurations.

The emergence of metaheuristic optimization algorithms has 
catalyzed a significant paradigm shift in heat exchanger design. 
Algorithms such as Genetic Algorithms (GA), Simulated Annealing 
(SA), and Particle Swarm Optimization (PSO) have demonstrated 
strong capabilities in navigating nonlinear, multimodal, and 
constrained optimization problems typical of thermal systems 
(Alsagri and Alrobain, 2022; Ramalingam R. et al., 2024; Jebreili 
and Goli, 2024; Rao et al., 2020). These population-based and 
stochastic search methods allow for comprehensive exploration of 
design landscapes, making them well-suited for identifying near- 
global optimal solutions.

3.3.1.1 Genetic algorithms
GA is inspired by the principles of natural selection and genetic 

evolution. It employs iterative processes of selection, crossover, and 
mutation to evolve a population of candidate solutions over 
successive generations. In the context of heat exchanger 
optimization, GA has been widely applied to shell-and-tube as 
well as plate heat exchanger designs (Marzouk et al., 2023; 
Saldanha et al., 2021). Parameters such as tube diameter, tube 
pitch, baffle spacing, flow rates, and inlet temperatures are 
optimized to enhance heat transfer coefficients while minimizing 
pressure losses (Han et al., 2025; Oztop and Abu-Nada, 2008; Oztop 
and Varol, 2009).

3.3.1.2 Simulated annealing
SA mimics the physical process of annealing in metallurgy, 

where a material is slowly cooled to reach a low-energy crystalline 
state. This method allows probabilistic acceptance of inferior 
solutions at early stages, enabling the algorithm to escape local 
optima. SA has shown efficacy in optimizing both continuous and 
discrete variables in compact heat exchanger configurations, 
achieving an effective balance between operational cost and 
thermal performance (Rao et al., 2020; Liao et al., 2021; Yang 
et al., 2022; Li et al., 2024).

3.3.1.3 Particle swarm optimization
PSO is based on the collective behavior of decentralized systems 

such as bird flocks or fish schools. It utilizes a swarm of particles that 
share information about their individual and collective performance 
in the search space. PSO is particularly advantageous in problems 
requiring rapid convergence, and it has been successfully applied to 
optimize complex geometrical features, including fin arrays and 
microchannel structures, thereby improving overall thermo- 
hydraulic efficiency (Han et al., 2025; Maheswari et al., 2025; 
Bagherighajari et al., 2022; Pandey and Kumar, 2024; Kishore 
et al., 2024). Table 2 is the summary of the characteristics and 
applications of GA, SA, and PSO in heat exchanger design 
optimization.

The transition from traditional design techniques to 
metaheuristic optimization represents a significant advancement 
in heat exchanger engineering, enabling more robust, flexible, 
and high-performance system configurations. The metaheuristic 
algorithms have significantly enhanced the ability to identify 
globally optimal heat exchanger designs. Their adaptability, 
robustness to nonlinearity, and capacity for handling mixed- 
variable optimization render them indispensable in the modern 
thermal system design landscape. Figure 3 provides a comparative 
performance overview of GA, SA, and PSO applied to a benchmark 
shell-and-tube heat exchanger design problem (Siddheshwar and 
Lakshmi, 2019; Sheikholeslami and Shamlooei, 2017; Straughan, 
2004; Straughan, 2008).

Figure 3 illustrates the comparative convergence performance of 
Genetic Algorithm (GA), Simulated Annealing (SA), and PSO over 
100 iterations. The results reveal that PSO exhibits the fastest 
convergence rate, primarily due to its global information-sharing 
mechanism that facilitates rapid progression toward optimal 
solutions. GA shows a moderate convergence speed, effectively 
balancing exploration and exploitation through its evolutionary 
operators. In contrast, SA converges more slowly, reflecting its 
inherent strategy of emphasizing extensive exploration during the 
initial phases to minimize the risk of entrapment in local minima. 
These distinct convergence behaviors highlight the trade-offs 
between exploration and exploitation inherent in each 
algorithm’s design (Afsharzadeh et al., 2025; Hai et al., 2025; 
Yadu et al., 2025).

3.3.2 Multi-objective optimization: balancing 
trade-offs

The design of heat exchangers inherently involves managing 
trade-offs among competing performance metrics, including 
thermal effectiveness, pressure drop, economic cost, and 
environmental impact. Multi-objective optimization (MOO) 
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frameworks provide a systematic approach to resolving these 
conflicts by generating Pareto-optimal fronts, enabling designers 
to select configurations that best align with specific design priorities 
and constraints (Han et al., 2025).

3.3.2.1 Thermal effectiveness vs. pressure drop
A common design dilemma lies in enhancing heat transfer 

performance while limiting the associated pressure 
drop. Increasing the heat transfer area or flow velocity can 
improve thermal effectiveness; however, these changes typically 

incur higher pumping power requirements and operational costs. 
Advanced MOO algorithms, such as genetic algorithms and particle 
swarm optimization, are employed to simultaneously maximize 
thermal effectiveness and minimize pressure drop, thereby 
improving the overall energy efficiency of the system (Sonowal 
et al., 2025).

3.3.2.2 Economic cost considerations
Optimization models frequently incorporate both capital and 

operational cost functions to capture the economic dimension of 

TABLE 2 Comparison of Metaheuristic Optimization Algorithms for Heat Exchanger Design (Rao et al., 2020; Liao et al., 2021; Yang et al., 2022; Li et al., 2024; 
Marzouk et al., 2023; Saldanha et al., 2021; Han et al., 2025; Maheswari et al., 2025; Bagherighajari et al., 2022; Pandey and Kumar, 2024; Kishore et al., 2024).

Criteria Genetic algorithm (GA) Simulated annealing (SA) Particle swarm 
optimization (PSO)

Inspiration Natural selection and genetics Metallurgical annealing process Social behavior of swarms (birds/fish)

Search strategy Population-based, stochastic, evolutionary Single-solution-based, probabilistic Population-based, stochastic, cooperative

Key mechanisms Selection, crossover, mutation Probabilistic acceptance of worse solutions Velocity and position updates based on 
individual and global bests

Convergence speed Moderate Slower, but thorough exploration Fast, especially in the early stages

Escaping local optima Good via diversity in population Strong due to probabilistic jumps Moderate; may get trapped without tuning

Design parameters 
optimized

Tube diameter, pitch, baffle spacing, flow rate, 
inlet/outlet temperatures

Discrete and continuous variables; compact 
geometry features

Fin shapes, microchannel dimensions, complex 
geometric layouts

Computational 
efficiency

Moderate to high High for smaller problem sizes High, especially in parallel computing 
environments

Strengths Robust for complex, multimodal problems; 
widely applicable

Effective for fine-tuning solutions and handling 
discrete variables

Rapid convergence; easy to implement and 
parallelize

Limitations May require tuning of many parameters; 
premature convergence possible

Convergence can be slow; solution quality 
sensitive to cooling schedule

May converge prematurely without diversity 
management

Heat exchanger 
applications

Shell-and-tube, plate-type optimization (Han 
et al., 2025)

Compact and mini heat exchangers (Rao et al., 
2020)

Microchannel, fin-array, and geometry 
optimization (Han et al., 2025)

Optimization goals Maximize heat transfer, minimize pressure drop 
and cost

Minimize cost and pressure drop, maximize 
efficiency

Improve thermo-hydraulic performance, 
reduce material usage

FIGURE 3 
Comparative convergence performance of GA, SA, and PSO in optimizing heat exchanger design (Afsharzadeh et al., 2025).
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heat exchanger design. These functions reflect factors such as 
material selection, fabrication complexity, maintenance 
requirements, and long-term energy consumption. For instance, 
Han et al. (2025) applied a life-cycle cost-based optimization to 
shell-and-tube heat exchangers, demonstrating that substantial cost 
savings can be achieved without sacrificing thermal performance.

3.3.2.3 Environmental impact metrics
Contemporary MOO frameworks are increasingly integrating 

environmental performance indicators, derived from life cycle 
assessment (LCA) methodologies. These include metrics such as 
carbon footprint, embodied energy, and resource depletion (Zhou 
et al., 2024). By embedding sustainability indicators within the 
optimization process, designers can achieve environmentally 
responsible solutions in line with green engineering practices and 
regulatory standards.

Overall, multi-objective optimization represents a robust and 
holistic methodology for advancing heat exchanger design, allowing 
for the concurrent evaluation of performance, economic, and 
ecological parameters. This integrative approach is essential for 
meeting the growing demand for sustainable, efficient, and cost- 
effective thermal systems.

3.3.3 Topology optimization: innovative 
structural design

Topology optimization, a rigorous mathematical method for 
optimal material distribution within a predefined design domain, 
has recently gained prominence in heat exchanger design. This 
approach facilitates the creation of innovative geometries that 
enhance heat transfer performance while simultaneously 
minimizing material consumption and structural weight (Fawaz 
et al., 2022). By concurrently solving the governing partial 
differential equations of fluid flow and heat transfer, topology 
optimization pinpoints critical regions where material placement 
most effectively promotes thermal conduction and convective heat 
transfer. This enables the identification of non-intuitive shapes and 
flow pathways that outperform traditional design heuristics. For 
example, Fawaz et al. (2022) demonstrated that topology-optimized 
microchannel heat exchangers can achieve heat transfer 
improvements of up to 30% while using approximately 20% less 
material compared to conventional counterparts. These 
advancements translate into significant cost reductions and 
diminished environmental impacts, highlighting the potential of 
topology optimization as a transformative tool in sustainable heat 
exchanger engineering.

3.3.4 Emerging trends: real-time and adaptive 
optimization with machine learning

Although metaheuristic and topology optimization techniques 
have substantially advanced heat exchanger design, their 
implementation is predominantly confined to offline and static 
operating conditions. In contrast, practical heat exchanger 
systems frequently encounter dynamic variations in load demand, 
fluid properties, fouling rates, and ambient environment. These 
fluctuations necessitate adaptive optimization methodologies 
capable of real-time response to maintain peak performance and 
operational reliability.

3.3.4.1 Machine learning integration
Recent developments in ML offer promising avenues for real- 

time and adaptive optimization of heat exchangers. Data-driven ML 
models, including artificial neural networks (ANNs), support vector 
machines (SVMs), and reinforcement learning (RL), serve as 
surrogate models that efficiently approximate complex thermal- 
fluid behaviors, enabling rapid prediction and control of heat 
exchanger performance (Zhou et al., 2024). These surrogate 
models drastically reduce computational time compared to 
traditional numerical simulations, facilitating near-instantaneous 
optimization under changing conditions. By continuously 
assimilating operational data, ML-based frameworks dynamically 
update design and control parameters to sustain optimal heat 
transfer and energy efficiency (Wang and Fan, 2010; Willoughby, 
2006). For instance, reinforcement learning algorithms have been 
successfully applied to modulate flow rates and temperature profiles 
within heat exchanger networks, achieving adaptive control that 
maximizes energy recovery while minimizing mechanical wear and 
fouling impacts.

3.3.4.2 Digital twins
A transformative innovation within this domain is the 

development of digital twins, high-fidelity virtual replicas of 
physical heat exchanger systems. Digital twins integrate real-time 
sensor data with ML predictive models to deliver comprehensive 
system awareness, enabling continuous performance monitoring, 
predictive maintenance, and early fault detection (Zhou et al., 2024). 
This convergence of sensor technologies, ML, and computational 
modeling revolutionizes heat exchanger lifecycle management by 
minimizing downtime, extending service life, and optimizing 
operational costs. Collectively, the integration of machine 
learning and digital twin technologies represents a paradigm shift 
from conventional design optimization toward intelligent, adaptive, 
and self-optimizing heat exchanger systems. These emerging 
approaches hold significant potential for enhancing sustainability, 
reliability, and economic performance in industrial thermal 
management applications (Yadav et al., 2012; Yadav et al., 2013). 
Figure 4 is the hypothetical comparison between the 
Thermodynamic Model and the Machine Learning Model across 
different performance metrics. The bars show values such as 
accuracy, mean absolute error, computational time, and robustness.

3.4 Advanced control systems for heat 
exchangers

The efficient operation of heat exchangers in modern industrial 
processes hinges critically on the deployment of advanced control 
systems that maintain optimal thermal performance while ensuring 
energy efficiency, safety, and cost-effectiveness. Traditional control 
schemes, such as proportional-integral-derivative (PID) controllers, 
though widely used due to their simplicity and ease of 
implementation, often face challenges in managing the nonlinear 
dynamics, time delays, and multivariable interactions characteristic 
of heat exchanger systems. Consequently, more sophisticated 
control methodologies have been developed and adopted, 
encompassing model predictive control (MPC), fuzzy logic 
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control (FLC), and artificial intelligence (AI)-based techniques 
(Brian, 2004; Brian, 2008; Buongiorno, 2006).

3.4.1 Model predictive control (MPC)
Model Predictive Control (MPC) constitutes a significant 

advancement in process control technology by utilizing explicit 
process models to forecast system behavior over a finite 
prediction horizon. At each sampling interval, MPC solves a 
constrained optimization problem to determine optimal control 
inputs, enabling the simultaneous management of multiple 
inputs and outputs, actuator limitations, and diverse 
performance criteria. This predictive capability distinguishes 
MPC from traditional control strategies, such as PID control, 
which typically rely on reactive adjustments without 
anticipation of future events.

In heat exchanger applications, MPC excels in handling complex 
multivariable thermal interactions, including temperature 
regulation, flow rate adjustments, and pressure differentials. For 
instance, in shell-and-tube heat exchangers, which are characterized 
by nonlinear and coupled dynamics, MPC can coordinate coolant 
flow and heating input simultaneously to maintain outlet 
temperatures within stringent bounds. This ensures optimal heat 
transfer performance while rigorously enforcing operational 
constraints such as maximum allowable temperatures, pressure 
drops, and flow capacities. Pekař (2020) demonstrated the 
efficacy of MPC in managing the nonlinear and dynamic 
behavior of industrial shell-and-tube heat exchangers, showing 
superior performance compared to conventional PID controllers. 
The study highlighted that MPC significantly reduced temperature 
overshoot and minimized energy consumption, improving both 
product quality and operational efficiency.

Moreover, when combined with disturbance estimation 
methods such as Kalman filters or Moving Horizon Estimators 
(MHE), MPC effectively compensates for unmeasured disturbances, 
such as fouling accumulation and feedstock variability, which 
commonly degrade performance over time. Fouling, which leads 
to gradual deterioration of heat transfer efficiency, was addressed by 
incorporating real-time fouling factor estimation into the MPC 
framework, allowing the controller to proactively adjust operating 
parameters before substantial performance loss occurs (Zhou et al., 
2025). Beyond heat exchangers, MPC has been successfully applied 
in related thermal systems. For example, in district heating 
networks, MPC manages the trade-off between thermal comfort 
and energy consumption by optimizing heat supply schedules while 
accounting for varying demand patterns and supply constraints 
(Rivera et al., 2018). Similarly, in refrigeration cycles, MPC 
optimizes compressor speed and expansion valve settings to 
maintain target temperatures and pressures while minimizing 
electricity usage and wear on mechanical components (Kim 
et al., 2022).

Comparative studies reinforce MPC’s advantages over 
traditional control strategies. A benchmark analysis by Qin 
and Badgwell (2003) across various industrial processes, 
including thermal systems, concluded that MPC consistently 
outperforms PID and feedforward controllers by reducing 
variability and constraint violations. In heat exchanger 
scenarios, studies such as those by Liu et al. (2022)
compared MPC with decoupled multivariable PI controllers, 
finding that MPC achieves faster settling times and better 
disturbance rejection, especially under nonlinear operating 
conditions. Recent advances also explore integrating MPC 
with machine learning models to enhance prediction 

FIGURE 4 
Comparison of the thermodynamic model and the machine learning model (Zhou et al., 2024; Rosenberger et al., 2022; Dursun et al., 2022).
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accuracy and adaptivity. For instance, data-driven MPC 
approaches use neural networks or Gaussian process models 
to capture complex heat exchanger dynamics when first- 
principles models are insufficient or unavailable (Wang 
et al., 2023). These hybrid methods show promise in 
industrial settings with high variability and limited sensor 
availability. In summary, the predictive nature of MPC 
enables proactive adjustments to control actions by 
anticipating future system deviations, thereby enhancing 
process stability, reducing energy consumption, and 
extending the operational lifespan of heat exchanger 
equipment. Its flexibility in handling constraints, 

multivariable interactions, and disturbances makes it a 
valuable control paradigm not only in heat exchanger 
applications but broadly across thermal process industries.

3.4.2 Fuzzy logic control (FLC)
Fuzzy Logic Control (FLC) effectively addresses the 

uncertainties, nonlinearities, and imprecise dynamics often 
encountered in heat exchanger processes by emulating human 
reasoning through linguistic if–then rules rather than relying 
solely on exact mathematical models. FLC systems employ fuzzy 
sets and inference mechanisms to interpret ambiguous or noisy 
input variables, such as temperature gradients, flow rate fluctuations, 

TABLE 3 Comparison of different PHE models.

Control 
strategy

Advantages Limitations Typical 
applications/ 
Suitability

Quantitative 
metrics

Example case 
studies

References

Fuzzy Logic 
Control (FLC)

Simple structure 
Low computational 
demand 
Does not require 
detailed process models 
or online optimization 
Suitable for real-time 
control with fast 
dynamics or limited 
computational 
resources

Lacks explicit 
predictive capability 
Limited ability to 
anticipate future 
disturbances 
Suboptimal energy 
efficiency and 
constraint handling 
compared to MPC

Systems with fast 
dynamics 
Applications with limited 
computational power 
Adaptive, heuristic 
control needs

Computational Load: 
Low 
Energy Efficiency: 
~85–90% (relative) 
IAE: Moderate- 
Robustness: Moderate 
Ease of Implementation: 
High 
Adaptability: High

FLC applied to 
temperature control 
in heat exchangers 
achieved 90% energy 
savings relative to 
PID but lagged MPC 
in constraint 
handling (Lee and 
park, 2023)

Shin et al., 2024; Qin 
and Badgwell (2003)

Model Predictive 
Control (MPC)

Utilizes accurate 
system models- 
Predicts future system 
behavior 
Optimizes control 
inputs respecting 
constraints- Superior 
performance in 
multivariable and 
constrained processes 
Effective in energy 
optimization and 
safety-critical 
applications

High computational 
complexity 
Requires accurate 
system models- Less 
robust under 
significant model 
uncertainties or poorly 
modeled systems

Multivariable 
constrained systems 
Processes needing 
optimal energy 
management 
Safety-critical operations 
like heat exchangers

Computational Load: 
High- Energy Efficiency: 
~95–98%- IAE: Low 
(best)- Robustness: 
Moderate to Low (model 
dependent) 
Ease of Implementation: 
Moderate to Low- 
Adaptability: Moderate

MPC controlling a 
multivariable heat 
exchanger process 
demonstrated a 15% 
energy efficiency 
improvement and 
superior constraint 
handling compared 
to FLC and PID 
(Pekař, 2020)

Qin and Badgwell 
(2003); Pekař (2020)

Hybrid 
FLC-MPC

Combines adaptability 
and interpretability of 
FLC with optimality 
and constraint 
handling of MPC. 
Enhances robustness to 
modeling errors and 
disturbances- Improves 
overall control quality

Increased design 
complexity 
Potentially higher 
computational 
requirements than 
standalone FLC

Systems with modeling 
uncertainties 
Applications requiring 
robustness and optimal 
control- Disturbance 
compensation in MPC

Computational Load: 
Moderate to High- 
Energy Efficiency: 
~93–97%- IAE: Low to 
Moderate- Robustness: 
High- Ease of 
Implementation: 
Moderate- Adaptability: 
High

Hybrid scheme for a 
constrained heat 
exchanger system 
improved 
disturbance rejection 
by 20% over MPC 
alone and improved 
robustness in 
presence of modeling 
errors (Zhao and 
Bilen, 2021)

Zhao et al. (2025)

PID Controllers Easy to implement. 
Minimal system 
knowledge required 
Widely understood and 
accepted

Poor handling of 
nonlinearities and 
multivariable 
interactions- 
Performance degrades 
with changing 
conditions and 
constraints 
Stability and energy 
inefficiencies under 
complex dynamics

Simple, single-input- 
single-output (SISO) 
systems 
Systems with relatively 
stable operating 
conditions

Computational Load: 
Very Low- Energy 
Efficiency: ~70–80%- 
IAE: High- Robustness: 
Low- Ease of 
Implementation: Very 
High- Adaptability: Low

PID controllers 
widely used in 
industry but often 
require retuning or 
auxiliary 
compensation for 
nonlinear heat 
exchanger processes, 
leading to ~10–15% 
efficiency loss (Maidi 
and Corriou, 2020; 
Liu et al., 2022)

Maidi and Corriou 
(2020); Liu et al. 
(2022)
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and pressure variations, and generate smooth, adaptive control actions. 
This approach enables robust handling of system nonlinearities, 
external disturbances, and measurement uncertainties. Maidi and 
Corriou (2020) demonstrated that FLC outperforms traditional 
proportional-integral-derivative (PID) controllers, especially under 
challenging operating conditions characterized by load variability, 
sensor noise, and process delays. The inherent robustness of FLC 
facilitates improved stability and responsiveness without the need for 
precise system identification. Moreover, its modular and heuristic 
nature allows straightforward integration of expert knowledge, 
enabling the design of control strategies based on operator 
experience. This advantage is particularly significant in retrofit 
applications or legacy systems, where developing detailed 
mathematical models is difficult or impractical.

Table 3 is the comparative analysis of different models. FLC 
provides a flexible and effective control strategy for complex, 
nonlinear heat exchanger systems operating under uncertain and 
varying conditions, especially when model accuracy is limited or 
computational simplicity is required. However, for applications 
demanding rigorous constraint management, energy 
optimization, and anticipatory control, MPC remains the 
preferred choice. The ongoing development of hybrid approaches 
highlights the potential for integrating these methods to achieve 
robust, efficient, and adaptive heat exchanger control.

3.4.3 Artificial intelligence-based control 
techniques

Artificial Intelligence (AI) techniques, including neural 
networks, machine learning algorithms, and reinforcement 
learning, are revolutionizing heat exchanger control by enabling 
adaptive, data-driven systems that evolve with operational 
experience and respond dynamically to complex process conditions.

Neural Networks (NNs) are widely employed to approximate 
nonlinear system dynamics without requiring explicit physical 
models. By learning from process data, NNs can provide fast and 
accurate predictions of heat exchanger behavior, which are 
integrated into adaptive control schemes to enhance performance 
under nonlinear and time-varying conditions (Pekař, 2020). For 
example, neural-network-based controllers have demonstrated 
improved temperature regulation and disturbance rejection in 
shell-and-tube heat exchangers compared to conventional linear 
controllers (Wang et al., 2022).

ML algorithms analyze extensive historical operational data to 
uncover underlying patterns, optimize control parameters, and 
anticipate faults or performance degradation. This capability 
supports predictive maintenance strategies that proactively 
identify fouling, scaling, or equipment wear before critical 
failures occur. ML-driven dynamic tuning of control parameters 
allows the heat exchanger system to maintain optimal efficiency 
across varying loads and feedstock qualities (Singh, 2021). For 
instance, support vector machines and random forest classifiers 
have been used to detect early fouling signs with high accuracy, 
enabling timely cleaning schedules that minimize downtime.

Reinforcement Learning (RL) frameworks represent a cutting- 
edge approach where control agents learn optimal policies through 
continuous interaction with the process environment. RL enables 
real-time adaptive control without requiring detailed process 
models, making it highly suitable for complex and uncertain heat 

exchanger systems. Recent studies illustrate that RL-based 
controllers can outperform traditional MPC and FLC by 
dynamically optimizing control actions to maximize heat transfer 
efficiency and minimize energy consumption under stochastic 
disturbances (Zhang et al., 2025).

Table 4 highlights the key differences and similarities, along with 
the application areas of AI-based control techniques in heat 
exchangers. These techniques offer transformative potential by 
improving operational reliability, boosting energy efficiency, and 
increasing process resilience. Although challenges remain, such as 
computational complexity and integration issues, continuous 
advancements in AI algorithms and computing power are swiftly 
broadening their practical adoption in industrial thermal systems.

3.4.4 Thermodynamic–machine learning 
coupling framework

The integration between thermodynamic modeling and ML 
algorithms is formalized through a Thermodynamic–Machine 
Learning Coupling Framework, which enables the data-driven 
refinement of physically based models for PHEs. In this hybrid 
structure, the thermodynamic model first computes physically 
interpretable variables such as temperature gradients, heat flux, 
Reynolds and Nusselt numbers, which are then used as input 
features for the ML layer. The ML algorithms, such as ANNs, 
support vector regression (SVR), or hybrid metaheuristic models, 
learn the complex nonlinear mappings between these features and 
key performance indicators, including overall heat transfer 
coefficient, pressure drop, and entropy generation. 
Mathematically, this coupling is illustrated in Equations 1, 2. 

Ŷ � FML Xthermo( ) (1)

Xthermo � fth Ti, To, ṁ, μ, k, Cp, ρ􏼐 􏼑 (2)

where fth(Ti, To, ṁ, μ, k, Cp, ρ) denotes the thermodynamic model 
that computes intermediate physical variables.
FML(Xthermo) represents the ML function approximating the 

nonlinear relationship between the input thermodynamic features 
(Xthermo) and target outputs (Ŷ).

Ti, To, ṁ, μ, k, Cp, ρ correspond to inlet/outlet temperatures, 
mass flow rate, viscosity, thermal conductivity, specific heat, and 
density, respectively.

The learning process iteratively minimizes the prediction error 
as shown in Equation 3

min
𝜭

L Ŷ, Yexp􏼐 􏼑 (3)

Where; L (Ŷ, Yexp) is the loss function, and θ represents the 
trainable ML parameters.

3.4.5 Challenges and integration considerations
Despite the considerable advantages offered by advanced control 

strategies, their practical deployment in heat exchanger systems is 
accompanied by several critical challenges that must be addressed to 
ensure effective and reliable operation.

3.4.5.1 Computational requirements
Real-time implementation of Model Predictive Control (MPC) 

and artificial intelligence (AI)-based controllers demands significant 
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computational power. The complexity of solving constrained 
optimization problems or running machine learning algorithms 
at high sampling rates necessitates dedicated hardware platforms 
and the development of computationally efficient algorithms to 
meet stringent timing requirements.

3.4.5.2 Model accuracy and maintenance
The performance of model-based control techniques hinges on 

the accuracy and representativeness of the underlying process 
models. System aging, fouling, corrosion, and shifts in operating 
conditions can degrade model fidelity over time, thereby impairing 
control effectiveness. Continuous model validation and periodic 
recalibration or adaptation are essential to maintain control 
precision and reliability.

3.4.5.3 Sensor and actuator reliability
Advanced control architectures rely heavily on precise, timely 

data from sensors and responsive actuators. Sensor faults, delays, or 
drift can compromise control accuracy and system stability. Hence, 
incorporating fault detection and tolerant control mechanisms is 
critical to mitigate the impact of sensor anomalies and ensure robust 
operation under adverse conditions.

3.4.5.4 Integration with existing infrastructure
The retrofit or upgrade of legacy heat exchanger control systems 

involves complex integration challenges. Compatibility with existing 
hardware and software platforms must be carefully assessed. 
Additionally, comprehensive operator training programs are 
necessary to facilitate smooth transition and operational 
acceptance. Cybersecurity considerations are paramount, 
especially as control systems become increasingly networked and 
exposed to potential cyber threats.

In summary, advanced control methodologies, including MPC, 
fuzzy logic control (FLC), and AI-based approaches, have 
revolutionized heat exchanger operation by enhancing 
robustness, adaptability, and energy efficiency. MPC provides 
predictive optimization capabilities, FLC offers resilience to 
uncertainties, and AI techniques contribute powerful learning 
and adaptation features. Together, these technologies equip heat 
exchanger systems to meet the rigorous demands of modern 
industrial thermal management. Ongoing research focuses on 
overcoming integration barriers and advancing real-time adaptive 
control frameworks to enable sustainable, intelligent, and 
autonomous thermal systems.

3.5 Theoretical models and design 
simulations in plate heat exchangers

PHEs are widely used in many industrial applications due to 
their compactness, high heat transfer coefficients, and flexibility in 
design. Accurate theoretical modeling and design simulations of 
PHEs are critical to optimizing their performance, predicting 
thermal and hydraulic behavior, and reducing the need for costly 
and labor-intensive physical prototyping. This section presents an 
in-depth exploration of the theoretical frameworks and simulation 
techniques employed in the analysis and design of PHEs.

3.5.1 Importance of theoretical modeling in plate 
heat exchanger design

The fluid flow and heat transfer mechanisms within PHEs are 
inherently complex due to their distinctive plate geometry, 
corrugated surface patterns, and narrow flow channels. These 
geometric characteristics induce intricate turbulence structures, 

TABLE 4 Comparison of Neural Networks, Machine Learning algorithms, and Reinforcement Learning for heat exchanger control applications.

AI 
technique

Characteristics Advantages Limitations Typical 
applications/ 
Suitability

Example 
outcomes/Use 
cases

References

Neural 
networks (NNs)

Approximate nonlinear 
system dynamics 
Learn from process data 
without explicit physical 
models 
Fast, accurate predictions

Handle nonlinear, 
time-varying processes 
well 
Enable adaptive control 
schemes 
Improve temperature 
regulation and 
disturbance rejection

Require large 
quality datasets for 
training 
Risk of overfitting 
Less interpretable 
than rule-based 
models

Adaptive control for 
nonlinear heat 
exchangers 
Real-time temperature 
and flow regulation

NN-based controllers 
improved shell-and-tube 
exchanger temperature 
regulation and 
disturbance rejection vs. 
linear controllers

Pekař (2020); 
Wang et al. 
(2022)

Machine 
learning (ML)

Analyze extensive historical 
operational data 
Identify patterns for 
optimization and fault 
detection 
Enable predictive 
maintenance

Optimize control 
parameters 
dynamically 
Anticipate faults like 
fouling and scaling- 
Support proactive 
maintenance 
scheduling

Depend on the 
quality and volume 
of historical data 
May require 
complex feature 
engineering 
Offline training 
phases

Fault diagnosis and 
predictive 
maintenance 
Dynamic tuning of 
control parameters 
under varying 
conditions

SVM and random forest 
classifiers accurately 
detected early fouling, 
enabling timely cleaning 
to reduce downtime

Singh (2021)

Reinforcement 
learning (RL)

Learn optimal control policies 
through interaction. Require 
minimal process modeling- 
Adapt in real time to 
stochastic disturbances

Real-time adaptive 
control 
Handle complex, 
uncertain 
environments. 
Maximize efficiency 
and minimize energy 
consumption

High 
computational 
overhead 
Require extensive 
training time 
Potential instability 
during early 
learning phases

Real-time adaptive 
control for complex 
heat exchangers 
Systems with high 
uncertainty and 
stochastic disturbances

RL-based controllers 
outperformed MPC and 
FLC by dynamically 
optimizing heat transfer 
efficiency and reducing 
energy use

Zhang et al. 
(2023)
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non-uniform flow distributions, and developing thermal boundary 
layers, all of which critically affect the overall thermal-hydraulic 
performance of the exchanger (Miroshnichenko et al., 2020; 
Miroshnichenko et al., 2021). Theoretical modeling serves as an 
indispensable tool in understanding and predicting these complex 
phenomena, offering several key benefits:

1. Prediction of Temperature Profiles and Heat Transfer Rates: 
Analytical and numerical models enable detailed 
characterization of temperature fields and local heat transfer 
coefficients, providing insights into the thermal effectiveness of 
the PHE under varying operating conditions.

2. Evaluation of Pressure Drops and Flow Maldistribution: 
Accurate modeling of fluid dynamics allows assessment of 
pressure losses and identification of flow maldistribution zones 
that may lead to reduced performance or localized fouling.

3. Optimization of Plate Geometry and Flow Arrangement: 
Theoretical frameworks facilitate systematic exploration of 
design parameters such as plate corrugation angles, channel 
dimensions, and flow configurations, thereby enabling 
enhancement of thermal performance and hydraulic efficiency.

4. Parametric Studies for Different Working Fluids and 
Operating Conditions: Modeling supports the evaluation of 
PHE behavior across a wide range of fluids, temperatures, and 
flow rates, minimizing the need for exhaustive 
experimental campaigns.

3.5.2 Foundational theoretical models
Foundational theoretical models, such as the comprehensive 

framework developed by Mota (2021), have significantly advanced 
the simulation of coupled heat transfer and fluid flow phenomena in 
PHEs. This seminal work integrates critical physical mechanisms, 
including conjugate heat transfer that simultaneously addresses 
conduction through the plate material and convection within the 
fluid channels (Bo-Fu et al., 2012). By employing sophisticated 
turbulence closure models, the approach effectively captures the 
complex turbulent flow induced by corrugated channel geometries, 
which is vital for the realistic representation of flow patterns and 
mixing enhancement. The model also rigorously incorporates the 
influence of plate geometric parameters, such as corrugation angle, 
pitch, and depth, quantifying their effects on local heat transfer 
coefficients and pressure drops. Notably, Mota et al.’s methodology 
combines analytical correlations with numerical simulations, 
enabling accurate prediction of thermal and hydraulic 
performance metrics. The model explicitly accounts for heat 
transfer augmentation through secondary flows generated by 
plate corrugations and provides a reliable estimation of friction 
factors and pressure losses caused by intricate channel structures. 
Furthermore, it assesses flow maldistribution impacts, particularly 
relevant in multi-pass PHE configurations, thereby highlighting 
performance deviations due to uneven fluid distribution. 
Extensive validation against experimental data demonstrates the 
model’s robustness and accuracy within acceptable error bounds, 
confirming its value as a design and optimization tool for efficient 
and reliable PHE systems (Leong, 2002; Liu et al., 2012; Maouassi 
et al., 2018; Mekheimer and Mahmoud, 2014; Miroshnichenko 
et al., 2018).

3.5.3 Advanced fluid distribution modeling
Building upon foundational theoretical frameworks, Júnior et al. 

(2023) significantly advanced fluid distribution modeling in 
compact heat exchangers, with a focus on PHEs. Their work 
tackles the persistent challenge of non-uniform flow distribution 
caused by manifold and port configurations, which critically 
influences localized heat transfer performance and pressure drop 
behavior. The study employs high-fidelity simulations of manifold 
and header flows to accurately predict flow maldistribution across 
parallel channels, integrating these fluid distribution models with 
thermal simulations to capture the impact of uneven flow on local 
thermal gradients and heat transfer inefficiencies. By coupling CFD 
with reduced-order modeling techniques, the approach achieves an 
optimal balance between computational efficiency and accuracy, 
enabling rapid yet reliable performance assessments. This advanced 
modeling framework facilitates practical design improvements such 
as optimized plate layout and port positioning to enhance flow 
uniformity, essential for maximizing thermal effectiveness while 
minimizing hydraulic losses. Moreover, it supports the development 
of more compact PHE designs that do not compromise heat transfer 
efficiency, addressing stringent spatial constraints in industries 
including automotive, refrigeration, and chemical processing 
(Leong, 2002; Liu et al., 2012; Maouassi et al., 2018). 
Additionally, by identifying zones susceptible to turbulent jets 
and recirculation, the model contributes to mitigating flow- 
induced mechanical stresses and erosion, thereby improving 
equipment durability and reliability. This advancement marks a 
critical step towards the optimization of PHE design under 
demanding industrial requirements where spatial efficiency and 
thermal performance are paramount.

3.5.4 Computational methods and simulation tools
The modeling and analysis of PHEs increasingly depend on a 

diverse suite of computational methods capable of resolving the 
complex interplay between fluid dynamics and heat transfer within 
their corrugated and compact geometries. Depending on the design 
stage and performance objectives, these methods range from simple 
empirical formulations to advanced high-fidelity simulations. 
Analytical and semi-empirical correlations, often based on 
dimensionless groups such as Reynolds, Nusselt, and Prandtl 
numbers, provide rapid estimates of heat transfer coefficients and 
pressure drops. These correlations, derived from experimental data, 
are particularly useful for preliminary sizing, parametric evaluations, 
and early-stage feasibility assessments due to their computational 
efficiency (Belyaev et al., 2017). For more detailed analyses, CFD has 
become indispensable, enabling three-dimensional simulation of 
turbulent flow structures, temperature fields, and conjugate heat 
transfer through the plate walls. Modern CFD platforms incorporate 
a range of turbulence models, including Reynolds-Averaged Navier- 
Stokes (RANS), Large Eddy Simulation (LES), and, in specialized 
cases, Direct Numerical Simulation (DNS), to capture varying levels 
of flow complexity. Furthermore, conjugate heat transfer modeling 
enables simultaneous analysis of convective and conductive heat 
transport, while multiphase models allow the simulation of phase- 
change processes such as evaporation and condensation, expanding 
the applicability of PHEs to refrigeration and thermal management 
systems (He et al., 2025c). In scenarios requiring system-level 
optimization or real-time control integration, reduced-order and 
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lumped-parameter models offer simplified yet dynamically 
representative formulations that significantly reduce 
computational load. These models are essential for fast 
simulations, controller development, and integration into digital 
twins or plant-wide simulations. Additionally, multi-scale modeling 
approaches are emerging to bridge detailed microscale flow and heat 
transfer behavior with macroscale performance metrics, enhancing 
predictive accuracy and supporting robust design. Leading 
simulation platforms such as ANSYS Fluent and COMSOL 
Multiphysics provide robust environments for implementing 
these methods, while specialized PHE design software integrates 
empirical models and CFD modules for streamlined workflow 
execution. Collectively, these computational approaches form a 
comprehensive toolkit that supports the design, optimization, and 
operational control of high-performance PHE systems across a wide 
range of industrial applications (He et al., 2025b; Mortean et 
al., 2024).

3.6 Advancements and methodologies in 
plate heat exchanger optimization

The design and operation of Plate Heat Exchangers have 
increasingly benefited from advanced optimization 
methodologies, which have revolutionized their efficiency, 
compactness, and reliability. Modern optimization approaches 
integrate computational algorithms, multi-physics simulations, 
and system-level considerations to tailor PHE designs for specific 
industrial applications. This section explores key advancements and 
methodologies in the optimization of PHEs, focusing on algorithmic 
strategies, surface enhancement, and the challenges of multi- 
parameter design interactions.

3.6.1 System-level optimization in heat 
exchanger networks

Optimizing the performance of individual PHEs in isolation 
offers limited benefit without considering their dynamic interactions 
within the broader framework of Heat Exchanger Networks (HENs). 
HENs comprise multiple interlinked heat exchangers that 
collectively determine the thermal efficiency, energy recovery 
potential, and overall sustainability of industrial processes. 
Recognizing this systemic interdependence, Xu et al. (2017)
proposed a comprehensive framework for system-level 
optimization, strategically embedding PHEs into network 
configurations to maximize operational efficiency and energy 
savings. Their approach underscored the importance of optimal 
placement and sizing of PHEs within the network, ensuring that 
each exchanger’s capacity and configuration contribute 
meaningfully to minimizing total energy consumption and 
operational costs. This involved a careful balance of heat duty 
distribution, exchanger effectiveness, and layout constraints 
across the entire network. Furthermore, their framework 
accounted for thermal integration while incorporating pressure 
drop limitations, acknowledging that excessive hydraulic 
resistance can undermine energy savings by increasing pumping 
power demands and reducing process throughput.

To address the complexity of such multi-dimensional design 
challenges, Xu et al. employed a hybrid optimization methodology 

that coupled Mixed-Integer Nonlinear Programming (MINLP) with 
heuristic search algorithms. This dual-layered strategy effectively 
navigated large and nonlinear design spaces, enabling the 
identification of optimal network topologies as well as feasible 
retrofit options for existing plants. The transition from 
exchanger-level design to holistic network-level synthesis, as 
exemplified by Xu et al.’s work, represents a paradigm shift in 
thermal systems engineering (Straughan and Walker, 1996; 
Teimurazov and Frick, 2015; Tsai et al., 2008; Tsaplin, 2013). By 
optimizing the integration of PHEs within HENs, their approach not 
only improved plant-wide energy efficiency but also advanced 
broader sustainability goals, chiefly by reducing fossil fuel 
dependency and lowering greenhouse gas emissions through 
enhanced energy reuse. System-level optimization, therefore, is 
pivotal not only for improving technical performance but also for 
aligning thermal system design with global decarbonization and 
energy transition imperatives. In conclusion, adopting network- 
level optimization strategies facilitates superior capital allocation, 
enhances process adaptability, and supports long-term 
environmental stewardship. As industries worldwide increasingly 
commit to net-zero and circular economy targets, integrative 
frameworks such as those pioneered by Xu et al. are becoming 
indispensable in both the design of new facilities and the retrofitting 
of legacy systems.

3.6.2 Metaheuristic algorithms for thermal 
modeling and design refinement

The design and optimization of PHEs involve navigating a 
highly nonlinear, multi-objective, and constraint-intensive 
problem space that often renders conventional deterministic 
optimization techniques inadequate for identifying globally 
optimal solutions. In response to these challenges, metaheuristic 
algorithms, such as Genetic Algorithms (GAs), PSO, and Simulated 
Annealing (SA), have emerged as powerful alternatives capable of 
efficiently exploring complex design landscapes (Khan et al., 2025; 
Nithya et al., 2025; He et al., 2025b; Pachpute and More, 2025; Bakır 
et al., 2025). Patel et al. (2019) demonstrated the efficacy of these 
methods in optimizing critical PHE design parameters, with a 
particular focus on geometric optimization, performance trade- 
off management, and constraint handling. Their study utilized 
metaheuristics to fine-tune structural variables, including plate 
pitch, corrugation angle, and channel height, factors that 
significantly affect thermal and hydraulic performance. Moreover, 
their framework facilitated the identification of Pareto-optimal 
solutions that balance enhanced heat transfer against associated 
pressure drop penalties, enabling designers to tailor configurations 
to specific operational or economic objectives. The algorithms also 
accommodated practical constraints such as manufacturing 
tolerances and operational limits, ensuring the feasibility of 
proposed designs. A key advantage underscored by the study is 
the ability of metaheuristic approaches to avoid local minima, a 
common pitfall in non-convex optimization, through stochastic, 
global search strategies. This characteristic allows for the discovery 
of innovative, high-performance configurations that might 
otherwise be overlooked. The integration of metaheuristic 
algorithms into thermal modeling workflows extends beyond 
design refinement to support adaptive control strategies, whereby 
PHE parameters may be dynamically adjusted in real time in 
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response to changing operational conditions (Yadav et al., 2016; 
Zhang, 2025). When paired with surrogate or reduced-order 
models, these techniques can substantially lower computational 
demands without compromising solution fidelity. As 
computational resources and algorithmic sophistication continue 
to advance, the application of metaheuristic optimization in PHE 
design is poised to expand, particularly in synergy with artificial 
intelligence frameworks and digital twin technologies aimed at 
enabling predictive maintenance and continuous performance 
enhancement.

3.6.3 Passive surface enhancement techniques and 
geometric parameter interactions

Passive surface enhancement techniques have emerged as a 
pivotal strategy to augment heat transfer in PHEs without 
incurring additional external energy input. These methods 
primarily involve geometric modifications to the plate surfaces, 
most notably through corrugation design, to promote secondary 
flow structures, disrupt thermal boundary layers, and increase 
turbulence intensity, thereby enhancing convective heat transfer 
coefficients. Kumar and Layek, (2022) conducted a comprehensive 
review of such passive enhancements, delineating the intricate 
interdependencies among key geometric parameters and their 
combined influence on thermal-hydraulic performance metrics.

Central to these enhancements is the chevron angle, defined as 
the inclination angle of the corrugation relative to the flow direction. 
Empirical and numerical investigations consistently demonstrate 
that increasing the chevron angle intensifies secondary flow 
generation, resulting in augmented mixing and disruption of the 
thermal boundary layer. This effect substantially elevates the 
convective heat transfer coefficient. However, this enhancement 
is invariably accompanied by a concomitant increase in frictional 
losses and pressure drop, reflecting a critical trade-off inherent in 
passive surface modification strategies (Israel-Cookey et al., 2010; 
Khalilov et al., 2017). Quantitative assessments reveal that optimal 
chevron angles often lie in a narrow design space, balancing 
maximal heat transfer enhancement against acceptable hydraulic 
penalties. Beyond the chevron angle, corrugation pitch, the spacing 
between corrugation peaks, and amplitude, the corrugation depth or 
height plays synergistic roles in modulating fluid dynamics within 
the narrow channels of PHEs. The coupled interactions among these 
parameters influence turbulence production, flow separation, and 
reattachment phenomena, which collectively dictate the local heat 
transfer and pressure drop characteristics. Due to their nonlinear, 
coupled effects, the prediction of performance outcomes remains 
complex, and attempts to formulate generalized correlations have 
often resulted in limited applicability across different operating 
regimes and fluid properties (Faber, 1995; GlobalData Energy, 
2017; Hamzah et al., 2021; Israel-Cookey et al., 2003).

Kumar et al. (2014) underscored the inherent complexity 
involved in the design of PHEs, particularly due to the 
multifaceted nonlinear interactions between geometric parameters 
such as chevron angle, corrugation pitch, amplitude, and plate 
thickness. This complexity is further exacerbated by variations in 
fluid rheology, flow regime transitions (laminar, transitional, and 
turbulent), and practical manufacturing constraints, including cost, 
material workability, and structural integrity under operational 
stresses. As a result, the design of passive surface enhancements 

demands a comprehensive, multi-parameter optimization strategy 
that holistically incorporates geometric configuration, fluid dynamic 
behavior, and real-world manufacturability considerations. Recent 
research trends advocate for the synergistic integration of high- 
fidelity CFD simulations with advanced multi-objective 
optimization algorithms, most notably Genetic Algorithms and 
emerging ML techniques, to systematically explore the high- 
dimensional design space. These methodologies enable the 
identification of Pareto-optimal solutions that achieve an optimal 
trade-off between enhanced thermal performance and minimized 
hydraulic losses. While passive enhancement techniques continue to 
be pivotal in pushing the boundaries of PHE efficiency, the intricate 
interdependencies among design variables necessitate rigorous 
experimental validation and robust numerical modeling. 
Continued advancements in this domain are anticipated to yield 
application-specific design protocols that deliver superior heat 
transfer efficiency, reduced pressure drop, and improved cost- 
effectiveness, thereby facilitating the development of the next- 
generation of compact and high-performance thermal 
management systems.

3.6.4 Integrated optimization frameworks: the 
future direction

The evolution of PHE design methodologies is increasingly 
marked by the emergence of integrated optimization frameworks 
that converge high-fidelity numerical modeling, advanced 
optimization algorithms, empirical validation, and intelligent 
data-driven approaches. These frameworks are designed to tackle 
the growing complexity and multifactorial nature of PHE systems in 
modern industrial applications, where isolated parameter tuning 
and traditional heuristic methods often fall short (Raja et al., 2010; 
Ramalingam S. et al., 2024; Rieutord, 2015; Roberts and Walker, 
2010; Rosenberger et al., 2022).

Contemporary optimization demands a holistic approach that 
simultaneously considers geometric design, thermal-hydraulic 
performance, manufacturing constraints, and operational 
variability. Core elements of these next-generation frameworks 
include: (i) high-resolution numerical simulations, employing 
CFD, conjugate heat transfer models, and finite element methods 
to accurately capture flow dynamics and thermal fields; (ii) 
metaheuristic and multi-objective optimization algorithms, such 
as Genetic Algorithms (GAs), PSO, and Multi-Objective 
Evolutionary Algorithms (MOEAs), which enable efficient 
exploration of complex design spaces while balancing competing 
objectives, e.g., heat transfer performance, pressure drop, fouling 
resistance, and cost; and (iii) experimental validation and adaptive 
machine learning, where empirical testing is integrated with 
adaptive learning systems to recalibrate predictive models based 
on real-time operational feedback (Rosensweig, 2014; Sakshi and 
Sunita, 2011).

These integrated frameworks enable both component-level 
optimization, targeting specific PHE geometries, and system-level 
design, particularly in Heat Exchanger Networks (HENs), where 
inter-unit interactions and plant-wide energy efficiency must be 
considered. Additionally, they facilitate application-specific 
customization, taking into account fluid properties, spatial 
constraints, fouling behavior, and maintenance requirements, 
while supporting long-term performance prediction under 
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dynamic, uncertain operating conditions. Looking forward, the 
convergence of Artificial Intelligence (AI) and ML with thermal 
system design is anticipated to transform PHE optimization 
paradigms. AI-driven models offer capabilities such as automatic 
hyperparameter tuning, complex feature extraction from large-scale 
datasets, real-time performance monitoring, and predictive fault 
diagnostics. This integration aligns with the broader objectives of 
Industry 4.0, positioning PHEs as intelligent components within 
sensor-integrated, self-optimizing thermal management systems. 
The trajectory of research in this domain reinforces this shift. Li, 
(2024) introduced system-level placement strategies for PHEs within 
HENs, highlighting the importance of network-wide integration. 
Patel et al. (2019) showcased the potential of metaheuristics for 
optimizing PHE geometries under practical constraints. Yu et al. 
(2022) advanced multi-objective frameworks that concurrently 
optimize thermal and hydraulic performance. Kumar and Layek, 
(2022) emphasized the intricate interactions among geometric 
parameters in passive enhancement strategies, advocating for 
integrated modeling to overcome limitations inherent in 
traditional methods. Collectively, these contributions illuminate a 
clear path forward: the development of intelligent, adaptable, and 
sustainable PHE systems capable of self-optimization across varying 
operational contexts. Realizing this vision will require sustained 
interdisciplinary collaboration across thermal sciences, optimization 
theory, artificial intelligence, and systems engineering. Table 5 is the 
Summary of selected research studies contributing to the evolution 
of integrated PHE optimization frameworks.

4 Novel findings and contribution

Table 6 comprehensively summarizes the extant literature on PHEs, 
highlighting key contributions, significant findings, and prevailing 
research limitations. Despite a rich body of work addressing various 
aspects of PHE design and performance, several critical gaps and 
inconsistencies remain, hindering the establishment of universally 
applicable design and operational guidelines. A prominent limitation 
across studies is the tendency to examine geometric parameters, such as 
plate gap, corrugation pitch, amplitude, and chevron angle, in isolation 
rather than as interdependent variables. The complex, nonlinear 
interactions among these factors, as emphasized by Kumar and 
Layek, (2022), pose significant challenges for the development of 
generalized correlations and optimization models that remain valid 

across diverse applications. This fragmented approach limits the 
transferability and scalability of existing design strategies.

Fouling, a major operational challenge, continues to resist robust 
mitigation. Current techniques, including surface modifications and 
altered geometries, yield variable success depending on fluid properties 
and operational regimes. The inconsistent performance highlights a 
pressing need for application-specific fouling models, strengthened by 
both experimental validation and high-fidelity numerical simulations. 
Further complicating standardization efforts are substantial 
discrepancies in recommended values for critical design parameters 
such as corrugation pitch, hydraulic diameter, and plate thickness. 
These variations often arise from differences in underlying 
assumptions, working fluids, and performance criteria, particularly 
when extending PHE use to unconventional fluids or fluctuating 
thermal loads. Emerging advancements involving nanofluids and 
passive surface enhancements (e.g., dimpled or wavy plate patterns) 
offer promising avenues for performance improvement (Mohammed 
et al., 2011; Motsa and Makukula, 2013; Nield, 2000; Nield and Bejan, 
2013; Nnadi et al., 2010; Ogunseye et al., 2020). However, the literature 
remains fragmented on their long-term operational stability, material 
compatibility, and potential drawbacks such as nanoparticle 
agglomeration and erosion (Yuan et al., 2017).

Addressing these challenges necessitates the development of 
integrated, multidimensional models that simultaneously capture 
geometric, thermal, hydraulic, and material phenomena. Crucially, 
such models require validation through empirical data from 
industrial-scale applications rather than simplified laboratory 
conditions. Multidisciplinary approaches leveraging advances in 
thermal-fluid dynamics, materials science, and artificial intelligence 
hold promise for the evolution of adaptive, self-optimizing PHE 
systems. In summary, overcoming the current contradictions and 
research gaps calls for a paradigm shift from isolated parameter 
analyses to holistic, experimentally grounded frameworks. Such a 
shift will underpin efforts toward standardization, scalability, and 
operational adaptability in PHE design and application.

4.1 Summary of the key findings

The systematic review demonstrates that hybrid 
thermodynamic–machine learning models significantly improve 
the predictive accuracy, operational efficiency, and fouling 
detection of PHEs in industrial applications. Their modular 

TABLE 5 Comparative summary of key contributions in integrated optimization of PHEs.

Author(s) Contribution focus Methods Highlights

Xu et al. (2017) PHE placement in Heat Exchanger Networks 
(HENs)

Network-level modeling Initiated system-level integration strategies

Patel et al. (2019) PHE geometric optimization under constraints Genetic algorithms (GA) Addressed practical manufacturing and operational 
constraints

Yu et al. (2022) Multi-objective thermal and hydraulic 
optimization

MOEAs Simultaneous improvement of heat transfer and pressure 
drop

Yu et al. (2024) AI-based optimization refinement Machine learning and 
optimization

Adaptive model enhancement based on feedback data

Kumar and Layek, 
(2022)

Passive enhancement strategies CFD + Design Interplay deling Emphasized interaction among geometric parameters
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structure, in which thermodynamic models provide physically 
interpretable variables and machine learning algorithms capture 
nonlinear relationships with key performance indicators, enables 
scalability across production scales and process conditions. Multi- 
objective optimization strategies and advanced control approaches, 
including reinforcement learning and digital twin frameworks, 
further enhance adaptability, suggesting that these models are 
transferable and applicable to other beverage industry processes, 
such as juice, dairy, and brewing operations, with appropriate 
customization for fluid properties and operational contexts. 
However, the review also identifies critical constraints: limited 
localized experimental validation, incomplete modeling of fouling 
chemistry, and insufficient socio-technical assessments for adoption 
in tropical or resource-constrained industrial settings. These 
limitations underscore the need for context-specific calibration 

and empirical testing to ensure reliable performance, indicating 
that while the models are broadly scalable, practical implementation 
in other beverage sectors requires careful adaptation.

5 Conclusion

This review provides a systematic and context-specific evaluation 
of PHE technologies, emphasizing the integration of traditional 
thermodynamic principles with modern computational intelligence, 
particularly ML and hybrid optimization techniques. Unlike prior 
reviews, this work uniquely synthesizes the operational, economic, and 
environmental implications of adaptive PHE systems in emerging 
industries, with a specific focus on tropical regions such as Uganda’s 
brewing sector. By combining high-fidelity modeling, digital twin 

TABLE 6 Summary of related literature.

Authors Contribution Findings Research gap

Albets Chico et al. (2013), Omubo-Pepple 
and Israel-Cookey, (2009)

DNS of turbulent liquid metal flow entering 
a magnetic field

Magnetic field suppresses turbulence and 
alters turbulence structures

Limited to idealized geometries; 
industrial plate heat exchanger 
geometries and varying magnetic fields 
need study

Ali et al. (2017), Kirillov et al. (1995) Simulated MHD free convection in square 
enclosure with tilted obstacle

Obstacle tilt strongly influences flow and 
heat transfer patterns

Limited to square domain; variable 
obstacle shapes and cross sections not 
addressed

Aminian et al. (2020) Numerical study of forced convection of 
hybrid nanofluid in porous media under 
magnetic field

Hybrid nanofluid enhanced heat transfer 
under magnetic field

Lacks experimental validation and 
parametric sensitivity (e.g., porosity, 
field orientation)

Awad et al. (2013) Thermodiffusion effects in magneto- 
nanofluid flow over a stretching sheet

Thermodiffusion and magnetic 
interaction significantly affect velocity 
and temperature profiles

Steady 2D assumption; no transient or 
3D flow considered

Barletta et al. (2013), Mebarek-Oudina 
and Bessaïh, (2019)

Convective instability in a horizontal 
porous channel with permeable boundaries

Instability thresholds influenced by wall 
properties

Vertical channel configurations and 
nanofluid/MHD effects have not been 
investigated

Chang (2014) Liquid-metal MHD flow in expanded 
rectangular duct

Magnetic field suppresses flow separation 
and modifies pressure drop and heat 
transfer

Single duct geometry; turbulent and 
transient effects not fully resolved

Gholinia et al. (2018), Sankar et al. (2006) Nanofluid flow over permeable cylinder 
under magnetic field

Magnetic field and porosity modify heat 
transfer rates

Single cylinder case; transient and 
turbulent effects unexplored

Khan et al. (2020), Wakif et al. (2016), 
Wakif et al. (2017)

Heat generation effect in magneto- 
nanofluid free convection around sphere

Heat generation influences buoyancy- 
driven flow; magnetic field controls flow 
patterns

Purely numerical; lacks experimental 
benchmarks and real industrial 
geometries

Mahajan and Sharma, (2018), 
Omubo-Pepple et al. (2013)

Magnetic nanofluid convection in porous 
medium under variable gravity

Gravity variation and magnetic field 
affect heat transfer intensity

Limited to laminar flow; complex 
geometries missing

Sheikholeslami and Rokni (2017a); 
Sheikholeslami and Rokni (2017b)

Review of nanofluid heat transfer under 
magnetic fields

Summarized experimental and numerical 
studies on MHD nanofluids

Need for unified models and complex- 
domain studies

Qi et al. (2015a), Qi et al. (2015b) Natural convection of liquid-metal 
nanofluids in an enclosure and particle size 
effect

Nanoparticles modify thermal plume and 
convection dynamics

No magnetic field or porous medium 
effects included

Sheikholeslami and Ganji (2014) Numerical simulation of MHD nanofluid 
flow and heat transfer

A magnetic field can improve or suppress 
convection depending on the parameters

Limited flow geometries; transient 
effects not studied

Siddiqui and Chamkha, (2020), Wakif 
et al. (2018), Walker, (1986)

Thermo-magnetohydrodynamic effects on 
nanofluid flow in a porous annular region 
with rotation

Rotation and magnetic field significantly 
influence flow and heat transfer

Experimental verification and 
nanoparticle aggregation effects are 
unaddressed

Belaïd et al. (2023) Analysis of balancing climate mitigation 
and energy security with green investments

Green investments are crucial for 
mitigating climate change and enhancing 
energy security

Need detailed sector-specific strategies 
and integration with national policies
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frameworks, and real-world operational metrics, the review offers 
actionable insights into measurable performance improvements, 
including energy consumption reductions, enhanced heat transfer 
coefficients, and predictive maintenance strategies. Furthermore, it 
identifies persistent technical bottlenecks, such as fouling, scaling, and 
flow maldistribution, and proposes context-sensitive solutions, 
including topology optimization, advanced surface treatments, and 
AI-driven monitoring, which are rarely addressed together in existing 
literature. Importantly, the review provides a roadmap for scalable, 
pilot-scale deployment of hybrid PHE systems coupled with renewable 
energy, bridging the gap between theoretical innovation and practical 
industrial application. Overall, this work contributes uniquely by not 
only consolidating prior knowledge but also advancing a framework 
that links technological innovation with measurable operational 
outcomes, context-specific implementation, and sustainable 
industrial modernization, thereby guiding future research and 
industrial practice toward intelligent, self-optimizing PHE systems.

5.1 Actionable recommendations

1. Implement Hybrid Modeling and AI-Based Optimization: 
Combine physics-based thermodynamic models with 
machine learning and metaheuristic algorithms to optimize 
PHE performance in real time, improving heat transfer 
efficiency and reducing energy costs.

2. Establish Real-Time Monitoring with Digital Twins: Deploy 
sensor networks and develop digital twins for PHEs to enable 
predictive maintenance and early fouling detection, 
minimizing downtime and extending equipment life.

3. Prioritize Fouling Mitigation and Cleaning Optimization: Use 
AI-driven fouling prediction models alongside improved 
materials and cleaning protocols tailored to local conditions 
to reduce fouling impacts and enhance system reliability.
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