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Fault diagnosis method for HVAC
sensors based on improved 1-D
CNN model and wavelet
clustering analysis

Lei Wang*, Ruoxiao Hu and Jianli Liang

Equipment Engineering Department, Sichuan College of Architectural Technology, Deyang, China

Introduction: Heating, Ventilation and Air Conditioning (HVAC) sensor fault
diagnosis is essential for ensuring the reliability and energy efficiency of
intelligent building systems. However, existing diagnostic methods suffer from
insufficient adaptability to multi-scale features, weak temporal dependency
modeling, and poor generalization under small samples, and are highly
sensitive to Gaussian noise.

Method: To address these limitations, this study proposes a fault diagnosis
method that integrates an improved one-dimensional convolutional neural
network (1-D CNN) with wavelet packet clustering. First, a multi-scale
convolution module is designed using parallel 3/5/7 convolution kernels and
residual connections to extract temporal features across different receptive
fields. Then, wavelet packet decomposition is used to divide the original signal
into eight frequency bands and construct energy feature vectors. K-means
clustering is performed in an unsupervised manner, and Softmax-based
weight fusion is wused to realize end-to-end diagnosis with low
computational overhead.

Results: Experimental results show that the proposed method achieves a
diagnostic accuracy of 97.84% and an Fl-score of 0.97. Under 30% Gaussian
white noise, the area under the curve decreases by only 4%, and the
instantaneous robustness drop increases by 0.01 within the 10%-30% noise
range, demonstrating strong noise resistance and generalized learning capability.
Discussion and Conclusion: The proposed method effectively balances feature-
scale adaptability, temporal modeling, and robustness under noisy and
small-sample conditions. With low inference complexity and high diagnostic
stability, it provides a feasible paradigm for real-time fault detection and reliable
operation and maintenance in intelligent building HVAC system:s.

convolutional neural network, wavelet packet transform, HVAC, fault diagnosis, multi-
scale convolution

1 Introduction

Heating, Ventilation and Air Conditioning (HVAC) systems exert a crucial role in
modern buildings. It regulates the temperature, humidity, and air quality of indoor
environments, which directly affects energy consumption, comfort, and equipment
stability (Abrazeh et al,, 2022; Huang and Liao, 2022). With the widespread application
of smart buildings, the operational efficiency and reliability of HVAC systems are
increasingly valued. As the core sensor of HVAC system, its accuracy and reliability
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directly determine the normal operation (Sousan et al., 2022).
However, with prolonged use, sensors may malfunction, leading
to abnormal data and ultimately affecting the overall efficiency.
Timely diagnosing sensor faults is significant for the normal
operation of HVAC systems. Al-Aomar et al. developed a joint
method  that
system data and

predictive  maintenance integrated  building

management computerized maintenance
management data to deal with the lack of real-time data-driven
fault prediction for air handling units in hospital HVAC. This
decision tree,

method combined support vector machine,

proximity algorithm, predictive prediction, and seasonal
autoregressive integrated moving average model to achieve
accurate fault prediction and effectively reduce maintenance costs
(Al-Aomar et al., 2024). Patil et al. systematically reviewed HVAC
fault characterization, classification, detection, and diagnosis to
address the difficulty of identifying multi-source faults in HVAC
and electrical systems. They proposed an intelligent monitoring and
pre-maintenance strategy (Patil and Malwatkar, 2024). Wang et al.
built an FDD relying on optimized Transformer-dual-decoder and
adapter-based parameter efficient transfer learning to address the
poor generalization of Fault Detection and Diagnosis (FDD) models
in HVAC systems due to their diversity and high data acquisition
costs. It migrated the source domain model to the new system with
only a small amount of target domain data (Wang et al., 2024).
Deep learning has achieved significant progress in various fields,
especially in fault diagnosis and prediction. Convolutional Neural
Network (CNN) has achieved excellent results in image processing
and speech recognition (Song et al., 2022). Zhao Z and Jiao Y
proposed a hybrid information CNN architecture to solve the
information loss caused by downsampling in rotating machinery
fault diagnosis. The deep convolution was utilized to enhance the
discriminative ability of spatial position. Traditional convolution
achieved cross-channel interaction of information, thereby reducing
the information loss of convolutional layers (Zhao and Jiao, 2022).
Zhang Q and Deng L proposed a rolling bearing fault diagnosis
method that combined Short-Time Fourier Transform (STFT) with
CNN to solve the weak features when CNN directly processed raw
vibration signals. STFT converted One-Dimensional (1D) vibration
signals into time-frequency maps and inputted them into a two-
layer CNN, improving the model fault diagnosis efficiency (Zhang
and Deng, 2023). To solve the poor feature extraction accuracy in
traditional HVAC chillers, Yan K and Zhou X proposed a CNN
integrated feature extraction classification framework, which
achieved FDD of chillers without feature engineering (Yan and
Zhou, 2022). Igbal M and Madan A K proposed an intelligent fault
diagnosis method relying on vibration to detect bearing faults. CNN
was taken to diagnose faults in CNC machine tools and STFT was
utilized to convert raw signals like vibration and acoustic signals into
time-frequency, achieving 100% accuracy (Igbal and Madan, 2022).
In summary, although existing research on HVAC system fault
diagnosis has achieved certain results, there are still problems such
as insufficient model generalization ability, low feature extraction
accuracy, and low efficiency of multi-source signal fusion. Although
CNN performs well in fault feature extraction, it originates from the
image field and is difficult to effectively model temporal
dependencies. It is also not robust enough to feature scale
changes, with multiple parameters and complex training, which
limits its application in sensor fault diagnosis. Therefore, the study
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proposes to improve the 1-D CNN and introduces wavelet clustering
analysis to construct a sensor fault diagnosis method, aiming to
demonstrating theoretical and technical support for the efficient
maintenance and safe operation of HVAC systems in
intelligent buildings.

The innovation of this study lies in the deep integration of multi-
scale time-frequency feature modeling and diagnostic strategies,
which overcomes the limitations of traditional CNN-based or
wavelet hybrid models. First, in the time-domain modeling stage,
a Multi-Scale Convolution Module (MSCM) and residual
connection structure are introduced, enabling the framework to
simultaneously capture short-term local features and long-term
global features within a single model, thereby achieving adaptive
representation of fault signals at different temporal scales. Second, in
the frequency-domain analysis stage, Wavelet Packet Transform
(WPT) is employed to perform fine-grained signal decomposition
and energy vector construction, offering higher frequency resolution
compared to traditional wavelet transform that only decomposes the
low-frequency components. Finally, in the decision-making
mechanism, the fusion of Softmax outputs and clustering labels
breaks the limitation of single time-domain decision-making in

existing CNN models, enhances noise resistance and
generalization capability, and achieves high-accuracy fault
identification  through  time-frequency integration  with

unsupervised assistance.

2 Methods and materials

Firstly, an improved network is proposed that integrates MSCM,
residual connections, and Class-Weighted Cross-Entropy (CWCE)
loss function. Secondly, to explore the discriminative information of
fault signals in the frequency domain, WPT is introduced to
decompose the original sequence into eight refined frequency
bands and construct normalized energy vectors. Subsequently,
K-means unsupervised clustering is used to obtain frequency
domain structural labels, thereby forming a robust diagnostic
end-to-end and

framework that is complementary in

time-frequency.

2.1 Improved 1-D CNN model

CNN, as a typical deep learning structure, has been extensively
applied in image recognition, speech processing, and fault diagnosis.
To process 1D temporal signals, 1-D CNN has become one of the
mainstream methods for sensor fault identification in HVAC
systems due to its lightweight structure and high computational
efficiency. Its structure is shown in Figure 1.

In Figure 1, the traditional 1-D CNN mainly has an input layer, a
convolutional layer, a pooling layer, a fully connected layer, and an
output layer. In the feature extraction process, 1-D CNN first
extracts local temporal features through convolutional layers,
compresses dimensions through pooling layers, and inputs them
into fully connected networks for classification (Groumpos, 2023;
Ahmadzadeh et al,, 2025). Although 1-D CNN has advantages such
as high efficiency and simple structure in processing temporal
signals, its convolutional kernel scale is fixed and cannot
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FIGURE 1
The traditional 1-D CNN.
effectively ~extract multi-scale features, resulting in poor

performance in dealing with fault signals of different frequencies
or durations. As the depth of the network increases, 1-D CNN is
prone to gradient vanishing or degradation, leading to unstable
training. In addition, traditional structures lack the ability to jointly
model low-level local features and high-level abstract features, which
affects the comprehensiveness and refinement of fault pattern
recognition. The research proposes an improved 1-D CNN
(Multi-Scale  Residual 1-D CNN, MSR-1DCNN)
depending on MSCM and residual connection mechanism.

model

Firstly, MSCM is introduced to enhance the perception ability of
different scale features in the model (Gao et al., 2022). The input
sequence is X € R. L represents the length of the input signal and
the data comes from various HVAC sensors like temperature,
the
corresponding to the i-th convolution kernel W; is shown in

humidity, and pressure. Therefore, feature map

Equation 1.

F; = ReLU (BN (WX + b)), i € {1,2,3} (1)

In Equation 1, F; signifies the feature map. ReLU signifies the
activation function of the linear rectification unit, used to enhance
nonlinear modeling capabilities. BN represents batch normalization
operation. b; represents the bias term. * represents 1D convolution
operation. Three sets of convolution kernels (k; =3, k, =5,and k3 =
7) are introduced for feature extraction, extracting potential
abnormal behavior features from those exceeding the local,
intermediate, and global scales, respectively, to avoid single scale
models ignoring certain types of faults (Niu et al,, 2021). After
MSCM output, the features of the three channels are concatenated to
form a unified representation, as shown in Equation 2.

Frui = Concat (Fy, Fy, Fs) (2)

In Equation 2, Fyy represents the concatenated multi-scale
feature combination. Concat represents merging multiple feature
maps along the channel direction to form a joint feature
representation. To maintain the underlying information of the
original input and the stability of gradient propagation, a residual
jump connection mechanism is introduced, as shown in Equation 3.

Fres = qulti + Q(X) (3)
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In Equation 3, Fe represents the feature representation after
residual fusion. QQ(X) represents the mapping function after
dimension matching for input X, using identity mapping. The
feature F. after residual fusion is unfolded through Flatten
layers, input into a two-layer fully connected network, and
connected to Softmax for output. The specific mathematical
expression is shown in Equation 4.

< exp(z) —12.

P ey PR =

- , .C
S5 exp (20)

(4)

In Equation 4, y, signifies the prediction probability of the
k-class fault. zj signifies the score value of the k-th output neuron. C
signifies the total fault classes. exp(-) represents an exponential
function, primarily responsible for normalizing the output to
probability (Qiu et al., 2023). Considering the class imbalance in
actual fault data, this study adopts CWCE to enhance the model’s
classification fairness and small sample fault recognition ability
(Arkin et al., 2023), as shown in Equation 5.

c
Loss = —Zwk -y log(7,) (5)

k=1

In Equation 5, Loss represents the overall loss function value. yj
represents the k-th dimension of the true label, with a value of 0 or 1.
wy represents the class weight coefficient, defined as wy = N% Ny
signifies the quantity of samples in the k-th class to avoid training
bias caused by imbalanced categories. Based on the above, the
proposed MSR-1DCNN structure is shown in Figure 2.

In Figure 2, the study first introduces a MSCM, which parallelly
configures convolution layers with different receptive fields to enable
the model to simultaneously model short-term fluctuations and
long-term trends, thereby effectively improving the ability to extract
multiple fault the
mechanism introduces an identity mapping path of input
the the

trainability of deep networks, alleviating gradient vanishing, and

features. Secondly, residual connection

information in convolution module, enhancing
synergistically modeling shallow and deep features. Normalization
and regularization mechanisms are introduced, and Batch
added

convolution unit to optimize the convergence speed and

Normalization and Dropout layers are after each
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Improved MSR-1DCNN structure.
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Three-layer WPT structure

generalization performance and suppress overfitting. In addition,
the output layer adopts the Softmax function and combines it with
the CWCE strategy to enable the model to still have good fault
discrimination ability in scenarios with imbalanced sample sizes.

Frontiers in 04

Overall, the MSR-1DCNN structure optimizes the recognition
accuracy and robustness in complex working conditions and
diverse fault types by constructing a learning framework that
integrates multi-scale, multi-path, and deep shallow features.
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2.2 Design of fault diagnosis method

On the basis of completing multi-scale feature extraction and
deep feature fusion in the improved MSR-IDCNN model, the
wavelet clustering analysis mechanism is introduced to achieve
high-precision discrimination and automatic classification of fault
modes. This method employs the multi-resolution characteristics of
WPT, which can unfold complex temporal signals in different
frequency bands and quantify their
characteristics. To ensure the accuracy of time-frequency

energy distribution

decomposition and the stability of feature extraction, the study
selected db4 from the Daubechies wavelet family as the basis
function in the WPT decomposition and set a three-layer
decomposition depth to obtain eight frequency band energy
features. The db4 wavelet has good time-frequency localization
and smoothness in the field of signal analysis and is suitable for
typical HVAC sensor signal characteristics such as non-stationary
and transient disturbances (Huang et al., 2024). The determination
of the number of decomposition layers comprehensively considers
the sampling frequency, the main frequency band distribution, and
the coverage of the characteristic frequency: on the one hand, the
power spectrum estimation shows that the signal is mainly
concentrated in the low to medium frequency band; on the other
hand, although too deep decomposition can improve the resolution,
it will cause energy dispersion and increase the computational
burden (Moumene and Ouelaa, 2022). Therefore, the signal is
divided into eight equal-width sub-bands, which not only ensures
the frequency resolution but also facilitates the fault feature
identification. WPT decomposes signal f(¢) in the J-layer to
obtain 2/ sub-signals U;(¢) in different frequency bands, each
corresponding to specific frequency range information. Figure 3
presents the specific structure.

In Figure 3, the original signal is first decomposed into low-
frequency sub-bands (Approximation) and high-frequency sub-
bands (Detail), and then each sub-band continues the same
binary decomposition in the next layer until it realizes the set
three-layer depth. After three layers of decomposition, the signal
is divided into 2’ sub-nodes in different frequency bands,
representing the energy distribution from the lowest frequency
band to the highest frequency band. Each node corresponds to a
sub-signal within a fixed frequency range. By calculating the energy
of each node, it can comprehensively reflect the changing trend of
the original signal in different frequency domains. This structure can
capture the spectral changes caused by sensor faults in detail,
providing high-resolution frequency domain feature support for
subsequent energy vector construction and clustering analysis.
Compared to traditional wavelet decomposition that only iterates
on the low-frequency part, WPT has stronger frequency resolution
and is suitable for processing non-stationary and nonlinear fault
signals in HVAC systems. Based on the transformation results,
extracting the energy features of each frequency band is expressed as
Equation 6.

2 i=1,2,.,2 (6)

Mz

E; =

j |UJ' (m)

1

3
il

In Equation 6, E; signifies the energy of the j-th wavelet packet
frequency band. U ; (m) signifies the amplitude coefficient of the j-th
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frequency band at the m-th time. M represents the total samples in
each frequency band. To eliminate the influence of signal amplitude
and sampling duration on energy indicators, energy normalization is
used to construct a normalized energy vector. The specific
mathematical expression is shown in Equation 7.

E, E, E 2
= [—‘, = —2’] Er=YE (7)
Er Er' ™ Er &

In Equation 7, E€ R represents the normalized energy
feature vector as the frequency domain expression for each
segment of the signal. Er represents the total energy, with a
standardized denominator. 3’ represents the energy proportion
of frequency band j. After obtaining the energy features of all
samples, the K-means clusters and analyzes the energy vectors to
discover the inherent differences in frequency energy
distribution of different signals and assist in distinguishing
fault modes. The optimization objective of K-means is to
minimize the sum of squared distances from a sample to its

cluster center, as presented in Equation 8.

min Z ||E(i) - (Ak"z )]

G k=1EW ¢ Gy,

In Equation 8, Gk represents the k-th cluster. K represents the
number of clusters, determined by the actual fault type or selected
through contour coefficients. E®” signifies the energy feature vector
of the i-th sample. y, signifies the center vector of class k. | - ||
represents the Euclidean distance function. Based on the above
equation, structural classification of different fault signals can be
completed without relying on tag information. However, relying
solely on clustering results for fault identification still has certain
limitations, such as sensitivity to noise and strong dependence on
initial clustering centers. Therefore, the probability distribution
output by the improved MSR-IDCNN model is further fused
with wavelet clustering label information to construct a fusion
discrimination mechanism, which enhances the stability and
accuracy of the final diagnosis. Assuming that the i-th sample is
calculated by the MSR-IDCNN model, the Softmax output is j/c(i>,
where ¢ = 1,2, ..., C is the fault class number. Meanwhile, the sample
is subjected to wavelet energy vector E¥) to calculate the clustering
label ¢

cluster”

by Equation 9.

The final fusion discrimination result can be determined

y = argmax(tx 0+ (1-a)- 6(C> Cc(l?lster)) ©)

In Equation 9, y @ represents the final identified fault class label.
79 represents the prediction probability that sample i belongs to

class ¢ by MSR-1DCNN. )

cluster
K-means clustering. « represents the fusion weight factor, mainly

represents the analysis result of

used to control the proportion of the impact of two types of
(i)

cluster)

exponential function used to determine whether categories ¢ and

(i)

cluster

is 0). In the fusion discrimination mechanism, the Softmax output

information on the final output. J§(c,c represents an

C are equal and return a Boolean result (equal is 1, and unequal
reflects the confidence of time-domain features, while the WPT

cluster labels characterize the energy structure in the frequency
domain. By setting the fusion weight, the two are linearly weighted:
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HVAC sensor fault diagnosis process based on MSR-1DCNN and wavelet cluster analysis.

when the results are consistent, the confidence is enhanced, and
when they are inconsistent, complementary corrections are
made, thereby improving the stability and robustness of the
classification. Based on the above, the HVAC sensor fault
diagnosis process using the improved MSR-IDCNN model and
WPT is shown in Figure 4.

In Figure 4, time-series data from multiple sensor channels are
input into the MSR-1DCNN model. After multi-scale convolution,
residual connection, and normalization, high-dimensional and deep
time-domain feature representations are extracted, and the
corresponding Softmax fault probability distribution is output.
The original signal is synchronously input into the WPT module,
which performs multi-layer decomposition to extract energy
features of each frequency band and construct energy vectors.
Softmax outputs are trained through supervised training based
on time-domain features, providing classification probabilities.
based
distribution, can identify spectral structural patterns without

K-means clustering, on frequency-domain energy
labels. By setting weights, confidence is enhanced when the two
results are consistent, while clustering information is used to correct
the predicted distribution when they are inconsistent. This allows
the frequency-domain structure to complement and optimize the
time-domain decision boundary, improving diagnostic robustness

and generalization capabilities.

3 Results

Firstly, based on the measured data of a certain intelligent
building HVAC sub-system, a balanced dataset is constructed.
The experimental software and hardware configurations, as well
as training hyperparameter settings are provided. Secondly, the
contribution of each module in MSR-1DCNN is verified through
ablation experiments, and the purity and consistency of feature
clustering are compared among different methods. The influence of
Softmax probability and clustering label fusion weight « on
diagnostic performance is explored.

Frontiers in Mechanical Engineering

3.1 Experimental setup

To verify the HVAC sensor fault diagnosis method, a systematic
simulation experiment and performance evaluation are conducted.
The data is collected from the HVAC sub-system of a building’s
intelligent control platform, which includes real-time operational
data from different sensors like temperature, humidity, and
pressure. By manually injecting five types of typical faults,
drift, gradual
interruption, and oscillation, into the actual system, a fault

including sensor mutation, change, signal
dataset with labeled information is constructed. The dataset is
proportionally divided into training, validation, and test sets at
70%:15%:15% while maintaining class balance. All channel data
is normalized and preprocessed. Table 1 presents the detailed
information of each fault class.

According to Table 1, the performance verification is conducted.
Table 2

information.

presents the software and hardware environment

All training and inference processes are completed in a single
machine configuration. In the feature modeling stage, the MSR-
1DCNN, adopts multi-scale convolutional kernels (sizes 3, 5, and 7)
to extract time-domain features. The training rounds are 200, the
initial learning rate is 0.001, and the Adam optimizer automatically
adjusts the learning step size. In the frequency domain analysis stage,
the WPT, uses the db4 basis function from the Daubechies wavelet
family for three-layer decomposition to obtain eight sub-band
energy features as inputs for K-means clustering analysis.

3.2 Ablation experiment and feasibility
verification

To further validate the effectiveness of the proposed MSR-
IDCNN model architecture and the contributions of its key
modules, we conducted ablation experiments to verify the
independent contribution of each structural module to model
performance. Using a baseline model without any additional

06 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1696534

Wang et al. 10.3389/fmech.2025.1696534

TABLE 1 Classification statistics and feature description of HVAC sensor fault dataset.

Fault type Number of samples Proportion (%) Feature description
Drift 620 24.80 Gradual deviation of signal from baseline, simulating sensor aging or calibration drift
Spike 430 17.20 Sudden short-term signal jump or drop, usually caused by EMI or poor contact
Ramp 520 20.80 Signal increases or decreases at a constant rate, reflecting slow system response
Dropout 320 12.80 Intermittent or abrupt signal loss, indicating disconnection or transmission fault
Oscillation 610 24.40 Rapid fluctuations of signal in short periods, often due to unstable control or vibration
Total 2,500 100 Each sample is a 60-s segment of 3-channel data with labeled fault types

TABLE 2 Experimental environment and software configuration.

Category Specification description

Operating system Windows 11 Professional Edition (64-bit)

Processor (CPU) Intel Core i7-12700H @ 2.30 GHz

Memory (RAM) 32 GB DDR4
Graphics Card (GPU) NVIDIA GeForce RTX 3060 Laptop GPU (6 GB
VRAM)
Programming language Python 3.9

Deep learning TensorFlow 2.10 + Keras

framework

Signal processing tool PyWavelets 1.4.1 (for wavelet packet decomposition)

Wavelet basis Daubechies wavelet (db4), 3-level decomposition

Clustering algorithm K-means from Scikit-learn 1.2.0

modules as a control group, we added the MSCM, residual
connections (Res), and CWCE modules individually or in
combination to the model, evaluating their impact on diagnostic
performance, as shown in Table 3.

As shown in Table 3, the baseline model without any additional
modules achieved only 90.58% accuracy and 87.92% F1-score,
respectively. It had a parameter count of 12.52 x 10* and the
shortest training time. With the incremental introduction of each
module, model performance improved significantly. The most
significant gain was achieved with the MSCM module alone,

TABLE 3 Incremental addition ablation experiments of each module.

increasing accuracy by 4.25% and Fl-score by 3.31%,
demonstrating the positive effects of multi-scale convolution on
extracting fault features at different time scales. The Res module
alone improved accuracy and Fl-score by 2.09% and 1.82%,
respectively, primarily due to its role in optimizing gradient
transfer and stabilizing network training. While CWCE does not
change the number of parameters, it improves classification stability
in class imbalance scenarios, increasing accuracy and Fl-score by
2.87% and 2.64%, respectively. Combining multiple modules further
enhances model performance. The MSCM + CWCE combination
approaches the full model in accuracy and F1 score, with only
15.66 x 10* parameters, demonstrating high cost-effectiveness. The
MSCM + Res combination performs slightly worse than the MSCM
+ CWCE combination, but still outperforms the single module. The
Res + CWCE combination also shows steady improvement over the
baseline. When all three modules are enabled, the model achieves the
highest accuracy of 98.74% and an F1 score of 96.55% with 17.83 x
10* parameters. This demonstrates that MSCM provides the
strongest feature extraction capabilities and is the core source of
performance improvement. CWCE, through class weighting,
improves the model’s adaptability to imbalanced samples without
increasing the number of parameters. The Res structure enhances
gradient propagation and training stability. The rational
combination of these three modules achieves an optimal balance
between diagnostic accuracy and computational cost.

The performance of different signal modeling methods in fault
diagnosis tasks is compared from the perspective of feature
extraction. Feature spaces based on the frequency domain
features of Raw signal, Fast Fourier Transform (FFT), and WPT

MSCM Res CWCE Accuracy (%) F1-score (%) Training time (s) Params (x10%)
x X X 90.58 87.92 17.98 12.52
v X X 94.83 91.23 19.21 15.66
x VA X 92.67 89.74 18.62 13.55
X X v 93.45 90.56 18.81 12.52
v v x 96.42 94.07 20.31 17.83
N x N 97.21 95.14 2045 15.66
x VA Y, 95.62 92.88 20.14 13.55
v v 98.74 96.55 21.45 17.83
Frontiers in Mechanical Engineering 07 frontiersin.org
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are constructed. Three typical clustering algorithms, namely,
K-means, Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) and Spectral Clustering, are analyzed, as
presented in Figure 5.

According to the clustering results based on K-means
algorithm in Figure 5a, WPT performed the best in frequency
domain features, with Purity and Silhouette coefficients of
0.9017 and 0.7012, respectively. The clustering accuracy and
stability were better than those of FFT and the raw signal.
Figure 5b further compares the diagnostic accuracy and
Normalized Mutual Information (NMI) of different feature +
cluster combinations. The WPT + K-means had the highest
accuracy of 92.37% and NMI of 0.853, followed by FFT +
K-means and WPT + DBSCAN, while the raw signal +
K-means had the worst effect, only 81.24% and 0.622. This
indicates that WPT frequency domain features can improve
clustering performance and fault recognition performance, and
K-means algorithm has more advantages in structured data.
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Finally, the study further analyzes the fusion effect of MSR-
IDCNN model and WPT clustering, as shown in Figure 6.
From Figure 6a, as a gradually increased from 0.0, the overall
performance improved. The best performance was achieved at « =
0.6, with an accuracy of 96.73% and a Kappa coefficient of 0.92.
Moderately with
frequency-domain clustering results can help suppress noise

integrating time-domain Softmax output
interference and enhance diagnostic robustness. When « exceeded
0.6, both indicators slightly decreased, indicating that excessive
reliance on information from a single source may introduce
redundancy or misjudgment. Figure 6b further compares the F1-
score performance of single prediction and fusion prediction for
different fault types when « = 0.6. The fusion method has the most
significant effect on sudden and periodic faults such as Oscillation,
Dropout, and Spike, with F1-scores increased by 6.67%, 9.64%, and
6.90%, respectively. Ramp, Drift, and other slowly changing faults,
also showed an improvement of 4.40%-5.62%, demonstrating the
universality of the fusion strategy.
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3.3 Method comparison and
performance analysis

To demonstrate the effectiveness of the HVAC fault diagnosis
method, performance comparisons are conducted by introducing
unimproved 1-D CNN, Bidirectional Long Short-Term Memory
(BiLSTM), and Gated Recurrent Unit (GRU) network. Firstly, the
diagnostic accuracy and Fl-score of four methods are analyzed
under different training set ratios, as shown in Figure 7.

Figure 7 displays the accuracy and Kappa coefficient of MSR-
IDCNN, 1-D CNN, BiLSTM, and GRU at different training ratios.
As shown in Figure 7a, MSR-1DCNN consistently maintained
optimal accuracy across the entire range, with improvements of
8.71%, 11.97%, and 14.09% compared to 1-D CNN, BiLSTM, and
GRU, respectively, at 20% of samples. Under 100% sample
conditions, MSR-1DCNN still led by 4.56%-7.67%, indicating its
good generalization ability under both small sample and full data
conditions. Figure 7b further demonstrates the Kappa coefficient
consistency advantage of MSR-1DCNN. The study also evaluated
the Receiver Operating Characteristic (ROC) curves of the four
methods under Gaussian white noise perturbations with standard
deviations of 0%, 10%, 20%, and 30% of the signal amplitude. Noise
was superimposed on the original signal to simulate electromagnetic
interference, sensor drift, and sampling errors commonly found in
HVAC systems. Different amplitudes corresponded to interference
scenarios of varying intensities. This is shown in Figure 8.

Figures 8a-d show the changes in fault diagnosis performance
under different Gaussian white noise interference (0%, 10%, 20%, and
30%). MSR-1DCNN exhibited the highest true positive rate and area
under the curve under all noise conditions. Even when the noise
intensity reached 30%, MSR-1DCNN still maintained a high level. In
contrast, the performance of 1-D CNN, BiLSTM, and GRU significantly
decreased after noise enhancement, and the GRU model performed the
worst in the low true positive rate range, indicating its sensitivity to
interference signals. Figure 9 presents the inference time and
Instantaneous Robustness Drop (IRD) at various noise levels.
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In Figure 9a, as the proportion of Gaussian white noise
increased, the inference time of MSR-1DCNN increased from
3.12 ms to 3.48 ms, with an increase of 11.5%. In contrast,
BiLSTM increased from 5.78 ms to 9.86 ms, with a growth rate
of 70.6%, significantly higher than that of MSR-1DCNN. The
amplification rates of GRU and 1-D CNN were 17.7% and
13.9%, respectively, both higher than that of MSR-1DCNN,
indicating that BiLSTM, GRU, and unimproved 1-D CNN
structures are more susceptible to noise interference and affect
operational efficiency. In Figure 9b, the IRD value of MSR-
IDCNN only increased by 0.010 under 10%-30% noise, while 1-
D CNN, BiLSTM, and GRU increased by 0.060, 0.070, and 0.060,
respectively. MSR-1DCNN has a stronger anti degradation ability
than that of BILSTM. This indicates that the MSR-IDCNN model
has the lowest inference latency among all methods, demonstrating
its low computational cost and feasibility for real-time deployment
in actual HVAC systems. Furthermore, it demonstrates that the
MSR-1DCNN model exhibits superior robustness to interference
while maintaining a low computational burden. To further verify the
effectiveness and stability of the proposed method, 10 repeated
experiments were conducted on four models: MSR-1DCNN, 1-D
CNN, BiLSTM, and GRU under the same test set conditions. The
experimental results were statistically analyzed using the mean and
95% confidence interval (CI). Details are shown in Table 4.

Table 4 shows that the MSR-1DCNN achieved a test set accuracy
of 97.84%, a significant improvement over the other three methods.
MSR-1DCNN also maintained the highest F1 score, precision, and
recall, demonstrating that the model has low false positive and false
negative rates. Furthermore, the MSR-1DCNN achieved the smallest
95% ClI, indicating more stable and reliable results. Beyond the
numerical improvements in accuracy, robustness, and
computational efficiency, the proposed method has strong
practical significance. Its low inference latency and noise
resistance make it suitable for real-time HVAC monitoring and
fault diagnosis, supporting energy management and equipment
maintenance in intelligent buildings. In terms of computational
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complexity, the MSR-1DCNN has only 17.83x10* parameters and
0.34 G Floating Point Operations (FLOPs), significantly lower than
BiLSTM and GRU, and comparable to 1-D CNN, but with higher
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performance. This demonstrates that the model maintains high

accuracy while maintaining low computational cost, making it

suitable for deployment in resource-constrained scenarios.
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TABLE 4 Comparison of test set performance of different methods.

Method Accuracy (%) Fl-score (%) Precision (%) Recall (%) Params (x10%) FLOPs (G)
MSR-1DCNN 97.84 + 0.18 96.93 + 0.20 98.19 + 0.16 97.56 + 0.30 17.83 0.34
1-D CNN 93.14 + 0.43 9179 + 0.43 93.47 + 0.30 92.68 + 0.27 12.52 0.23
BiLSTM 91.23 + 0.42 90.49 + 0.54 91.06 + 0.30 90.69 + 0.26 2541 0.57
GRU 89.89 + 0.69 8831 + 0.37 89.54 + 0.57 88.70 + 0.49 20.67 0.44

TABLE 5 Comparison of classification accuracy under real noisy fault data.

Method Dropout Oscillation Overall
MSR-1DCNN 95.83 94.92 93.68 94.57 9475
HVAC-ML 87.36 ‘ 86.24 ‘ 85.07 ‘ 88.03 86.68
HVAC-FDD-Tree 89.12 ‘ 88.27 ‘ 87.58 ‘ 90.21 88.8
3.4 Extended validation robustness. However, the research is still limited to offline batch

processing scenarios and has not yet been verified in an online
To further verify the applicability of the proposed MSR-1IDCNN  incremental learning environment. Furthermore, cross-building
method in real-world noise scenarios, four typical noise fault  migration testing has not been introduced, and the generalization
categories were constructed based on noisy HVAC sensor data  boundaries of the model still need to be further clarified. Future
collected on-site: drift, spike, dropout, and oscillation. = work will be directed towards edge GPU deployment, enabling
Furthermore, the study introduced HVAC machine learning  lightweight inference and exploring online continuous learning
(ML) from Reference (Al-Aomar et al., 2024) and HVAC FDD-  and cross-scenario adaptability. In terms of online incremental
Tree from Reference (Patil and Malwatkar, 2024) to compare their ~ learning, a sliding window and small-batch dynamic update
performance with the MSR-1IDCNN. The results are shown  mechanism will be adopted to enable the model to adapt to new
in Table 5. data and failure modes without repeated training. In terms of
Table 5 shows that for drift faults, the MSR-1DCNN achieves an ~ domain adaptation, feature alignment and transfer learning will
accuracy of 95.83%, an improvement of 9.69% and 7.54% over  be used to reduce the differences in data distribution across different
HVAC-ML and HVAC-FDD-Tree, respectively. The MSR-1IDCNN  buildings, and a cross-building migration benchmark will be
also demonstrates superior performance in noise fault categories  constructed to explore domain adaptive fine-tuning strategies to
such as spike, dropout, and oscillation. This demonstrates that the ~ improve the generalization and practicality of HVAC sensor
MSR-1DCNN possesses superior fault identification capabilities and ~ fault detection.
stability in real-world noise environments, particularly in spike and
dropout noise scenarios characterized by strong randomness and
localized perturbations. This is likely due to the multi-scale feature Data availa blllty statement
extraction and WPT band enhancement mechanism employed by
the MSR-1DCNN, which effectively suppresses noise interference The original contributions presented in the study are included in
and improves signal discrimination, thereby enhancing model  the article/supplementary material, further inquiries can be directed

robustness and accuracy. to the corresponding author.
4 Conclusion Author contributions

An MSR-1DCNN-wavelet clustering joint model was LW: Conceptualization, Data curation, Formal Analysis,
constructed to address the poor generalization of small samples, =~ Writing - original draft, Writing - review and editing. RH:
weak noise resistance, and high inference delay in HVAC sensor ~ Investigation, —Methodology, =~ Writing -  original  draft,
fault diagnosis. Experiments showed that in extreme scenarios  Writing - review and editing. JL: Software, Supervision,

where the training set only accounted for 20%, the accuracy of =~ Writing - original draft, Writing - review and editing.
MSR-1DCNN still reached 85.47%, with an average improvement of

9.18% compared to the baseline. Under 30% Gaussian noise, the IRD )

index was superior to BiLSTM, and the inference time increase was Fundi ng

only 1/6 of BiLSTM, demonstrating excellent robustness and real-

time performance. The HVAC diagnosis method can maintain a low The author(s) declare that no financial support was received for
computational burden and has superior anti-interference  the research and/or publication of this article.
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