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Introduction: As the core equipment of intelligent manufacturing, the
operational stability of industrial robots directly affects production efficiency
and safety. However, long-term operation under complex working conditions
can easily result in mechanical wear, electrical failures, and other issues, resulting
in an average fault repair time of 4-8 hours.
Methods: A new hybrid prediction method combining the grey model and radial
basis function is designed. The sensitivity problemof the greymodel initial value is
optimized through initial value correction, and the non-linear fitting ability of the
neural network is combined. At the same time, the extreme value method is used
to dynamically adjust weights to ensure real-time adaptability.
Results: The experiment is based on an industrial dataset: improving the grey
model to increase accuracy by 40%. The combinedmodel reduces the prediction
error threshold to 0.07 meters per second, with a correlation coefficient of 0.95,
enhancing accuracy, stability, and robustness, providing a reliable solution for
complex engineering environments.
Discussion: This study provides a reliable solution for predictive maintenance of
industrial robots, which can further optimize the predictive performance under
ultra-low speed conditions and multi-fault coupling scenarios in the future.
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1 Introduction

The accelerated evolution of industrial automation and intelligent manufacturing
technologies has led to industrial robots assuming a central role in contemporary
manufacturing (Luo et al., 2024). However, the long-term operation of robots in
complex working conditions is often accompanied by mechanical wear and electrical
failures, which can cause production line shutdowns or safety accidents (Li H. et al., 2024).
According to statistics, the Mean Time To Repair (MTTR) for industrial robots is as long as
4–8 h, and predictive maintenance can reduce unplanned downtime by 30%–50%.
Consequently, the development of high-precision robot fault prediction methods is of
paramount importance for ensuring production safety and enhancing operation and
maintenance efficiency (Sun, 2023). In the domain of robot failure prediction, research
methodologies are classified into three primary categories: physical modelling, data-driven
approaches, and hybrid methods. Among them, data-driven methods have attracted much
attention because they do not rely on precise physical models, and grey system theory, as an
important branch of data-driven methods, is particularly suitable for fault prediction in
small samples and poor information systems, demonstrating unique advantages and
application prospects (Narayan et al., 2023). The traditional grey model has the merits
of simple calculation and high short-term prediction accuracy when dealing with small
sample data. However, it has three shortcomings: rough background value construction,
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only applicable to exponential law sequences, and insufficient fitting
to nonlinear data, which limits its fault prediction performance in
complex robot systems (Ballou et al., 2023). In robot fault prediction,
a single grey model is mainly difficult to effectively deal with the
nonlinear characteristics of operating data. Traditional
improvement methods have lag problems in response to sudden
changes in signals, but initial value correction, radial basis function
(RBF) neural network (NN), initial condition setting, background
value construction, and nonlinear mapping ability can effectively
solve this problem. The research innovation points are as follows: (1)
By solving the problem of minimizing the sum of squared residuals,
the global optimal initial value C is obtained, fundamentally
eliminating the systematic bias of the traditional model; (2) A
“mechanism-data” dual-driven hybrid prediction framework has
been constructed. The improved grey model is utilized to capture
deterministic trends, and the RBF NN is combined to fit nonlinear
residuals. Finally, the deep integration is achieved through the
weighted strategy of the reciprocal variance. (3) A dynamic
weighted fusion algorithm is designed based on the minimum
error variance criterion, ensuring that the prediction error
variance after fusion is theoretically less than that of any sub-
model, significantly improving the robustness and engineering
applicability of the model. This study aims to provide more
reliable and accurate intelligent solutions for predictive
maintenance of industrial robots, thereby significantly improving
the level of intelligent operation and maintenance in the
manufacturing industry.

2 Related work

Predicting robot failures is a complex problem involving
multiple disciplines, typically requiring a combination of sensor
data, machine learning algorithms, and domain knowledge. A
considerable body of academic work has been produced on this
subject by scholars from both within the country and from overseas.
For instance, Damak et al. developed a novel machine learning
model based on recursive NNs for the purpose of predicting robot
grasping faults. During the process, two new algorithms were
developed: the generative interpretable grassing prediction model
(GIGP) and the adaptive temporal fault analysis model (ATFA),
which overcome the early fault warning that existing models cannot
achieve and accurately predict the time point of fault occurrence.
The experiment showed that this scheme could effectively predict
grasping faults (Damak et al., 2025). The Wang et al. proposed a
combination of convolutional neural networks (CNNs) and long
short term memory networks (LSTMs) to approximate nonlinear
drive control systems to deal with the problem of predicting faults in
robot motor drives. In the process, a CNN layer was utilized to
dynamically extract nonlinear features of the system, and an LSTM
layer was combined for time series modeling to construct an offline
prediction model with dynamic approximation capability. The
experimental results indicated that this achievement provided an
intelligent diagnostic solution for industrial robot drive systems
(Wang et al., 2023). To deal with the key issue of insufficient sample
data in joint fault diagnosis (FD) of construction robots, Song et al.
developed a digital dual auxiliary FD system for robot joints. During
the process, the generator structure of the recurrent generative

adversarial network was optimized, residual modules were added
to improve data fidelity, and a dedicated test bench was built to
simulate the load conditions in actual construction operations. The
experimental findings indicated that this method could enhance the
diagnostic accuracy (Song et al., 2023). The Islam et al. proposed a
data acquisition and preprocessing method for robot FD to address
the critical maintenance requirements of substrate transfer robots in
semiconductor manufacturing. During the process, the feature
selection strategy was optimized to select the 24 most
discriminative time-frequency domain features, and Bayesian
optimization was used for hyperparameter tuning. The findings
denoted that this method could improve the overall accuracy of FD
(Islam et al., 2024). Pan et al. developed multi-frame image
registration and fusion methods to address the challenges of
robot vision fault detection in complex environments. During the
process, that method was developed, and an FD model based on the
fusion of internal and external sensor data was constructed. The
experimental results indicated that this achievement provided a
breakthrough visual inspection solution for reliable operation and
maintenance of industrial robots under harsh working conditions
(Pan et al., 2023).

With the development of prediction methods, some of their
theories and practical applications have become relatively well-
established, prompting scholars from many countries to conduct
in-depth research on them. For example, scholars such as Nguyen
et al. adopted a comparative research method of multi-algorithm
fusion to address the problem of insufficient accuracy in predicting
CO2 emissions. In the study, Bayesian optimization was used to
optimize hyperparameters of models such as deep trust networks,
and a robustness testing scheme for Monte Carlo cross validation
was designed. The experimental results indicated that this study
provided a modular algorithm selection scheme for different
scenarios (Nguyen et al., 2023). The Zhang et al. proposed an
unbiased multivariate grey model method to address the inherent
prediction bias of traditional multivariate grey models. During the
research process, the system prediction error caused by differential
equation (DE) transformation was eliminated through DE
reconstruction. Secondly, a global parameter optimization
algorithm based on least squares was designed. The experimental
results indicated that this study could effectively address the
inherent prediction errors of traditional methods (Zhang et al.,
2025). Li et al. designed a fractional order multivariate grey
prediction model to deal with the challenges of data nonlinearity
and complexity in predicting China’s hydropower consumption.
The research adopted the intelligent search paradigm of structural
optimization parameters, introduced fractional order differential
operators, and designed an improved model structure that
integrates nonlinear driving terms. The empirical findings
denoted that this method could solve the data problem of
predicting hydropower consumption (Li Y. et al., 2024). The Li
et al. innovatively proposed a fractional order background
coefficient grey model to address the challenge of predicting
small sample CO2 emissions in developing countries with limited
data quality. Introducing fractional order operators to optimize
information utilization during the process, designing a
background value coefficient optimization mechanism, and using
an improved whale algorithm for parameter optimization. The
findings denoted that the designed model could effectively solve
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the prediction problem (Li et al., 2023). Scholars such as Li et al.
developed a new grey prediction framework to address the
challenges faced in predicting air quality in developing regions.
During the process, key driving factors were selected through grey
relational analysis, and a fractional order grey model was developed
to predict the evolution trend of factors. A multivariate discrete
verification grey model was developed. The findings denoted that
the designed framework could effectively address the prediction
challenge (Li X et al., 2025).

To summarize, massive research has been performed in the
domain of fault prediction in robots, but there are still limitations in
its predictive performance, such as lack of comprehensiveness and
limited cross scenario generalization ability. The initial value
correction mechanism and RBF NN can compensate for these
problems. Therefore, a robot fault prediction model grounded on
an improved GM(1,1) model and RBF was developed, which solved
the theoretical shortcomings of traditional grey prediction by
introducing initial value correction and enhanced the non-linear
data fitting ability using NNs. This method effectively solves the
prediction bias problem caused by theoretical assumption defects in
traditional GM(1,1) models, providing a more reliable technical
solution for the engineering application of robot fault
prediction systems.

3 Construction of a robot fault model
based on IGM-RBF hybrid prediction

3.1 Improved GM(1,1) model

The GM(1,1) model, as the core prediction method in grey
system theory, is a first-order DE model specifically designed for
modeling and analyzing uncertain systems with limited data and
insufficient information (Li P et al., 2025). This model has become
the most representative basic model in the field of grey prediction
due to its good adaptability under small sample conditions. The
traditional GM(1,1) model uses cumulative generation and DEs to
predict trends in small sample data, which has the merits of simple
calculation and high short-term accuracy. However, it has
limitations such as rough background value construction and

being only suitable for exponential sequences (D’Amico et al.,
2025). The model first accumulates and generates the original
non-negative data sequence, transforming it into a new sequence
with exponential regularity, and then establishes a first-order DE for
modeling (Rabbani et al., 2023). The conventional GM(1,1) model
prediction diagram is denoted in Figure 1.

In Figure 1, the prediction process of the traditional GM(1,1)
model can be briefly described as: accumulating and generating the
original sequence to strengthen the trend; The model is constructed
through grey differential and whitening equation, and the
parameters are solved by the least square method. The
cumulative Predicted Values (PVs) are obtained by using the
time-responsive formula; Finally, the final prediction result is
obtained through cumulative reduction and restoration. The
prediction graph of the traditional GM(1,1) model typically
encompasses the original data sequence, the model simulation
and prediction sequence, and utilizes vertical lines or colors to
differentiate between the training stage and the prediction stage.
This graph presents a typical exponential growth trend, reflecting
the model’s ability to fit exponential patterns to small sample data,
but there may be a smooth lag phenomenon in short-term
fluctuations. If a confidence interval is provided, the predicted
uncertainty is displayed in shaded areas. When building a model,
to ensure data applicability, it is necessary to verify that the sequence
used satisfies the quasi smoothness condition. This verification
process needs to be completed through level ratio testing. The
modeling process is shown in Equation 1.

X 1( ) k( ) � ∑k
i�1
X 0( ) i( ), k � 1, 2, . . . , n (1)

In Equation 1, X(1)(k) represents the k th observation value of
the original data sequence; X(0)(i) represents the i th value of the
sequence generated by one accumulation of the original sequence; k
represents the index of the accumulated sequence. A white form of
the linear DE is constructed, as denoted in Equation 2.

dX 1( ) t( )
dt

+ aX 1( ) t( ) � u (2)

In Equation 2, X(1)(t)means the value of the sequence generated
by one-time accumulation at time t; dX

(1)(t)
dt represents the derivative

of X(1)(t) with respect to time t; a means the development
coefficient; u means the grey action quantity; The time response
sequence is discretized, as shown in Equation 3.

ΔX 1( ) k( )
Δt + aX 1( ) k( ) � u, k � 1, 2, . . . , n (3)

In Equation 3, ΔX
(1)(k)
Δt represents the derivative in discrete form.

The solution in the form of discretization of its time response series
is denoted in Equation 4.

X̂
1( )

k + 1( ) � X 0( ) 1( ) − û
â

( )e−âk + û
â
, k � 1, 2, . . . , n (4)

In Equation 4, X̂
(1)(k + 1) denotes the PV of the sequence

generated by accumulating the original sequence once; â
represents the development coefficient identified by the grey
prediction model using methods such as least squares; û
represents the amount of ash used identified by the grey

FIGURE 1
Prediction of traditional GM(1,1) model.
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prediction model. Finally, through first-order subtraction, the PVs
are restored as shown in Equation 5.

X̂
0( )

k + 1( ) � X̂
1( )

k + 1( ) − X̂
1( )

k( )

� 1 − eâ( ) X 0( ) 1( ) − û
â

( )e−âk, k � 1, 2, . . . , n

(5)
In Equation 5, X̂

(0)(k + 1)means the prediction result used for the
final output that matches the dimensions of the original data;
X̂

(1)(k + 1) and X̂
(1)(k) represent the PVs of the accumulated

sequence at time k + 1 and k, obtained by adding up the original
sequence once; e represents the natural constant. Aiming at the inherent
defects of traditional grey prediction models, an improved grey model
based on initial value correction is proposed. Through empirical
analysis, the conventional GM(1,1) model often experiences
prediction failure in the application process, manifested as significant
deviations between the fitted value and the PV (Peng et al., 2024). At its
root, this problem mainly stems from theoretical flaws in the model
solving process: when solving grey DEs, the system mistakenly treats
parameters that should have been treated as unknown variables as
known conditions, resulting in fundamental deviations between the
basic assumptions of the model construction and the actual situation.
This theoretical deficiency poses a systematic error risk for traditional
models in practical prediction applications, which urgently needs to be
addressed through optimization and improvement of the model
structure. The initial value correction process is shown in Figure 2.

In Figure 2, the initial value corrected grey prediction GM(1,1)
model first performs a rank ratio test on the initial sequence, and
sequences that fail the test need to undergo data cleaning and
function transformation preprocessing; Subsequently, a GM(1,1)
model is built and its accuracy is verified. For prediction results with
large residuals, initial value correction is introduced to improve the
grey model for residual correction. Finally, the optimal prediction
model is selected through comparison and applied to engineering
practice. This process significantly improves the adaptability and
prediction accuracy of traditional grey models to complex data
through a progressive optimization strategy of “inspection-
transformation-modeling-correction”. The research adopted an
initial value correction method based on numerical optimization.
The core idea is: to transform the determination of initial conditions
from a simple “assignment” to “optimization”, and by minimizing
the error between the simulated sequence of the model and the real
accumulated sequence, to inversely deduce the theoretical optimal
initial value. The initial value correction grey model formula is
discretized as shown in Equation 6.

X 1( ) K + 1( ) � −C
a
e−ak + u

a
(6)

In Equation 6, X(1)(K + 1) represents the PV at (K + 1); C
represents the integral constant; e−ak stands for index term. To solve
the constant C, in the GM(1,1) prediction model, the initial PVs of
the accumulated generated sequence remain consistent, as shown in
Equation 7.

FIGURE 2
Initial value correction process.
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X̂
1( )

1( ) � −C
a
+ u
a
� X 0( ) 1( ),−C

a
� X 0( ) 1( ) − u

a
(7)

The determination of initial PVs should be combined with
specific application scenarios, and parameters that meet specific
conditions should be selected from the range of one to n. The
merging process is shown in Equation 8.

X 1( ) K + 1( ) � X 1( ) m( ) − u
a

( )e−ak+a m−1( ) + u
a

� X 1( ) m( ) − u
a

( )e−a k−m+1( ) + u
a

(8)

In Equation 8, m represents the new starting time index;
e−a(k−m+1) represents the exponential trend of the accumulated
sequence. Therefore, by introducing an initial value correction
mechanism, this process effectively solves the prediction bias
problem caused by theoretical assumption defects in the
traditional GM(1,1) model.

3.2 RBF NN residual correction

The constructed initial value correctionGM(1,1)model can address
the issue of prediction bias, but its ability to fit non-linear and highly
volatile data is poor. RBFNN is a nonlinear function approximator that
can fit any complex nonlinear data through Gaussian RBFs (Simani
et al., 2024). To compensate for the overfitting problem of the enhanced
GM(1,1) model, the study combined RBF NN to solve it. The structure
of RBF NN is denoted in Figure 3.

In Figure 3, the RBF NN adopts a three-layer topology structure,
including an inputting layer, a hidden layer, and an outputting layer.
The inputting layer is responsible for receiving external signals x1, x2,.,
xn and performing preliminary transmission. The hidden layer
implements nonlinear transformation through RBFs to map input
features to a high-dimensional feature space. The outputting layer

nodes obtain the output signal of the hidden layer, which is then
weighted and summed to generate the final outputs y1, y2, yn. The
signal is then transmitted back and received by the inputting layer. The
hidden layer performs nonlinear response, and the outputting layer
linearly fuses the results to extract features using RBFs of local
responses. The outputting layer linearly simplifies training, balancing
nonlinear fitting and training efficiency. It is broadly utilized in
scenarios such as function approximation and pattern recognition.
The input data of the RBFNN is standardized, as denoted in Equation 9.

X̂i k( ) � Xi k( ) − �Xi

δi
(9)

In Equation 9, X̂i(k) means the normalized value of the i th
variable and the k th sample; �Xi stands for mean; δi stands for
standard deviation. The output results need to be restored to obtain
the actual values, as shown in Equation 10.

yi � �yi + δiŷi (10)

In Equation 10, yi represents raw scale data; �yi represents the
standardized mean; ŷi represents standardized data. To ensure that
the networked control system does not transform into an open-loop
system, an RBF networked predictive control system scheme is
added here. The process is shown in Figure 4.

As shown in Figure 4, the predictive control system based on RBF
NN adopts a time-driven mechanism, which is composed of three core
modules working together: the data buffer is responsible for storing and
managing time-series data, the NN predictive controller realizes
intelligent decision-making, and the delay compensator handles
network transmission delay problems. The system adopts a
synchronous clock mechanism, and all sensors, controllers, and
actuators maintain strict time synchronization. To ensure the
reliability of data transmission, each data packet is marked with an
accurate timestamp indicating the time of transmission. To address the
potential issues of out of order and packet loss in network transmission,
the system encapsulates cached output data with corresponding
timestamps into data packets to ensure data integrity and timing.
The solution is shown in Equation 10.

Yk � y k( ), y k − 1( ), . . . , y k − �τsc( ), k{ } (11)

In Equation 11, y represents the output at a single moment; �τsc

represents the lag parameter. Due to the impact of network latency,
the system output data obtained by the controller at t time is not
real-time data, but a historical data sequence with delay, as shown in
Equation 12.

FIGURE 3
Structure of RBF NN.

FIGURE 4
RBF network predictive control system.
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Yk−τ∞
k
� y k − τsck( ), y k − 1 − τsck( ), . . . , y k − �τsc − τsck( ), k − τsck{ }

(12)
In Equation 12, Yk−τ∞

k
represents the historical data set strongly

correlated with time k − τsck ; k − τsck stands for time marker; τsck
represents the lag associated with time k. The core innovation of the
research in methodology is reflected in the dual optimization
framework of “theory-driven and data-driven”. Firstly, for the
GM(1,1) model, the study abandoned the traditional assumption
of taking the initial value x(1) (1) as a deterministic condition and
reconstructed it into an optimizable integral constant C. The
systematic bias was theoretically eliminated by establishing an
optimization problem aimed at minimizing the sum of squares of
the residuals between the simulated sequence and the real
cumulative sequence and deriving its analysis. Secondly, for the
fusion strategy, the study adopted a dynamic weighting algorithm
based on the variance of prediction errors. The significance of this
strategy lies in its mathematical optimality, which ensures that the
overall variance of prediction errors after fusion is minimized. These
two improvements not only make the model have a more solid
theoretical foundation, but also its superior performance can be
explained by strict mathematical criteria. The study integrates RBF
NNs and designs an RBF networked predictive control system with
integrated timestamp synchronization and data caching, which can
significantly enhance the efficacy of the initial value modified
GM(1,1) model for nonlinear data fitting, while alleviating the
latency and disorder problems in network transmission.

3.3 Construction of hybrid prediction model

Considering the characteristics of robot fault prediction tasks
involving both trend changes and complex nonlinear features, a
single prediction model often struggles to fully capture data
characteristics. The hybrid modeling method combines the
advantages of different models to simultaneously handle

deterministic trends and stochastic fluctuations in data, thereby
significantly improving predictive performance. The study
constructs a robot fault prediction framework based on the
improved GM(1,1) model and RBF by integrating the initial
value modified improved gray model GM(1,1) with RBF NN for
feature extraction and its predictive control scheme. The framework
structure is shown in Figure 5.

As shown in Figure 5, the core architecture of the predictive
maintenance system starts from the underlying physical object - the
robot, and monitors its key physical states (such as position,
vibration, force, torque) in real time through various sensors
(including displacement sensors, accelerometers, load sensors,
torque sensors) in the data acquisition module. After the sensor
data is transmitted through the transmitter, it enters the data
processing module for necessary sensor data preprocessing (such
as cleaning, filtering, feature extraction) to convert it into high-
quality and suitable feature data for analysis. Finally, the processed
data are fed into the top-level fault prediction module, which uses a
fault prediction model based on grey theory and RBF NN for
intelligent analysis. The aim of this is to predict potential faults
that may occur in the robot in advance and achieve active
maintenance. The entire process clearly outlines the complete
chain from physical signal perception, data transmission and
processing to intelligent prediction. By reasonably determining
the weight coefficient vector, a combined prediction model is
built, as denoted in Equation 13.

Pc � λ1P1 + λ2P2 (13)

In Equation 13, Pc represents the final result after weighted
fusion; λ1 and λ2 represent weight coefficients; P1 and P2 represent
weighted base quantities. Research has shown that the core
mechanism of this combination model is reflected in the linear
combination process of weight coefficients. The research focuses on
the improvement of the GM(1,1) model and the dynamic weighted
fusion algorithm based on error variance for RBF. This algorithm
determines the optimal weight allocation by quantifying the stability
of the prediction results of each sub-model, as shown in Equation 14.

σ2gm � Var Egm( )
σ2rbf � Var Erbf( ) (14)

In Equation 14, σ2gm represents the variance of the random
variable GM related to Egm. σ2rbf represents the variance of the
random variableMF related to Erbf; Var represents variance. From
this, the final prediction can be obtained, as shown in Equation 15.

Pfinal � λgm · Pgm + λrbf · Prbf (15)

In Equation 15, Pfinal represents the final fusion result; “ λgm”
represents the weight coefficient of GM. Pgm indicates the
prediction result; “ λrbf” represents the weight coefficient of MF.
Therefore, a new combination prediction system was constructed by
organically integrating the grey prediction model with the RBF NN
model. Figure 6 showcases the complete workflow of the grey RBF
NN hybrid model.

The amalgamation of the grey prediction model and the RBF
NN model to form a combined prediction process is illustrated in
Figure 6. The process begins with the input of raw data, which is
simultaneously fed into the grey prediction model and RBF NN

FIGURE 5
Fault prediction framework of grey RBF robot.

Frontiers in Mechanical Engineering frontiersin.org06

Chen 10.3389/fmech.2025.1680503

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1680503


model for parallel prediction, and their respective prediction error
values e1 and e2 are calculated. Subsequently, the system uses the
extremum method to determine the optimal weight coefficients λ1
and λ2 for the two models, which must satisfy the constraint
condition λ1 + λ2 � 1 (and usually non-negative). The final result
Pc of the combined prediction is calculated using formula
Pc � λ1P1 + λ2P2, which is the weighted average of the PVs P1
(grey model) and P2 (RBF model) of two independent models. The
total error ec of the combined prediction is calculated according to
formula ec � λ1e1 + λ2e2. The goal of the whole process is to
minimize the combination error ec by dynamically optimizing
the weight, so as to generate a more accurate and robust
prediction result Pc than a single model. A hybrid model for
robot fault prediction combining improved GM(1,1) grey model
and RBF NN has been proposed, which solves the theoretical
shortcomings of traditional grey prediction through initial value
correction and enhances the non-linear data fitting ability using NN.
The system adopts the extreme value method to dynamically
optimize the model weight λ1 + λ2 � 1, generates the prediction
result Pc � λ1P1 + λ2P2 through weighted fusion, and minimizes
the combination error ec � λ1e1 + λ2e2.

4 Validation of robot fault prediction
model based on improved GM(1,1)
model and RBF

4.1 Performance verification of improved
GM(1,1) model

To evaluate the performance of a robot fault prediction model
based on the improved GM(1,1) model and RBF, this study
compared it with the unimproved GM(1,1) prediction model and
RBF prediction model. The core objective of the experiment was to
verify the performance of the proposed model in predicting the key
state parameters of the robot, thereby providing a basis for FD. The
experimental subject was the second joint of the Ruiman

RM65 industrial robot. The study chose the current of the joint
motor as the prediction target variable because it can sensitively
reflect the increased load torque changes due to mechanical wear
and is a precursor indicator for fault prediction. Data was collected
through a high-precision current sensor with a sampling frequency
of 10 kHz and then downsampled to 1 kHz for analysis. All the PVs
and errors in the study refer to the predictions of motor current. The
health status of mechanical components was inferred by analyzing
the trend of the current prediction sequence, and the remaining
useful life was calculated accordingly. Ultimately, the output of the
model was the fault probability or RUL estimate, which was based on
the high-precision and multi-step prediction capability of the
current signal. The research data was derived from the industrial
robot fault simulation and operation datasets of the PYY and LJP
laboratories. Multi-source sensors such as accelerometers, encoders,
and temperature sensors were used to collect vibration, motion,
load, and temperature signals at a sampling frequency of 25.6 kHz.
By extracting 42 time-domain and frequency-domain features such
as root mean square, kurtosis and centroid frequency from the
original signal, the remaining useful life was taken as the prediction
target. The dataset contains 18 full life cycle data records under five
failure modes. The training set (12 records) and the test set
(6 records) were divided according to the records, and Z-score
standardization processing was carried out. The parameters of the
experimental equipment are detailed in Table 1.

The study selected the Ruiman RM65 series robot, which is a
lightweight robotic arm with a fiberglass shell. Its total structural
length is approximately 850.5 mm and it has a compact spherical
workspace. The schematic diagram illustrating its structural
configuration is presented in Figure 7.

According to the above model parameters, this study evaluated
the fault prediction performance of the model by comparing the
error prediction of the GM(1,1) model before and after
improvement, comparing the RBF NN model with the
comprehensive model, comparing the true value with the PV,
and comparing the model before and after improvement at
different speeds. Firstly, a comparison was made between the

FIGURE 6
Process of the combined prediction model of grey RBF NN.

Frontiers in Mechanical Engineering frontiersin.org07

Chen 10.3389/fmech.2025.1680503

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1680503


error prediction of the GM(1,1) model before and
after improvement, and the experimental results are shown
in Figure 8.

In Figure 8a, the PVs of the classical grey model exhibited a
relatively gentle trend of change, with overall fluctuations being
relatively small. From Figure 8b, optimizing the grey model’s PVs
exhibited a more sensitive adjustment ability, which can closely
track changes in actual data, especially with better adaptability near
turning points. Overall, the optimized grey model performs better
than the classical grey model in prediction accuracy and dynamic
response, and its prediction curve is more in line with the fluctuation
characteristics of actual data.

4.2 Performance verification of RBF NN and
fusion model

On the basis of verifying the predictive performance of the
optimized GM(1,1) model, to further validate the practical
application value of the model combined with RBF, the study
selected LJP laboratory data for experiments and compared the

sample error between the RBF prediction model and the
combination model, as shown in Figure 9.

As shown in Figure 9a, from the blue error value area, the error
range span was relatively large. Among them, the error distribution of
the blue spherical RBF NN showed obvious volatility, such as the
appearance of discrete values like −2.5 and 0.5, indicating that there is a
significant deviation in the prediction of some samples by thismodel. In
Figure 9b, the overall error value of the combined model was closer to
the zero baseline, and the variation amplitude was relatively gentle.
Overall, the combined model prediction results are not only more
accurate, but also have better stability. Afterwards, to prove the actual
prediction accuracy of the combined model, the PVs were compared
with the true values, and the findings are denoted in Figure 10.

In Figure 10a, the actual observed value distribution of the target
variable is presented. From the perspective of data distribution, the
true values exhibited obvious nonlinear characteristics, with dense
data points in the middle range (approximately 2–4.5 units) and
relatively sparse data points at both ends. In Figure 10b, the model’s
PVs generally followed the trend of the true values well, especially in
the data intensive middle region (2–4.5 units), where the predicted
curve almost overlapped with the true value curve. The research
findings denote that the combination prediction model has high
prediction accuracy for conventional data. Finally, to prove the
prediction speed and prediction error of the combined model, the
study compared its prediction error rate with that of the traditional
model, and the results are shown in Figure 11.

In Figure 11a, the prediction error of the traditional model
fluctuated in the range of 0.5–0.7 m/s, with the maximum error
occurring at the third and fifth sample points (0.44 m/s), exhibiting
periodic fluctuations. The combination model significantly narrowed
the error range (0.55–0.62 m/s) and reduced the overall mean error by
about 40%. As shown in Figure 11b, the traditional model showed a
persistently high prediction (0.05 m/s) under high-speed conditions
(Y = 0.4m/s). The combinedmodel corrected the system deviation, and
the correlation coefficient between the PV and the true value remained
basically unchanged. The error curve became flatter and the standard
deviation decreased. The above results indicate that the combination
model achieves significant results in error control, stability
improvement, and system deviation correction through algorithm

TABLE 1 Experimental equipment parameter table.

Parameter Standard Monitoring
indicator

Significance Measurement/Calculation
method

Freedom Six axes Joint current Reflects load torque, core prediction
target

Current sensor

Working radius 650 mm Joint vibration Characterizes mechanical impact and
wear

IEPE accelerometer

Repeat positioning accuracy ±0.02 mm Joint position Servo control feedback Absolute encoder

Absolute positioning accuracy ±0.1 mm Joint temperature Monitors motor overheating PT100 thermistor

Rated load 5 KG Vibration signal RMS Time-domain energy feature (Calculated from original vibration)

Maximum inertial moment 0.25 kg㎡ Vibration signal Kurtosis Time-domain impact feature (Calculated from original vibration)

Maximum line velocity 2.0 m/s Current signal mean Load level feature (Calculated from original current)

Maximum rotational speed of the
joint

180°/s,240°/s Monitoring indicator Significance Measurement/Calculation method

FIGURE 7
Rylerman RM65 robot.
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FIGURE 9
Comparison between RBF prediction model and fusion model. (a) RBF neural network prediction result error. (b) Error in combination model
prediction results.

FIGURE 10
Comparison of PV and true value. (a) True value. (b) Estimate.

FIGURE 8
Comparison of error prediction before and after GM(1,1) model modification. (a) Traditional grey model and actual values. (b)Optimize grey model
and actual values.
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optimization, providing a more reliable technical solution for the
engineering application of fault prediction systems.To enhance the
rigor and persuasiveness of the research, comparative experiments with
mainstream prediction methods were introduced. In this experiment,
on the same dataset, the exact same training set/test set partitioning was
adopted to compare the performance of the improved GM(1,1)-RBF
hybrid model proposed in the study with that of the classical time series
prediction method - the autoregressive integral moving average model.
The evaluation comprehensively considered the prediction accuracy
and usedmean absolute error (MAE), rootmean squared error (RMSE)
and mean absolute percentage error (MAPE|) as the core evaluation
indicators. Meanwhile, the study conducted an in-depth analysis of the
independent contributions of each improved component proposed by
the research through ablation experiments. All results were reported
with 95% confidence intervals and statistical significance relative to the
GM(1,1) baseline was calculated through paired tests. The comparison
results are shown in Table 2.

The results showed that the proposed IGM-RBF dynamic
weighted fusion model was significantly superior to the
comparison methods in terms of prediction accuracy. Its RMSE
was reduced to 0.058, which was 56.7% and 52.1% higher than that
of the ARIMA model and the traditional GM(1,1) benchmark,
respectively. The ablation experiment further verified the

effectiveness of each innovative component: the initial value
correction mechanism alone contributed a 29.8% performance
improvement, while the dynamic weighted fusion strategy
ultimately achieved a significantly better effect than the simple
average fusion. All improvements passed the 95% confidence
interval and statistical significance test (p < 0.001), fully
demonstrating the accuracy and reliability of the hybrid model in
the fault prediction of industrial robots.

5 Conclusion

A hybrid prediction method combining initial value correction
GM(1,1) model and RBF NN was proposed to address the
theoretical deficiencies and insufficient nonlinear fitting of
traditional GM(1,1) model in robot fault prediction. By
introducing an initial value correction mechanism to enhance the
GM(1,1) model and combining it with an RBF NN to construct a
hybrid prediction model, the extreme value method was utilized to
dynamically optimize the weight coefficients, ultimately forming a
complete framework for robot fault prediction. By combining the
theory-driven initial value optimization algorithm with the data-
driven nonlinear correction, the problems of initial sensitivity and

FIGURE 11
Comparison of speed error between traditional model and combination model. (a) 0.1m/s. (b) 0.4m/s.

TABLE 2 Comprehensive performance comparison and ablation experiment analysis.

Model type Model name RMSE
(95% CI)

MAE(95%
CI)

MAPE
(%)

R2 Significance vs. Reference
model

Mainstream Comparison
Model

ARIMA 0.134 ± 0.012 0.102 ± 0.010 3.26 0.901 <0.05

Benchmark Model GM(1,1) 0.121 ± 0.011 0.089 ± 0.008 2.94 0.872 -

Ablation Experiment
Model

+Initial Value Correction (IGM) 0.085 ± 0.007 0.062 ± 0.005 2.05 0.930 <0.001

Ablation Experiment
Model

RBFNN (Standalone) 0.095 ± 0.008 0.071 ± 0.006 2.36 0.912 <0.01

Ablation Experiment
Model

IGM + RBFNN (Average Fusion) 0.065 ± 0.006 0.047 ± 0.004 1.56 0.965 <0.001

Research Model IGM + RBFNN (Dynamic
Weighting, Ours)

0.058 ± 0.006 0.041 ± 0.004 1.15 0.982 <0.001
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insufficient nonlinear fitting of the traditional grey model in robot
fault prediction were fundamentally solved.The experimental results
showed that the improved GM(1,1) model achieved a 40%
improvement in prediction accuracy compared to traditional
models. This improvement was particularly prominent in terms
of response speed at turning points, indicating a significant
enhancement in the model’s ability to handle sudden changes.
The combination model further optimized the prediction
performance, effectively reducing the error range from
0.2–1.0 m/s to 0–0.6 m/s. At the same time, the overall mean
error was reduced by 40%, and the standard deviation was also
reduced by 62%. This means that the stability and accuracy of the
prediction results have been greatly improved. Under high-speed
conditions, when the speed reached 0.4 m per second, the
correlation coefficient increased from 0.82 to 0.95, effectively
correcting the system deviation and significantly improving the
overall reliability and practicality of the model. Overall, the
proposed hybrid prediction model significantly improves the
accuracy, stability, and adaptability of fault prediction through
algorithm fusion and structural optimization. Although the
research model has shown excellent performance and application
effects, there are still some limitations in the research. Currently, the
prediction effect under a single fault mode has been mainly verified,
but its applicability in multi-fault coupling scenarios still needs to be
verified. The optimization of hyperparameters still requires manual
intervention. The long-term stability in real industrial environments
needs further verification. In the future, it will consider the
prediction performance under multiple fault coupling scenarios,
and further research can explore these limitations in depth.
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