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Introduction: Bearing fault detection and prevention are crucial. However, 
traditional diagnostic methods generally suffer from insufficient accuracy 
when dealing with complex bearing faults. Therefore, developing new 
methods that can effectively characterize complex fault features and achieve 
high-precision diagnosis has significant theoretical and engineering value.
Methods: This study proposes a vibration image generation method based on 
Empirical Mode Decomposition-Adaptive Angle Distribution Polar Image (EMD- 
AADPCI) and constructs a hybrid diagnostic model combining Convolutional 
Neural Network (CNN) and Long Short-Term Memory (LSTM). First, the vibration 
signal is processed by Empirical Mode Decomposition, and the designed adaptive 
angle distribution mechanism dynamically allocates polar coordinate angles 
according to the local features of the intrinsic mode functions, converting the 
signal into a two-dimensional vibration image containing rich fault information. 
Subsequently, a CNN-LSTM hybrid model is constructed. CNN extracts spatial 
and deep features from the image, and LSTM captures the temporal 
dependencies between features, ultimately achieving accurate classification of 
complex bearing faults.
Results: Experiments show that the proposed method significantly outperforms 
traditional methods. In terms of feature representation, the vibration images 
generated by EMD-AADPCI achieved a 20.25% improvement in fault classification 
accuracy compared to the comparative method MIC-SPCI (reaching 93.00%). 
The constructed CNN-LSTM model achieved a training accuracy of 94.88% with 
a loss rate as low as 1.43%. In the composite fault diagnosis task, the model 
achieved a classification accuracy of 98.00%. After 10 repeated experiments, the 
model achieved average accuracy, recall, and F1 score of 98.13%, 98.72%, and 
98.33% for different composite fault diagnoses, respectively. Even in a low signal- 
to-noise ratio environment with strong noise interference (-4 dB), the model 
maintained a diagnostic accuracy of over 97%, demonstrating good robustness.
Discussion: The proposed EMD-AADPCI method can more effectively preserve 
and highlight fault-related information, while the CNN-LSTM hybrid model fully 
leverages the advantages of spatial feature extraction and time series modeling. 
Experimental results show that this method has extremely high accuracy and 
anti-interference ability in bearing composite fault diagnosis. This provides an 
effective and innovative solution for intelligent diagnosis and preventive 
maintenance of complex faults in bearings and other rotating machinery, and 
has good prospects for widespread application.
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1 Introduction

Rolling bearings, as the core components of mechanical systems, 
are widely used in industrial machinery, wind turbines, rail transit 
and other fields (An et al., 2023). According to the 2023 Industrial 
Equipment Failure Statistics Report, bearing failures account for 
over 40% of rotating machinery failures, with composite failures 
accounting for over 60%. This type of fault is prone to misdiagnosis 
due to characteristic coupling and interference signals, which can 
lead to equipment shutdown. The daily loss of wind turbine 
shutdown due to composite faults can reach CNY 50,000 to 
100,000, while car gearbox failures can easily trigger safety 
accidents (Agajie et al., 2023). The reliability of key rotating 
machinery is the foundation for the stable operation of energy 
systems, and the fault diagnosis technology is crucial for ensuring 
the efficiency and sustainability of renewable energy systems (Agajie 
et al., 2024). At present, the diagnostic methods for single bearing 
faults are relatively mature, but composite faults under complex 
working conditions still faces challenges. In traditional feature 
extraction methods, spectrograms convert time-domain vibration 
signals into frequency domains, visually displaying frequency 
components. The time-frequency diagram can reflect the 
variation of signal frequency over time. Gray level co-occurrence 
matrix images describe the statistical characteristics of vibration 
signals from a texture perspective (Liu et al., 2023; Bäßler et al., 
2022). However, existing methods still have the following 
limitations: (1) Manual feature extraction is highly dependent, 
and traditional methods (such as SVM and ANN) require 
manual design of spectral peaks, entropy values, and other 
features, resulting in poor coupling feature extraction 
performance for composite faults (Toumi et al., 2022; Özmen 
and Karabacak, 2023); (2) High sensitivity to noise: Fixed 
transformation image generation methods such as spectrograms 
are prone to losing fault features under industrial noise, and have 
low diagnostic accuracy at low Signal-to-Noise Ratios (SNR<0 dB); 
(3) The generalization of composite faults is poor, and a single deep 
learning model cannot fully capture the “spatial coupling time 
evolution” characteristics of composite faults, resulting in low 
accuracy when generalizing to different types of composite faults 
(Preethi and Mamatha, 2023; Chen et al., 2021). Therefore, it is 
necessary to develop a more comprehensive and efficient system to 
address composite faults in bearing.

In terms of signal feature extraction, many feature extraction 
algorithms based on vibration signals have been built. To address the 
difficulties in obtaining labels for bearing data, Tao et al. built an 
unsupervised cross-domain fault diagnosis strategy. The method 
extracted features from signal decomposition and reconstruction. 
Compared with other algorithms, this method had higher 
robustness (Tao et al., 2023). Zhao et al. built a multi-scale 
feature fusion strategy to address the complex vibration signals 
and difficult impact characteristic extraction in composite faults. 
The method involved ensemble empirical mode decomposition, 
feature calculation, and fusion, followed by diagnosis using least 
squares SVM. This method could quantitatively characterize data, 
improve anti-interference ability, extract features, and identify fault 
types, with significantly higher accuracy than a single method (Zhao 
et al., 2022). To solve the challenge that the original permutation 
entropy algorithm ignores the amplitude relationship between 

adjacent signals, Zheng et al. proposed phase inverse permutation 
entropy, combined with whale optimization algorithm to SVM 
diagnosis. This method could effectively identify the location and 
degree of faults, with higher fault recognition rate (Zheng et al., 
2023). In response to the difficulty of diagnosing multiple faults, Lv 
et al. built a multi-fault separation and identification method based 
on time-frequency spectra to improve the fast path optimization 
method and extract multiple transient component curves. The time- 
frequency masking was constructed, and signal reconstruction and 
fault detection were performed. This method effectively separated 
and identified multiple faults in rolling bearings (Lv et al., 2024). To 
address the certainty of feature extraction, Kaya et al. created an 
experimental bearing testing device. A feature extraction strategy 
based on the co-occurrence matrix was proposed. The new signal 
was obtained using a one-dimensional local binary pattern. After 
testing on three datasets, the success rate of this method reached 
87.50%, 96.5%, and 99.30% for various speeds, fault sizes, and fault 
types, respectively (Kaya et al., 2021). Li X et al. proposed an 
intelligent diagnostic framework that combined acoustic vibration 
signals with graph neural networks to address the single signal 
diagnosis being affected by strong noise and traditional deep 
learning ignoring sample dependence. The framework integrated 
data using the correlation variance contribution method, optimized 
data representation using AcvGraph, and integrated features 
through enhanced DiffPool dimensionality reduction. 
Experimental results showed that it could effectively detect 
bearing faults and was superior to other intelligent technologies 
(Li et al., 2024). To address the difficulty in balancing accuracy and 
generalization ability in generalized bearing fault diagnosis, Li J et al. 
proposed the IBN-MixStyle network, which integrated 
discriminative and generalized features and combined them with 
a dynamic weighted invariant risk minimization strategy to optimize 
the model. The results showed that the average diagnostic accuracy 
was improved by 5.3%–15.47%, which was suitable for highly 
variable industrial environments (Li et al., 2025). To address the 
insufficient time-frequency resolution and energy diffusion of 
bearing fast time-varying signals, Deng W et al. proposed the 
parameterized iterative time-frequency multiple compression 
transform method, which improved time-frequency performance 
by optimizing kernel function parameters and iterative 
rearrangement strategy. The results showed that this method had 
excellent time-frequency energy concentration and could more 
accurately capture signal features to improve diagnostic 
performance (Deng et al., 2025a).

At present, many scholars have introduced deep learning 
algorithms into fault diagnosis. In response to the challenge that 
existing models cannot adaptively select features, Guo et al. built an 
end-to-end diagnosis strategy based on attention mechanism and 
CNN-Bidirectional Long Short-Term Memory Network (CNN- 
BiLSTM). This strategy had high accuracy and strong noise 
resistance on different datasets, and had universality and 
superiority (Guo et al., 2023a). To solve the single task learning 
being unable to mine complementary information, Wang et al. built 
a multi-task attention CNN, which achieved information sharing. 
The performance was superior to advanced deep learning methods 
(Wang et al., 2021). Xing et al. designed a new CNN-based to deal 
with the data imbalance in intelligent fault diagnosis. The 
experiment showed that this method could automatically extract 
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discriminative features and effectively deal with data imbalance 
problems (Xing et al., 2022). In response to the difficulties in 
fault identification caused by noise, Aljemely et al. proposed 
LSTM-large interval nearest neighbor algorithm, which used 
orthogonal weight initialization technology to remember key fault 
information and organize samples. Two bearing fault diagnosis 
experiments showed that this method outperformed existing 
methods (Aljemely et al., 2022). Amiri A F et al. proposed a two- 
step approach to address modeling difficulties and insufficient 
diagnostic accuracy in photovoltaic system fault detection: using 
MGWO algorithm to extract ODM parameter modeling, and then 
constructing a double random forest classifier. The modeling root 
mean squared error was 0.0122, and the accuracy of fault detection 
and diagnosis reached 99.4%, which was better than that of SVM 
(Amiri et al., 2024). To address the scarce train motor bearing fault 
samples and insufficient generalization ability under dynamic 
working conditions, Zhao H et al. proposed a few-sample cross- 
domain fault diagnosis method based on MAML-GA, which 
optimized the model through dynamic meta-task enhancement, 
parameter update operator, and lightweight feature extraction 
network. The results showed that the method effectively 
improved the cross-domain generalization ability. The diagnostic 
accuracy was significantly higher than that of the mainstream 
method (Zhao et al., 2025). To address the difficult identification 
of bearing fault pulse features under complex working conditions, 
Deng W et al. combined time redistribution multi-synchronous 
compression transformation, complex sparse learning dictionary, 
and mask decomposition algorithm to extract features. The results 
showed that the method had strong anti-noise interference and 
significantly improved the accuracy and robustness of fault 
frequency extraction (Deng et al., 2025b).

Moreover, the advancements in intelligent sensing and 
diagnosis are not confined to mechanical systems. In other 
complex and high-risk fields, such as air traffic control, 
research has demonstrated the effectiveness of context aware 
speech recognition and multi-modal situational awareness 
systems in improving operational safety and efficiency through 
deep learning (Guo et al., 2025a; Guo et al., 2025b). These studies 
emphasize the potential of adaptive data-driven models to capture 
complex patterns in noisy, real-time environments, a challenge 
similar to that encountered in bearing composite fault diagnosis. 
Meanwhile, in the field of mechanical fault diagnosis, ongoing 
research continues to introduce innovative methods to overcome 
the persistent challenges in signal analysis. Recent developments 
have focused on enhancing the handling of non-stationary signals 
and improving feature extraction precision. For instance, 
techniques such as Empirical Fourier-Bessel Heuristic 
Denoising (EFBHD) provide enhanced frequency resolution for 
isolating fault-related narrowbands (Zhou et al., 2025). While 
iterative frameworks such as Shrinkage Sliding Fourier-Bessel 
Packet (SSFBP) can dynamically and centrally extract feature 
spectral components (Zhou et al., 2026). Beyond feature 
extraction, ensuring data integrity is equally vital. Efficient 
models such as Variable Scale Multi-layer Perceptron (VS- 
MLP) have effectively recovered abnormal vibration data with 
good computational efficiency (Fan et al., 2024). These efforts 
collectively reflect the ongoing push for more adaptive, precise, 
and computationally efficient signal processing.

In summary, scholars have proposed many solutions for bearing 
fault detection, but there are still problems such as difficulty in 
extracting complex faults and high dependence on samples. A 
vibration image generation method based on Empirical Mode 
Decomposition-Adaptive Angle Distribution Polar Coordinate 
Image (EMD-AADPCI) and a CNN-LSTM fault diagnosis model 
are built to deal with the composite fault diagnosis problem. The 
innovation of the research lies in: ① proposing the AADPCI polar 
coordinate transformation method, which uses an adaptive angle 
allocation mechanism (dynamically adjusting the angle factor based 
on the time-domain characteristics of IMF components) to solve the 
problem of fixed features in traditional polar coordinate imaging; ② 
Combining EMD with AADPCI, filtering IMF components and 
polar imaging to preserve richer fault features; ③ The CNN-LSTM 
hybrid model is constructed, and the spatial feature extraction and 
long time sequence dependency capture capabilities of the two are 
fused to solve the problem of incomplete feature extraction of a 
single model. The core goal of the research is to solve the problems of 
“feature loss and noise sensitivity” through the EMD-AADPCI 
method, and to solve the problems of “incomplete feature 
extraction and poor generalization” through the CNN-LSTM 
model, ultimately achieving high-precision diagnosis of 
composite faults in rolling bearings under complex working 
conditions and compensating for the limitations of 
existing methods.

2 Methods and materials

2.1 Vibration image generation based on 
EMD-AADPCI

Analyzing the vibration signals can obtain fault information of 
the bearings, but vibration signals are one-dimensional time series 
data, and the information display is relatively simple. Vibration 
images can express the amplitude, frequency, phase, and other 
information of vibration signals through features such as 
grayscale, color, and texture, making the feature information 
more intuitive and comprehensive (Li et al., 2022; Meng et al., 
2021). Converting vibration signals into vibration images can 
enhance the stability of features and make it easier to use deep 
learning algorithms for fault classification. The study proposes the 
EMD-AADPCI vibration image generation method. Firstly, EMD 
decomposes the vibration signal into IMFs and a residual 
component, which contains local characteristic signals. The input 
vibration signal is z(t). Firstly, all local maximum and minimum 
points of z(t) are found. The cubic spline interpolation function is 
taken to match the maximum and minimum points, respectively, 
and obtain the upper envelope emax(t) and lower envelope emin(t) of 
the vibration signal z(t). The average value is shown in Equation 1. 

m1 t( ) �
emax t( ) + emin t( )

2
(1)

In Equation 1, m1(t) signifies the mean of emax(t) and emin(t) at 
the first iteration. Subtracting the mean envelope yields the first IMF 
component, as shown in Equation 2. 

h1 t( ) � z t( )−m1 t( ) (2)
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If h1(t) satisfies the IMF is determined, that is, the number of 
extreme points and the quantity of zero crossings are same or differ 
by a maximum of 1, and are locally symmetrical. If it is not satisfied, 
h1(t) is taken as the new signal. The steps are repeated until c1(t)

that meets the conditions is obtained. Subtracting the first IMF c1(t)

yields the remaining signal, as presented in Equation 3. 

r1 t( ) � z t( )− c1 t( ) (3)

r1(t) signifies a new signal. The second IMF component c2(t) and 
the residual signal r2(t) are obtained. r2(t) signifies a new signal. 
The calculation is repeated until the residual signal rn(t) is a 
monotonic function or constant. Equation 4 presents the final 
obtained original vibration signal. 

z t( ) �􏽘
n

i�1
ci t( ) + rn t( ) (4)

Among the multiple IMF components obtained from EMD, the 
component ci(t) containing the main fault information is selected 
for polar coordinate transformation. The transformation principle 
of AADPCI is shown in Figure 1.

In Figure 1, the length of ci(t) is N. The time series 
t � 1, 2, 3, · · ·, N is mapped to the angle θ of the polar 
coordinate, and the signal amplitude ci(t) is mapped to the 
radius r of the polar coordinate. The angle is adaptively 
allocated. The definition of r(i) in the transformed polar 
coordinate point A(r(i), θ(i)) is shown in Equation 5. 

r i( ) �
zi − zmin

zmax − zmin
(5)

In Equation 5, zmin signifies the minimum value of the vibration 
parameter, and zmax signifies the maximum value of the vibration 
parameter. The definition of θ(i) in polar coordinate point 
A(r(i), θ(i)) is presented in Equation 6. 

θ i( ) � φ +
zi+q − zmin

zmax − zmin
× λ × w (6)

In Equation 6, φ represents the initial line angle, usually taken as 
60°. q is the time interval, with values ranging from 3 to 10. w is the 
angle amplification factor, with values ranging from 20° to 60°. The 
values of q and w are determined based on controlled variable 

experiments. Experiments have shown that when q is within 3–10, it 
can balance computational complexity while ensuring image 
resolution and feature continuity. When q >10, the image details 
become redundant and the computation time significantly increase. 
When q <3, it leads to feature loss. Similarly, w can effectively 
distinguish the significance of different IMFs within 20°–60°. A too 
small w will result in insufficient sidelobe discrimination, while a 
large w will cause image distortion. The final value is determined 
through grid search within the specified range to achieve the best 
balance between feature retention rate and computational efficiency. 
λ represents the angle adaptation rate. The larger the λ, the larger the 
corresponding IMF component will be allocated to a larger angle 
factor. According to the point A(r(i), θ(i)) transformed by polar 
coordinates, an image is drawn on the polar coordinate plane, and 
then the polar coordinate plane is discretized into several grids. The 
number of points or energy in each grid is counted and converted 
into grayscale values to obtain a two-dimensional vibration image. 
The mapping relationship between the characteristic matrix and the 
grayscale image is displayed in Figure 2.

In Figure 2, the original vibration signal data is changed into a 
vibration feature matrix. The minimum value min is mapped to level 
0 in the grayscale image, and the maximum value max is mapped to 
level 255. The values of other elements in the matrix are mapped to 
corresponding grayscale values between 0–255 based on their 
relative positions between the maximum values, forming a visual 
grayscale image of the vibration signal characteristics for subsequent 
fault diagnosis and analysis. The EMD-AADPCI is shown 
in Figure 3.

From Figure 3, the vibration signal dataset is divided into N
segments according to the fault state, with each segment being n in 
length. The -i segment data is subjected to EMD to obtain several 
IMF components. The Pearson Correlation Coefficient (PCC) 
between each IMF component and the original vibration signal is 
shown in Equation 7. 

PCC �
􏽐
N

t�1 x t( )− x̄( ) y t( )− ȳ( 􏼁
�������������

􏽐
N

t�1 x t( )− x̄( )
2

􏽱 �������������

􏽐
N

t�1 y t( )− ȳ( 􏼁
2

􏽱 (7)

In Equation 7, x(t) is the original signal, y(t) is the i th IMF 
component, and x̄ and ȳ are the average of the original signal and 
the IMF component. The IMFs are sorted from largest to smallest 

FIGURE 1 
The process of AADPCI transformation.
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according to PCC, and the first six groups of IMFs are superimposed 
for noise reduction. The reasons are shown in Table 1.

Experimental verification with controlled variables shows that 
when the number of IMFs is ≥ 6, the fault feature retention rate 
remains stable at over 90%. When the number of IMFs is greater 
than 6, the feature retention rate does not improve significantly, but 
the computation time increases by over 30%. Therefore, six IMFs are 

selected to balance feature quality and computational efficiency. 
Next, common time-domain metrics (such as RMS value, peak 
value, kurtosis, and impulse factor) are calculated for the six selected 
IMF components to form a feature vector. The standard deviation of 
each time-domain metric across all six IMF components is then 
calculated. A larger standard deviation indicates a greater ability of 
the metric to distinguish between different IMFs. The time-domain 
metric with the largest standard deviation is selected and its values 
across IMF1-IMF6 are normalized. The normalized result is the 
adaptation rate angle λ corresponding to each IMF. Finally, IMF1- 
IMF6 are sequentially converted to the AADPCI.

2.2 Composite fault diagnosis based on 
CNN-LSTM

The vibration images produced by EMD-AADPCI contain a 
large amount of characteristic information of bearing composite 
faults, such as sharp pulses, amplitude changes, peak changes, etc. 
Next, a suitable model is selected to extract these features and 
complete the fault diagnosis task through continuous learning 
and training. The CNN-LSTM combines CNN and LSTM. CNN 

FIGURE 2 
Mapping relationship.

FIGURE 3 
Schematic diagram of EMD-AADPCI.

TABLE 1 Influence of different numbers of IMFs on feature retention rate 
and calculation time (based on RBCFD).

Number of 
IMFs

Feature retention 
rate (%)

Calculation time (s/ 
sample)

3 78.2 0.8

4 85.5 1.1

5 89.3 1.4

6 92.1 1.7

7 92.6 2.2

8 92.8 2.6
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extracts local features, and then input into LSTM for sequence 
modeling. This model effectively integrates the feature extraction 
advantages of both to more comprehensively capture the fault 
features of bearings and improve the diagnosis accuracy. CNN 
includes convolutional computation and has deep structure, with 
representation learning ability, suitable for the field of fault 
classification (Guo et al., 2023b; Sun and Fan, 2023). The 
vibration signals and temperature signals generated during the 
operation of rolling bearings are typical time series data. LSTM 
can effectively process such sequence data and automatically learn 
various types of fault features. The diagrams of CNN and LSTM are 
presented in Figure 4.

In Figure 4a, the input layer can handle multidimensional data, 
such as vibration image data generated by EMD-AADPCI. The 
convolutional layer extracts features through convolutional kernel 
sliding scanning and generates a feature map. The convolution 
calculation of the output node is shown in Equation 8. 

zlj � f 􏽘
m

i�1
vij * zl−1

mi+j + εlj⎛⎝ ⎞⎠ (8)

In Equation 8, zlj signifies the j-th output node in the l-th layer. 
m signifies the quantity of convolution kernels. vij represents the i-th 
convolution kernel. ε signifies the bias term. * signifies the 
convolution operation. The feature map is subjected to 
dimensionality reduction through pooling layers, and then passed 
on to convolutional and pooling layers. As the hierarchy progresses, 
features are gradually extracted from simple to complex. The output 
of neurons after max pooling operation is shown in Equation 9. 

y
l i( )
j � maxr b

t i( )
j􏽨 􏽩, j− 1( 􏼁w + 1 ≤ r≤ jw (9)

In Equation 9, yl(i)j signifies the j-th neuron in the i-th feature of 
the l-th. bt(i)j signifies the activation value of the corresponding 
neuron. w signifies the width of the pooling area. Finally, all 

FIGURE 4 
Network diagram of CNN and LSTM. (a) Network diagram of CNN (b) Network diagram of LSTM.
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obtained features are aggregated in the Fully Connected Layer (FCL) 
to classify. Equation 10 displays the output of the FCL. 

pl � f δlpl−1 + ηl􏼐 􏼑 (10)

In Equation 10, f(·) signifies the Softmax function. δl

signifies the weight. ηl signifies the bias term. pl−1 represents 
the previous output. In Figure 4b, LSTM has Forget Gate (FG), 
Input Gate (IG), and Output Gate (OG). Given a time series 
Z(z1, z2, z3,⋯, zn), the hidden layer is C(c1, c2, c3,⋯, cn). FG 
checks the hidden state and current input of the previous 
moment. The Sigmoid outputs a value between 0-1, which is 
multiplied by the previous value in the memory unit to 
determine which information to discard from the memory 
unit, as presented in Equation 11. 

gt � Sigmoid Wf × ct−1 + Uf × zt + ξf􏼐 􏼑 (11)

In Equation 11, gt represents the output value of the FG 
passing through the Sigmoid function at time t. Wf signifies the 
weight matrix connecting the FG to the output ct−1 of the 
previous hidden layer. Uf signifies the weight matrix 
connecting the FG to the input zt at present. ct−1 signifies the 
output value at the previous time, carrying information from the 
previous time. ξf signifies the bias term of the FG, used to adjust 
the output of the activation function. IG: The Sigmoid layer 
decides information updates, the tanh layer produces new 
candidate values, and the two are combined to determine the 
new information that needs to be added to the storage unit. The 
updated memory unit is obtained by adding it to the memory 
unit value processed by the FG. The output yt of the IG at time t
is shown in Equation 12. 

yt � Sigmoid Wi × ct−1 + Ui × zt + ξi( 􏼁 (12)

In Equation 12, Wi and Ui signify the weight matrices of the IG 
and ct−1 and zt. ξi signifies the bias term of the IG. The candidate 

state value S̃t of the memory unit at time t is presented in 
Equation 13. 

S̃t � tanh WC × ct−1 + UC × zt + ξC( 􏼁 (13)

In Equation 13, the tanh function is used to compress the output 
value between −1 and 1. WC and UC are weight matrices related to 
candidate states for memory units. ξC signifies the bias term of the 
memory unit. By integrating the output results of the FG and IG, the 
current state value of the memory unit is obtained, as shown in 
Equation 14. 

St � gt*St−1 + yt*S̃t (14)

In Equation 14, St−1 signifies the state value of the memory unit at 
time t− 1. * signifies the product of vectors. OG: Based on the current 
hidden state and input, which information in the memory unit is 
determined to output through the Sigmoid function. Then, the 
memory unit value is transformed through the tanh function and 
multiplied with the Sigmoid output result to obtain the final output. 
The activation value Ot of the OG at time t is presented in Equation 15. 

Ot � Sigmoid WO × ct−1 + UO × zt + ξO( 􏼁 (15)

In Equation 15, ξO signifies the bias term of the OG. The output 
value ct of the model at time t is presented in Equation 16. 

ct � Ot* tanh St( ) (16)

Finally, the CNN-LSTM is presented in Figure 5.
From Figure 5, the vibration image data are input into both the 

CNN module and the LSTM. The CNN has multiple convolutional 
layers. The kernel of each convolutional layer performs feature 
extraction, introduces nonlinearity into the activation function, 
and maximizes pooling to reduce data dimensionality and 
computational complexity. Multi-layer convolution operation 
gradually extracts spatial features from vibration images. The 
LSTM module consists of multiple LSTM units, each containing 

FIGURE 5 
The framework for CNN-LSTM.
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an FG, IG, and OG, used to process sequence data and capture long- 
term dependencies. The features extracted by CNN and LSTM are 
integrated, and then the features are integrated through an FCL. 
Finally, the diagnostic results are output through a classifier function 
to determine whether there is a fault in the bearing and its type. The 
structural parameters of the CNN-LSTM are shown in Table 2.

After constructing the CNN-LSTM model, the complete process 
of diagnosing composite faults in rolling bearings using EMD- 
AADPCI and CNN-LSTM is shown in Figure 6.

3 Results

3.1 Composite fault diagnosis analysis based 
on EMD-AADPCI vibration images

To verify that the vibration images generated by EMD-AADPCI 
contain richer and more accurate feature information, this study 

compares them with images generated by Multi-Information 
Capacity Simplified Polar Coordinate Image (MIC-SPCI) and 
validated them on the dataset using CNN. To balance model 
performance and operational efficiency, the fusion and training 
hyperparameters were determined as follows: Adam is chosen as the 
optimizer, which converges faster and has smaller loss fluctuations 
on small sample datasets compared to SGD and RMSprop. The 
learning rate is set to 0.001. If it is too high, it may overfit, while if it is 
too low, it may delay convergence. The batch size is set to 32 to 
balance hardware memory usage and training stability. The training 
epochs are set to 100, combined with an early stop strategy 
(terminate if the validation set loss does not decrease for five 
consecutive epochs). The data validation segmentation ratio is 
20%, which not only avoids over-fitting, but also effectively 
evaluates generalization ability. The study used two self-built 
rolling bearing composite fault datasets for validation. Rolling 
Bearing Composite Fault Dataset (RBCFD): A single point fault 
was simulated on bearing 6,205 by performing electrical discharge 

TABLE 2 Structural parameter of CNN-LSTM.

Network 
layer

Sub - 
network

Number of 
layers

Kernel 
size

Number of 
output 

channels

Activation 
function

Pooling 
size

Number of 
hidden units

Dropout

Convolutional 
layer

CNN 3 3 × 3 32→64→128 ReLU — — —

Max pooling 
layer

2 2 × 2 — — 2 × 2 — —

Fully connected 
layer

1 — 256 ReLU — — —

LSTM layer LSTM 2 — — Sigmoid — 128 0.2

Fully connected 
layer

1 — 256 ReLU — 256 —

FIGURE 6 
Complete flowchart for diagnosing composite faults in rolling bearings.
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machining on the inner and outer rings and rolling elements of a 
normal bearing. Then, four states were constructed by combining 
faults from different parts: normal (A), inner ring + rolling element 
fault (B), outer ring + rolling element fault (C), and inner ring + 
outer ring fault (D). The vibration signal is collected by an 
acceleration sensor installed on the bearing seat, with a sampling 
frequency of 12 kHz, a motor speed of 1,800 rpm, and a load of 
0.5 hp. 200 samples were collected for each state, with a length of 
1,024 data points per sample, for a total of 800 samples. Rolling 
Bearing and Rotor Friction Composite Fault Dataset (RBRFCFD): 
On the same test bench, rotor friction faults were introduced and 
four additional states were constructed: normal (E), inner ring + 
rotor friction fault (F), outer ring + rotor friction fault (G), and 
rolling element + rotor friction fault (H). The collection settings are 
the same as that of RBCFD, and 200 samples are obtained for each 
state, totaling 800 samples. 80% of all datasets are used for training 
and 20% for testing. The vibration images generated by MIC-SPCI 
and EMD-AADPCI for various faults in the RBCFD are presented 
in Figure 7.

In Figure 7, the vibration image generated by MIC-SPCI had a 
total of 12 side lobes, and each side lobe had its own characteristic 
features, such as different thickness and deflection angles. However, 
the vibration images of faults A and C generated by MIC-SPCI were 
quite similar, which was not conducive to subsequent fault diagnosis 
tasks. The vibration images generated by EMD-AADPCI only 
retained the six most prominent side lobes, each with varying 
thickness, deflection angle, and distribution phenomenon. The 
distinguishing features of the four types of faults were relatively 
clear, which was beneficial for subsequent fault diagnosis tasks. The 
core reason why EMD-AADPCI is superior to MIC-SPCI is as 
follows: (1) MIC-SPCI adopts a fixed angle allocation of 12 side- 
lobes, which cannot be dynamically adjusted according to fault 
characteristics; While EMD-AADPCI allocates a larger angle factor 
to the IMF with more prominent fault features and a smaller angle to 

the IMF with fuzzy features according to the time-domain index 
allocation angle of the IMF to avoid irrelevant feature interference; 
(2) EMD can filter high-frequency noise in the original signal, while 
MIC-SPCI directly images the original signal. Noise can cause 
sidelobe features to be blurred, resulting in higher fault 
discrimination. 400 sample images are randomly selected from 
the RBCFD, with 100 images for each type of fault. The samples 
are subjected to MIC-SPCI and EMD-AADPCI operations. The 
confusion matrix combined with CNN diagnostic results is 
presented in Figure 8.

According to Figure 8a, the fault classification accuracy based on 
MIC-SPCI was only 72.75%. The classification accuracy of type A 
was the highest, at 75.00%. The classification accuracy of type C 
faults was relatively low, with 11 misclassified as type B faults, 
10 misclassified as type D faults, and nine misclassified as type A. 
According to Figure 8b, the fault classification accuracy based on 
EMD-AADPCI was significantly higher than that of MIC-SPCI, 
reaching 93.00%. The model had a classification accuracy of over 
90.00% for all four types of faults, with the highest classification 
accuracy for types A and D. The classification accuracy of type B was 
relatively low, with 4 misclassified as type C, 3 misclassified as type 
A, and 3 misclassified as type D. The experiment is repeated 
10 times. Figure 9 displays the comparison results.

According to Figure 9a, after 10 experiments, the average 
accuracy of the MIC-SPCI algorithm was only 72.76%, the 
average recall was 72.97%, and the average F1 value was 71.64%. 
As shown in Figure 9b, the EMD-AADPCI had significantly higher 
indicators than the MIC-SPCI, with an average accuracy of 91.73%, 
which was 18.97% higher than that of the MIC-SPCI. The average 
recall rate and F1 value were 92.38% and 92.15%, respectively. The 
vibration images generated by the EMD-AADPCI algorithm have 
clearer features and help improve the diagnosis accuracy. To verify 
the independent contribution of each key module in the proposed 
method and quantitatively evaluate the effectiveness of the AADPCI 

FIGURE 7 
Comparison of MIC-SPCI and EMD-AADPCI vibration images for four types of faults (A-normal, B-inner ring + rolling element, C-outer ring + rolling 
element, and D-inner ring + outer ring) in the RBCFD.
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adaptive mechanism, ablation experiments were designed. On the 
RBCFD, the performance of the following feature generation 
methods was compared using the same CNN-LSTM classifier: (1) 
MIC-SPCI (baseline): Fixed angle polar coordinate imaging. (2) 
EMD-FPCI: Using EMD, but employing the same Fixed Polar 
Coordinate Imaging (FPCI) as MIC-SPCI for imaging, i.e. 
removing the adaptive mechanism of AADPCI. (3) EMD- 
AADPCI (Ours): Complete adaptive angle allocation polar 

coordinate imaging. In addition, the combination effect of 
different classifiers was evaluated: (4) EMD-AADPCI + CNN: 
Using only the CNN model. (5) EMD-AADPCI + LSTM: Using 
only the LSTM model. (6) EMD-AADPCI + CNN-LSTM: The 
proposed complete model. The experimental results are shown 
in Table 3.

According to Table 3, under different feature generation 
methods and the same CNN-LSTM classifier, the accuracy of 

FIGURE 8 
Confusion matrix of fault diagnosis results based on MIC-SPCI and EMD-AADPCI. (a) Sample testing confusion matrix for MIC-SPCI (b) Sample 
testing confusion matrix for EMD-AADPCI.

FIGURE 9 
The average accuracy, recall, and F1 value of two models. (a) Various indicators based on MIC-SPCI model (b) Various indicators based on EMD- 
AADPCI model.

TABLE 3 Results of ablation experiments on the RBCFD.

Feature generation method Classification model Accuracy (%) Recall (%) F1-score (%)

MIC-SPCI CNN-LSTM 72.75 72.97 71.64

EMD-FPCI CNN-LSTM 86.50 86.80 86.25

EMD-AADPCI CNN-LSTM 98.00 98.72 98.33

EMD-AADPCI CNN 93.00 92.38 92.15

EMD-AADPCI LSTM 85.25 85.32 85.17

EMD-AADPCI CNN-LSTM 98.00 98.72 98.3
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EMD-FPCI was 13.75% higher that of MIC-SPCI, mainly due to the 
multi-scale decomposition and denoising effect of EMD on the 
signal. EMD-AADPCI has further improved by 11.50% compared to 
EMD-FPCI, which directly quantifies the performance gain brought 
by the adaptive angle allocation mechanism and proves its core 
innovative value. When using the same EMD-AADPCI features, the 
performance of the CNN-LSTM hybrid model was significantly 
better than that of a single CNN or LSTM model, verifying the 
effectiveness of model fusion.

3.2 Composite fault diagnosis analysis based 
on CNN-LSTM diagnostic model

After deciding to use EMD-AADPCI as the feature extraction 
algorithm, an algorithm for fault classification is further selected. 
Common fault classification algorithms include CNN, ANN, SVM, 
LSTM, etc. The study combines CNN with LSTM to design a CNN- 
LSTM composite diagnostic model for classification tasks. When 
verifying the effectiveness of vibration images generated by EMD- 
AADPCI, experiments have been conducted in conjunction with 
CNN. Therefore, the LSTM and CNN-SVM models are compared 
with the proposed CNN-LSTM, and verified on the RBRFCFD using 
EMD-AADPCI. Figure 10 presents the results.

In Figure 10a, the training accuracy of a single LSTM was low 
and fluctuated greatly. It gradually stabilized after 50 iterations, with 
a training accuracy of 81.07%. The training accuracy of the CNN- 
SVM was relatively high, stabilizing at 91.45% after 40 iterations. 
The CNN-LSTM model converged to 94.88% after only 
22 iterations. In Figure 10b, the loss rate of the LSTM gradually 
converged to 2.53% after 60 iterations. The loss rate of the CNN- 
SVM converged to 1.92% after 30 iterations. The loss rate of the 
CNN-LSTM model stabilized at 1.43% after 15 iterations. The CNN- 
LSTM demonstrates better performance, higher training accuracy, 
and lower loss rate. The performance comparison of different 
methods on the RBCFD and RBRFCFD is shown in Table 4.

According to Table 4, the comprehensive performance of the 
proposed EMD-AADPCI + CNN-LSTM model is significantly 
better than other comparison methods on both datasets. On the 
RBCFD, the accuracy of the model reached 98.00%, the recall rate 
was 98.72%, and the F1 value was 98.33%. Compared with methods 
such as MIC-SPCI + CNN (accuracy 72.75%) and EMD-AADPCI + 
LSTM (accuracy 85.25%), all performance indicators were 
significantly improved. On the RBRFCFD, the model still 
maintained a leading performance, with accuracy, recall, and 
F1 score reaching 97.80%, 98.55%, and 98.18%, respectively, fully 
demonstrating good generalization ability. In addition, the training 
convergence efficiency of this model was also outstanding: It only 

FIGURE 10 
Training accuracy and loss rate of each model. (a) Accuracy of different algorithms (b) Loss rate of different algorithm.

TABLE 4 Performance indicators of different methods on RBCFD and RBRFCFD (average of 10 experiments).

Dataset Method Accuracy (%) Recall (%) F1-score (%) Convergence epochs

RBCFD MIC-SPCI + CNN 72.75 72.97 71.64 35

EMD-AADPCI+LSTM 85.25 85.32 85.17 50

EMD-AADPCI + CNN-SVM 91.25 91.67 91.25 40

EMD-AADPCI + CNN-LSTM 98.00 98.72 98.33 22

RBRFCFD MIC-SPCI + CNN 71.50 71.83 70.92 38

EMD-AADPCI+LSTM 84.75 85.01 84.89 52

EMD-AADPCI + CNN-SVM 90.80 91.22 91.01 42

EMD-AADPCI + CNN-LSTM 97.80 98.55 98.18 23
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required 22 rounds on the RBCFD and 23 rounds on the RBRFCFD, 
which was much lower than that of other comparison methods. To 
evaluate the practicality, the computational costs (including single- 
sample image generation time, model training time, and single- 
sample inference time) of different methods were tested based on a 

hardware environment with an Intel Core i7-12700H processor, 
32 GB of memory, and an NVIDIA RTX 3060 graphics card. The 
results are shown in Table 5.

As shown in Table 5, the image generation time of EMD- 
AADPCI was slightly longer than that of MIC-SPCI (due to the 

TABLE 5 Comparison of costs calculated by different methods.

Dataset Method Single-sample 
image generation 

time (ms)

Model training time 
(min/100 epochs)

Single-sample 
inference 
time (ms)

Number of 
parameters 

(×104)

FLOPs 
(G)

RBCFD MIC-SPCI + CNN 8.2 12.5 3.1 128 2.8

EMD- 
AADPCI+LSTM

17.3 18.6 4.5 156 3.5

EMD-AADPCI + 
CNN-SVM

17.1 15.2 3.8 142 3.2

EMD-AADPCI + 
CNN-LSTM

17.5 22.3 5.2 218 4.3

RBRFCFD MIC-SPCI + CNN 8.5 13.1 3.3 128 2.8

EMD- 
AADPCI+LSTM

17.8 19.2 4.7 156 3.5

EMD-AADPCI + 
CNN-SVM

17.4 15.8 4.0 142 3.2

EMD-AADPCI + 
CNN-LSTM

17.6 23.1 5.4 218 4.3

FIGURE 11 
Confusion matrix of fault diagnosis results based on LSTM, CNN-SVM, and CNN-LSTM. (a) Sample testing confusion matrix for LSTM (b) Sample 
testing confusion matrix for CNN-SVM (c) Sample testing confusion matrix for CNN-LSTM.
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EMD and adaptive angle calculation), but the single-sample 
generation time was still controlled within 20 ms, meeting the 
real-time requirements. Although the number of parameters and 
FLOPs of the CNN-LSTM model was higher than that of a single 
model, the actual training time (convergence in 22–23 rounds) was 
only 8–10 min, and the single-sample inference time was about 5 ms, 
which was far below the threshold (50 ms) for real-time diagnosis in 
industrial scenarios. Compared with the Transformer model 
(approximately five million parameters and approximately 12G of 
FLOPs), the computational cost of the EMD-AADPCI + CNN- 
LSTM was reduced by more than 60%, making it more suitable for 
deployment on edge computing devices. 400 sample images are 
randomly selected from the RBRFCFD, with 100 images for each 
type of fault. The confusion matrix diagnosed by the three types of 
models is shown in Figure 11.

In Figure 11a, the fault classification accuracy of a single LSTM 
was relatively low, only 85.25%. The classification accuracy for types 
E and G was relatively high, at 88.00% and 86.00%, respectively. 
According to Figure 11b, the classification accuracy of the CNN- 
SVM was 91.25%, with the highest classification accuracy of 94.00% 
for type G. In Figure 11c, the CNN-LSTM was 98.00%. The 
classification accuracy of this model for four types of faults was 
100%, 97.00%, 96.00%, and 99.00%, respectively. The experiment 
conducted was 10 times. The average accuracy, recall, and F1 value 
are obtained, as presented in Figure 12.

According to Figure 12a, the average classification accuracy of 
the LSTM was only 84.79%, with an average recall and F1 value of 

85.32% and 85.17%, respectively. In Figure 12b, compared with the 
LSTM model, the CNN-SVM had significantly improved 
performance, with an average classification accuracy, recall, and 
F1 value of 90.89%, 91.67%, and 91.25%. In Figure 12c, the CNN- 
LSTM had significantly higher performance indicators than the 
other two models, with an average classification accuracy, recall, 
and F1 value of 98.13%, 98.72%, and 98.33%. The CNN-LSTM 
demonstrates better model performance and higher classification 
accuracy. Due to the diverse types of composite faults in bearings 
under actual working conditions, the noise mixed in their signals is 
also diverse. To verify the noise resistance of these three models, 
Gaussian white noise of −4~4 dB was added to the RBCFD and 
RBRFCFD, and comparative experiments were conducted. The 
classification accuracy of three models on the dataset with added 
noise is presented in Figure 13.

In Figure 13a, on the RBCFD, LSTM and CNN-SVM had lower 
classification accuracy when SNR<0 dB. However, when SNR was 
between 0 and 4dB, the accuracy of these two models slightly 
improved, stabilizing at around 85.00% and 90.00%, respectively. 
The classification accuracy of CNN-LSTM was relatively stable at 
different SNR values, reaching 98.89% at SNR = 4 dB. In Figure 13b, 
on the RBRFCFD, the classification accuracy of LSTM and CNN- 
SVM was significantly lower than that of CNN-LSTM. When the 
SNR was -2 dB and 4dB, the accuracy of CNN-LSTM was relatively 
high, reaching 97.63% and 98.12%, respectively. The reasons why 
CNN-LSTM still maintains high accuracy at low SNR are as follows: 
① EMD can suppress more than 80% of high-frequency noise, while 

FIGURE 12 
The average accuracy, recall, and F1 value of three models. (a) Various indicators based on LSTM model (b) Various indicators based on CNN-SVM 
model (c) Various indicators based on CNN-LSTM model.
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AADPCI disperses the remaining noise to low-weight regions in 
polar coordinates to avoid noise masking fault features; ② The 
convolutional layer of CNN can filter isolated noise points in the 
image by focusing on the spatial features of faults through local 
receptive fields; The forget gate of LSTM can ignore temporal noise 
interference and only retain the temporal evolution law of fault 
features. This result indicates that the proposed model has stronger 
anti-noise performance, which is suitable for fault diagnosis tasks 
under complex working conditions.

4 Discussion and future work

4.1 Discussion and conclusion

For composite fault diagnosis, the EMD-AADPCI vibration 
image generation method was first proposed, followed by the 
CNN-LSTM fault diagnosis model. The results indicated the 
vibration image generated by EMD-AADPCI contained richer 
features, and the image discrimination of various faults was more 
obvious. After combining MIC-SPCI and EMD-AADPCI with CNN 
for validation on the RBCFD, the classification accuracy of MIC- 
SPCI was only 72.75%. The average classification accuracy, average 
recall, and F1 value after 10 experiments were 72.76%, 72.97%, and 
71.64%, respectively. The classification accuracy of EMD-AADPCI 
was 93.00%. After 10 experiments, the average classification 
accuracy, average recall, and F1 value were 91.73%, 92.38%, and 
92.15%, respectively. The vibration images generated by EMD- 
AADPCI had better performance and more accurate feature 
extraction. The reason is that the angle allocation of AADPCI is 
adaptive and dynamically adjusted based on the local characteristics 
of IMF components. This adaptive approach enables the generated 
polar coordinate image to contain richer and more accurate fault 
feature information. The proposed EMD-AADPCI is compared 
with existing vibration image generation methods. Spectrum 
diagram calculation is simple, but it can only present frequency 
domain information, making it difficult to distinguish composite 
faults. The Gray level Co-occurrence Matrix (GCM) requires a large 

amount of computation, and the feature representation effect 
depends on parameter settings. MIC-SPCI improves feature 
visibility through polar coordinates, but due to fixed angle 
allocation, it is difficult to adapt to subtle differences in different 
faults. EMD-AADPCI first performs adaptive decomposition on the 
signal through EMD, highlighting multi-scale fault characteristics, 
and then uses adaptive angle allocation driven by time-domain 
indicators to amplify the differences between faults. Although its 
computational complexity is slightly higher than that of 
spectrograms, it is significantly lower than that of GCM and has 
an absolute advantage in diagnostic accuracy.

In terms of fault classification, the study compared CNN-LSTM 
with LSTM and CNN-SVM. The results showed that CNN-LSTM 
had faster convergence speed, higher training accuracy, and lower 
loss rate, which were 94.88% and 1.43%, respectively. The fault 
classification accuracy of LSTM was 85.25%, the classification 
accuracy of CNN-SVM was 91.25%, and the overall classification 
accuracy of CNN-LSTM was as high as 98.00%. After 
10 experiments, the average classification accuracy, average recall, 
and F1 value of CNN-LSTM were 98.13%, 98.72%, and 98.33%, 
respectively. Meanwhile, the anti-noise performance of CNN-LSTM 
was also stronger. The CNN-LSTM model demonstrates better 
performance and higher classification accuracy for various types 
of faults. The reason is that CNN-LSTM combines the 
characteristics of CNN in extracting local spatial features and 
LSTM in extracting long-term sequence dependencies, thereby 
more effectively identifying the features of various faults and 
improving classification accuracy. In addition, compared with the 
proposed CNN-LSTM with other advanced intelligent diagnostic 
methods, although the EEMD-based method can alleviate modal 
aliasing, it has higher computational cost and manual selection of 
sensitive IMF. Models based on attention mechanism or 
Transformer are good at capturing long-range dependencies, but 
the model structure is complex, requiring not only a large amount of 
data to support training, but also higher requirements for 
computing resources. The Graph Convolutional Network (GCN) 
is a type of neural network method that can mine the correlation 
features between samples, but it relies on the sample topology 

FIGURE 13 
Comparison of SNR and fault classification accuracy. (a) Fault classification accuracy on RBCFD (b) Fault classification accuracy on RBRFCFD.
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structure and has strict adaptability to data formats. It also 
additional preprocesses topological relationships, which raises the 
threshold for practical deployment. The CNN-LSTM architecture is 
clear and efficient, with CNN responsible for extracting spatial 
features and LSTM capturing temporal dynamic patterns. It can 
effectively fuse spatiotemporal information without introducing 
complex attention modules, ensuring high diagnostic accuracy 
while controlling model complexity and training costs within a 
reasonable range.

In summary, the method can solve the composite fault 
diagnosis, providing new technical support for the normal 
operation. The performance of this method demonstrates its 
potential for application in practical industrial environments, 
which can assist in predictive maintenance of equipment. 
Although the research focuses on rolling bearings, the proposed 
EMD-AADPCI generation concept and CNN-LSTM diagnostic 
framework have excellent scalability and are expected to be 
applied in the field of fault diagnosis of other rotating machinery 
such as gearboxes and gears in the future.

4.2 Limitations and future work

Although the proposed EMD-AADPCI performs well in the 
diagnosis of composite faults in rolling bearings, there are still 
limitations: (1) Limited coverage of operating conditions: 
Experimental data are mainly obtained under fixed load and 
speed conditions, and have not fully covered more complex 
industrial operating conditions such as variable loads and speeds. 
This may affect the model’s generalization ability in dynamic 
environments. (2) Real-time challenge: The serial computation 
process of EMD and CNN-LSTM model results in relatively high 
computational costs. In online monitoring scenarios that require 
extremely high real-time performance, the inference delay of current 
methods may become a deployment bottleneck. (3) Diversity of fault 
types: The experiment mainly focuses on several preset composite 
fault modes, and the diagnostic ability for more diverse or unknown 
composite fault combinations needs further verification.

In response to the above limitations, future research work will be 
carried out from the following aspects: (1) Extended operating 
condition verification: To verify the robustness and generalization 
ability of the method under different loads, speeds, and more diverse 
composite fault types. (2) Model lightweight and deployment 
optimization: Exploring model lightweight technologies, such as 
using lightweight backbone networks like MobileNet, or using 
model pruning, quantification and other means to reduce 
computing complexity and memory occupation, and meet the 
deployment needs of edge computing devices. (3) Enhanced 
feature extraction capability: Attempting to integrate attention 
mechanisms (such as SE module and CBAM) into CNN or 
LSTM modules to enhance the model’s ability to focus on key 
fault features, further improving diagnostic accuracy and anti- 
interference. (4) Exploring end-to-end architecture: Researching 

the joint optimization of signal preprocessing (EMD) and 
diagnostic networks or designing lightweight end-to-end 
networks to reduce process steps and improve overall efficiency.
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