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Early fault diagnosis of transmission systems is critical for Smart Manufacturing,
but it is challenging due to the scarcity of real-world fault data. This paper
addresses the issue by proposing a strain energy-based method to accurately
model the time-varying mesh stiffness of a spur gear with a tooth root crack. This
model accounts for bending, axial, shear, and tooth root foundation deflections,
along with crack factors such as depth and propagation. Based on this stiffness
formulation, a six-degree-of-freedom lumped-parameter dynamic model was
developed to simulate the system’s vibration response. Simulation results show
that statistical features like RMS and Kurtosis, along with the appearance of
sidebands in the frequency spectrum, clearly reflect the severity of the crack.
These fault features are ideal inputs for AI/ML/DL models, helping to overcome
the lack of data for training and optimizing fault diagnosis algorithms in Smart
Manufacturing.
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1 Introduction

In the era of Smart Manufacturing and Industry 4.0, the primary objective is to
comprehensively optimize production processes, aiming for exceptional automation,
efficiency, and reliability. To achieve this goal, Artificial Intelligence (AI) and the
Internet of Things (IoT) have emerged as pioneering technologies, offering the
capability to collect and analyze real-time data, thereby enabling intelligent decision-
making (Gauder et al., 2023). The integration of IoT sensor systems, such as MEMS sensors,
allows for continuous monitoring of machine conditions. Simultaneously, advanced AI
algorithms likeMachine Learning (ML) and Deep Learning (DL) transform vast amounts of
data into valuable information for fault diagnosis and predictive analysis (Wang et al.,
2022). Notably, the concept of a Digital Twin (Srivastava and Tiwari, 2025), a virtual model
of a physical system continuously updated with real-time data, serves as a robust framework
for precise monitoring and predictive maintenance within a smart manufacturing
environment. These systems enable flexible quality control and enhance the overall
performance of the production line, operating based on principles similar to the smart
manufacturing system illustrated in Figure 1.
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However, gear systems, which are core transmission
components in most mechanical systems ranging from
industrial to military applications, are highly susceptible to
various faults such as wear, pitting, and tooth cracks or
fractures due to harsh operating conditions (Ma et al., 2012).
These failures not only cause abnormal noise and vibrations but
also pose a risk of sudden breakdown, leading to significant
economic loss and severe safety hazards. Among these, The
fillet area is a region of stress concentration particularly
bending stress and is frequently subjected to dynamic and
impact loads, making it highly susceptible to fatigue cracking.
Such cracks not only reduce the meshing stiffness (Liu et al.,
2024) but also lead to increased vibration and noise levels, and
may eventually result in tooth breakage, causing transmission
failure and severe damage to surrounding mechanical
components.

To address these challenges, accurate and timely fault diagnosis
of gears is of paramount importance. Although traditional
diagnostic methods based on manual vibration signal analysis
have been widely used, they often face limitations in extracting
complex fault features, especially when the fault signal is weak or
contaminated by high noise (Gauder et al., 2023). Furthermore, a
major obstacle in developing robust AI/ML/DL models for fault
diagnosis is the difficulty and high cost associated with collecting
sufficient fault data from real-world mechanical systems. This is
particularly true for rare fault types or when data is required from
multiple operating conditions. Research has shown that collecting
real fault data can be “nearly impossible” or “extremely difficult”
(Liu et al., 2020; Koutsoupakis et al., 2023).

In light of these obstacles, the use of numerical simulation and
dynamic modeling has emerged as a promising alternative for
generating high-quality synthetic fault data. These simulation
methods are diverse, each with distinct advantages and
disadvantages tailored to specific research objectives. The Finite
Element Method (FEM) is a powerful tool for detailed, localized
stress and strain analysis, particularly useful for accurately
determining the effect of faults like cracks or pitting on tooth
stiffness (Liu et al., 2020). While FEM offers high fidelity, its
substantial computational cost and long processing times make it

impractical for generating large-scale datasets for machine learning
model training. Conversely, Multibody Dynamics (MBD) models
focus on simulating the motion and interaction of mechanical
components within a complex system, providing a holistic view of
the system’s dynamic response (Koutsoupakis et al., 2023). However,
modeling small, localized faults can be challenging with this approach.
To address these limitations, lumped parameter models have become
an excellent choice for generating data for AI algorithms (Gecgel et al.,
2018; Sharma et al., 2024; Liu et al., 2025). In this method, the gear
system is simplified into an assembly of masses, springs, and dampers,
enabling computationally efficient simulation of the system’s global
vibrational responses. Despite a lower level of detail compared to
FEM, lumped parameter models excel at generating a large volume of
diverse vibration data under various fault scenarios and operating
conditions. This rich source of synthetic data is crucial not only for
overcoming the scarcity of real-world data but also for mitigating the
issue of data imbalance—a common challenge in machine learning
where healthy data significantly outweighs fault data. Furthermore,
using this high-quality simulated data as a training foundation allows
AI/ML/DL models to automatically learn and extract complex fault
features, even in noisy environments, thereby enhancing their
generalization capability and accuracy in practical diagnostic
applications.

In this paper, we present a detailed investigation into the
dynamic response and mesh stiffness modeling of gears with a
tooth root crack, which provides a crucial foundation for AI-based
fault diagnosis in Smart Manufacturing. To achieve this, we propose
a novel strain energy-based method to accurately model the time-
varying mesh stiffness of the cracked gear. This model is developed
by considering detailed factors such as the crack’s depth, orientation,
and propagation along the entire tooth width, as well as bending,
axial, shear, and tooth root foundation deflections. Based on this
detailed stiffness formulation, a six-degree-of-freedom lumped
parameter dynamic model is constructed to simulate the
vibrational response of the cracked gear system.

The results of this study are expected to provide a solid scientific
foundation for condition monitoring and fault diagnosis methods of
gears in industrial applications, thereby enhancing the reliability and
operational efficiency of mechanical systems.

FIGURE 1
Smart manufacturing system diagram integrating AI and IoT.
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2 Proposed model construction

2.1 Related works

The dynamics of gear mechanisms have attracted growing
interest, with numerous studies addressing various aspects of gear
vibration and fault modeling. Van Khang et al. (2004) developed a
model for geared transmission to diagnose gear failures, representing
the gear mesh as rigid disks connected by a spring-damper system
along the contact line, the model incorporated static transmission
error as a displacement excitation in the mesh, with time-varying
mesh stiffness and zero backlash under high torque to predict
sideband amplitude in the presence of distributed gear faults.
Tordion and Gauvin (1977) studied the stability of two-stage gear
systems using a simplified model with time-varying mesh stiffness,
showing that phase differences between stages significantly influence
instability ranges. Sakai et al. (1981) introduced a nonlinear torsional
model for multi-speed transmissions, demonstrating that clutch

stiffness plays a key role in vibration reduction. Kumar et al.
(1985) adopted a state-space approach to evaluate how dynamic
loads and system stability are affected by stiffness and damping
parameters, while still improving computational efficiency. Several
studies have focused on incorporating physical defects and frictional
effects. Iida et al. (1985) used a simplified model to examine the
influence of tooth surface roughness and lubrication on sliding-
direction vibration. Bartelmus (2001) extended dynamic models to
include translational and rotational motions, showing that increased
gear wear leads to higher friction forces. Howard et al. (2001)
investigated the effects of cracks and nonlinear friction using finite
element and energy-based models, respectively. Their findings
emphasized the significant reduction in torsional stiffness due to
cracks and the dominant role of bending energy over other forms.
Kahraman and Singh (1991) explored frequency response
characteristics in gear–rotor–bearing systems, revealing a strong
dependency between meshing behavior and backlash when mesh
stiffness varies over time.

FIGURE 2
Gear mesh stiffness model.

FIGURE 3
Model of the spur gear tooth as a non-uniform cantilever beam with a crack at tooth root.
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Most previous studies have primarily focused on dynamic analysis
for design, manufacturing, or operational purposes under ideal
working conditions. Although some recent works have developed

dynamic models that incorporate gear faults for diagnostic purposes,
many of these models still assume the mesh stiffness as a simple
sinusoidal or Fourier function, and often fail to fully account for the
specific mechanical effects of gear damage—such as tooth cracks—on
system response, as well as the role of fillet correction. In particular,
the modeling of mesh stiffness remains incomplete when it comes to
detailed factors such as root foundation deformation in the presence
of cracks, or the spatial distribution of cracks along the tooth width.
To address this research gap, the present study develops a
comprehensive model for evaluating the mesh stiffness of a spur
gear pair with a root crack that propagates in depth and is uniformly
distributed along the tooth width. Based on this stiffness model, a
lumped-parameter dynamic system with six degrees of
freedom—similar to those used in prior studies—is constructed to
simulate and investigate the effects of the crack on the vibration
response of the gear system. The mesh stiffness is formulated as a
time-varying parameter derived from beam bending-compression
theory, Hertzian contact mechanics, and root foundation
deformation, providing a more realistic representation of the
cracked gear behavior.

2.2 Gear mesh stiffness modeling under
root crack

Accurate determination of gear mesh stiffness is a fundamental
step in evaluating the influence of tooth root defects on system
vibration and supports the development of condition monitoring
strategies. Unlike conventional models that assume mesh stiffness as
either constant or governed by simplified variations, the proposed
approach employs the strain energy method to compute the time-
varying mesh stiffness of a spur gear pair. Based on elastic strain
energy theory, each meshing gear tooth pair is idealized as a system
of springs connected in series (as shown in Figure 2), where each
spring corresponds to a distinct stiffness component: axial
compression stiffness Ka, bending stiffness Kb, shear stiffness Ks,

FIGURE 4
Schematic of a spur gear tooth.

FIGURE 5
Geometrical parameters for the fillet-foundation deflection.

TABLE 1 The values for Ai , Bi , Ci , Di , Ei , Fi (Li and Lee, 2005).

Ai Bi Ci Di Ei Fi

L*(hfi, θf) −5.574e−5 −1.999e−3 −2.302e−4 4.770e−3 0.027 6.805

M*(hfi, θf) 60.111e−5 28.100e−3 −83.431e−4 −9.926e−3 0.162 0.909

P*(hfi , θf) −50.952e−5 185.50e−3 0.054e−4 53.3e−3 0.289 0.9236

Q*(hfi , θf) −6.204e−5 9.088e−3 −4.096e−4 7.829e−3 −0.147 0.690
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and foundation stiffness Kf, which accounts for the deformation at
the tooth fillet region.

The bending, axial compression, and shear stiffness components
are computed by modeling the gear tooth of the involute spur gear as
a cantilever beam with variable cross-section and an effective length
d, fixed at one end, as illustrated in Figure 3. In this model, the crack
is assumed to propagate across the full face width of the tooth
(Chaari et al., 2009; Yang and Sun, 1985), with constant width W,
fixed crack depth q0, and an inclination angle αc relative to the
tooth’s centerline.

The strain energy stored in a tooth due to bending, shear, and
axial compression can be expressed as follows (Chaari et al., 2009;
Sainsot And et al., 2004; Yang and Hu, 2022):

Ub � F2

2Kb
, Us � F2

2Ks
, Ua � F2

2Ka
(1)

Here, Kb, Ks and Ka represent the bending, shear, and axial
stiffnesses, respectively, along the direction of the applied force F.

The strain energy stored in a meshing tooth can be determined
based on beam theory using the following equations (Chaari et al.,
2009; Sainsot And et al., 2004; Zou et al., 2023):

Ub � ∫d

0

M2

2EIx
dx, Us � ∫d

0

1.2F2
b

2GAx
dx, Ua � ∫d

0

F2
a

2EIx
dx

(2)
In these equations,Ub,Us andUa correspond to the elastic strain

energies generated by bending, shear, and axial stresses under the
action of the meshing force F. The force components and moment
are determined as follows:

Fb � Fcosα1, Fa � Fsinα1, M � Fbx − Fah (3)

Based on Equations 1–3, the stiffnesses can be calculated
as follows:

1
Kb

� ∫d

0

(xcosα1 − hsinα1)2
EIx

dx (4)
1
Ks

� ∫d

0

1.2cos2α1
GAx

dx (5)
1
Ka

� ∫d

0

sin2α1
EAx

dc (6)

In Equations 4–6, the quantities h, x, dx, α1 and d are illustrated
in Figure 4. E is the modulus of elasticity, and G is the shear
modulus. Ix andAx are, respectively, the area moment of inertia and
the cross-sectional area at a distance x from the point of force
application, and they are defined by and they are 139 defined by
Equations 7–9:

Ix �
1
12
(hx + hx)3W, hx ≤ hq

1
12
(hx + hq)3W, hx > hq

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

Ax � (hx + hx)3W, hx ≤ hq
(hx + hq)3W, hx > hq

{ (8)

G � E

2(1 + v) (9)

Here, v is Poisson’s ratio. hq � hc − q0sinαc, q0 and αc are the
depth and inclination angle of the crack, respectively. hx is the
distance from an arbitrary point to the tooth’s symmetry line, with
this point located on the tooth profile such that the horizontal
distance from the tooth edge to this point is d − x.

According to the results of Yang and Sun (1985), the Hertzian
contact stiffness between two meshing teeth is constant along the
entire line of contact. It does not depend on the contact position or
the contact depth. The Hertzian contact stiffness is given by
Equation 10:

1
Kh

� 4(1 − v2)
πEW

(10)

Besides tooth deformation, the reduction in the stiffness due to
root deformation also affects the stiffness of the gear tooth. Sainsot

FIGURE 6
Scheme of spur gear system with six degrees of freedom.

TABLE 2 Parameters of the pinion-wheel.

Gear parameters Pinion Gear

Teeth number 30 25

Module (mm) 2 2

Teeth width (mm) 20 20

Contact ratio 1.63 1.63

Rotational speed (rpm) 2000 2400

Pressure angle (°) 20° 20°

Young module 2 × 105 2 × 105

Poisson’s ratio 0.3 0.3
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And et al. (2004) derived a formula for calculating the deflection of
the tooth foundation based on Muskhelishvili’s theory (Li and Lee,
2005). Subsequently, they applied this theory to a mixed elastic ring
to derive an analytical formula reflecting the tooth deformation
caused by the gear body, assuming that the stress varies linearly and
is constant at the tooth root circle. We have Equation 11 (Yang and
Sun, 1985; Radzevich, 2016):

δf � Fcos2αm
WE

⎧⎨⎩L*(uf

Sf
)2 +M*(uf

Sf
) + P*(1 + tan2αm)

⎫⎬⎭ (11)

Where: W is the tooth width. uf and Sf are shown in Figure 4. The
coefficients L*,M*, P* can be approximated by the following
polynomial (Equation 12) according to Sainsot And et al. (2004):

X∗
i (hfi, θf) �

Ai

θ2f
+ Bih

2
fi + Ci

hfi
θf

+ Di

θf
+ Eihfi + Fi (12)

Here: X∗
i represents the indices L*,M*, P*. hfi � rf/rint where

rf, rint are defined in Figure 5. The values for Ai, Bi, Ci, Ei, Di, Fi are
provided in Table 1.

hx is the distance from a point on the tooth profile curve to the
cross-section at a position x from the tooth root, measured

perpendicularly to the tooth’s central line. This distance is
calculated using the Equation 13 (Tian, 2004):

hx � Rb[(α + α2)cosα − sinα] (13)

x is the distance from a point on the involute profile to the tooth
root, which is caculated by Equation 14:

x � Rb[cosα − (α2 − α)sinα − cosα2] (14)

and we also have the differential along the x direction given by
Equation 15:

dx � Rb(α − α2)cosα dα (15)
Where α is the half tooth angle on the base circle, as calculated by
Equation 16:

α2 � π

2Z1
+ invα (16)

Where invα � (tanα − α) is the involute function.
From these formulas, when calculating stiffnesses with respect to

d, we can convert to integration with respect to angles α2 and α1.

2.3 Dynamic model of the gear system

A lumped parameter model of a multi-degree-of-freedom
(multi-DOF) spur gear transmission system is established as
shown in Figure 6. This model has been used to solve the

FIGURE 7
Mesh stiffness with different crack depth.

FIGURE 8
Mesh stiffness with different crack depth (single tooth pair).

FIGURE 9
Change of mesh stiffness with different crack depth (single
tooth pair).

TABLE 3 Parameters of the gear system.

Gear parameters Pinion Gear

Moment of inertia (kg·m2) 2 × 10−3 0.96 × 10−4

Mass (kg) 0.4439 0.3083

Radial stiffness of the bearing (N/m) 6.56 × 109 6.56 × 109

Damping of the bearing (Ns/m) 1.8 × 103 1.8 × 103

Coefficient of friction 0.06
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vibration response problem of spur gears. Power is input by the
driving gear p and transmitted out by the driven gear g.

The following model disregards instantaneous transmission error
and other nonlinear factors. It incorporates a friction coefficient f and
considers friction forces. The model also accounts for the degrees of
freedom of the gears, including displacements along the x-direction,
y-direction, and rotational angle around their axes. Thus, we establish a
lumped parameter dynamic model of the spur gear system with
6 degrees of freedom as follows.

Applying Newton’s second law and the moment balance
equation, we obtain the system of equations in Equation 17
representing the 6 degrees of freedom in Figure 6 as:

mp€xp + cpx _xp + kpxxp � −Ff

mp €yp + cpy _yp + kpyyp � −kmy − cm _y
mg€xg + cgx _xg + kgxxg � −Ff

mg €yg + cgy _yg + kgyyg � kmy + cm _y

Ip€θp − rp(kmy + cm _y) −Mp � Tp

Ig€θg − rg(kmy + cm _y) −Mg � −Tg

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

Where: xi, yi, _xi, _yi, €xi, €yi are the displacements, velocities, and
accelerations along the x and y directions, respectively. θi, _θi, €θi
are the angular displacements, velocities, and accelerations of the
driving and driven gears. mi: mass of gear i. The bearing stiffnesses
in the x and y directions are kpx � kpy and kgx � kgy. The bearing

FIGURE 10
Displacement of pinion in y directionwith crack length:15mm,crack inclination angle: ac =60° and crack depth: (a)0mm, (b) 0.3mm, (c) 0.6mm, (d)
0.9 mm and (e) 1.2 mm.
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damping coefficients in the x and y directions are cpx � cpy and
cgx � cgy.Mi: The moments caused by friction force, Tp, Tg are the
driving torque and the load torque, respectively.

cm is time-varying meshing damping, calculated by Equation 18:

cm � 2ξ

����������
kmr2pr

2
gIpIg

r2pIp + r2gIg

√√
(18)

Here, ξ stand for gear mesh damping ratio is usually taken in the
range of 0.03–0.17 (Yu et al., 2023), in this study, we selected a value
of damping ratio is 0.03. Ii: moment of inertia, ri: base circle radius,
ki: time-varying meshing stiffness. The subscripts i � p, g
correspond to the pinion (driving gear) and the gear (driven gear).

Statistical features, which are commonly used to provide a
measurement of the vibration level, are widely used in
mechanical fault detection. In this paper, RMS and kurtosis

FIGURE 11
Spectrum of pinion vibration in y direction with crack depth
q0 = 0 mm.

FIGURE 12
Spectrum of pinion vibration in y direction with crack depth q0 = 1.2 mm.

FIGURE 13
Magnified view of the dominant frequency peak of vibration with
crack depth q0 = 1.2 mm.

FIGURE 14
Change of statistical indicators along crack depth.
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indicators are also used to predict the severity of crack propagation.
The RMS value is defined as given in Equation 19:

RMS �

���������������
1
N

∑N
i�1

(x(n) − �x)2
√√

, �x � 1
N

∑N
i�1

x(n) (19)

and Kurtosis is calculated by Equation 20:

Kurtosis �
1
N∑N

i�1(x(n) − �x)4[ 1
N∑N

i�1(x(n) − �x2)]2 (20)

3 Numerical simulation

In this section, we present the numerical simulation results from
the six-degree-of-freedom gear dynamic model detailed in Section 2.
Our main goal is to analyze the system’s vibrational response under
various fault conditions. This analysis allows us to generate a high-
quality synthetic dataset that accurately captures the dynamic
signatures of these faults. This dataset is a crucial resource for
training and validating AI/ML/DL-based fault diagnostic models,
which are essential tools for proactive maintenance and operational
efficiency in modern smart manufacturing environments.

3.1 Effect of root crack depth on gear
mesh stiffness

Based on the analytical model presented in the previous section,
the influence of crack depth on the mesh stiffness of a gear pair can
be calculated and analyzed. The parameters of the gear pair used are
listed in Table 2.

The total effective mesh stiffness of a gear pair, in the healthy
case compared to the case where a crack appears on the tooth root
with different depths, is presented in Figure 7. The total effective
mesh stiffness is considered from the initial moment when the tooth
with the crack at the root begins to mesh until this tooth disengages;
the total mesh stiffness during this period is significantly affected by
the presence of the crack, as can be observed in Figure 7 that the total
mesh stiffness decreases when the crack appears, and the greater the
depth of the crack, the lower the mesh stiffness.

It can also be observed from Figure 7 that the phenomenon of
stiffness reduction occurs most noticeably at the moment when the
cracked tooth begins to mesh, and this can be observed more clearly in
Figure 8 when we consider only the total mesh stiffness of a single tooth
pair (including the cracked tooth) during the surveyed period. Figure 9
illustrates the reduction in average mesh stiffness during the meshing
period of the surveyed tooth pair compared to a healthy tooth pair.

3.2 Dynamic response

The design parameters of the spur gear system applied in this
study are shown in Table 3. And this spur gear system operates
under a load of 60 N m which is applied to the driven gear. The
dynamic simulation was conducted under steady-state condition.

The analysis is conducted to study the changes in dynamic
response characteristics due to the propagation of a tooth crack
along its depth, while keeping the crack length and inclination angle
constant (Wc = 20 mm and αc = 60°). The corresponding results are
shown in Figures 10–13. The displacements of the pinion in the
y-direction with varying crack depths are presented in Figure 10.
The statistical indicators RMS and Kurtosis are applied to explore
the effect of crack propagation along the depth and are shown in
Figure 13. When the tooth crack propagates along the tooth depth
while maintaining constant crack length and inclination angle (Wc =
20 mm and αc = 60°), kurtosis appears to follow a quadratic trend
with respect to the crack depth, while RMS seems to follow a
linear trend.

The influence of gear tooth crack propagation along the tooth
depth on frequency spectrum characteristics is also investigated
Figure 11 displays the spectrum of the dynamic response of the
pinion in the y-direction for the healthy case, while Figure 12
represents the case with a crack depth of 1.2 mm, and Figure 13
is a zoomed-in plot of Figure 12, providing information on how the
tooth crack affects the sidebands around the mesh frequency and its
harmonics. As suggested by Figures 11, 12, it can be concluded that
the amplitudes at the first three harmonics of it are largely unaffected
by the tooth crack. However, sidebands around the mesh frequency
and its harmonics appear when a crack is present, which can be
clearly observed in Figure 13. Observing the changes in the
sidebands can provide more information on the presence and
severity of the tooth crack.

The dynamic responses of the spur gear system are simulated.
The displacements of the pinion in the y-direction with varying
crack depths within the time range of 0.2–0.3 s under steady-state
conditions are shown in Figure 10. It is very difficult to observe
changes in the displacement waveform caused by the tooth root
crack when it is in its early stage. However, multiple distinct
impulses appear when the crack propagates to a certain degree.
The time interval between two adjacent impulses is exactly equal to
the rotational period of the pinion, which is 60/2400 = 0.025 s.

The statistical indicators RMS and kurtosis are used to assess the
severity of the crack in the tooth root, and the curves showing the
trends of these two indicators with respect to the depth of the crack
are shown in Figure 14, As the crack in the tooth spreads along the
depth of the tooth, RMS appears to vary linearly with the depth of
the crack, while kurtosis exhibits a sudden increase when the crack
reaches a severe level, seemingly following a quadratic trend with the
depth of the crack. Changes in the statistical indicators due to the
propagation of the tooth crack can be useful for gear fault diagnosis
and condition monitoring.

4 Conclusion

This study presented a detailed analysis of the dynamic response
and meshing stiffness modeling of spur gears with root cracks. As
core power transmission components in most mechanical systems,
from industrial to military applications, gearboxes are susceptible to
faults such as wear, pitting, and particularly tooth cracks. These
faults can lead to dynamic instability, catastrophic failures, and
significant economic losses. Therefore, early and accurate fault
diagnosis is crucial to ensure reliability and operational efficiency,
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especially within the rapidly evolving landscape of Smart
Manufacturing and Industry 4.0.

In this research, we proposed a strain energy-based method to
accurately model the time-varying meshing stiffness (TVMS) of
cracked spur gear pairs. This model meticulously accounts for
factors such as the crack’s depth, orientation, and propagation
along the entire tooth width, along with bending, axial, shear,
and tooth-foundation deformations. Based on this stiffness
formulation, a six-degree-of-freedom lumped-parameter dynamic
model was developed to simulate the vibrational response of the gear
system under various fault conditions, using the time-varying gear
mesh damping that was calculated based on the time-varying
meshing stiffness of the gear pair.

The numerical simulation results indicated that crack propagation
leads to a significant reduction in meshing stiffness and generates
distinct impulsive responses in the vibration signal. Statistical features
like RMS and Kurtosis were shown to be sensitive to crack depth, with
both metrics increasing as the crack grows. Notably, the presence of a
crack also resulted in the appearance of sidebands and their harmonics
around themeshing frequency, providing crucial information about the
fault’s presence and severity.

Importantly, the detailed dynamic modeling results and simulated
data obtained from this study serve as an essential foundation for
generating high-quality synthetic fault data. This is a prerequisite for
training and optimizing Artificial Intelligence (AI), Machine Learning
(ML), and Deep Learning (DL) models in fault diagnosis and condition
monitoring applications. Leveraging simulated data is particularly vital
for overcoming the scarcity of real-world experimental fault data in
complex operational environments, which is a key bottleneck in the
deployment of AI-based diagnostic methods. This approach contributes
to building a robust framework for Digital Twin systems, enabling
precise monitoring and predictive maintenance in smart manufacturing.

Although the current model focuses on spur gears with cracks
uniformly distributed across the tooth width, the insights gained into
stiffness degradation and dynamic characteristics provide a solid
theoretical basis. Future research will focus on developing stiffness
analysis models for more complex crack distributions and different
types of gears. Simultaneously, further studies are needed to more
deeply integrate these physical models with advanced AI/ML/DL
algorithms to enhance model interpretability, handle imbalanced
datasets, and accelerate the implementation of automated, intelligent,
and real-time fault diagnosis systems in industrial settings.
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