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Introduction: Trajectory tracking control is a core link to ensure the normal
operation of robots. However, traditional trajectory tracking control methods
have problems such as low operational efficiency and low control accuracy. The
research proposes a trajectory tracking control model based on the fractional-
order synovial membrane control algorithm and dynamic modeling to solve
this problem.

Methods: The research adopts the fractional synovial control algorithm to design
the trajectory tracking controller, and uses the particle swarm optimization
algorithm and radial basis neural network to optimize the controller. Then,
based on kinematic modeling and dynamic modeling, the main operating
components and coupling relationships of the robot are analyzed to improve
the accuracy of trajectory tracking control.

Results: The position error of the improved fractional synovial membrane
controller designed in the research is stable within the range of [-1 x 1075,
1 x 107°], which is smaller than that of the comparison demonstrating high
accuracy. The rise time of the trajectory tracking control model proposed in the
research is 0.06 seconds, which is less than that of the comparison model and has
a relatively fast convergence speed.

Discussion: The experimental results show that the trajectory tracking control
model proposed in the research has better effects in terms of accuracy and
stability, as well as ascending speed. It can perform trajectory control more
precisely and efficiently, maintaining the normal operation of the robot. In the
future, the accuracy of the research and the ability of adaptive dynamic
adjustment will be further enhanced to improve the practical application
effect of the model.

fractional-order sliding mode control, PSO, RBFNN, trajectory tracking,
dynamic modeling

1 Overview

Mobile robots are flexible operating machines that are applied in logistics, medical,
agriculture, and other fields, showing broad prospects (Moran-Armenta et al., 2025).
Trajectory tracking control constitutes a fundamental component in the preparatory phase
of mobile robot operation and serves a crucial function in guaranteeing both safe and
efficient operational performance (Ruqiang and Le, 2024). Traditional trajectory tracking
control methods mainly include backstepping control and model predictive control, but
both have disadvantages such as large computational load and complex structure, making
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them difficult to meet the requirements of efficient robot operation
(Demir and Sahin, 2023). Fractional-Order Sliding Mode Control
(FOSMC) is a new control algorithm with good stability. It calculates
related parameters through fractional-order differential operators to
achieve effective control of the system (Bhat et al., 2025). Dynamic
modeling is based on kinematic modeling and analyzes parameters
such as force relationships and kinetic energy of the robot’s
operating components to achieve accurate control (Kolahi et al,
2024). Therefore, this paper raises a trajectory tracking model based
on FOSMC and dynamic modeling to realize robot trajectory
tracking control. The model uses FOSMC to design the trajectory
tracking controller, then solves the variables of the mobile platform
and manipulator based on kinematic modeling, and finally uses the
Lagrange method for dynamic modeling to analyze the coupling
relationships of the robot’s operating components. Based on
dynamic modeling and the controller, the model completes the
robot trajectory tracking control. The innovation of this model is
that it uses Particle Swarm Optimization (PSO) and Radial Basis
Function Neural Network (RBFNN) for parameter tuning to
optimize the controller, which improves the suppression of
chattering. It is expected that this model can more accurately
track the robot trajectory and promote the low-energy and high-
efficiency operation of the robot.

The research makes two major contributions. First, it proposes
an enhanced FOSMC controller utilizing the Particle Swarm
Optimization (PSO) algorithm and RBFNN network. By
optimizing controller parameters, the system achieves improved
control performance, thereby overcoming quality bottlenecks in
trajectory control technology. Second, a trajectory tracking
control model is developed through kinematic modeling,
dynamic modeling, and the upgraded controller, significantly
These
innovations provide more efficient and precise solutions for

enhancing both control accuracy and robustness.
robotic trajectory tracking control, effectively coordinating and

ensuring optimal robot operation.

2 Related works/Literature review

FOSMC can flexibly and accurately adjust trajectory tracking
systems, and dynamic modeling can improve the trajectory tracking
control performance of robots. Many scholars at home and abroad
have conducted in-depth research on these two methods. Huang
et al. studied the trajectory tracking problem of underwater robotic
arms and raised a trajectory tracking model based on continuous
recurrent neural network and FOSMC. They approximated
hydrodynamic disturbances by deriving the adaptive law of the
continuous recurrent network and suppressed vibration using the
proportional-derivative method (Huang et al., 2025). To improve
the prediction performance of urban traffic linear induction
machines, Hamad et al. proposed a prediction model based on
FOSMC. They improved FOSMC using the finite-set model
predictive method to develop its speed loop and enhance
response speed (Hamad et al, 2025). Zhu et al. addressed the
vibration  suppression  problem of permanent magnet
synchronous motors and proposed a vibration suppression
method based on FOSMC. They used PSO and improved

exponential reaching law to suppress vibration and designed an
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FIGURE 1
FOSMC application process.

observer with the error differential term to monitor the system (Zhu
et al., 2024). Yunlong et al. studied the motion performance of
spherical tensegrity robots and proposed a gait control model based
on dynamic modeling. They built the dynamic model using Newton-
Euler equations, calculated the optimal drive parameter range, and
finally optimized the structure using PSO (Yunlong et al., 2024). To
solve the coupling problem caused by structural deformation in
supersonic vehicles, Wang et al. proposed an integrated dynamic
analysis model based on dynamic modeling. They constructed the
dynamic model using small perturbation theory and sub-discipline
models, and performed dynamic analysis of coupling factors based
on a two-dimensional model (Wang et al., 2024).

Trajectory tracking control is critical for the normal operation of
robots, and many scholars have conducted relevant studies. Zhang
et al. addressed circuit corrosion faults during underwater robot
salvage operations and proposed a trajectory tracking fault analysis
model based on terminal sliding mode observer. They used the
observer for detection and analyzed disturbance parameters using
finite-time methods and fault-tolerant control (Zhang et al., 2024).
To enhance the anti-interference ability of aerial robots, Chen et al.
proposed a hierarchical control model based on sliding mode
controllers. They used different sliding mode controllers to
improve convergence speed and developed adaptive laws using
Lyapunov theory to enhance system robustness (Chen et al,
2024). Sandoval et al. studied torque robot tracking systems that
are prone to disturbances and proposed an anti-disturbance model
based on global exponential stability. They analyzed system
trajectories using global stability indices and estimated
disturbance parameters using a nonlinear observer and Lyapunov
theory (Sandoval et al., 2024). Zhu et al. addressed the fault-tolerant
control problem of quadrotor robot trajectory tracking and
proposed an RBFNN-based fault-tolerant control model. They
analyzed fault parameters using finite-time control and designed
an adaptive controller with Lyapunov theory and RBFNN (Zhu and
Wang, 2024). To solve the formation problem of multiple
agricultural robots, Luan S et al. proposed a formation trajectory
tracking control model based on model predictive control. They
combined single-machine dynamic models with model predictive
control and calculated and analyzed trajectory tracking parameters
using control volume constraints (Luan et al., 2024).

In summary, many scholars have conducted in-depth research
on robot trajectory tracking control and achieved significant results.
However, current trajectory tracking control methods still have
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FIGURE 2
PSO algorithm optimization process.

limitations in parameter tuning and anti-disturbance capability.
Therefore, this study raises a trajectory tracking model based on
FOSMC and dynamic modeling to control robot trajectory tracking,
aiming to improve system performance and ensure normal
robot operation.

model design

3 Trajectory trackin
dgFOSMC and

based on improve
dynamic modeling

3.1 Sliding mode controller optimization
based on PSO

FOSMC algorithm is a robust improved sliding mode control
method. It introduces a fractional-order algorithm to improve
the sliding mode mechanism. Both the sliding surface of
the
reaching law are computed through the application of

fractional order and corresponding fractional-order
fractional-order derivatives, whereby FOSMC is subsequently
formulated to conduct trajectory tracking analysis (Benzaouia
etal, 2024). The controller mainly defines and adjusts the sliding
surface and sliding control law by introducing fractional-order
differential operators to improve stability. The application

process of FOSMC is shown in Figure 1.

10.3389/fmech.2025.1695174

As shown in Figure 1, the calculation process of FOSMC first
defines and calculates fractional-order derivatives and introduces
fractional-order differential operators. Within the sliding mode
the
undergoes computation, while differential operators are employed
to adjust the sliding reaching law. Finally, the adaptive law is

controller framework, fractional-order surface

sliding

calculated to complete the controller construction and control
the robot. Fractional-order differential is a method of calculus
extended to any order. By extending derivatives to arbitrary
orders, non-integer order calculus can be obtained (Znidi et al,
2024). Fractional-order differentiation has multiple definitions,
among which Caputo definition is efficient and convenient,
showing good practical performance. The equation of Caputo
definition is shown in Equation 1.

1
F(n a)

J>t f 1) (T) dT
o (t—1)i"n

oD f (1) (1)

Equation 1: defines « as the upper limit of differentiation,
representing the order of the derivative, which can take any real
value. t is the lower limit of differentiation, I'(.) is the gamma
function, n is the current order, satisfying n—1<a<n, n € N.

Introducing fractional-order calculus operators into the sliding
surface calculation improves the stability of the sliding surface. A
simple first-order fractional sliding surface equation is shown in
Equation 2.

D%x = —kx (2)

Equation 2: k is a constant and k > 0. Its variation reflects the
convergence efficiency of sliding surface motion.

In FOSMC, the sliding reaching law is adjusted through
differential operators. The fractional-order sliding reaching law
equation is shown in Equation 3.

= —ksgn(s) (3)

Equation 3: sgn(.) represents the sign function and s represents
the switching function.

In order to analyze the stability of the system, the Lyapunov
function is derived. The definition formula of the Lyapunov function
is shown in Equation 4.

g g g g M

1
]
1
i 4—| Switching gain |
1
]

L Sliding surface_
FIGURE 3
PSO-RBF-FOSMC structure.
Frontiers in Mechanical Engineering 03 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1695174

Ning

10.3389/fmech.2025.1695174

Mobile Kinematic Manipulator

platform analysis l

/%)
Unified ‘_<'0‘> — Forward

kinematic Inverse kinematics

kinematics

FIGURE 4
Kinematic modeling process of the robot.

ngﬂa

Mobile platform Manipulator l
=@ PO
dynamics
Gravity Potential energy

FIGURE 5
Dynamic modeling process of the robot.

V(t) =1/25 4)

According to the Lyapunov function formula and the calculus
operator, the derivation of the Lyapunov function is finally obtained
as shown in Equation 5.

sgn(V()') = sgn(s)sgn (D' “D%s) = -k (5)

Equation 5: V(£)" represents the derivative of the Lyapunov
function combined with the reaching law and sliding surface
calculation equation, V ()" <0, according to Lyapunov function
stability theorem, fractional order sliding controller has
good stability.

FOSMC has good stability and control performance but depends
heavily on parameter tuning. PSO algorithm optimizes parameters
by comparing individual extremes and global extremes. It can
optimize controller parameters and help the controller adjust
dynamically, improving performance (Butler et al, 2025).
Therefore, PSO is used to optimize and improve the FOSMC
structure. The optimization process is shown in Figure 2.

In Figure 2, PSO first initializes related parameters and
calculates inertia weight. The particle velocity and position are
corrected according to the inertia weight. Individual and global
extremes are continuously updated and compared to update the
optimal solution. Upon attaining the maximum iteration threshold,

the global extreme updated in the last iteration is output as the
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TABLE 1 Experimental parameter setting.

Parameter Value

(SR 2
w 0.9—0.4

Population size 100

Learning rate 0.01

Maximum number of iterations 200
Input the number of layer nodes 1
The number of hidden layer nodes 5
Output the number of layer nodes 1

optimal solution. The update of individual particle extremes is
mainly realized by correcting velocity and position. The particle
velocity correction equation is shown in Equation 6.

vi(m+1) = v;(m) + ¢; x rand, x (pb; (m) — x; (m))
+ ¢, x rand, x (gb(m) — x;(m)) (6)

Equation 6: m is the current iteration, i represents a particle, ¢
and c, are the acceleration constants for the single particle and
particle swarm, usually ranging from (0, 4). v; (m) is the particle i
velocity at iteration m. pb; (m) and gb(m) are the individual and
global extremes at iteration 1.

The particle position in a certain iteration depends on the
updated velocity and previous position. The particle position
correction equation is shown in Equation 7.

xim+1)=x;(m)+v;(m+1) (7)

Equation 7: x; (m) is the position of particle 7 at iteration m. In
PSO, the dynamic value of inertia weight balances the particle search
range and convergence speed. The inertia weight update calculation
is shown in Equation 8.

W = Wmax — X (wmax - wmin) (8)

max
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Shows the results of the ablation experiment. (a) The feedback error curve of FOSMC. (b) The feedback error curve of PSO-FOSMC. (c) The feedback
error curve of RBF-FOSMC. (d) The feedback error curve of PSO-RBF- FOSMC.

Equation 8: #,y is the maximum iteration number. The
particle velocity correction equation after adjusting by inertia
weight is shown in Equation 9.

viim+1) =wxv;(m+1) 9)

Equation 9: v;(m + 1) represents the velocity of particle i at
iteration m + 1, and w represents the inertia factor.

Through the equilibrium adjustment of inertia factors, particles
continuously update their positions and gradually converge to the
optimal solution. In the PSO algorithm, a fitness function is typically
employed to evaluate the quality of each particle’s corresponding
optimal solution, guiding the swarm toward global convergence. The
definition formula for the fitness function is shown in Equation 10.

fitness =1/ (1 + f (x)) (10)

Equation 10: f (x) represents the particle optimal solution.

The particle continuously updates its position and gradually
converges to the optimal solution through balancing by the inertia
factor. The PSO-based improved FOSMC enhances parameter
optimization, but vibration suppression still needs improvement.
RBFNN consists of output layer, hidden layer, and input layer. It can
adjust sliding surface parameters and improve the vibration
suppression of the sliding mode controller (Ece and Nizami,
2023). Therefore, RBFNN is combined with PSO to improve
FOSMC, forming the PSO-RBF-FOSMC algorithm to enhance
controller performance. The structure of PSO-RBF-FOSMC is
shown in Figure 3.

Frontiers in Mechanical Engineering

As shown in Figure 3, the PSO-RBF-FOSMC algorithm consists
of three core components: the RBF layer, FOSMC layer, and PSO
layer. The process begins with calculating a fractional-order
differential operator. This operator is then applied to compute
the Sliding surface and its convergence law. In the PSO layer, the
controller architecture undergoes training and optimization to
identify optimal Sliding parameters that balance
convergence speed with vibration suppression. These PSO-
optimized parameters are fed into the RBF network using the
least squares method as the adaptive rule, which adjusts the
output layer weights. The RBF network subsequently performs
online fitting to compensate for system uncertainties, dynamically
adjusts switching gain to minimize high-frequency switching-
induced vibrations, and ultimately achieves adaptive adjustments

surface

through the adaptive law.

3.2 Trajectory tracking control model based
on PSO-RBF-FOSMC

The designed PSO-RBF-FOSMC controller improves vibration
suppression and convergence speed. However, in actual robot
operation, relying solely on the sliding mode controller cannot
resist external influences and cannot complete normal work
tasks. Robot kinematic modeling calculates the robot’s own
structure. By computing parameters such as the velocity and
position relationships of operating components, the robot’s
components are analyzed and expressed to enable more precise

05 frontiersin.org
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Position tracking curves of different algorithms.

control (Tuan et al., 2024). Therefore, this study conducts kinematic
modeling based on the structure of the mobile robot. The kinematic
modeling process is shown in Figure 4.

As shown in Figure 4, the kinematic modeling process mainly
includes mobile platform modeling and manipulator modeling.
First, parameters such as the center of mass and radius of the
mobile platform are measured, and the kinematic expressions of the
mobile platform are calculated. Subsequently, the manipulator
undergoes modeling processes, whereupon the relative pose
between the end-effector and base is computed, with inverse
solutions being derived through analysis of the end-effector’s
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relative positioning. Finally, the calculation equations of the
mobile platform and manipulator are combined for unified
kinematic modeling. The manipulator is the main operating
component of the robot. Its kinematic modeling process includes
forward kinematics and inverse kinematics. The study uses Denavit-
Hartenberg (DH) parameters to accurately describe the relationship
between manipulator joints and the end-effector for forward
kinematics to obtain the end-effector position. Suppose there are
n+ 1 coordinate frames numbered from {0} to {n}, ;"' T represents
the homogeneous transformation matrix, and ip represents the

frontiersin.org
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Wind-force Ground friction
e (m) e (m)
SSA-PID 5.65 x 107 4.67 x 107* 3.64 x 107* 413 x 107
AUKF-NMPC 7.24 x 10°° 621 x 10°° ‘ 2.87 x 10°° 481 x 10°°
MPC-SMC 3.15 x 10°° 225 % 10°° ‘ 313 x 10°° 323 x 10°
Research model 6.14 x 10° 533 x 10° ‘ 378 x 10° 442 % 10°
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FIGURE 11
Rise time and overshoot comparison.

position of the same point in {i} frame. The position of the same
point in {0} frame using DH parameters is shown in Equation 11.

oP =TI T..7'T"P, p="T"P (11)

1. T the
transformation matrix facilitating the conversion from frame

Equation constitutes homogeneous
{n—1} to frame {n}, while "P denotes the positional coordinates
of the identical point within the end-effector frame {n}.

Based on Equation 11, the forward kinematics equation of the

manipulator is obtained in Equation 12.

OT=1T\T.)7'T (12)

Equation 12: 9T is the end-effector relative pose.

Drawing upon the end-effector pose established from
forward kinematic calculations, inverse kinematics is
calculated using the Newton-Raphson iteration method for
First, the partial

derivative of end-effector position (x,y) with respect to joint

solving complex nonlinear equations.

angle 0, is calculated, as shown in Equation 13.

o)
% = —ll Si}’l(el) - lz Sin(6’1 + 92) - 13 Sin(@l + 62 + 63)
3 1 (13)
% =1, cos(0,) +1,cos (0, + 0,) + 15 cos (0, + 0, + 63)
1
Equation 13: Iy, I, I3 represent the link lengths. Based on
Equation 11, the partial derivatives corresponding to end-effector

o . . . dx Oy 0dy Jy
position (x, y) relative to joint angles 65,65, 55 55> 35 30,
are obtained.
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These derivatives construct the Jacobian matrix J, and the
updated joint angles are obtained according to Equation 14.

Ax
Ay

Equation 14: A8 = [AB;, AG,, AB5]T represents the increment of
joint angles, and J* represents the pseudoinverse of J.

To control the robot more precisely, dynamic analysis and
modeling are conducted based on kinematic modeling. The

enew = 601,,, + A6, A = ]+ . [ (14)

dynamic modeling process is shown in Figure 5.

As shown in Figure 5, dynamic modeling first calculates the
kinetic and potential energy of the mobile platform and manipulator
based on their kinematic modeling. Then, the total system kinetic
and potential energy and gravity are calculated to complete unified
dynamic modeling. To simplify derivation and improve generality,
the study uses the Lagrange method for dynamic modeling.
Lagrange method usually introduces generalized coordinates.
Suppose there is a generalized coordinate g = [gy, g ... qa]"> the
calculation equation is shown in Equation 15.

d (oL
9g;

dt
Equation 15: g; represents joint angle, g; represents particle

oL

-—= i=1,2,..
aq,»

N (15)

i>

velocity, and 7; represents joint torque or force.
The kinetic energy calculation is shown in Equation 16.
21 1
T= Z(—mkaTVk + —wkTIkwk> (16)
o 2 2
Equation 16: my represents the mass of the k-th link, Ir
represents the inertia tensor, and v; and w; represent
translational and rotational velocities of the link.
The potential energy calculation is shown in Equation 17.

V= kaghk (q) (17)

k=1

Equation 17: hi (q) is the vertical coordinate of the link’s center
of mass, satisfying g =9.8m/s, and represents gravitational
acceleration.

Based on kinetic and potential energy, the Lagrangian is

calculated as shown in Equation 18.
L=T-V (18)

By organizing and deriving Equation 18, the dynamic
equations of the system are obtained. Dynamic modeling

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1695174

Ning 10.3389/fmech.2025.1695174
0.4 0.4
0.3+ 0.3+ ° i.
Q Q «$e 00
£ 02 ° o £ 02 *¢ Sotasvess
< ® L J ><
E Shaashss
0.1+ ° ° 0.1
0 T T T T | 0 T T T T |
0 2 4 6 8 10 0 2 4 6 8 10
x (m) x (m)
(€)) (b)
0.4— 0.4
0.3 pongeid oleee 037 .
@ e z o WS
E 02 £ 021 1)
e e
0.1 0.1
0 T T T T | 0 T T T T |
0 2 4 6 8 10 0 2 4 6 8 10
x (m) x (m)
(© (d)
FIGURE 12

Tracking speed comparison along X-axis. (@) The velocity in the X-axis direction of SSA-PID. (b) The velocity in the X-axis direction of AUKF-NMPC.
(c) The velocity in the X-axis direction of proposed model. (d) The velocity in the X-axis direction of MPC-SMC.

using the Lagrange method enables more precise robot control.
The improved PSO-RBF-FOSMC controller enhances system
stability and control performance. Combining it with dynamic
modeling improves system performance in multiple aspects.
Therefore, to achieve more precise and stable trajectory
tracking, the study raises a trajectory tracking control model
based on improved FOSMC and dynamic modeling, named
IFOSMC-DM-TTC. The overall process of the model is shown
in Figure 6.

In Figure 6, the proposed PSO-RBF-FOSMC-based model
mainly consists of FOSMC, kinematic modeling, and dynamic
differential
sliding mode

fractional-order
the
architecture for the purpose of determining the sliding surface

modeling. Initially, operators

undergo introduction into controller
and reaching law through computational processes. Then
RBENN adjusts the weights, followed by PSO optimizing the
controller. The robot undergoes kinematic modeling of the
mobile platform and manipulator based on the operating
components. Finally, the Lagrangian is obtained from total
kinetic and potential energy calculation for dynamic modeling,

completing the robot trajectory tracking control.
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4 Performance verification and analysis
of robot trajectory tracking
control model

4.1 Performance verification of improved
controller based on PSO-RBF-FOSMC

To evaluate the performance of the PSO-RBF-FOSMC
controller, this study conducted comparative validation using two
control systems: the Nonlinear Disturbance Observer-Based Control
(NDOBC) and the Fuzzy Proportion Integration Differentiation
(Fuzzy PID). Through a stochastic search algorithm, we identified
optimal parameter combinations by evaluating performance metrics
across different configurations, ultimately determining the most
the algorithm. The
experimental platform used Matlab software. The experimental

effective parameters for comparison
object was a six-degree-of-freedom FVR6-6423 industrial robot,
composed of a manipulator, conveyor belt, HD camera, and
rotary cylinder. The camera was a web HD camera controlled by
an industrial computer. The experiment was simulated by setting

different parameters, as shown in Table 1.
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According to the above parameter setting, PSO-RBF-FOSMC
controller is constructed for experiment. In order to verify the
effectiveness of PSO and RBF algorithms in PSO-RBF-FOSMC
controller, ablation experiments were set up. Taking FOSMC as
the benchmark algorithm, the feedback error of the controller was
compared and analyzed under three conditions: adding PSO
algorithm only, adding RBF algorithm only, and adding PSO and
RBF algorithm at the same time. The comparison results are shown
in Figure 7.

As can be seen from Figure 7a, the oscillation range of the
feedback error curve of the FOSMC controller in the stable state is
[-3.0 x 107%, 3.0 x 107*]. It can be seen from Figures 7b,c that after
adding the PSO algorithm for parameter tuning, the oscillation range
of the controller feedback error curve in the stable state has decreased
to [-2.7 x 107, 2.7 x 107°]. After adding the RBF algorithm for
parameter tuning, The oscillation range of the controller feedback
error curve in a stable state has decreased to [-2.1 x 107°, 2.1 x 107°].
This result indicates that both the PSO algorithm and the RBF
algorithm can effectively enhance the control performance of the
model. As can be seen from Figure 7d, after the combination of the
PSO algorithm and the RBF algorithm, the oscillation range of the
controller in the stable state has decreased to [-1.1 x 107>, 1.1 x 107°],
which is significantly lower than the feedback error after only adding
the RBF algorithm and only adding the PSO algorithm. This further
verifies the effectiveness of the PSO and RBF algorithms. It is also
indicated that after the PSO-RBF-FOSMC controller is improved by
combining the PSO algorithm and the RBF algorithm, the control
performance has been significantly enhanced. To verify the control
effect, the feedback errors of each algorithm were compared. The
results are shown in Figure 8.

As shown in Figure 8, the error range of Fuzzy PID oscillated
between [-2.3 x 107%, 2.3 x 107], the largest among all algorithms,
indicating a higher error deviation. In contrast, the feedback error of
PSO-RBEF-FOSMC remained within [-1 x 10, 1 x 107°], lower than
other algorithms, showing higher accuracy. Furthermore, Fuzzy PID
and NDOBC reached steady states around 0.6 s and 0.8 s,
respectively, while PSO-RBF-FOSMC reached a steady state after
0.3 s. This indicated that PSO-RBF-FOSMC adapted more quickly
and had faster adjustment speed. To further verify trajectory
tracking, the position tracking trajectories of each algorithm were
compared. The results are shown in Figure 9.

Figure 9 shows that Fuzzy PID completed adaptive adjustment
after 0.8 s, which was slower. PSO-RBF-FOSMC completed adaptive
adjustment after 0.3 s, indicating faster convergence. Moreover, the
position tracking trajectory of Fuzzy PID after adjustment still
deviated noticeably from the desired trajectory, while the
trajectory of PSO-RBE-FOSMC coincided with the desired
trajectory much better, demonstrating higher accuracy. For
further performance analysis, the tracking speed along the X-axis
was calculated and compared, as shown in Figure 10.

Figure 10 shows that the speed curve of PSO-RBF-FOSMC
coincided with the desired speed more closely than other
algorithms, showing better control. The left zoomed view
indicated that the PSO-RBF-FOSMC control speed along the
X-axis nearly matched the desired speed at around 0.25 s,
stabilizing at 1 m/s, showing fast convergence and high precision.
The right zoomed view shows that the PSO-RBE-FOSMC speed
curve was the closest to the desired speed, smooth, and with minimal
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deviation. In summary, PSO-RBF-FOSMC demonstrated superior
stability and convergence speed compared to the other algorithms.

4.2 Analysis of practical application effect of
trajectory tracking control model

Based on the performance analysis of PSO-RBF-FOSMC, the
proposed IFOSMC-DM-TTC trajectory tracking control model was
evaluated. The same experimental environment was used, and
Sparrow Search Algorithm-PID (SSA-PID), Adaptive Untraceable
Kalman Filter-Nonlinear Model Predictive Control (AUKF-
NMPC), and Model Predictive Control-Sliding Mode Control
(MPC-SMC) were selected for comparison. In order to ensure
the fairness of the experiment and the reliability of the results,
the parameters of each model are adjusted to the best practice
parameters to ensure that each model is in the optimal working state.
To ensure experimental fairness and result reliability, all model
parameters were adjusted to best practice levels to maintain optimal
operational states. For robustness verification, the study generated
5 m/s gust wind using variable-frequency fans, creating a wind
interference scenario. The robot traveled along a continuous path
from tile floor to carpet to sandy ground, simulating abrupt friction
changes across surfaces. Each surface segment (tile, carpet, sand)
measured 5 m in length. Sensor noise interference was introduced by
injecting Gaussian white noise, while a 300g mass block was attached
to the robotic arm’s end for load testing. Comparative analysis of
lateral root mean square errors across scenarios yielded results
shown in Table 2.

As shown in Table 1, the proposed IFOSMC-DM-TTC model
demonstrates the lowest lateral error of 6.14 x 10° m in wind
interference scenarios, showing superior accuracy compared to
benchmark algorithms. In ground friction abrupt change scenarios,
the model achieves a lateral error of 5.33 x 10 m, significantly lower
than competing models and demonstrating enhanced stability. Under
noise interference and load interference conditions, the model’s lateral
errors measure 3.78 x 10° m and 4.42 x 10° m respectively, both
outperforming comparison models. This indicates the model’s robust
adaptability across diverse scenarios. Overall, the proposed model
maintains minimal errors across various interference conditions while
exhibiting strong anti-interference capabilities. To further verify
performance, the rise time and overshoot of each model were
calculated and compared, as shown in Figure 11.

Figure 11 shows that IFOSMC-DM-TTC had a rise time of
0.06's, 0.015 s faster than the fastest comparison model, MPC-SMC,
indicating faster stabilization and better control. The overshoot of
IFOSMC-DM-TTC was 5%, significantly lower than the comparison
models, demonstrating effective vibration suppression. Overall, the
proposed model combined rapid response, stability, and strong anti-
disturbance ability. To evaluate application performance, the X-axis
tracking speed of each model was calculated and analyzed, as shown
in Figure 12.

Figure 12c shows that IFOSMC-DM-TTC achieved an average
X-axis tracking speed of 0.26 m/s, with uniform speed distribution
and smooth trend, showing good vibration resistance. Overall,
IFOSMC-DM-TTC exhibited significantly faster X-axis tracking
speed than other models, indicating better control. In conclusion,
IFOSMC-DM-TTC outperformed other models in speed, stability,
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and accuracy, demonstrating superior control performance and
supporting efficient and safe robot operation.

5 Summary

This study addressed the issues of vibration sensitivity and high
uncertainty in mobile robot trajectory tracking by constructing a
trajectory tracking control model based on the PSO-RBF-FOSMC
algorithm and dynamic modeling to improve robot control capability.
The trajectory tracking controller was designed based on FOSMC and
optimized using PSO and RBFNN. Then, kinematic modeling analysis
and dynamic modeling were applied to the robot’s main operating
components to enhance the accuracy of reference tracking control. To
evaluate the performance of the reference tracking control model,
simulation experiments were conducted to analyze its practical
application. In the experiments, the position error of the PSO-
RBF-FOSMC algorithm remained stable within the range of [-1 x
107, 1 x 107°], lower than the comparison algorithms. The control
speed along the X-axis nearly coincided with the desired speed curve
at around 0.25 s, demonstrating high precision. The proposed
trajectory tracking control model achieved an X-axis tracking
speed of 0.26 m/s, with a smooth speed trend curve and good
vibration suppression. The rise time of the proposed model was
0.06 s, faster than the comparison models, indicating rapid
convergence. These results showed that the proposed trajectory
tracking control model achieved good performance in terms of
accuracy, stability, and rise speed. Although the proposed model
demonstrated strong control performance, it still exhibited some
deviation from the desired trajectory, and the dynamic adjustment
effect of the model was not analyzed. In the future, the accuracy and
adaptive dynamic adjustment capability of the model will be analyzed
and improved to enhance its practical application performance.
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