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Background: Permanent magnet synchronous motor (PMSM) may develop faults 
during long-term operation, affecting the stability and safety of the drive system.
Objective: This paper aims to identify the types of PMSM operation faults using a 
deep learning algorithm.
Methods: The convolutional neural network (CNN)-gated recurrent unit (GRU) 
algorithm was compared with the support vector machine (SVM), random forest 
(RF), and back-propagation neural network (BPNN) algorithms. Ablation 
experiments were conducted. Finally, the Shapley additive explanations 
algorithm was used to calculate the importance of feature indicators.
Results: The CNN-GRU algorithm had better fault-diagnosis performance 
compared with the other three algorithms and was easier to make an 
accurate diagnosis of inter-turn short-circuit faults in stator windings. The 
precision, recall rate, and F-score of the CNN-GRU algorithm were 0.950, 
0.948, and 0.949, respectively; the corresponding values of the BPNN 
algorithm were 0.823, 0.819, and 0.821, respectively; the corresponding 
values of the RF algorithm were 0.719, 0.713, and 0.716, respectively; the 
corresponding values of the SVM algorithm were 0.707, 0.700, and 0.703, 
respectively. Ablation experiments verified the effectiveness of the CNN and 
GRU algorithms for the entire algorithm. Stator current and voltage were of the 
highest importance in the fault diagnosis model, followed by motor torque, and 
motor temperature was least important.
Contribution: The contribution of this paper lies in improving the recognition 
performance of fault types by combining two intelligent algorithms, CNN and 
GRU, and taking into account both local features and time-series features. It 
provides an effective reference for ensuring the stable operation of motor drive 
systems.
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1 Introduction

In actual operation, a permanent magnet synchronous motor (PMSM) is prone 
to various faults due to factors such as electromagnetic interference, wear and tear, 
and load fluctuations. These faults will not only affect the operational efficiency and 
accuracy of the motor but also further cause safety accidents in the entire system 
(Pietrzak and Wolkiewicz, 2024; Huang et al., 2020; Ma et al., 2020). Therefore, it is 
necessary to monitor the operating status of the PMSM and diagnose faults in order 
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to maintain operational safety. Traditional PMSM diagnostic 
methods mainly rely on the analysis by physical models and 
human experience. These methods can identify some typical 
faults to a certain extent but have some drawbacks such as low 
diagnostic efficiency and accuracy, and difficulty in adapting 
to changes in complex operating conditions. In this context, 
deep learning techniques, leveraging their nonlinear modeling 
capabilities, offer new ideas for fault diagnosis of PMSM (Yi 
et al., 2025). Compared with traditional methods, deep 
learning technology has an advantage in dealing with high- 
dimensional, unstructured, time-series data; therefore, it is 
suitable for multi-source heterogeneous data collected in 
PMSM. Kang and Yao. (2024) proposed a fault diagnosis 
scheme for various fault conditions in PMSM systems and 
discovered that the proposed algorithm could accurately and 
reliably diagnose demagnetization faults and speed sensor 
faults under different severities of faults. Wang et al. (2024)
applied a one-dimensional convolutional neural network (1D- 
CNN) to diagnose PMSM faults and found that this method 
could identify 11 types of motor faults, showing an accuracy of 
99.7%. Ko et al. (2024) put forward a physically based approach 
for identifying demagnetization fault indicators in PMSMs 
without fractional harmonics in operation and found 
through simulation and experiments that the scheme was 
effective regardless of the operating conditions. Shen et al. 
(2025) proposed a static error elimination algorithm based on 
a proportional-integral controller and particle swarm 
optimization for electric vehicle drive systems. This 
algorithm was used for the robust predictive current control 
of PMSM. The experimental results showed that this algorithm 
has good dynamic adjustment performance and a small 
amount of calculation. Deng et al. (2024) carried out a 
study on a multi-objective energy management strategy for 
a parallel plug-in hybrid electric vehicle. They discovered that 
the improved control strategy can well balance the engine fuel 
economy and the battery temperature rise index, which has 
excellent battery state-of-charge maintenance ability. The 
above studies all conducted research on PMSM fault 
detection. Some of them used intelligent algorithms to 
identify fault types, while others analyzed the collected data 
and utilized their features to identify fault types. This paper 
also used an intelligent algorithm to identify PMSM faults. In 
this paper, in order to enhance the diagnostic performance of 
intelligent algorithms for PMSM faults, a convolutional neural 
network (CNN) and a gated recurrent unit (GRU) were 
combined. The CNN algorithm was used to extract the 
detailed features in the collected signals, and the GRU 
algorithm was used to obtain the rule features of the 
collected signals in the time series, so as to achieve a more 
accurate diagnosis of the types of faults. This paper collected 
normal and fault operation data from actual PMSMs for 
simulation experiments. The contribution of this paper lies 
in recognizing operation faults of PMSMs by combining a 
CNN with a GRU. The spatial features of fault data were 
extracted using the CNN, and the time-series features were 
extracted using the GRU. The two kinds of features were 
combined to achieve more accurate recognition of fault types.

2 Fault diagnosis of PMSM based on 
deep learning algorithms

Common PMSM fault types include stator winding faults, rotor 
faults, bearing faults, and control circuit anomalies (Li and Shi, 
2024). All of these faults can lead to unstable motor output torque, 
reduced efficiency, increased noise, and, in severe cases, shutdown. 
Traditional PMSM fault diagnosis methods include physical model- 
based, signal processing-based, and rule-based threshold alarm 
methods. The first kind of methods build a PMSM simulation 
model to simulate different fault states and collect relevant 
parameters and uses the parameters obtained from the 
simulation to compare with the parameters of the actual motor 
(Zhang and Yu, 2022) for fault diagnosis.Signal processing-based 
methods extract the signal features of faults using various signal 
transformation algorithms to diagnose faults. Rule-based threshold 
alarm methods directly set the thresholds for the relevant parameters 
and determines the presence of a fault when the parameters exceed 
those threshold. The limitations of the diagnostic methods 
mentioned above are partly due to overly ideal setting conditions 
and high sensitivity to noise, and partly because fault judgment is too 
simplistic and crude (Yuan et al., 2022) to distinguish specific 
fault types.

In PMSM fault diagnosis, the advantage of deep learning 
technology lies in its ability to automatically extract features from 
collected data, its ability to handle high-dimensional, unstructured 
data, and the usability of the trained model in different operating 
conditions or motor models.

To enhance the performance of PMSM fault diagnosis, this 
paper chooses the CNN-GRU model (Wang et al., 2022). In 
this paper, sensors are used to collect relevant signals of a 
PMSM during operation. These signals can form a curve graph 
over time, thus the CNN algorithm can be used to extract 
features from it. The time-varying signals are also a kind of 
time series data; thus, GRU can be used for processing (Li et al., 
2021a). The training process of the combined model for PMSM 
fault diagnosis (Figure 1) is as follows.

1. Sensors are used to collect data related to the determination of 
PMSM faults. In this paper, data such as stator current, stator 
voltage, temperature, and rotor torque of a PMSM are 
collected. The collected data are continuously segmented at 
certain time intervals, and the data collected in each period 
constitutes a sample, which is labeled according to the PMSM 
fault status at the time of collection.

2. The characteristic parameters that vary over time within each 
sample can form a curve graph, which is input into the CNN 
algorithm. The convolutional layer in the algorithm extracts 
the convolutional features from the curve graph. When 
extracting features, the convolution kernels in the 
convolutional layer move in the image at a set step size and 
perform the convolution operation (Zhang et al., 2021). The 
corresponding expression is shown in Equation 1:

y � f 􏽘
i,j

x · w( )i,j + b⎛⎝ ⎞⎠, (1)
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where y is the convolutional feature output by the convolutional 
layer, x is the input sample, w is a convolution kernel, b is a bias, 
f( ) is an activation function, and i and j are sample pixel 
coordinates. After extracting convolutional features, the pooling 
layer compresses the convolutional feature map to reduce the 
subsequent computational load. The pooling layer operates by 
moving the pooling box over the convolutional feature map at a 
fixed step size and compressing the data within the box. Max- 
pooling and mean-pooling are commonly used. The former uses the 
maximum value within the box as the compression result, while the 
latter uses the mean. The structure for the convolution and pooling 
of data images is set according to the requirements.

3. The extracted convolutional features are input into the GRU in 
chronological order for forward computation, and the forward 
computation formula in the GRU hidden layer is shown 
in Equation 2:

zt � f ωz ht−1, xt( )( )

rt � f ωr ht−1, xt( )( )

h′t � tanh ω rt × ht−1, xt( )( )

ht � 1 − zt( ) × ht−1 + zt × h′t

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, (2)

where zt is the output of the update gate, rt is the output of the reset 
gate (Li et al., 2021b), ωz and ωr are the weight in the update and 
reset gates, xt is the current input, i.e., the extracted convolutional 
feature of the current time, f( ) is the activation function used in the 
update and reset gates, ht−1 is the hidden state at the previous 
moment, h′t is a temporary hidden state at the present moment, ω is 
the weight at the time of calculating h′t, and ht is the hidden state at 
the current moment. The result obtained from the forward 
calculation in the hidden layer is input into the output layer to 
calculate the fault type probability distribution of samples using the 
softmax function. Finally, the fault type with the highest probability 
is output.

4. Whether the algorithm training is over is determined. If it 
is over, stop training the parameters of the fixed algorithm 
model; otherwise, reversely adjust the parameters of the 
algorithm model according to the loss function and return 
to step ②. The algorithm model used in this paper is 
designed to diagnose PMSM fault types and is a 
classification algorithm. Therefore, cross-entropy (Kim 
et al., 2020) is used as the loss function in this paper. The 
conditions for the algorithm training to stop include 
reaching a specified number of training sessions or 
having the loss function converge with fluctuations less 
than 10−8.

3 Simulation experiments

3.1 Experimental data

The experimental data were collected from an actual PMSM 
device. The PMSM device platform (Figure 2) contains two motors, 
namely, the test motor and the load motor, connected by a shaft 
coupling. The test motor is a PMSM, with the following parameters: 
600 W rated power, 2.0 A rated current, two pole pairs, 0.63Wb flux 
link in the rotor permanent magnet, 0.16H straight-axis and cross- 
axis inductance, and 200 r/min rated speed.

For PMSM sample collection, current and voltage sensors were 
used to measure stator current and voltage during the operation of 
the test motor, temperature sensors were used to measure 
temperature, and torque sensors installed on shaft couplings were 
used to measure torque. The sampling frequency of each sensor was 
40 kHz. When collecting samples from the PMSM in 
normal operation, the test motor speed was set to 50, 100, and 
150 r/min, respectively, the load motor was not loaded or loaded 
with 2 Nm, and the sampling duration was 30 min. Before collecting 
samples from the PMSM with faulty stator windings, the additional 
winding taps of the test motor were artificially induced to simulate 
the inter-turn short-circuit fault in the stator windings. Before 
collecting samples from the PMSM with rotor faults, the rotor of 
the test motor was replaced with a rotor of uniform size but 10% 
eccentricity to simulate rotor eccentricity failure. Before collecting 
samples from the PMSM with bearing faults, the bearing of the test 
motor was replaced with one processed by electrical discharge 
machining. During the operation of the PMSM with the above- 
mentioned faults, the test motor speed was also set at 50, 100, and 
150 r/min, no load and a load of 2 Nm were applied to the load 
motor respectively, and the sampling lasted for 30 min.

FIGURE 1 
The training process of the CNN + GRU algorithm.

FIGURE 2 
The PMSM device platform.

Frontiers in Mechanical Engineering frontiersin.org03

Guo and Pan 10.3389/fmech.2025.1687802

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1687802


The data collected during normal operation and fault operation 
were split into lengths of one second, resulting in 1,800 samples for 
normal operation, 1,800 samples for stator winding inter-turn short 
circuit fault, 1,800 samples for rotor eccentricity fault, and 
1,800 samples for bearing fault in the working condition of 50 r/ 
min motor speed and no load. In working conditions such as “100 r/ 
min motor speed and no load”, “150 r/min motor speed and no 
load”, “50 r/min motor speed and a load of 2 Nm”, “100 r/min motor 
speed and a load of 2 Nm”, and “150 r/min motor speed and a load of 
2 Nm”, the number of each type of sample was the same as that in the 
previous working condition. Finally, 43,200 samples were obtained. 
60% of the samples were randomly selected from the sample set of 
each fault type in each working condition as training samples, and 
the remaining 40% were used as test samples.

3.2 Experimental methods

The relevant parameter settings of the CNN-GRU algorithm are 
shown in Table 1. In addition, to further verify the performance of 
this algorithm in fault diagnosis, comparisons were made with 
algorithms such as SVM, random forest (RF), and BPNN.

To verify the contributions of each part of the combined model 
algorithm adopted in this paper, an ablation experiment was 
conducted. The CNN and GRU parts were respectively 
eliminated for testing and comparison. A fully connected layer 
replaced the eliminated part. Finally, the Shapley additive 
explanations (SHAP) algorithm was used to measure the 
contribution of fault features to the algorithm model. The 
calculation formula of the SHAP algorithm is shown in Equation 3: 

fX S( ) � E f X( ) XS|􏼂 􏼃

Δi S( ) � fX S ∪ i{ }( )−fX S( )

ϕi �􏽘
S

S| |! N− S| |− 1( )!

N!
· Δi S( )

g x( ) � ϕ0 +􏽘

p

i�1
ϕi · zi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (3)

where X denotes the data sample collected during PMSM operation, 
each sample has N features, four in this paper, S is a subset of sample 
feature set N without feature i, fX(S) denotes the expected value of 
the output of S, Δi(S) is the marginal contribution of feature i after 

being added to S in the model’s prediction results, ϕi is the SHAP 
value of feature i, g(x) represents the constructed explanation 
function of feature contribution, ϕ0 is the base value, i.e., the 
mean of the predicted model results, and zi is an 
indicative parameter.

3.3 Evaluation indicator

The performance of the fault diagnosis algorithm was evaluated 
using the commonly used precision, recall rate, and F-score, as 
shown in Equation 4: 

P �
TP

TP + FN

R �
TP

TP + FP

F �
2 · P · R
P + R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (4)

where P is the precision, R is the recall rate, F is the combined value 
of precision and recall rate, TP indicates the actual number of cases, 
FP indicates the number of false positive cases, FN indicates the 
number of false negative cases, and TN represents the number of 
true negative cases.

3.4 Experimental results

The SVM, RF, BPNN, and the CNN-GRU algorithms were 
compared (Figure 3). It can be seen from the figure that the CNN- 
GRU algorithm exhibited the best fault-diagnosis performance for 
PMSM, followed by the BPNN algorithm, and the SVM and RF 
algorithms had the worst performance and differed little. It can be 
seen from Table 2 that the diagnostic performance of different 
diagnostic algorithms for the same type of faults was consistent with 
the overall trend. When the same diagnostic algorithm faced 
different types of faults, it can be seen that the diagnostic 
performance for inter-turn short-circuit faults in the stator 
winding was better. The reason for this is that the inter-turn 
short circuit of the winding directly affects the wire and directly 
reflects on the current and voltage values of the motor, which is 
relatively more intuitive. Rotor eccentricity and bearing faults cause 
motor vibration. During vibration, the distance between the 

TABLE 1 Parameter settings for the fault diagnosis algorithm.

Structure Parameter setting Structure Parameter setting

The input layer of 
the CNN

300 × 150 Convolutional layer 1 in 
the CNN

32 2 × 2-sized convolution kernels, with a moving step size of 1, 
sigmoid activation function

Pooling layer 1 in 
the CNN

A 2 × 2-sized pooling box, with a moving step size 
of 1, mean-pooling

Convolutional layer 2 in 
the CNN

64 2 × 2-sized convolution kernels, with a moving step size of 1, 
sigmoid activation function

Pooling layer 2 in 
the CNN

A 2 × 2-sized pooling box, with a moving step size 
of 1, mean-pooling

The hidden layer in 
the GRU

128 nodes, sigmoid activation function

The output layer in 
the GRU

Softmax function, four nodes Number of training 
sessions

300 times

Learning rate 0.02 Learner Adam
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permanent magnet on the rotor and the stator winding coil will 
change unstably, affecting the current and voltage in the motor. But 
it is not as direct as the inter-turn short circuit.

To test the contributions of the CNN and GRU parts in the 
CNN-GRU model, ablation experiments were conducted. The 
CNN and GRU parts were respectively eliminated, and 
performance tests were conducted. It can be seen from 
Figure 4 that the diagnostic performance of the algorithm 
for PMSM faults was significantly reduced after removing 
the CNN or GRU parts, while the performance of fault 
diagnosis between the two algorithms with their respective 
parts removed was not much different.

The SHAP algorithm was employed to calculate the importance 
of the feature indicators in the model. Figure 5 shows that stator 
current and voltage were the most important in this model, followed 
by motor torque, and motor temperature was the least important. It 
can be seen that when the PMSM failed, the influence on stator 

current and voltage was most obvious, followed by motor torque, 
and finally motor temperature.

4 Discussion

PMSMs have gradually become the core executive components 
in key fields such as new-energy vehicle drive systems, industrial 
servo control, aerospace propulsion devices, and high-end 
numerical control equipment due to their excellent dynamic 
response performance. However, once a PMSM malfunctions and 
the fault is not diagnosed and addressed in a timely manner, it will 
not only lead to a decline in system performance and an increase in 
energy consumption but may also trigger a chain reaction of 
equipment damage and even safety accidents. Model-based 
analytical redundancy techniques and signal-processing-based 
feature-extraction methods are traditional PMSM fault-diagnosis 

FIGURE 3 
Performance comparison of algorithms.

TABLE 2 Diagnostic performance of four algorithms for different fault types.

Algorithm Fault type Precision Recall rate F-score

SVM Stator winding inter-turn short circuit 0.721 0.719 0.720

Rotor eccentricity 0.711 0.701 0.706

Bearing fault 0.688 0.679 0.683

RF Stator winding inter-turn short circuit 0.732 0.729 0.730

Rotor eccentricity 0.721 0.712 0.716

Bearing fault 0.703 0.699 0.701

BPNN Stator winding inter-turn short circuit 0.848 0.843 0.845

Rotor eccentricity 0.832 0.828 0.830

Bearing fault 0.789 0.787 0.788

CNN-GRU Stator winding inter-turn short circuit 0.976 0.973 0.974

Rotor eccentricity 0.962 0.959 0.960

Bearing fault 0.913 0.911 0.912
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methods. These methods are effective under specific operating 
conditions but have limitations. Firstly, they highly depend on 
accurate mathematical models. Secondly, the features designed 
manually are difficult to comprehensively reflect the non-linear 
characteristics of complex faults.

The CNN and GRU algorithms used in this paper are both deep 
learning algorithms with powerful nonlinear mapping capabilities. 
CNN can automatically extract the spatial features of data, and GRU 
can extract the features of data in the time series and implement an 
end-to-end learning paradigm. This paper combined a CNN with a 
GRU for the identification of PMSM fault types. In the simulation 
experiments, the CNN-GRU algorithm was compared with SVM, 
RF, and BPNN. Moreover, an ablation experiment was conducted. 
Finally, the SHAP algorithm was used to calculate the importance of 
feature indicators. The CNN-GRU algorithm exhibited better 
performance in identifying fault types compared with the other 
three algorithms. The results of the ablation experiment also verified 

that both the CNN part and the GRU part were effective for the 
algorithm. When a PMSM failed, the stator current and voltage were 
most significantly affected, followed by the motor torque, and finally 
the motor temperature. The reason is analyzed. The SVM algorithm 
is more suitable for processing data with linear regular features, and 
the RF algorithm is more suitable for processing data with discrete 
features. Although the BPNN algorithm is also a deep learning 
algorithm, it requires manual feature extraction during use. The 
CNN-GRU algorithm can automatically extract spatial and time- 
series features from data and use an activation function to fit the 
nonlinear rules.

5 Conclusion

This paper adopted a combination of CNN and GRU to 
diagnose PMSM faults. Then, normal and fault operation data 

FIGURE 4 
Results of the ablation experiments.

FIGURE 5 
Importance of feature indicators in the fault diagnosis model.
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were collected from the actual PMSM for simulation experiments. 
The CNN-GRU algorithm was compared with the SVM, RF, and 
BPNN algorithms, and ablation experiments were conducted. 
Finally, the SHAP algorithm was used to calculate the 
importance of feature indicators in the algorithm model. The 
CNN-GRU algorithm showed superior fault-diagnosis 
performance than the other three algorithms. The results of the 
ablation experiment also confirmed that both the CNN and GRU 
parts were effective for the algorithm. When a fault occurred in the 
PMSM, the impact on the stator current and voltage was the most 
obvious, followed by the motor torque, and finally the motor 
temperature. The contribution of this paper lies in that the 
combination of CNN and GRU can fully utilize the spatial and 
temporal features of the data, thereby identifying the fault types 
more accurately and providing an effective reference for the fault 
diagnosis of PMSM.

The limitations of this paper included a limited number of 
algorithm models for comparison and insufficient analysis of feature 
importance using the SHAP algorithm. Therefore, future research 
will expand the range of algorithm models for comparison to verify 
the effectiveness of the proposed algorithm and to further analyze 
the relationship between feature indicators and different fault types.
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