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Institute of Intelligent Manufacturing, Sanmenxia Polytechnic, Sanmenxia, Henan, China

Background: Permanent magnet synchronous motor (PMSM) may develop faults
during long-term operation, affecting the stability and safety of the drive system.
Objective: This paper aims to identify the types of PMSM operation faults using a
deep learning algorithm.

Methods: The convolutional neural network (CNN)-gated recurrent unit (GRU)
algorithm was compared with the support vector machine (SVM), random forest
(RF), and back-propagation neural network (BPNN) algorithms. Ablation
experiments were conducted. Finally, the Shapley additive explanations
algorithm was used to calculate the importance of feature indicators.

Results: The CNN-GRU algorithm had better fault-diagnosis performance
compared with the other three algorithms and was easier to make an
accurate diagnosis of inter-turn short-circuit faults in stator windings. The
precision, recall rate, and F-score of the CNN-GRU algorithm were 0.950,
0.948, and 0.949, respectively; the corresponding values of the BPNN
algorithm were 0.823, 0.819, and 0.821, respectively; the corresponding
values of the RF algorithm were 0.719, 0.713, and 0.716, respectively; the
corresponding values of the SVM algorithm were 0.707, 0.700, and 0.703,
respectively. Ablation experiments verified the effectiveness of the CNN and
GRU algorithms for the entire algorithm. Stator current and voltage were of the
highest importance in the fault diagnosis model, followed by motor torque, and
motor temperature was least important.

Contribution: The contribution of this paper lies in improving the recognition
performance of fault types by combining two intelligent algorithms, CNN and
GRU, and taking into account both local features and time-series features. It
provides an effective reference for ensuring the stable operation of motor drive
systems.

combined model, deep learning, faultdiagnosis, industrial automation control,
permanent magnet synchronous motor

1 Introduction

In actual operation, a permanent magnet synchronous motor (PMSM) is prone
to various faults due to factors such as electromagnetic interference, wear and tear,
and load fluctuations. These faults will not only affect the operational efficiency and
accuracy of the motor but also further cause safety accidents in the entire system
(Pietrzak and Wolkiewicz, 2024; Huang et al., 2020; Ma et al., 2020). Therefore, it is
necessary to monitor the operating status of the PMSM and diagnose faults in order
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to maintain operational safety. Traditional PMSM diagnostic
methods mainly rely on the analysis by physical models and
human experience. These methods can identify some typical
faults to a certain extent but have some drawbacks such as low
diagnostic efficiency and accuracy, and difficulty in adapting
to changes in complex operating conditions. In this context,
deep learning techniques, leveraging their nonlinear modeling
capabilities, offer new ideas for fault diagnosis of PMSM (Vi
et al, 2025). Compared with traditional methods, deep
learning technology has an advantage in dealing with high-
dimensional, unstructured, time-series data; therefore, it is
suitable for multi-source heterogeneous data collected in
PMSM. Kang and Yao. (2024) proposed a fault diagnosis
scheme for various fault conditions in PMSM systems and
discovered that the proposed algorithm could accurately and
reliably diagnose demagnetization faults and speed sensor
faults under different severities of faults. Wang et al. (2024)
applied a one-dimensional convolutional neural network (1D-
CNN) to diagnose PMSM faults and found that this method
could identify 11 types of motor faults, showing an accuracy of
99.7%. Ko et al. (2024) put forward a physically based approach
for identifying demagnetization fault indicators in PMSMs
without fractional harmonics in operation and found
through simulation and experiments that the scheme was
effective regardless of the operating conditions. Shen et al.
(2025) proposed a static error elimination algorithm based on
a proportional-integral controller and particle swarm

This
algorithm was used for the robust predictive current control
of PMSM. The experimental results showed that this algorithm

has good dynamic adjustment performance and a small

optimization for electric vehicle drive systems.

amount of calculation. Deng et al. (2024) carried out a
study on a multi-objective energy management strategy for
a parallel plug-in hybrid electric vehicle. They discovered that
the improved control strategy can well balance the engine fuel
economy and the battery temperature rise index, which has
excellent battery state-of-charge maintenance ability. The
all conducted research on PMSM fault
detection. Some of them wused intelligent algorithms to

above studies
identify fault types, while others analyzed the collected data
and utilized their features to identify fault types. This paper
also used an intelligent algorithm to identify PMSM faults. In
this paper, in order to enhance the diagnostic performance of
intelligent algorithms for PMSM faults, a convolutional neural
network (CNN) and a gated recurrent unit (GRU) were
combined. The CNN algorithm was used to extract the
detailed features in the collected signals, and the GRU
algorithm was used to obtain the rule features of the
collected signals in the time series, so as to achieve a more
accurate diagnosis of the types of faults. This paper collected
normal and fault operation data from actual PMSMs for
simulation experiments. The contribution of this paper lies
in recognizing operation faults of PMSMs by combining a
CNN with a GRU. The spatial features of fault data were
extracted using the CNN, and the time-series features were
extracted using the GRU. The two kinds of features were
combined to achieve more accurate recognition of fault types.
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2 Fault diagnosis of PMSM based on
deep learning algorithms

Common PMSM fault types include stator winding faults, rotor
faults, bearing faults, and control circuit anomalies (Li and Shi,
2024). All of these faults can lead to unstable motor output torque,
reduced efficiency, increased noise, and, in severe cases, shutdown.
Traditional PMSM fault diagnosis methods include physical model-
based, signal processing-based, and rule-based threshold alarm
methods. The first kind of methods build a PMSM simulation
model to simulate different fault states and collect relevant
parameters and uses the parameters obtained from the
simulation to compare with the parameters of the actual motor
(Zhang and Yu, 2022) for fault diagnosis.Signal processing-based
methods extract the signal features of faults using various signal
transformation algorithms to diagnose faults. Rule-based threshold
alarm methods directly set the thresholds for the relevant parameters
and determines the presence of a fault when the parameters exceed
those threshold. The limitations of the diagnostic methods
mentioned above are partly due to overly ideal setting conditions
and high sensitivity to noise, and partly because fault judgment is too
simplistic and crude (Yuan et al, 2022) to distinguish specific
fault types.

In PMSM fault diagnosis, the advantage of deep learning
technology lies in its ability to automatically extract features from
collected data, its ability to handle high-dimensional, unstructured
data, and the usability of the trained model in different operating
conditions or motor models.

To enhance the performance of PMSM fault diagnosis, this
paper chooses the CNN-GRU model (Wang et al., 2022). In
this paper, sensors are used to collect relevant signals of a
PMSM during operation. These signals can form a curve graph
over time, thus the CNN algorithm can be used to extract
features from it. The time-varying signals are also a kind of
time series data; thus, GRU can be used for processing (Li et al.,
2021a). The training process of the combined model for PMSM
fault diagnosis (Figure 1) is as follows.

1. Sensors are used to collect data related to the determination of
PMSM faults. In this paper, data such as stator current, stator
voltage, temperature, and rotor torque of a PMSM are
collected. The collected data are continuously segmented at
certain time intervals, and the data collected in each period
constitutes a sample, which is labeled according to the PMSM
fault status at the time of collection.

2. The characteristic parameters that vary over time within each
sample can form a curve graph, which is input into the CNN
algorithm. The convolutional layer in the algorithm extracts
the convolutional features from the curve graph. When
extracting features, the convolution kernels in the

convolutional layer move in the image at a set step size and

perform the convolution operation (Zhang et al., 2021). The

corresponding expression is shown in Equation 1:

y=f<2 (x-w>i,j+b>, (1)

i,j
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FIGURE 1
The training process of the CNN + GRU algorithm.

where y is the convolutional feature output by the convolutional
layer, x is the input sample, w is a convolution kernel, b is a bias,
f() is an activation function, and i and j are sample pixel
coordinates. After extracting convolutional features, the pooling
layer compresses the convolutional feature map to reduce the
subsequent computational load. The pooling layer operates by
moving the pooling box over the convolutional feature map at a
fixed step size and compressing the data within the box. Max-
pooling and mean-pooling are commonly used. The former uses the
maximum value within the box as the compression result, while the
latter uses the mean. The structure for the convolution and pooling
of data images is set according to the requirements.

3. The extracted convolutional features are input into the GRU in
chronological order for forward computation, and the forward
computation formula in the GRU hidden layer is shown
in Equation 2:

Zr = f(wz(htfl’xt))
T’t, = f(wr (hi-15 x1))
h, = tanh(w (r: X he_y, x¢))
hy=(1—2z) Xl + 2 X h;

(2

where z; is the output of the update gate, r; is the output of the reset
gate (Li et al., 2021b), w, and w, are the weight in the update and
reset gates, x; is the current input, i.e., the extracted convolutional
feature of the current time, f () is the activation function used in the
update and reset gates, /i;_; is the hidden state at the previous
moment, h; is a temporary hidden state at the present moment, w is
the weight at the time of calculating h;, and h; is the hidden state at
the current moment. The result obtained from the forward
calculation in the hidden layer is input into the output layer to
calculate the fault type probability distribution of samples using the
softmax function. Finally, the fault type with the highest probability
is output.

4. Whether the algorithm training is over is determined. If it
is over, stop training the parameters of the fixed algorithm
model; otherwise, reversely adjust the parameters of the
algorithm model according to the loss function and return
to step @. The algorithm model used in this paper is
designed to diagnose PMSM fault types and is a
classification algorithm. Therefore, cross-entropy (Kim
etal., 2020) is used as the loss function in this paper. The
conditions for the algorithm training to stop include
reaching a specified number of training sessions or
having the loss function converge with fluctuations less
than 107%.
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FIGURE 2
The PMSM device platform.

3 Simulation experiments
3.1 Experimental data

The experimental data were collected from an actual PMSM
device. The PMSM device platform (Figure 2) contains two motors,
namely, the test motor and the load motor, connected by a shaft
coupling. The test motor is a PMSM, with the following parameters:
600 W rated power, 2.0 A rated current, two pole pairs, 0.63Wb flux
link in the rotor permanent magnet, 0.16H straight-axis and cross-
axis inductance, and 200 r/min rated speed.

For PMSM sample collection, current and voltage sensors were
used to measure stator current and voltage during the operation of
the test motor, temperature sensors were used to measure
temperature, and torque sensors installed on shaft couplings were
used to measure torque. The sampling frequency of each sensor was
40 kHz. When from the PMSM in
normal operation, the test motor speed was set to 50, 100, and

collecting samples
150 r/min, respectively, the load motor was not loaded or loaded
with 2 Nm, and the sampling duration was 30 min. Before collecting
samples from the PMSM with faulty stator windings, the additional
winding taps of the test motor were artificially induced to simulate
the inter-turn short-circuit fault in the stator windings. Before
collecting samples from the PMSM with rotor faults, the rotor of
the test motor was replaced with a rotor of uniform size but 10%
eccentricity to simulate rotor eccentricity failure. Before collecting
samples from the PMSM with bearing faults, the bearing of the test
motor was replaced with one processed by electrical discharge
machining. During the operation of the PMSM with the above-
mentioned faults, the test motor speed was also set at 50, 100, and
150 r/min, no load and a load of 2 Nm were applied to the load
motor respectively, and the sampling lasted for 30 min.

frontiersin.org
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TABLE 1 Parameter settings for the fault diagnosis algorithm.

Structure Parameter setting

The input layer of 300 x 150

the CNN

Pooling layer 1 in
the CNN

A 2 x 2-sized pooling box, with a moving step size
of 1, mean-pooling

Pooling layer 2 in A 2 x 2-sized pooling box, with a moving step size

Structure

Convolutional layer 1 in
the CNN

Convolutional layer 2 in
the CNN

The hidden layer in

10.3389/fmech.2025.1687802

Parameter setting

32 2 x 2-sized convolution kernels, with a moving step size of 1,
sigmoid activation function

64 2 x 2-sized convolution kernels, with a moving step size of 1,
sigmoid activation function

128 nodes, sigmoid activation function

the CNN of 1, mean-pooling the GRU

The output layer in Softmax function, four nodes Number of training 300 times
the GRU sessions

Learning rate 0.02 Learner Adam

The data collected during normal operation and fault operation
were split into lengths of one second, resulting in 1,800 samples for
normal operation, 1,800 samples for stator winding inter-turn short
circuit fault, 1,800 samples for rotor eccentricity fault, and
1,800 samples for bearing fault in the working condition of 50 r/
min motor speed and no load. In working conditions such as “100 r/
min motor speed and no load”, “150 r/min motor speed and no
load”, “50 r/min motor speed and a load of 2 Nm”, “100 r/min motor
speed and aload of 2 Nm”, and “150 r/min motor speed and a load of
2 Nm”, the number of each type of sample was the same as that in the
previous working condition. Finally, 43,200 samples were obtained.
60% of the samples were randomly selected from the sample set of
each fault type in each working condition as training samples, and
the remaining 40% were used as test samples.

3.2 Experimental methods

The relevant parameter settings of the CNN-GRU algorithm are
shown in Table 1. In addition, to further verify the performance of
this algorithm in fault diagnosis, comparisons were made with
algorithms such as SVM, random forest (RF), and BPNN.

To verify the contributions of each part of the combined model
algorithm adopted in this paper, an ablation experiment was
conducted. The CNN and GRU parts respectively
eliminated for testing and comparison. A fully connected layer

were

replaced the eliminated part. Finally, the Shapley additive
explanations (SHAP) algorithm was used to measure the
contribution of fault features to the algorithm model. The
calculation formula of the SHAP algorithm is shown in Equation 3:

fx(8)=E[f(X)]X5]

Ai(S) = fx(SU{i) - fx(S)
ISI' (N )

-I1SI-nt
< ¢i:;T.AZ(S), (3)

P
gGx) =y + ) ;-7
i=1

where X denotes the data sample collected during PMSM operation,
each sample has N features, four in this paper, S is a subset of sample
feature set N without feature 7, fx (S) denotes the expected value of
the output of S, Ai(S) is the marginal contribution of feature i after
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being added to S in the model’s prediction results, ¢, is the SHAP
value of feature i, g(x) represents the constructed explanation
function of feature contribution, ¢, is the base value, ie., the
mean of the predicted model results, and z; is an
indicative parameter.

3.3 Evaluation indicator

The performance of the fault diagnosis algorithm was evaluated
using the commonly used precision, recall rate, and F-score, as
shown in Equation 4:

TP
p=—""__
TP + FN
TP
Rzi)
TP+ FP
_2-P-R
" P+R

4)

where P is the precision, R is the recall rate, F is the combined value
of precision and recall rate, TP indicates the actual number of cases,
FP indicates the number of false positive cases, FN indicates the
number of false negative cases, and TN represents the number of
true negative cases.

3.4 Experimental results

The SVM, RF, BPNN, and the CNN-GRU algorithms were
compared (Figure 3). It can be seen from the figure that the CNN-
GRU algorithm exhibited the best fault-diagnosis performance for
PMSM, followed by the BPNN algorithm, and the SVM and RF
algorithms had the worst performance and differed little. It can be
seen from Table 2 that the diagnostic performance of different
diagnostic algorithms for the same type of faults was consistent with
the overall trend. When the same diagnostic algorithm faced
different types of faults, it can be seen that the diagnostic
performance for inter-turn short-circuit faults in the stator
winding was better. The reason for this is that the inter-turn
short circuit of the winding directly affects the wire and directly
reflects on the current and voltage values of the motor, which is
relatively more intuitive. Rotor eccentricity and bearing faults cause
motor vibration. During vibration, the distance between the

frontiersin.org
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FIGURE 3
Performance comparison of algorithms.
TABLE 2 Diagnostic performance of four algorithms for different fault types.
Algorithm Fault type Precision Recall rate F-score
SVM Stator winding inter-turn short circuit 0.721 0.719 0.720
Rotor eccentricity 0.711 0.701 0.706
Bearing fault 0.688 0.679 0.683
RF Stator winding inter-turn short circuit 0.732 0.729 0.730
Rotor eccentricity 0.721 0.712 0.716
Bearing fault 0.703 0.699 0.701
BPNN Stator winding inter-turn short circuit 0.848 0.843 0.845
Rotor eccentricity 0.832 0.828 0.830
Bearing fault 0.789 0.787 0.788
CNN-GRU Stator winding inter-turn short circuit 0.976 0.973 0.974
Rotor eccentricity 0.962 0.959 0.960
Bearing fault 0.913 0.911 0.912

permanent magnet on the rotor and the stator winding coil will
change unstably, affecting the current and voltage in the motor. But
it is not as direct as the inter-turn short circuit.

To test the contributions of the CNN and GRU parts in the
CNN-GRU model, ablation experiments were conducted. The
CNN and GRU parts were respectively eliminated, and
performance tests were conducted. It can be seen from
Figure 4 that the diagnostic performance of the algorithm
for PMSM faults was significantly reduced after removing
the CNN or GRU parts, while the performance of fault
diagnosis between the two algorithms with their respective
parts removed was not much different.

The SHAP algorithm was employed to calculate the importance
of the feature indicators in the model. Figure 5 shows that stator
current and voltage were the most important in this model, followed
by motor torque, and motor temperature was the least important. It
can be seen that when the PMSM failed, the influence on stator

Frontiers in Mechanical Engineering

current and voltage was most obvious, followed by motor torque,
and finally motor temperature.

4 Discussion

PMSMs have gradually become the core executive components
in key fields such as new-energy vehicle drive systems, industrial
servo control, aerospace propulsion devices, and high-end
numerical control equipment due to their excellent dynamic
response performance. However, once a PMSM malfunctions and
the fault is not diagnosed and addressed in a timely manner, it will
not only lead to a decline in system performance and an increase in
energy consumption but may also trigger a chain reaction of
equipment damage and even safety accidents. Model-based
analytical redundancy techniques and signal-processing-based
feature-extraction methods are traditional PMSM fault-diagnosis

05 frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1687802

Guo and Pan

10.3389/fmech.2025.1687802

L E] T e
7 T T
O 08 Bt e sy
% s co
it e Bt
s e HE
= B ity i
075 e it i
< U B i e
Bt e ety
2 iy i
B e it
By ey it
L B st it
0.7 3 f i eesiiiding
B2 A iy
E e it
By [ sl
it e paisssied
0.65 F Erinred e
B E i sty
Bt e Eesisd
Bt i st
b e ci
0.6 B e e
L st it Eisiieed
. Bt e Bt
bt ey HE
B e Faatiesd
B i it
b ity .
B e 2
L Bt e .
0.55 b it 2
. i iy i
Bt e
piiteesd e
B i
0 5 | B 1 R 1

Precision

BECNN BGRU

FIGURE 4
Results of the ablation experiments
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Importance of feature indicators in the fault diagnosis model.

methods. These methods are effective under specific operating
conditions but have limitations. Firstly, they highly depend on
accurate mathematical models. Secondly, the features designed
manually are difficult to comprehensively reflect the non-linear
characteristics of complex faults.

The CNN and GRU algorithms used in this paper are both deep
learning algorithms with powerful nonlinear mapping capabilities.
CNN can automatically extract the spatial features of data, and GRU
can extract the features of data in the time series and implement an
end-to-end learning paradigm. This paper combined a CNN with a
GRU for the identification of PMSM fault types. In the simulation
experiments, the CNN-GRU algorithm was compared with SVM,
RF, and BPNN. Moreover, an ablation experiment was conducted.
Finally, the SHAP algorithm was used to calculate the importance of
feature indicators. The CNN-GRU algorithm exhibited better
performance in identifying fault types compared with the other
three algorithms. The results of the ablation experiment also verified

Frontiers in Mechanical Engineering

that both the CNN part and the GRU part were effective for the
algorithm. When a PMSM failed, the stator current and voltage were
most significantly affected, followed by the motor torque, and finally
the motor temperature. The reason is analyzed. The SVM algorithm
is more suitable for processing data with linear regular features, and
the RF algorithm is more suitable for processing data with discrete
features. Although the BPNN algorithm is also a deep learning
algorithm, it requires manual feature extraction during use. The
CNN-GRU algorithm can automatically extract spatial and time-
series features from data and use an activation function to fit the
nonlinear rules.

5 Conclusion

This paper adopted a combination of CNN and GRU to
diagnose PMSM faults. Then, normal and fault operation data
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were collected from the actual PMSM for simulation experiments.
The CNN-GRU algorithm was compared with the SVM, RF, and
BPNN algorithms, and ablation experiments were conducted.
Finally, the SHAP algorithm was
importance of feature indicators in the algorithm model. The
CNN-GRU
performance than the other three algorithms. The results of the
ablation experiment also confirmed that both the CNN and GRU
parts were effective for the algorithm. When a fault occurred in the

used to calculate the

algorithm  showed  superior  fault-diagnosis

PMSM, the impact on the stator current and voltage was the most
obvious, followed by the motor torque, and finally the motor
temperature. The contribution of this paper lies in that the
combination of CNN and GRU can fully utilize the spatial and
temporal features of the data, thereby identifying the fault types
more accurately and providing an effective reference for the fault
diagnosis of PMSM.

The limitations of this paper included a limited number of
algorithm models for comparison and insufficient analysis of feature
importance using the SHAP algorithm. Therefore, future research
will expand the range of algorithm models for comparison to verify
the effectiveness of the proposed algorithm and to further analyze
the relationship between feature indicators and different fault types.
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