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Introduction: Transformers are core equipment in power grids. Their
malfunctions may cause widespread power outages or even grid paralysis.
Accurate diagnosis is of vital importance.
Methods: Aiming at the problem of insufficient accuracy of traditional voiceprint
diagnosis techniques under complex working conditions, this paper proposes a
transformer voiceprint fault diagnosis method that integrates CNN and LSTM.
Through the series fusion of MFCC and GFCC and Fisher criterion screening, the
MGCC characteristic parameters that take into account both accuracy and noise
resistance are constructed for model input. Empirical tests were carried out on
the voiceprint signals of three types of working conditions: normal transformer,
loose winding and loose core.
Results: The results show that the fault recognition rate of thismethod for normal
working conditions is 88%, the recognition rate for loose winding working
conditions is 93%, and the recognition rate for loose core working conditions
is 98%.
Discussion: Studies show that the transformer voiceprint fault diagnosis method
based on CNN-LSTM network has high diagnostic accuracy and can meet the
requirements of practical applications.
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1 Introduction

As a fundamental energy industry in China, the power industry plays a positive role in
both ensuring people’s livelihood and promoting industrial development. Tomeet the needs
of social development, the scale of power grids is constantly expanding, which poses
significant challenges to the safe operation of power grids. As an important core device for
energy conversion and transmission in the power industry, the operation status of
transformers directly affects the safe and stable operation of the entire power grid.
Once a fault occurs, it may not only cause large-scale power outages but may even lead
to the paralysis of the power network. Therefore, conducting real-time monitoring and
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precise fault diagnosis of transformers has crucial practical
significance (Liu et al., 2022; Chen L. et al., 2022; Chen T. et al.,
2022; Liu, 2022). At present, various technical paths have been
formed in the field of transformer fault diagnosis. Common
methods include spectral diagnosis, acoustic diagnosis, and oil
chromatography diagnosis. Oil chromatography diagnosis
technology has been maturely applied in the identification of
insulation deterioration type faults. However, it relies on the
accumulation of characteristic gases in the oil and has an obvious
lag, making it difficult to achieve real-time early warning. It has
extremely low sensitivity to mechanical faults such as loose windings
and core vibration. Although spectral diagnosis technology can
directly reflect the state of insulating materials, it is limited by
the high cost of equipment and the strict requirements for the on-
site environment, and its application scenarios are relatively limited.

In contrast, acoustic diagnostic technology, with its non-invasive
detection advantage, can directly capture the continuous noise
generated by devices such as winding vibration, core vibration,
and cooling fans during the operation of transformers. These
noises contain extremely rich information about the equipment
status and will radiate to the surroundings through the internal
structure of the transformer and the air. To a large extent, they can
reflect the actual operating status of the transformer and thus show
unique potential in mechanical fault diagnosis (Shao et al., 2024;
Song et al., 2023). However, the conventional voiceprint diagnosis
mode reveals obvious deficiencies in complex working conditions:
On the one hand, environmental interferences at the substation site
(such as noise from other equipment operations and external traffic
noise) can pollute the voiceprint signal. Although traditional feature
extraction parameters, such as a single Mel cepstral coefficient
(MFCC), are mature and widely applied, they are affected by the
masking effect when the frequency of pure sound is close to that of
mixed noise, and their ability to represent sound signals decreases
significantly, resulting in a marked reduction in classification
accuracy. On the other hand, the existing diagnostic schemes
based on deep learning also have limitations. A single
convolutional neural network (CNN) is good at extracting local
spatial features and is widely used in fields such as image
classification and fault diagnosis, but it cannot effectively mine
the temporal correlation of fault development in voiceprint
signals. A single long-short-term memory network (LSTM) can
handle time series data and solve the long-term dependency
problem of recurrent neural networks (RNNS) but is insufficient
in extracting local subtle features (such as the weak vibration
differences of early faults). Even mainstream hybrid models such
as CNN-GRU, which extract spatial features through convolutional
networks and introduce gated recurrent units (GRUs) to model
temporal dependencies, have limitations in their memory ability for
long sequence voiceprint signals. The transformer model performs
well in global time series modeling but lacks sensitivity to local
features and has a high computational complexity, making it
difficult to adapt to edge computing scenarios in the actual
operation and maintenance of substations (Chen et al., 2025; Zhu
et al., 2025).

In view of the problems of low diagnostic accuracy, weak anti-
interference ability, and difficulty in balancing temporal and spatial
features of the existing technologies under complex working
conditions, this article takes the optimization and upgrading of

acoustic diagnosis technology as the core, focuses on the
complementary advantages of CNN and LSTM, and proposes a
transformer voiceprint fault diagnosis technology based on a CNN-
LSTM network. This technology integrates the accuracy of MFCC
with the noise immunity of gammatone frequency cepstral
coefficients (GFCCs) to construct the fusion feature parameter
mel gammatone cepstral coefficient (MGCC) to enhance feature
robustness. Then, it uses a CNN to extract the local spatial features of
the voiceprint signal (such as high-frequency vibration components
related to faults). By using LSTM to capture the long-term dynamic
patterns of fault development, a complete diagnostic chain of
“feature fusion—spatial extraction—time series modeling” is
formed. This article will empirically test the feasibility of the
CNN-LSTM diagnostic technology in transformer fault diagnosis,
aiming to address the limitations of existing technologies, further
improve the monitoring effect of transformer faults, and provide
reliable technical support for the engineering application of
transformer fault diagnosis.

2 Basic concepts

2.1 Transformer fault diagnosis technology
based on voice print recognition

Voice print recognition is the process of extracting the speaker’s
speech signal, comparing it with a previously trained speech set, and
confirming the speaker’s identity. Because the sound emitted by the
transformer is similar to the voice of the speaker, both of which
contain a large amount of state information, the voice print
recognition technology is applied to the field of transformer fault
diagnosis, as shown in Figure 1.

As can be seen from Figure 1, this diagnostic model consists of
three modules: sound acquisition and processing, feature extraction,
and complex type recognition (Feng, 2019). The basis of voiceprint
recognition technology is the establishment of a voiceprint library.
The sound signals during the operation of the transformer are
collected by means of the microphone sensor, and then the
sound signals are amplified by the preamplifier and imported
into the data acquisition card for digital-to-analog conversion.
The converted data are then transmitted to the computer for
analysis. At present, there are two commonly used test methods
for sound signals: the sound pressure method and the sound
strength method. In the sound signal feature extraction method,
according to the audible sound frequency range and sampling
theorem, the sampling frequency must be above 40 kHz to
ensure that the sound information is not lost, but this means
that the 1s sound signal needs to save 4 plays of data. Therefore,
in order to speed up the calculation speed and improve the
calculation performance, it is necessary to extract the transformer
sound signal for special diagnosis. Commonly used sound signal
feature quantities include mean value, method, standard deviation,
root mean square, MFCC, and GFCC. Among them, MFCC and
GFCC are the mainstream feature extraction parameters at present
(Li et al., 2022; Zhang et al., 2022). The Mel cepstrum feature
parameter is a mature and widely used acoustic feature parameter in
voice print recognition. Some researchers have pointed out that
there is a nonlinear correspondence between the frequency of the
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sound signal heard by the human ear and its actual frequency. If
the frequency of the sound signal is lower than 1000 Hz, the
auditory perception ability of the human ear has a linear
relationship with the actual frequency, and the counter-reaction
has a logarithmic relationship. This nonlinear logarithmic
relationship is called the Mel scale. The relationship with
frequency is shown in Formula 1.

Mel f( ) � 2595 lg 1 + f/700( ) (1)

Where f represents the frequency andMel(f ) represents the Mel
frequency. The relationship between the actual frequency is shown
in Figure 2.

When the frequencies of pure sound andmixed noise are similar, the
human ear cannot distinguish between the two signals due to themasking

FIGURE 1
Fault diagnosis technology based on voice print recognition.

FIGURE 2
Relationship to actual frequency.

FIGURE 3
Convolutional neural network structure.
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effect. The critical bandwidth that enables people to hear pure sound
signals simply by reducing the bandwidth is called the critical bandwidth,
which is calculated as shown in Formula 2.

BWc � 25 + 75 × 1 + 1.4 ×
f c

1000
[ ]0.69

(2)

Where f c is the central frequency. A set of Mel filter banks can be
constructed from the center frequency to simulate the bandwidth
frequency. In practice, triangular filters are usually used to
approximate the equivalence of this set of Mel filters. The transfer
function for each triangular filter is defined as shown in Formula 3.

Hm k( ) �

0 k<fm−1

k − fm−1
fm − fm−1

fm−1 < k<fm

fm+1 − k

fm+1 − fm
fm < k<fm+1

0 k>fm+1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
m � 0, 1, 2/,M − 1 (3)

Where m is the order of the Mayer filter, determined by the
cutoff frequency of the sound signal, and M � 24, fm is the center
frequency of the Mayer filter after comprehensive analysis. Due to
complex and changeable environmental factors, MFCCs cannot
properly characterize sound signals, resulting in a significant
decline in the classification accuracy. Therefore, the GFCC
characteristic parameters were developed to track the trend,
mimicking the function of the human ear through simulation.
The expression of the J-filter is shown in Formula 4.

Gj t( ) � Ata−1e−2πbjt cos 2πftj + φj( ), t≥ 0, 1≤ j≤N (4)

In the formula, A and f represent the gain and gravity center
frequency of the gammatone filter, respectively. φ, a, and N
represent phase, order, and number, respectively. E represents the
attenuation factor, which is related to the length of the control filter,
the specific expressions are shown in Formulas 5 and 6:

bj � 1.019ERB fj( ) (5)

ERB f j( ) � 24.7
4.37f j
1000

+ 1( ) (6)

Where ERB(f j) represents the equivalent rectangular
bandwidth. The center frequency of each filter is equally divided
on the ERB scale and then mapped to the linear scale.

2.2 Convolutional neural network
architecture

A convolutional neural network (CNN), one of the most commonly
used mainstream deep learning algorithms, supports multi-layer neural
networks,which can simultaneously learn feature parameters and classifiers.
CNNs are widely used in image classification, face recognition, and fault
diagnosis (Shi et al., 2022). The structure of a CNN is similar to that of a
multi-layer perceptron, and its basic network structure consists of five
parts: first, the input layer; second, a convolutional layer; third, the
pooling layer; fourth, the fully connected layer; fifth, the output layer,
the structure of the convolutional neural network is shown in Figure 3:

3 Basic framework of a
CNN-LSTM network

3.1 Long-short term memory network
architecture

A special case of recurrent neural network (RNN), a long-short
term memory network (LSTM) has obvious advantages in
processing time series by solving the long-term dependence
problem of RNNs through memory units (Cao et al., 2023; Liu
et al., 2019). The framework is shown in Figure 4.

It can be seen that an LSTM is designed based on a gate circuit.
Compared with an RNN, an LSTM adds three architectures: input
gate, output gate, and forgetting gate. These three parts control the
flow direction of short-duration information and effectively screen
and update information. Through the forgetting gate, it can be
known whether the state Ct-1 of the previous moment exists in the
current moment state Ct. If the output of the forgetting function ft

is 0, then the information in Ct-1 is completely forgotten; if the
output of ft is 1, then the information in Ct-1 is completely passed.
The corresponding forgetting formula is shown in Formula 7.

ft � σ Af ht−1, xt[ ] + bf( ) (7)

It can be known through the input gate whether xt is saved to the
currentmoment stateCt. Under the processing of the tanh function, the
hidden states ht-1 and xt at the previous moment will be transformed
into the candidate state C*

t . it is the output of the σ function that takes
ht-1 and xt as input values, and the value of it is selected from 0 to 1.
The expression of the input function is shown in Formulas 8, 9:

it � σ Ai ht−1, xt[ ] + bi( ) (8)
C*

t � tan h Ac ht−1, xt[ ] + bc( ) (9)

Then, after updating the calculation formula from the state Ct-1
of the previous moment to the state Ct of the current moment, it is
shown in Formula 10.

Ct � ft × Ct-1 + it × C*
t (10)

The proportion ofCt in the hidden state ht at the current moment
can be known through the output gate. Output ht-1 and xt through σ
to obtain Ot, and multiply Ct andOt processed by tanh to get ht. The
corresponding calculation formulas are shown in Formulas 11, 12:

Ot � σ Ao ht−1, xt[ ] + bo( ) (11)
ht � Ot × tan h Ct( ) (12)

In the LSTM neural network, the weights are represented by A,
and the bias parameters are represented by b.

3.2 Transformer diagnostic model
architecture under a CNN-LSTM network

In the current research, the hybrid model has received extensive
attention due to its multimodal feature extraction ability.
Mainstream methods, such as CNN-GRU, extract spatial features
through convolutional networks and introduce gated recurrent units
(GRUs) to model temporal dependencies, but their memory ability
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for long sequences is limited. Although the transformer performs
well in global time series modeling, it is insufficiently sensitive to
local features and has a high computational complexity. In
contrast, the combination of CNN-LSTM has unique
advantages: it has the complementarity of spatial–temporal
features. CNNs and LSTMs are both mainstream algorithms in
deep learning, but they have different advantages. The advantage
of a CNN lies in the extraction of local features, which can realize
the extraction of spatial features of the dry substation noise signal.
An LSTM is more commonly used to process text sequences of
varying lengths and can complete the extraction of time
characteristics of dry transformer noise signals. This work
combined the advantages of these two algorithms to make up
for each other, cooperate to complete the transformer fault
diagnosis, and improve the diagnosis efficiency and accuracy.
The specific combination methods are as follows: First, the
gammatone cepstral coefficient (MGCC) feature parameters of
the transformer noise signal calculated in the first part are input
into the CNN, and the CNN carries out feature extraction. Second,
the output of the CNN is taken as the input of the LSTM, and the
second time sequence signal is extracted for the features. Third,

after the transformation of the flatten layer and the smooth
integration of the full connection layer, it is sent to the softmax
layer to complete the sub-classification of transformer faults in
different working conditions. The specific architecture is shown
in Figure 5.

To better test the inspection of the substation’s voice print
fault under the CNN-LSTM network, the sound signals under
three different working conditions of transformer A: normal,
winding fault, and iron core fault are intercepted, the
corresponding parameters are set, and the sample data of
transformer fusion feature parameter MGCC are transmitted
to LSTM for training and identification. Suppose the LSTM
has only one layer, then add the fully connected layer and the
flatten layer. After completing the parameter settings and
conducting experiments, the model confusion matrix can be
obtained, as shown in Figure 6.

It is not difficult to find that the recognition rate of the
transformer under normal operating conditions is 72%. The
recognition rate when the winding loosening problem occurs is
82%. The recognition rate when the core was loose is 82%, and the
average overall recognition rate is 78.6%.

FIGURE 4
LSTM architecture.

FIGURE 5
CNN-LSTM network model architecture.
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3.3 Inspection results of the substation voice
print fault under the CNN-LSTM network

3.3.1 Parameter setting
The frequency used is 51,200 Hz, and the transformer

sound signal sample is pre-weighted, frame divided, and
window added. The pre-weighted system is 0.9375, the
frame length is 10 ms, the frame shift is 5 ms, and the
window function is a Hamming window. The pre-processed
transformer sound signal is passed through the 24-dimensional
Mel filter and the 64-dimensional Gammatone filter bank,
respectively, and then the DCT transformation is performed
to obtain the 12-dimensional 2 MFCC feature parameters
and the 30-dimensional GFCC feature parameters. Finally,
the two feature parameters are fused in series, and the
contribution degree of each dimension of the fusion feature
parameters is calculated using the Fisher criterion. The first
12 dimensions with the greatest contribution degree are
selected to form the fusion feature parameter MGCC after
dimensionality reduction.

To clarify the reliability and traceability of the
experimental data, the core information of the voiceprint
dataset used in this experiment is summarized in the
following table. Supplement the key details such as the data

source, collection environment and sample size distribution, as
shown in Table 1.

Conduct experiments based on the above dataset. To meet the
needs of different working conditions, 450 MGCC samples with
fused characteristic parameters were selected. Among them, 70% of
the samples (315) were selected for the training of the CNN network
model, and the remaining 30% of the samples (135) were used for
accuracy testing. The relevant parameters were set for the CNN
network, such as the batch size being 200, the learning rate being
0.0001, the number of iterations being 60, and the number of LSTM
network layers being 1. The Adam optimization algorithm was used
for verification. The influence of different numbers of neurons on
the recognition rate was discussed, and the obtained results are
shown in Table 2.

It can be seen that when other parameters remain unchanged,
the recognition rate of the CNN-LSTM network increases with the
increased number of LSTM neurons. When the recognition rate
reaches 92.65%, it is meaningless to continue to increase the number
of neurons, and doing so may even lead to overfitting problems.
Therefore, it is most appropriate to set the number of LSTM neurons
as 5, and the input layer dimension of the transformer noise signal
feature parameter MGCC is 12 × 19. After passing through two
convolutional pooling layers and one LSTM layer, respectively, the
extracted feature information is sent to the fully connected layer for

FIGURE 6
Confusion matrix diagram of the LSTM network model.
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classification and recognition. The full connection layer is also only
3, which means that the number of types of working conditions in
the transformer noise signal is 3, and the total training parameter is
30,799, which is 50% higher than the traditional CNN network
structure parameter.

3.3.2 Convolutional neutral network-long-short
term memory network transformer voice print
fault diagnosis test results

Based on the setting of relevant parameters, the transformer
operating state is identified here, and the results are shown
in Figure 7.

Figure 7 is the confusion matrix diagram after the CNN-LSTM
classification model trained the mixed characteristic parameters
MGCC of the transformer under three working conditions. The
states 0, 1, and 2 in the figure represent the three mechanical states of
the transformer: normal, loose winding, and loose iron core,
respectively. Among them, the recognition rate in the 0 state is
89%; The recognition rate in state 1 is 94%. The recognition rate in

TABLE 1 Basic information table of the transformer voiceprint dataset.

Data attribute Specific content

Data source On-site collection of current A model transformers at 110 kV outdoor substations in X area +
laboratory simulation fault verification (ensuring data coverage of actual operation and maintenance
scenarios and standard fault conditions)

Collection object Model A oil-immersed distribution transformer (rated capacity 500 kVA, rated voltage 10 kV/0.4 kV,
operating life 3 years, no historical major fault records, meeting the common specifications of power
grid operation and maintenance equipment)

Collection environment 1. On-site collection environment: A windproof and soundproof cover is installed in the designated
area of the outdoor substation, 2 m away from the transformer body (to avoid near-field vibration
interference), to reduce the influence of environmental wind noise and noise from the cooling fans of
adjacent equipment. The background noise value of the environment is 35–45 dB (measured by a
sound level meter).
2. Laboratory simulation environment: Shielded acoustic laboratory, background noise ≤25 dB,
simulating typical loads of a substation (30%, 50%, and 80% rated load)

Collection equipment 1. Microphone: 48 kHz sampling rate capacitive acoustic sensor (model: CM-100), sampling accuracy
24 bits, frequency response 20 Hz–20 kHz (covering the effective frequency band of transformer
voiceprint)
2. Data acquisition card: USB-6363 (16-bit analog input accuracy, supporting multi-channel
synchronous acquisition)
3. Auxiliary equipment: Sound level meter (TES-1353), wind shield, tripod

Collect parameters The sampling frequency is 51,200 Hz (in accordance with the requirement of Section 2.1 that “the
sampling frequency should be ≥ 40 kHz to avoid loss of sound information”), the collection duration
for each sample is 5 s (each sample contains 500 frames of voiceprint data, with a frame length of
10 ms), and the collection is repeated 30 times per working condition (to ensure sample diversity)

Operating condition category 1. Normal operating conditions (no abnormal vibration of the transformer, and the temperatures of
the insulating oil and windings are both within the rated range)
2. Winding loose condition (simulating a 2-mm loose winding wire, achieving the standard fault state
through mechanical debugging)
3. Core loosening condition (simulating a 1mm loosening of core silicon steel sheets, which conforms
to common core failure modes)

Sample size distribution The total sample size is 450 (MGCC fusion feature samples), with a balanced distribution of
150 samples in each of the three working conditions (to avoid sample bias affecting the model
training effect)
1. Normal operating conditions: 150 (including 50 on-site collected samples +100 laboratory
verification samples)
2. Winding loosening condition: 150 (including 50 on-site simulated fault samples +100 laboratory
standard fault samples)
3. Core loosening condition: 150 (including 50 on-site simulated fault samples +100 laboratory
standard fault samples)

Data preprocessing Pre-emphasis (coefficient 0.9375), framing (frame length 10 ms and frame shift of 5 ms), windowing
(Hamming window), FFT (512 points), MFCC extraction (24-dimensional Mel filter → 12-
dimensional DCT), GFCC extraction (64-dimensional gammatone filter → 30-dimensional DCT),
MGCC fusion (series + Fisher criterion screening to 12-dimensional)

Data storage format WAV format (original voiceprint signal), CSV format (MFCC/GFCC/MGCC characteristic
parameters), storage path associated with working condition labels (such as
“Normal_20231001_0800.wav,” “Winding_Loose_MGCC_001.csv”) facilitate data traceability and
model invocation

TABLE 2 Influence of different numbers of neurons on recognition results.

Number of
neurons

3 4 5 6 7 8

Recognition
rate

91.78 92.23 92.65 89.47 88.35 88.41
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state 2 is 98%. It can be seen that the recognition rate of
transformer iron core loosening is the highest, followed by
winding loosening, and the recognition rate under normal
working conditions is the lowest; that is, samples under normal
working conditions are easily confused with winding loosening or
iron core loosening, and the average recognition rate reaches
93.66%, achieving the expected goal. At the same time,
compared with LSTM, the accuracy is improved by 14.9%,
which confirms the feasibility of the CNN-LSTM network
transformer voice print fault diagnosis technology.

3.4 The influence of different signal-to-
noise ratios on transformer operating status
identification results

In the practical transformer voice print fault diagnosis
system, the collected sound signals are often disturbed by the
surrounding environment, and whether the extracted feature
parameters have good anti-noise property will have a great
impact on the result of the voice print diagnosis system.
Therefore, the following experiments were carried out to
further test the anti-noise ability of MGCC. In this article,
factory noise, speaking noise, vehicle noise, and white

Gaussian noise were extracted from the Noisex-92 noise
library. All the data lengths are 235 s, and the adoption rate
is 19,980 Hz. The signal-to-noise ratios of these noises are set
as −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB, respectively. Then,
background noise with a different signal-to-noise ratio was
added to the original signal, and the MFCC, GFCC, and
MGCC characteristic parameters of the transformer under
three working conditions were obtained. These three
characteristic parameters were input into the CNN network
for classification and recognition, and the results obtained are
shown in Figure 8.

It can be seen that under a high signal-to-noise ratio (SNR), the
recognition rate of MFCC characteristic parameters is higher than
that of GFCC. With the decrease in the SNR, the recognition rate of
MFCC increases and the noise resistance is weaker, while the
recognition rate of GFCC decreases slowly and the noise
resistance is better. However, the accuracy of MGCC fusion
parameters is higher than that of MFCC and CFCC, and the
recognition rate tends to decline slowly as the signal-to-noise
ratio decreases. Therefore, the MGCC feature parameters not
only have the accuracy of MFCC feature parameters but also
have the noise resistance of GFCC feature parameters, which is
the most suitable feature parameter in the transformer fault
diagnosis model.

FIGURE 7
Confusion matrix diagram of CNN-L.
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3.5 K-fold cross-validation

Combined with the parameter settings, K-fold cross-validation
is carried out to ensure the stability of the subsequent test results.
The original data set (450 samples) is randomly divided into k
subsets, and each fold contains approximately 90 (K = 5) samples.
For the i-th fold (i = 1,2,. . ., K), the i-th subset is used as the

validation set, and the remaining K-1 subsets are merged into the
training set. The recognition rate of each fold is recorded, the
average accuracy rate and standard deviation are calculated, and
the stability of the model is evaluated. The results obtained after
inspection are shown in Table 3.

It can be seen that the original fixed division result (average 93%)
is close to the cross-validation mean (92.4%), and the standard

FIGURE 8
Identification results of feature parameters under different noise backgrounds. (a) Factory noise, (b) voice, (c) vehicle noise, and (d) Gaussian
white noise.

TABLE 3 K-fold cross-validation.

Fold Normal situation Winding is loose Core is loose Average recognition rate

1 86% 92% 97% 91.7%

2 88% 94% 98% 93.3%

3 85% 91% 96% 90.7%

4 89% 93% 97% 93.0%

5 87% 95% 98% 93.3%

Mean ± standard deviation 87.0% ± 1.4% 93.0% ± 1.6% 97.2% ± 0.8% 92.4% ± 1.1%
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deviation is relatively low (±1.1%), indicating that the model has
good stability, and the credibility of the original conclusion is
relatively high.

4 Conclusion

To sum up, this article first describes the basic concepts of
transformer vowel print fault diagnosis technology, including
transformer sound acquisition and processing, sound signal feature
extraction, and transformer fault type identification. Especially in the
feature extraction link, detailed analysis and explanation are given to
the twomainstream feature extraction parameters, MFCC andGFCC.
The discussion lays a foundation for the subsequent empirical
development. Second, the CNN network architecture and LSTM
network architecture are given, and then the transformer fault
diagnosis model architecture under the CNN-LSTM network is
constructed. Finally, taking three different acoustic signals of
transformer A, normal, winding fault, and iron core fault, as the
research object, the transformer voice fault diagnosis technology
based on a CNN-LSTM network is tested. The results show that
under the CNN-LSTM classificationmodel, the recognition rate of the
transformer in state 0 is 88%. The recognition rate in state 1 is 93%.
The recognition rate in state 2 is 98%. In the LSTM mode, the
recognition rate of the transformer in state 0 is 73%. The recognition
rate in state 1 is 83%. The recognition rate in state 2 is 83%, and the
overall average is 79.3%. The feasibility of the CNN-LSTM-based
network transformer voice print fault diagnosis technology is
confirmed, and it can be used in practice.
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