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Introduction: Bearing fault detection and prevention are crucial. However,
traditional diagnostic methods generally suffer from insufficient accuracy
when dealing with complex bearing faults. Therefore, developing new
methods that can effectively characterize complex fault features and achieve
high-precision diagnosis has significant theoretical and engineering value.
Methods: This study proposes a vibration image generation method based on
Empirical Mode Decomposition-Adaptive Angle Distribution Polar Image (EMD-
AADPCI) and constructs a hybrid diagnostic model combining Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM). First, the vibration
signalis processed by Empirical Mode Decomposition, and the designed adaptive
angle distribution mechanism dynamically allocates polar coordinate angles
according to the local features of the intrinsic mode functions, converting the
signal into a two-dimensional vibration image containing rich fault information.
Subsequently, a CNN-LSTM hybrid model is constructed. CNN extracts spatial
and deep features from the image, and LSTM captures the temporal
dependencies between features, ultimately achieving accurate classification of
complex bearing faults.

Results: Experiments show that the proposed method significantly outperforms
traditional methods. In terms of feature representation, the vibration images
generated by EMD-AADPCI achieved a 20.25% improvement in fault classification
accuracy compared to the comparative method MIC-SPCI (reaching 93.00%).
The constructed CNN-LSTM model achieved a training accuracy of 94.88% with
a loss rate as low as 1.43%. In the composite fault diagnosis task, the model
achieved a classification accuracy of 98.00%. After 10 repeated experiments, the
model achieved average accuracy, recall, and F1 score of 98.13%, 98.72%, and
98.33% for different composite fault diagnoses, respectively. Even in a low signal-
to-noise ratio environment with strong noise interference (-4 dB), the model
maintained a diagnostic accuracy of over 97%, demonstrating good robustness.
Discussion: The proposed EMD-AADPCI method can more effectively preserve
and highlight fault-related information, while the CNN-LSTM hybrid model fully
leverages the advantages of spatial feature extraction and time series modeling.
Experimental results show that this method has extremely high accuracy and
anti-interference ability in bearing composite fault diagnosis. This provides an
effective and innovative solution for intelligent diagnosis and preventive
maintenance of complex faults in bearings and other rotating machinery, and
has good prospects for widespread application.
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1 Introduction

Rolling bearings, as the core components of mechanical systems,
are widely used in industrial machinery, wind turbines, rail transit
and other fields (An et al., 2023). According to the 2023 Industrial
Equipment Failure Statistics Report, bearing failures account for
over 40% of rotating machinery failures, with composite failures
accounting for over 60%. This type of fault is prone to misdiagnosis
due to characteristic coupling and interference signals, which can
lead to equipment shutdown. The daily loss of wind turbine
shutdown due to composite faults can reach CNY 50,000 to
100,000, while car gearbox failures can easily trigger safety
accidents (Agajie et al, 2023). The reliability of key rotating
machinery is the foundation for the stable operation of energy
systems, and the fault diagnosis technology is crucial for ensuring
the efficiency and sustainability of renewable energy systems (Agajie
et al., 2024). At present, the diagnostic methods for single bearing
faults are relatively mature, but composite faults under complex
working conditions still faces challenges. In traditional feature
extraction methods, spectrograms convert time-domain vibration
signals into frequency domains, visually displaying frequency
reflect the
variation of signal frequency over time. Gray level co-occurrence

components. The time-frequency diagram can
matrix images describe the statistical characteristics of vibration
signals from a texture perspective (Liu et al., 2023; Bafiler et al,
2022). However, existing methods still have the following
limitations: (1) Manual feature extraction is highly dependent,
and traditional methods (such as SVM and ANN) require
manual design of spectral peaks, entropy values, and other
features, resulting in poor coupling feature extraction
performance for composite faults (Toumi et al, 2022; Ozmen
and Karabacak, 2023); (2) High sensitivity to noise: Fixed
transformation image generation methods such as spectrograms
are prone to losing fault features under industrial noise, and have
low diagnostic accuracy at low Signal-to-Noise Ratios (SNR<0 dB);
(3) The generalization of composite faults is poor, and a single deep
learning model cannot fully capture the “spatial coupling time
evolution” characteristics of composite faults, resulting in low
accuracy when generalizing to different types of composite faults
(Preethi and Mamatha, 2023; Chen et al., 2021). Therefore, it is
necessary to develop a more comprehensive and efficient system to
address composite faults in bearing.

In terms of signal feature extraction, many feature extraction
algorithms based on vibration signals have been built. To address the
difficulties in obtaining labels for bearing data, Tao et al. built an
unsupervised cross-domain fault diagnosis strategy. The method
extracted features from signal decomposition and reconstruction.
Compared with other algorithms, this method had higher
robustness (Tao et al, 2023). Zhao et al. built a multi-scale
feature fusion strategy to address the complex vibration signals
and difficult impact characteristic extraction in composite faults.
The method involved ensemble empirical mode decomposition,
feature calculation, and fusion, followed by diagnosis using least
squares SVM. This method could quantitatively characterize data,
improve anti-interference ability, extract features, and identify fault
types, with significantly higher accuracy than a single method (Zhao
et al,, 2022). To solve the challenge that the original permutation
entropy algorithm ignores the amplitude relationship between
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adjacent signals, Zheng et al. proposed phase inverse permutation
entropy, combined with whale optimization algorithm to SVM
diagnosis. This method could effectively identify the location and
degree of faults, with higher fault recognition rate (Zheng et al,
2023). In response to the difficulty of diagnosing multiple faults, Lv
et al. built a multi-fault separation and identification method based
on time-frequency spectra to improve the fast path optimization
method and extract multiple transient component curves. The time-
frequency masking was constructed, and signal reconstruction and
fault detection were performed. This method effectively separated
and identified multiple faults in rolling bearings (Lv et al., 2024). To
address the certainty of feature extraction, Kaya et al. created an
experimental bearing testing device. A feature extraction strategy
based on the co-occurrence matrix was proposed. The new signal
was obtained using a one-dimensional local binary pattern. After
testing on three datasets, the success rate of this method reached
87.50%, 96.5%, and 99.30% for various speeds, fault sizes, and fault
types, respectively (Kaya et al, 2021). Li X et al. proposed an
intelligent diagnostic framework that combined acoustic vibration
signals with graph neural networks to address the single signal
diagnosis being affected by strong noise and traditional deep
learning ignoring sample dependence. The framework integrated
data using the correlation variance contribution method, optimized
data representation using AcvGraph, and integrated features
DiffPool
Experimental results showed that it could effectively detect

through  enhanced dimensionality  reduction.
bearing faults and was superior to other intelligent technologies
(Li et al,, 2024). To address the difficulty in balancing accuracy and
generalization ability in generalized bearing fault diagnosis, Li ] et al.
proposed the IBN-MixStyle network, which integrated
discriminative and generalized features and combined them with
a dynamic weighted invariant risk minimization strategy to optimize
the model. The results showed that the average diagnostic accuracy
was improved by 5.3%-15.47%, which was suitable for highly
variable industrial environments (Li et al., 2025). To address the
insufficient time-frequency resolution and energy diffusion of
bearing fast time-varying signals, Deng W et al. proposed the
parameterized iterative time-frequency multiple compression
transform method, which improved time-frequency performance
by optimizing kernel function parameters and iterative
rearrangement strategy. The results showed that this method had
excellent time-frequency energy concentration and could more
accurately capture signal features to improve diagnostic
performance (Deng et al., 2025a).

At present, many scholars have introduced deep learning
algorithms into fault diagnosis. In response to the challenge that
existing models cannot adaptively select features, Guo et al. built an
end-to-end diagnosis strategy based on attention mechanism and
CNN-Bidirectional Long Short-Term Memory Network (CNN-
BiLSTM). This strategy had high accuracy and strong noise
resistance on different datasets, and had universality and
superiority (Guo et al., 2023a). To solve the single task learning
being unable to mine complementary information, Wang et al. built
a multi-task attention CNN, which achieved information sharing.
The performance was superior to advanced deep learning methods
(Wang et al,, 2021). Xing et al. designed a new CNN-based to deal
with the data imbalance in intelligent fault diagnosis. The

experiment showed that this method could automatically extract
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discriminative features and effectively deal with data imbalance
problems (Xing et al, 2022). In response to the difficulties in
fault identification caused by noise, Aljemely et al. proposed
LSTM-large interval nearest neighbor algorithm, which used
orthogonal weight initialization technology to remember key fault
information and organize samples. Two bearing fault diagnosis
experiments showed that this method outperformed existing
methods (Aljemely et al., 2022). Amiri A F et al. proposed a two-
step approach to address modeling difficulties and insufficient
diagnostic accuracy in photovoltaic system fault detection: using
MGWO algorithm to extract ODM parameter modeling, and then
constructing a double random forest classifier. The modeling root
mean squared error was 0.0122, and the accuracy of fault detection
and diagnosis reached 99.4%, which was better than that of SVM
(Amiri et al., 2024). To address the scarce train motor bearing fault
samples and insufficient generalization ability under dynamic
working conditions, Zhao H et al. proposed a few-sample cross-
domain fault diagnosis method based on MAML-GA, which
optimized the model through dynamic meta-task enhancement,
parameter update operator, and lightweight feature extraction
showed that the method effectively
improved the cross-domain generalization ability. The diagnostic

network. The results

accuracy was significantly higher than that of the mainstream
method (Zhao et al., 2025). To address the difficult identification
of bearing fault pulse features under complex working conditions,
Deng W et al. combined time redistribution multi-synchronous
compression transformation, complex sparse learning dictionary,
and mask decomposition algorithm to extract features. The results
showed that the method had strong anti-noise interference and
significantly improved the accuracy and robustness of fault
frequency extraction (Deng et al., 2025b).

Moreover, the advancements in intelligent sensing and
diagnosis are not confined to mechanical systems. In other
complex and high-risk fields, such as air traffic control,
research has demonstrated the effectiveness of context aware
speech recognition and multi-modal situational awareness
systems in improving operational safety and efficiency through
deep learning (Guo et al., 2025a; Guo et al., 2025b). These studies
emphasize the potential of adaptive data-driven models to capture
complex patterns in noisy, real-time environments, a challenge
similar to that encountered in bearing composite fault diagnosis.
Meanwhile, in the field of mechanical fault diagnosis, ongoing
research continues to introduce innovative methods to overcome
the persistent challenges in signal analysis. Recent developments
have focused on enhancing the handling of non-stationary signals
and improving feature extraction precision. For instance,
techniques such as Empirical Fourier-Bessel Heuristic
Denoising (EFBHD) provide enhanced frequency resolution for
isolating fault-related narrowbands (Zhou et al., 2025). While
iterative frameworks such as Shrinkage Sliding Fourier-Bessel
Packet (SSFBP) can dynamically and centrally extract feature
spectral components (Zhou et al., 2026). Beyond feature
extraction, ensuring data integrity is equally vital. Efficient
models such as Variable Scale Multi-layer Perceptron (VS-
MLP) have effectively recovered abnormal vibration data with
good computational efficiency (Fan et al., 2024). These efforts
collectively reflect the ongoing push for more adaptive, precise,
and computationally efficient signal processing.
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In summary, scholars have proposed many solutions for bearing
fault detection, but there are still problems such as difficulty in
extracting complex faults and high dependence on samples. A
vibration image generation method based on Empirical Mode
Decomposition-Adaptive Angle Distribution Polar Coordinate
Image (EMD-AADPCI) and a CNN-LSTM fault diagnosis model
are built to deal with the composite fault diagnosis problem. The
innovation of the research lies in: @ proposing the AADPCI polar
coordinate transformation method, which uses an adaptive angle
allocation mechanism (dynamically adjusting the angle factor based
on the time-domain characteristics of IMF components) to solve the
problem of fixed features in traditional polar coordinate imaging; @
Combining EMD with AADPCI, filtering IMF components and
polar imaging to preserve richer fault features; ® The CNN-LSTM
hybrid model is constructed, and the spatial feature extraction and
long time sequence dependency capture capabilities of the two are
fused to solve the problem of incomplete feature extraction of a
single model. The core goal of the research is to solve the problems of
“feature loss and noise sensitivity” through the EMD-AADPCI
method, and to solve the problems of “incomplete feature
extraction and poor generalization” through the CNN-LSTM
model, ultimately achieving high-precision diagnosis of
composite faults in rolling bearings under complex working
limitations  of

conditions and compensating for the

existing methods.

2 Methods and materials

2.1 Vibration image generation based on
EMD-AADPCI

Analyzing the vibration signals can obtain fault information of
the bearings, but vibration signals are one-dimensional time series
data, and the information display is relatively simple. Vibration
images can express the amplitude, frequency, phase, and other
information of vibration signals through features such as
grayscale, color, and texture, making the feature information
more intuitive and comprehensive (Li et al, 2022; Meng et al,
2021). Converting vibration signals into vibration images can
enhance the stability of features and make it easier to use deep
learning algorithms for fault classification. The study proposes the
EMD-AADPCI vibration image generation method. Firstly, EMD
decomposes the vibration signal into IMFs and a residual
component, which contains local characteristic signals. The input
vibration signal is z (¢). Firstly, all local maximum and minimum
points of z (t) are found. The cubic spline interpolation function is
taken to match the maximum and minimum points, respectively,
and obtain the upper envelope ey () and lower envelope e, (t) of
the vibration signal z (¢). The average value is shown in Equation 1.

m (t) — Cmax (t) ;’ €min (t) (1)

In Equation 1, m; (t) signifies the mean of epay () and em;y (£) at
the first iteration. Subtracting the mean envelope yields the first IMF
component, as shown in Equation 2.

hy (t) = z(8) —my (1) 2

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1688598

Shi and Yang
15
é 101
=
04 - >
5 —
FIGURE 1

The process of AADPCI transformation.

If hy (t) satisfies the IMF is determined, that is, the number of
extreme points and the quantity of zero crossings are same or differ
by a maximum of 1, and are locally symmetrical. If it is not satisfied,
hy (t) is taken as the new signal. The steps are repeated until ¢; ()
that meets the conditions is obtained. Subtracting the first IMF ¢, ()
yields the remaining signal, as presented in Equation 3.

ri(t) = z(t)-ci(b) 3)

r1 (t) signifies a new signal. The second IMF component c, (t) and
the residual signal r; (f) are obtained. r, (¢) signifies a new signal.
The calculation is repeated until the residual signal r,(f) is a
monotonic function or constant. Equation 4 presents the final
obtained original vibration signal.

z(t) = Y ci(t) + 7 (1) ()
i=1

Among the multiple IMF components obtained from EMD, the
component ¢; () containing the main fault information is selected
for polar coordinate transformation. The transformation principle
of AADPCI is shown in Figure 1.

In Figure 1, the length of ¢;(t) is N. The time series
t=1,2,3,--,N is mapped to the angle 6 of the polar
coordinate, and the signal amplitude c;(t) is mapped to the
radius r of the polar coordinate. The angle is adaptively
allocated. The definition of r(i) in the transformed polar
coordinate point A (r (i), 8(i)) is shown in Equation 5.

r(i) = _%i~ Zmin_ (5)
Zmax ~ Zmin
In Equation 5, Zmp signifies the minimum value of the vibration
parameter, and Zny,y signifies the maximum value of the vibration
parameter. The definition of 6(i) in polar coordinate point
A(r (i), 0(i)) is presented in Equation 6.

Zirqg ~ Zmin
(@) =g+ 2 "0 x Axw (6)

max ~ Zmin
In Equation 6, ¢ represents the initial line angle, usually taken as
60°. g is the time interval, with values ranging from 3 to 10. w is the
angle amplification factor, with values ranging from 20° to 60°. The
values of g and w are determined based on controlled variable
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Angle factor A

A is positively
correlated with peak
to peak value

experiments. Experiments have shown that when g is within 3-10, it
can balance computational complexity while ensuring image
resolution and feature continuity. When g >10, the image details
become redundant and the computation time significantly increase.
When g <3, it leads to feature loss. Similarly, w can effectively
distinguish the significance of different IMFs within 20°-60°". A too
small w will result in insufficient sidelobe discrimination, while a
large w will cause image distortion. The final value is determined
through grid search within the specified range to achieve the best
balance between feature retention rate and computational efficiency.
A represents the angle adaptation rate. The larger the A, the larger the
corresponding IMF component will be allocated to a larger angle
factor. According to the point A(r (i), 8(i)) transformed by polar
coordinates, an image is drawn on the polar coordinate plane, and
then the polar coordinate plane is discretized into several grids. The
number of points or energy in each grid is counted and converted
into grayscale values to obtain a two-dimensional vibration image.
The mapping relationship between the characteristic matrix and the
grayscale image is displayed in Figure 2.

In Figure 2, the original vibration signal data is changed into a
vibration feature matrix. The minimum value min is mapped to level
0 in the grayscale image, and the maximum value max is mapped to
level 255. The values of other elements in the matrix are mapped to
corresponding grayscale values between 0-255 based on their
relative positions between the maximum values, forming a visual
grayscale image of the vibration signal characteristics for subsequent
fault diagnosis and analysis. The EMD-AADPCI is shown
in Figure 3.

From Figure 3, the vibration signal dataset is divided into N
segments according to the fault state, with each segment being 7 in
length. The -i segment data is subjected to EMD to obtain several
IMF components. The Pearson Correlation Coefficient (PCC)
between each IMF component and the original vibration signal is
shown in Equation 7.

YN (x () -3 (y () - )

PCC =
VI 0 - D EY, (v () - 5)

@)

In Equation 7, x(t) is the original signal, y (t) is the i th IMF
component, and X and j are the average of the original signal and
the IMF component. The IMFs are sorted from largest to smallest
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FIGURE 3
Schematic diagram of EMD-AADPCI.

TABLE 1 Influence of different numbers of IMFs on feature retention rate
and calculation time (based on RBCFD).

Calculation time (s/
sample)

Feature retention
rate (%)

Number of

IMFs

4 85.5 1.1
5 89.3 14
6 92.1 1.7
7 92.6 2.2
8 92.8 2.6

according to PCC, and the first six groups of IMFs are superimposed
for noise reduction. The reasons are shown in Table 1.
Experimental verification with controlled variables shows that
when the number of IMFs is > 6, the fault feature retention rate
remains stable at over 90%. When the number of IMFs is greater
than 6, the feature retention rate does not improve significantly, but
the computation time increases by over 30%. Therefore, six IMFs are

Frontiers in Mechanical Engineering

selected to balance feature quality and computational efficiency.
Next, common time-domain metrics (such as RMS value, peak
value, kurtosis, and impulse factor) are calculated for the six selected
IMF components to form a feature vector. The standard deviation of
each time-domain metric across all six IMF components is then
calculated. A larger standard deviation indicates a greater ability of
the metric to distinguish between different IMFs. The time-domain
metric with the largest standard deviation is selected and its values
across IMF1-IMF6 are normalized. The normalized result is the
adaptation rate angle A corresponding to each IMF. Finally, IMF1-
IMF6 are sequentially converted to the AADPCI.

2.2 Composite fault diagnosis based on
CNN-LSTM

The vibration images produced by EMD-AADPCI contain a
large amount of characteristic information of bearing composite
faults, such as sharp pulses, amplitude changes, peak changes, etc.
Next, a suitable model is selected to extract these features and
complete the fault diagnosis task through continuous learning
and training. The CNN-LSTM combines CNN and LSTM. CNN
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FIGURE 4

Network diagram of CNN and LSTM. (a) Network diagram of CNN (b) Network diagram of LSTM.

extracts local features, and then input into LSTM for sequence
modeling. This model effectively integrates the feature extraction
advantages of both to more comprehensively capture the fault
features of bearings and improve the diagnosis accuracy. CNN
includes convolutional computation and has deep structure, with
representation learning ability, suitable for the field of fault
classification (Guo et al, 2023b; Sun and Fan, 2023). The
vibration signals and temperature signals generated during the
operation of rolling bearings are typical time series data. LSTM
can effectively process such sequence data and automatically learn
various types of fault features. The diagrams of CNN and LSTM are
presented in Figure 4.

In Figure 4a, the input layer can handle multidimensional data,
such as vibration image data generated by EMD-AADPCI. The
convolutional layer extracts features through convolutional kernel
sliding scanning and generates a feature map. The convolution
calculation of the output node is shown in Equation 8.
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(®)

m
1 -1 !
z; = f(zvij *Zpivj t 8]’)
i=1
In Equation 8, z; signifies the j-th output node in the I-th layer.
m signifies the quantity of convolution kernels. v;; represents the i-th

convolution kernel. & signifies the bias term. *

signifies the
subjected to

dimensionality reduction through pooling layers, and then passed

convolution operation. The feature map is

on to convolutional and pooling layers. As the hierarchy progresses,

features are gradually extracted from simple to complex. The output
of neurons after max pooling operation is shown in Equation 9.

Y = max, [b], (j-Dw+1<r< jw )

In Equation 9, yﬂm signifies the j-th neuron in the i-th feature of

the I-th. bz(’) signifies the activation value of the corresponding

neuron. w signifies the width of the pooling area. Finally, all
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The framework for CNN-LSTM.

obtained features are aggregated in the Fully Connected Layer (FCL)
to classify. Equation 10 displays the output of the FCL.

p=r(8p" +1) (10)

In Equation 10, f(-) signifies the Softmax function. &'
signifies the weight. #' signifies the bias term. p'™! represents
the previous output. In Figure 4b, LSTM has Forget Gate (FG),
Input Gate (IG), and Output Gate (OG). Given a time series
Z(z1,22,23, """, 2n), the hidden layer is C(cy,c2,¢3, %, ¢). FG
checks the hidden state and current input of the previous
moment. The Sigmoid outputs a value between 0-1, which is
multiplied by the previous value in the memory unit to
determine which information to discard from the memory

unit, as presented in Equation 11.

g = Sigmoid(Wf Xc +Usp Xz + Ef) (11)

In Equation 11, g; represents the output value of the FG
passing through the Sigmoid function at time t. W  signifies the
weight matrix connecting the FG to the output ¢,; of the
previous hidden layer. Uy signifies the weight matrix
connecting the FG to the input z, at present. ¢,_; signifies the
output value at the previous time, carrying information from the
previous time. & signifies the bias term of the FG, used to adjust
the output of the activation function. IG: The Sigmoid layer
decides information updates, the tanh layer produces new
candidate values, and the two are combined to determine the
new information that needs to be added to the storage unit. The
updated memory unit is obtained by adding it to the memory
unit value processed by the FG. The output y, of the IG at time ¢

is shown in Equation 12.
v = Sigmoid(W; x ¢,y +U; x z, + &) (12)

In Equation 12, W; and U; signify the weight matrices of the IG
and ¢;_; and z;. &; signifies the bias term of the IG. The candidate
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state value S; of the memory unit at time t is presented in
Equation 13.

S, =tanh(We x ¢ +Ug x 2, + &) (13)

In Equation 13, the tanh function is used to compress the output
value between —1 and 1. W¢ and U are weight matrices related to
candidate states for memory units. & signifies the bias term of the
memory unit. By integrating the output results of the FG and IG, the
current state value of the memory unit is obtained, as shown in
Equation 14.

St =g S + ,'Vt*st (14)

In Equation 14, §;_; signifies the state value of the memory unit at
time ¢ — 1. * signifies the product of vectors. OG: Based on the current
hidden state and input, which information in the memory unit is
determined to output through the Sigmoid function. Then, the
memory unit value is transformed through the tanh function and
multiplied with the Sigmoid output result to obtain the final output.
The activation value O, of the OG at time ¢ is presented in Equation 15.

O, = Sigmoid (Wo X ¢;-1 +Uo X 2, + &) (15)

In Equation 15, & signifies the bias term of the OG. The output
value ¢; of the model at time ¢ is presented in Equation 16.

¢; = O;*tanh (S;) (16)

Finally, the CNN-LSTM is presented in Figure 5.

From Figure 5, the vibration image data are input into both the
CNN module and the LSTM. The CNN has multiple convolutional
layers. The kernel of each convolutional layer performs feature
extraction, introduces nonlinearity into the activation function,
and maximizes pooling to reduce data dimensionality and
computational complexity. Multi-layer convolution operation
gradually extracts spatial features from vibration images. The
LSTM module consists of multiple LSTM units, each containing
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TABLE 2 Structural parameter of CNN-LSTM.
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Network Sub - Number of Number of Activation Pooling Number of  Dropout
layer network layers output function size hidden units
channels
Convolutional CNN 3 3x3 32—-64—128 ReLU — — —
layer
Max pooling 2 2x2 — — 2x2 — —
layer
Fully connected 1 — 256 ReLU — — —
layer
LSTM layer LSTM 2 — — Sigmoid — 128 0.2
Fully connected 1 — 256 ReLU — 256 —
layer
Adaptive angle allocation
Screening the top 6 IMFs 3
Raw vibration RS R
signal acquisition
- 5 e e » 04
EMD Hrtabbtiirisbitieb bbbt isbite A A DO polar
decomposition ~ * ! oo ! Hib bR o dinate imaging
CONN-LSTM
Convolutional neural network.
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LSTM Unit 1 LSTM Unit m LSTM model
Long Short Term Memeory Network

FIGURE 6
Complete flowchart for diagnosing composite faults in rolling bearings.

an FG, IG, and OG, used to process sequence data and capture long-
term dependencies. The features extracted by CNN and LSTM are
integrated, and then the features are integrated through an FCL.
Finally, the diagnostic results are output through a classifier function
to determine whether there is a fault in the bearing and its type. The
structural parameters of the CNN-LSTM are shown in Table 2.

After constructing the CNN-LSTM model, the complete process
of diagnosing composite faults in rolling bearings using EMD-
AADPCI and CNN-LSTM is shown in Figure 6.

3 Results

3.1 Composite fault diagnosis analysis based
on EMD-AADPCI vibration images

To verify that the vibration images generated by EMD-AADPCI
contain richer and more accurate feature information, this study
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compares them with images generated by Multi-Information
Capacity Simplified Polar Coordinate Image (MIC-SPCI) and
validated them on the dataset using CNN. To balance model
performance and operational efficiency, the fusion and training
hyperparameters were determined as follows: Adam is chosen as the
optimizer, which converges faster and has smaller loss fluctuations
on small sample datasets compared to SGD and RMSprop. The
learning rate is set to 0.001. If it is too high, it may overfit, while if it is
too low, it may delay convergence. The batch size is set to 32 to
balance hardware memory usage and training stability. The training
epochs are set to 100, combined with an early stop strategy
(terminate if the validation set loss does not decrease for five
consecutive epochs). The data validation segmentation ratio is
20%, which not only avoids over-fitting, but also effectively
evaluates generalization ability. The study used two self-built
rolling bearing composite fault datasets for validation. Rolling
Bearing Composite Fault Dataset (RBCFD): A single point fault
was simulated on bearing 6,205 by performing electrical discharge
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Comparison of MIC-SPCl and EMD-AADPCI vibration images for four types of faults (A-normal, B-inner ring + rolling element, C-outer ring + rolling

element, and D-inner ring + outer ring) in the RBCFD.

machining on the inner and outer rings and rolling elements of a
normal bearing. Then, four states were constructed by combining
faults from different parts: normal (A), inner ring + rolling element
fault (B), outer ring + rolling element fault (C), and inner ring +
outer ring fault (D). The vibration signal is collected by an
acceleration sensor installed on the bearing seat, with a sampling
frequency of 12 kHz, a motor speed of 1,800 rpm, and a load of
0.5 hp. 200 samples were collected for each state, with a length of
1,024 data points per sample, for a total of 800 samples. Rolling
Bearing and Rotor Friction Composite Fault Dataset (RBRFCFD):
On the same test bench, rotor friction faults were introduced and
four additional states were constructed: normal (E), inner ring +
rotor friction fault (F), outer ring + rotor friction fault (G), and
rolling element + rotor friction fault (H). The collection settings are
the same as that of RBCFD, and 200 samples are obtained for each
state, totaling 800 samples. 80% of all datasets are used for training
and 20% for testing. The vibration images generated by MIC-SPCI
and EMD-AADPCI for various faults in the RBCFD are presented
in Figure 7.

In Figure 7, the vibration image generated by MIC-SPCI had a
total of 12 side lobes, and each side lobe had its own characteristic
features, such as different thickness and deflection angles. However,
the vibration images of faults A and C generated by MIC-SPCI were
quite similar, which was not conducive to subsequent fault diagnosis
tasks. The vibration images generated by EMD-AADPCI only
retained the six most prominent side lobes, each with varying
thickness, deflection angle, and distribution phenomenon. The
distinguishing features of the four types of faults were relatively
clear, which was beneficial for subsequent fault diagnosis tasks. The
core reason why EMD-AADPCI is superior to MIC-SPCI is as
follows: (1) MIC-SPCI adopts a fixed angle allocation of 12 side-
lobes, which cannot be dynamically adjusted according to fault
characteristics; While EMD-AADPCI allocates a larger angle factor
to the IMF with more prominent fault features and a smaller angle to
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the IMF with fuzzy features according to the time-domain index
allocation angle of the IMF to avoid irrelevant feature interference;
(2) EMD can filter high-frequency noise in the original signal, while
MIC-SPCI directly images the original signal. Noise can cause
sidelobe features to be blurred, resulting in higher fault
discrimination. 400 sample images are randomly selected from
the RBCFD, with 100 images for each type of fault. The samples
are subjected to MIC-SPCI and EMD-AADPCI operations. The
confusion matrix combined with CNN diagnostic results is
presented in Figure 8.

According to Figure 8a, the fault classification accuracy based on
MIC-SPCI was only 72.75%. The classification accuracy of type A
was the highest, at 75.00%. The classification accuracy of type C
faults was relatively low, with 11 misclassified as type B faults,
10 misclassified as type D faults, and nine misclassified as type A.
According to Figure 8b, the fault classification accuracy based on
EMD-AADPCI was significantly higher than that of MIC-SPCI,
reaching 93.00%. The model had a classification accuracy of over
90.00% for all four types of faults, with the highest classification
accuracy for types A and D. The classification accuracy of type B was
relatively low, with 4 misclassified as type C, 3 misclassified as type
A, and 3 misclassified as type D. The experiment is repeated
10 times. Figure 9 displays the comparison results.

According to Figure 9a, after 10 experiments, the average
accuracy of the MIC-SPCI algorithm was only 72.76%, the
average recall was 72.97%, and the average F1 value was 71.64%.
As shown in Figure 9b, the EMD-AADPCI had significantly higher
indicators than the MIC-SPCI, with an average accuracy of 91.73%,
which was 18.97% higher than that of the MIC-SPCI. The average
recall rate and F1 value were 92.38% and 92.15%, respectively. The
vibration images generated by the EMD-AADPCI algorithm have
clearer features and help improve the diagnosis accuracy. To verify
the independent contribution of each key module in the proposed
method and quantitatively evaluate the effectiveness of the AADPCI
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TABLE 3 Results of ablation experiments on the RBCFD.

Feature generation method

Classification model

Recall (%) F1-score (%)

Accuracy (%)

MIC-SPCI CNN-LSTM 72.75 72.97 71.64

EMD-FPCI CNN-LSTM 86.50 86.80 86.25
EMD-AADPCI CNN-LSTM 98.00 98.72 98.33
EMD-AADPCI CNN 93.00 92.38 92.15
EMD-AADPCI LSTM 85.25 85.32 85.17
EMD-AADPCI CNN-LSTM 98.00 98.72 98.3

adaptive mechanism, ablation experiments were designed. On the
RBCED, the performance of the following feature generation
methods was compared using the same CNN-LSTM classifier: (1)
MIC-SPCI (baseline): Fixed angle polar coordinate imaging. (2)
EMD-FPCI: Using EMD, but employing the same Fixed Polar
Coordinate Imaging (FPCI) as MIC-SPCI for imaging, i.e.
removing the adaptive mechanism of AADPCL (3) EMD-
AADPCI (Ours): Complete adaptive angle allocation polar
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coordinate imaging. In addition, the combination effect of
different classifiers was evaluated: (4) EMD-AADPCI + CNN:
Using only the CNN model. (5) EMD-AADPCI + LSTM: Using
only the LSTM model. (6) EMD-AADPCI + CNN-LSTM: The
proposed complete model. The experimental results are shown
in Table 3.

According to Table 3, under different feature generation
methods and the same CNN-LSTM classifier, the accuracy of
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TABLE 4 Performance indicators of different methods on RBCFD and RBRFCFD (average of 10 experiments).

Dataset Method Accuracy (%) Recall (%) F1-score (%) Convergence epochs
RBCFD MIC-SPCI + CNN 72.75 72.97 71.64 35
EMD-AADPCI+LSTM 85.25 85.32 85.17 50
EMD-AADPCI + CNN-SVM 9125 9167 9125 40
EMD-AADPCI + CNN-LSTM 98.00 98.72 98.33 2
RBRFCFD MIC-SPCI + CNN 71.50 71.83 70.92 38
EMD-AADPCI+LSTM 84.75 85.01 84.89 52
EMD-AADPCI + CNN-SVM 90.80 9122 91.01 )
EMD-AADPCI + CNN-LSTM 97.80 98.55 98.18 23

EMD-FPCI was 13.75% higher that of MIC-SPCI, mainly due to the
multi-scale decomposition and denoising effect of EMD on the
signal. EMD-AADPCI has further improved by 11.50% compared to
EMD-FPCI, which directly quantifies the performance gain brought
by the adaptive angle allocation mechanism and proves its core
innovative value. When using the same EMD-AADPCI features, the
performance of the CNN-LSTM hybrid model was significantly
better than that of a single CNN or LSTM model, verifying the
effectiveness of model fusion.

3.2 Composite fault diagnosis analysis based
on CNN-LSTM diagnostic model

After deciding to use EMD-AADPCI as the feature extraction
algorithm, an algorithm for fault classification is further selected.
Common fault classification algorithms include CNN, ANN, SVM,
LSTM, etc. The study combines CNN with LSTM to design a CNN-
LSTM composite diagnostic model for classification tasks. When
verifying the effectiveness of vibration images generated by EMD-
AADPCI, experiments have been conducted in conjunction with
CNN. Therefore, the LSTM and CNN-SVM models are compared
with the proposed CNN-LSTM, and verified on the RBRFCFD using
EMD-AADPCI. Figure 10 presents the results.
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In Figure 10a, the training accuracy of a single LSTM was low
and fluctuated greatly. It gradually stabilized after 50 iterations, with
a training accuracy of 81.07%. The training accuracy of the CNN-
SVM was relatively high, stabilizing at 91.45% after 40 iterations.
The CNN-LSTM model converged to 94.88% after only
22 iterations. In Figure 10b, the loss rate of the LSTM gradually
converged to 2.53% after 60 iterations. The loss rate of the CNN-
SVM converged to 1.92% after 30 iterations. The loss rate of the
CNN-LSTM model stabilized at 1.43% after 15 iterations. The CNN-
LSTM demonstrates better performance, higher training accuracy,
and lower loss rate. The performance comparison of different
methods on the RBCFD and RBRFCFD is shown in Table 4.

According to Table 4, the comprehensive performance of the
proposed EMD-AADPCI + CNN-LSTM model is significantly
better than other comparison methods on both datasets. On the
RBCFD, the accuracy of the model reached 98.00%, the recall rate
was 98.72%, and the F1 value was 98.33%. Compared with methods
such as MIC-SPCI + CNN (accuracy 72.75%) and EMD-AADPCI +
LSTM (accuracy 85.25%), all performance indicators were
significantly improved. On the RBRFCFD, the model still
maintained a leading performance, with accuracy, recall, and
F1 score reaching 97.80%, 98.55%, and 98.18%, respectively, fully
demonstrating good generalization ability. In addition, the training
convergence efficiency of this model was also outstanding: It only
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TABLE 5 Comparison of costs calculated by different methods.

Dataset Method Single-sample Model training time  Single-sample Number of FLOPs
image generation (min/100 epochs) inference parameters (G)
time (ms) time (ms) (x10%)
RBCFD MIC-SPCI + CNN 8.2 125 31 128 2.8
EMD- 17.3 18.6 45 156 35
AADPCI+LSTM
EMD-AADPCI + 17.1 152 3.8 142 32
CNN-SVM
EMD-AADPCI + 175 23 5.2 218 43
CNN-LSTM
RBRECED | MIC-SPCI + CNN 8.5 13.1 33 128 2.8
EMD- 17.8 192 47 156 35
AADPCI+LSTM
EMD-AADPCI + 17.4 158 40 142 32
CNN-SVM
EMD-AADPCI + 17.6 23.1 5.4 218 43
CNN-LSTM
100 100
E 5/5% 3/3% 4/4% E 0/0% 6/6% 3/3%
80 80
E F 0, ) 0, E 0 0, 0,
S 4/4% W%  44% 60 S F| 1% 22%  6/6% 60
g 2
Q Q
§ G| 33%  6/6% - 5/5% 40 § Gl 1% 22% - 3/3% 40
20 20
H| 2/2% 9/9% 7/7% H| 22% 5/5% 4/4%
' 0 0
E F G H E F G H
Prediction category Prediction category
(a) (b)
100
E 0/0% 0/0% 0/0%
80
g 9 ; .
S F| 00% 1%  212% 60
g
3| 1% 2% - 1/1% 40
20
H| 0/0% 1/1% 0/0% -
0
E F G H
Prediction category
()

FIGURE 11
Confusion matrix of fault diagnosis results based on LSTM, CNN-SVM, and CNN-LSTM. (a) Sample testing confusion matrix for LSTM (b) Sample

testing confusion matrix for CNN-SVM (c) Sample testing confusion matrix for CNN-LSTM.

required 22 rounds on the RBCFD and 23 rounds on the RBRFCFD,  hardware environment with an Intel Core i7-12700H processor,
which was much lower than that of other comparison methods. To 32 GB of memory, and an NVIDIA RTX 3060 graphics card. The
evaluate the practicality, the computational costs (including single-  results are shown in Table 5.

sample image generation time, model training time, and single- As shown in Table 5, the image generation time of EMD-
sample inference time) of different methods were tested based ona ~ AADPCI was slightly longer than that of MIC-SPCI (due to the
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The average accuracy, recall, and F1 value of three models. (a) Various indicators based on LSTM model (b) Various indicators based on CNN-SVM

model (c) Various indicators based on CNN-LSTM model.

EMD and adaptive angle calculation), but the single-sample
generation time was still controlled within 20 ms, meeting the
real-time requirements. Although the number of parameters and
FLOPs of the CNN-LSTM model was higher than that of a single
model, the actual training time (convergence in 22-23 rounds) was
only 8-10 min, and the single-sample inference time was about 5 ms,
which was far below the threshold (50 ms) for real-time diagnosis in
industrial scenarios. Compared with the Transformer model
(approximately five million parameters and approximately 12G of
FLOPs), the computational cost of the EMD-AADPCI + CNN-
LSTM was reduced by more than 60%, making it more suitable for
deployment on edge computing devices. 400 sample images are
randomly selected from the RBRFCFD, with 100 images for each
type of fault. The confusion matrix diagnosed by the three types of
models is shown in Figure 11.

In Figure 11a, the fault classification accuracy of a single LSTM
was relatively low, only 85.25%. The classification accuracy for types
E and G was relatively high, at 88.00% and 86.00%, respectively.
According to Figure 11b, the classification accuracy of the CNN-
SVM was 91.25%, with the highest classification accuracy of 94.00%
for type G. In Figure llc, the CNN-LSTM was 98.00%. The
classification accuracy of this model for four types of faults was
100%, 97.00%, 96.00%, and 99.00%, respectively. The experiment
conducted was 10 times. The average accuracy, recall, and F1 value
are obtained, as presented in Figure 12.

According to Figure 12a, the average classification accuracy of
the LSTM was only 84.79%, with an average recall and F1 value of
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85.32% and 85.17%, respectively. In Figure 12b, compared with the
LSTM model, the CNN-SVM had
performance, with an average classification accuracy, recall, and
F1 value of 90.89%, 91.67%, and 91.25%. In Figure 12c, the CNN-
LSTM had significantly higher performance indicators than the
other two models, with an average classification accuracy, recall,
and F1 value of 98.13%, 98.72%, and 98.33%. The CNN-LSTM
demonstrates better model performance and higher classification
accuracy. Due to the diverse types of composite faults in bearings
under actual working conditions, the noise mixed in their signals is
also diverse. To verify the noise resistance of these three models,
Gaussian white noise of —4~4 dB was added to the RBCFD and
RBRFCFD, and comparative experiments were conducted. The
classification accuracy of three models on the dataset with added
noise is presented in Figure 13.

In Figure 13a, on the RBCFD, LSTM and CNN-SVM had lower
classification accuracy when SNR<0 dB. However, when SNR was
between 0 and 4dB, the accuracy of these two models slightly
improved, stabilizing at around 85.00% and 90.00%, respectively.
The classification accuracy of CNN-LSTM was relatively stable at
different SNR values, reaching 98.89% at SNR = 4 dB. In Figure 13b,
on the RBRFCFD, the classification accuracy of LSTM and CNN-
SVM was significantly lower than that of CNN-LSTM. When the
SNR was -2 dB and 4dB, the accuracy of CNN-LSTM was relatively
high, reaching 97.63% and 98.12%, respectively. The reasons why
CNN-LSTM still maintains high accuracy at low SNR are as follows:
® EMD can suppress more than 80% of high-frequency noise, while

significantly improved
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AADPCI disperses the remaining noise to low-weight regions in
polar coordinates to avoid noise masking fault features; @ The
convolutional layer of CNN can filter isolated noise points in the
image by focusing on the spatial features of faults through local
receptive fields; The forget gate of LSTM can ignore temporal noise
interference and only retain the temporal evolution law of fault
features. This result indicates that the proposed model has stronger
anti-noise performance, which is suitable for fault diagnosis tasks
under complex working conditions.

4 Discussion and future work
4.1 Discussion and conclusion

For composite fault diagnosis, the EMD-AADPCI vibration
image generation method was first proposed, followed by the
CNN-LSTM fault diagnosis model. The results indicated the
vibration image generated by EMD-AADPCI contained richer
features, and the image discrimination of various faults was more
obvious. After combining MIC-SPCI and EMD-AADPCI with CNN
for validation on the RBCFD, the classification accuracy of MIC-
SPCI was only 72.75%. The average classification accuracy, average
recall, and F1 value after 10 experiments were 72.76%, 72.97%, and
71.64%, respectively. The classification accuracy of EMD-AADPCI
was 93.00%. After 10 experiments, the average classification
accuracy, average recall, and F1 value were 91.73%, 92.38%, and
92.15%, respectively. The vibration images generated by EMD-
AADPCI had better performance and more accurate feature
extraction. The reason is that the angle allocation of AADPCI is
adaptive and dynamically adjusted based on the local characteristics
of IMF components. This adaptive approach enables the generated
polar coordinate image to contain richer and more accurate fault
feature information. The proposed EMD-AADPCI is compared
with existing vibration image generation methods. Spectrum
diagram calculation is simple, but it can only present frequency
domain information, making it difficult to distinguish composite
faults. The Gray level Co-occurrence Matrix (GCM) requires a large

Frontiers in Mechanical Engineering

14

amount of computation, and the feature representation effect
depends on parameter settings. MIC-SPCI improves feature
visibility through polar coordinates, but due to fixed angle
allocation, it is difficult to adapt to subtle differences in different
faults. EMD-AADPCI first performs adaptive decomposition on the
signal through EMD, highlighting multi-scale fault characteristics,
and then uses adaptive angle allocation driven by time-domain
indicators to amplify the differences between faults. Although its
slightly higher than that of
spectrograms, it is significantly lower than that of GCM and has

computational complexity is

an absolute advantage in diagnostic accuracy.

In terms of fault classification, the study compared CNN-LSTM
with LSTM and CNN-SVM. The results showed that CNN-LSTM
had faster convergence speed, higher training accuracy, and lower
loss rate, which were 94.88% and 1.43%, respectively. The fault
classification accuracy of LSTM was 85.25%, the classification
accuracy of CNN-SVM was 91.25%, and the overall classification
accuracy of CNN-LSTM was high as 98.00%. After
10 experiments, the average classification accuracy, average recall,
and F1 value of CNN-LSTM were 98.13%, 98.72%, and 98.33%,
respectively. Meanwhile, the anti-noise performance of CNN-LSTM
was also stronger. The CNN-LSTM model demonstrates better
performance and higher classification accuracy for various types
of faults. The that CNN-LSTM combines the
characteristics of CNN in extracting local spatial features and

as

reason is
LSTM in extracting long-term sequence dependencies, thereby
more effectively identifying the features of various faults and
improving classification accuracy. In addition, compared with the
proposed CNN-LSTM with other advanced intelligent diagnostic
methods, although the EEMD-based method can alleviate modal
aliasing, it has higher computational cost and manual selection of
sensitive IMF. Models
Transformer are good at capturing long-range dependencies, but

based on attention mechanism or

the model structure is complex, requiring not only a large amount of
data to support training, but also higher requirements for
computing resources. The Graph Convolutional Network (GCN)
is a type of neural network method that can mine the correlation
features between samples, but it relies on the sample topology
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structure and has strict adaptability to data formats. It also
additional preprocesses topological relationships, which raises the
threshold for practical deployment. The CNN-LSTM architecture is
clear and efficient, with CNN responsible for extracting spatial
features and LSTM capturing temporal dynamic patterns. It can
effectively fuse spatiotemporal information without introducing
complex attention modules, ensuring high diagnostic accuracy
while controlling model complexity and training costs within a
reasonable range.

In summary, the method can solve the composite fault
diagnosis, providing new technical support for the normal
operation. The performance of this method demonstrates its
potential for application in practical industrial environments,
which can assist in predictive maintenance of equipment.
Although the research focuses on rolling bearings, the proposed
EMD-AADPCI generation concept and CNN-LSTM diagnostic
framework have excellent scalability and are expected to be
applied in the field of fault diagnosis of other rotating machinery
such as gearboxes and gears in the future.

4.2 Limitations and future work

Although the proposed EMD-AADPCI performs well in the
diagnosis of composite faults in rolling bearings, there are still
limitations: (1) Limited coverage of operating conditions:
Experimental data are mainly obtained under fixed load and
speed conditions, and have not fully covered more complex
industrial operating conditions such as variable loads and speeds.
This may affect the model’s generalization ability in dynamic
environments. (2) Real-time challenge: The serial computation
process of EMD and CNN-LSTM model results in relatively high
computational costs. In online monitoring scenarios that require
extremely high real-time performance, the inference delay of current
methods may become a deployment bottleneck. (3) Diversity of fault
types: The experiment mainly focuses on several preset composite
fault modes, and the diagnostic ability for more diverse or unknown
composite fault combinations needs further verification.

In response to the above limitations, future research work will be
carried out from the following aspects: (1) Extended operating
condition verification: To verify the robustness and generalization
ability of the method under different loads, speeds, and more diverse
composite fault types. (2) Model lightweight and deployment
optimization: Exploring model lightweight technologies, such as
using lightweight backbone networks like MobileNet, or using
model pruning, quantification and other means to reduce
computing complexity and memory occupation, and meet the
deployment needs of edge computing devices. (3) Enhanced
feature extraction capability: Attempting to integrate attention
mechanisms (such as SE module and CBAM) into CNN or
LSTM modules to enhance the model’s ability to focus on key
fault features, further improving diagnostic accuracy and anti-
interference. (4) Exploring end-to-end architecture: Researching
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the joint optimization of signal preprocessing (EMD) and

diagnostic networks or designing lightweight end-to-end

networks to reduce process steps and improve overall efficiency.
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