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Introduction: To tackle the insufficient accuracy in load detection of industrial
robots, this study proposes a load detection approach based on a Fourier
neural network.
Methods: First, a robot dynamics model is constructed, and a Fourier neural
operator is introduced to extract spatial physical information. In addition, an
attention mechanism is integrated to enhance key load information and mitigate
the influence of the external environment.
Results: In the load detection experiment, the proposedmodel achieved the best
prediction accuracy compared with similar models. For example, when the load
was 2 kg, 2.5 kg, and 3 kg, the predicted loads were 2.0044 kg, 2.5102 kg, and
3.0190 kg, respectively. Moreover, the model exhibited excellent fusion error
compensation performance: the average error in fusion after compensation was
0.82 ms, and the maximum delay time after error correction remained within
3.25%. In terms of single - sample inference time, the proposedmodel performed
best (5.1 ms), which was better than that of similar techniques.
Discussion: The proposedmodel shows good application effects andwill provide
technical support for parameter recognition and control optimization of
industrial robots.
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1 Introduction

With the development of industrial automation, the application of industrial robots in
intelligent manufacturing is becoming increasingly widespread. Performance improvement
is crucial for production efficiency and product quality (Bo et al., 2022). Accurately
identifying robot parameters is a key link in improving robot motion accuracy,
dynamic performance, and human-machine cooperation safety. Recently, numerous
scholars have conducted research on parameter identification such as load detection
and control for industrial robots (Kakinuma et al., 2022). Huang et al. conducted
research on the dynamic parameter estimation problem of industrial robots. An
iterative hybrid least squares algorithm was proposed. This algorithm estimated the
basic parameters and joint friction torque of the robot through an internal and external
loop structure, combined with linear matrix inequalities. The experiment showed that this
method had high accuracy in parameter recognition and significantly improved the
accuracy of mechanical control (Huang et al., 2022). Chen and Zhan explored the
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insufficient kinematic calibration of industrial robot drilling and
riveting. A method based on an improved beetle swarm
optimization algorithm was proposed, which adopted a
preference random replacement and a dynamic parameter
adjustment strategy. The positioning error of the robot’s end-
effector was significantly improved compared to the original,
which was also significantly superior to similar technologies
(Chen and Zhan, 2022). Santhosh R et al. conducted research on
operational optimization and product quality improvement in the
robot painting industry. The study combined real and virtual
research to deeply analyze the motion parameter information of
industrial robots, and used dynamic devices and deep learning for
morphological parameter evaluation. Taguchi L9 orthogonal
experiment and variance analysis were used to determine key
factors, while the machine learning was introduced for automatic
defect classification and recognition. The test results showed that
this technology could accurately identify the parameters of
industrial robots and optimize the working effect of robots
(Santhosh et al., 2024).

Neural networks, as a powerful nonlinear modeling tool, can
handle complex dynamic systems and uncertainty problems.
Therefore, it has received widespread attention in the field of
industrial robot parameter recognition. Yuan and Sun conducted
research on dynamic parameter identification of industrial robots. A
method integrated calibration and deep learning identification
method was proposed. This method adopted axis configuration
space and adjoint error model, simplifying the operation process
through static experiments and improving the accuracy of
parameter identification. Experimental analysis showed that this
technology could improve the recognition accuracy for spatial
targets and optimize the control effect (Yuan and Sun, 2023).
Ruan et al. explored the target recognition and grasping
problems of industrial robots in complex spaces. An autonomous
target recognition method based on image feature processing was
proposed. A parallel binocular stereo vision system was constructed
to achieve high-precision positioning of robot end-effector grasping.
The experimental results showed that the technology had good
control accuracy, but this method was sensitive to parameter
changes, which could affect the control accuracy (Ruan et al.,
2023). Yang et al. proposed a calibration model based on
extended Kalman filter to address the absolute positioning
accuracy in industrial robotic arms. This method significantly
improved calibration accuracy by addressing geometric errors
and eliminating non-geometric errors. The model performed
better than existing techniques on multiple datasets (Yang et al.,
2023). Lu et al. conducted research on the load estimation of
industrial machines. An optimization method based on a semi-
parametric friction model was proposed. This method recognized
robot loads by improving the torque observer and optimizing the
robot configuration. Experiments showed that this technology had
good application effects, but complex scenarios still had low
computational efficiency (Lu et al., 2023). Selami et al. conducted
research on the positioning accuracy of industrial robots. A
calibration method based on an improved Denavit Hartenberg
model was built. By calibrating the distance error model, the
positioning and distance errors were significantly reduced. This
method performed well in improving absolute position accuracy.
However, it had a strong dependence on sensor accuracy and

calibration equipment, and the calibration process was relatively
complex (Selami et al., 2023). Tsapin D explored the application of
industrial and logistics robots in civil facility security, and proposed
a solution based on big data and computer vision algorithms to
address the increasing crime and decreasing identification of
criminals in the Russian Federation. By training convolutional
neural networks on various architectures and introducing squeeze
and excitation blocks, the recognition accuracy of semantic markers
of vehicle damage was significantly improved. Under complex video
shooting conditions, this method had the same accuracy as
traditional methods, but significantly improved speed, providing
a more efficient and accurate detection method for parking lot
computer vision systems (Tsapin et al., 2024).

In summary, industrial robots currently play a crucial role in the
field of industrial manufacturing, and numerous scholars have
conducted research on parameter identification issues such as
load detection and control of industrial robots. However, current
industrial robots still face shortcomings in the field of robot
parameter recognition. Traditional dynamic models face three
limitations in complex working conditions: (1) Joint friction and
temperature drift under low-load conditions significantly increase
detection errors; (2) Environmental interference (such as structural
flexibility deformation) causes distortion in the solution of the load
force matrix; (3) There is an inherent contradiction between real-
time requirements and computational complexity. Therefore, the
research proposes a core hypothesis: Based on the Fourier Neural
Operator (FNO) frequency domain feature extraction mechanism
and the attention guided error compensation, it can synchronously
solve the low-load sensitivity and environmental interference. There
are two innovations in the research. One is to introduce the FNO
network to extract spatial physical information and improve the
accuracy of load data recognition. The second introduces the
Frequency Domain Expansion-Attention Neural Network
(FADA) to optimize feature extraction, while using error
compensation to improve external environmental impact, further
enhancing load detection accuracy. The research content will
provide technical reference for high-precision control of
industrial robots.

2 Methods and materials

2.1 Load analysis of industrial robots based
on dynamics

With the advancement of intelligent manufacturing, the demand
for intelligence and high-precision control of industrial robots in
complex operations is increasing. Robots in different application
scenarios require different loads. Therefore, effective industrial
robot load detection is the key to ensuring high-precision
control. The load detection process of industrial robots is shown
in Figure 1.

From Figure 1, industrial robot load detection includes several
key processes such as dynamic modeling, excitation trajectory
design, data acquisition and processing, and parameter
estimation (Papavasileiou et al., 2025). The study focuses on
industrial 6-axis robots and uses Fourier series for excitation
trajectory design based on the robot dynamics model. The least
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squares estimation method is used for load solution. The
nonlinear dynamic model of the 6-axis industrial robot is shown
in Equation 1.

Fτ � M q( )€q + C q, _q( ) _q + G q( ) (1)

In Equation 1, _q refers to the joint velocity. q refers to the joint
position. €q refers to the joint acceleration. Fτ refers to the joint
torque. C represents the centrifugal force matrix. G refers to the
gravity matrix. When industrial robots perform processing tasks, a
load is usually applied to their end to perform the corresponding
task. The end joint mass is shown in Equation 2 (Luo et al., 2024).

m � mV +mQ (2)
In Equation 2, mQ represents the increased load mass.mV is the

self-weight of the end joint. Next, it is necessary to separate the load
dynamics related parameters from the industrial robot dynamics
parameters to obtain the end joint load parameter model, as shown
in Equation 3.

Fτ � Hlink+load q, _q, €q( )ϖlink+load
FτE � Hlink q, _q, €q( )ϖlink

FτL � Hload q, _q, €q( )ϖload

⎧⎪⎨⎪⎩ (3)

In Equation 3, Fτ , FτE and FτL represent three states of torque:
loaded, unloaded, and end loaded, respectively. Their corresponding
observation matrices are Hlink+load, Hlink, and Hload, and their
corresponding parameter matrices are ϖlink+load, ϖlink, and ϖload.
According to the parameter model, the dynamic parameters under
load can be calculated. Next, the study uses Fourier series for
excitation trajectory design, representing the original joint
parameters in the form of sine and cosine sums to reduce data
sampling errors and improve the accuracy of subsequent load
parameter detection (Silik et al., 2023). i is defined as the i-th
joint number of the industrial robot. j is the fundamental

frequency index of the excitation trajectory. The updated
parameter q is shown in Equation 4.

qi t( ) � qi0 +∑k
k�1

ai( )k sin kωjt( ) + bi( )k cos kωjt( )[ ] (4)

In Equation 4, ωj signifies the fundamental frequency of the
trajectory. (ai)k and (bi)k are both Fourier order correlation
coefficients. k is the parameter quantity, set to 5 in the study. qi0
represents the joint offset. t represents the sampling time. The
updated _q is shown in Equation 5.

_qi t( ) � ∑k
k�1

kωj ai( )k cos kωjt( ) + bi( )k sin kωjt( )[ ] (5)

The joint acceleration €q is continuously updated, as shown in
Equation 6.

€qi t( ) � −∑k
k�1

kωj( )2 ai( )k sin kωjt( ) + bi( )k cos kωjt( )[ ] (6)

To effectively detect the load status of industrial robots, it is
necessary to collect raw data from each joint. The research adopts
TCP/IP protocol for robot control, and uses Windows Sockets
protocol programming to obtain parameter information such as
joint current and acceleration of the robot itself (Liu et al., 2023a).
Considering the impact of network environment fluctuations on
data collection, this study introduces moving average filtering to
process data and improve data changes. Next, the study introduces
the least squares method to solve the collected end load and obtain
robot load information (Nengem, 2023). The objective function is
shown in Equation 7.

J ϖ̂load( ) � ∑n
i�1

τai −Hai qi, _qi, €qi( )ϖ̂load( )2 (7)

FIGURE 1
Industrial robot load detection process.
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In Equation 7, τai represents the target torque. Hai represents
the target observation matrix. ϖ̂load represents the target dynamic
parameters. n represents the number of data points collected. Next,
the least squares method is used to estimate the dynamic parameters
of the target, as shown in Equation 8.

ϖ̂load � ∑n
i�1
Hai qi, _qi, €qi( )2⎛⎝ ⎞⎠−1∑n

i�1
τaiHai qi, _qi, €qi( ) (8)

2.2 Modeling of industrial robot load
detection based on FNO network

In the previous subsection, a fundamental analysis of robot load
is completed based on a dynamic model. Although the load status of
the robot is identified from the extracted raw data, the accuracy is
low and cannot meet high-precision load detection. Therefore, the
study introduces FNO networks to process raw data. The FNO
network can perform Fourier transform on the extracted spatial
physical information data, and use kernel integration operators to
operate on the transformed data to obtain low-frequency feature
data in the original data. Accurate load information can be obtained
through partial differential solution. The FNO network framework
is shown in Figure 2.

According to Figure 2, the physical spatial data is Fourier layered
into high-latitude space and transformed into the Fourier domain
through Fourier transformation. Then, the low-frequency signal is
retained through linear transformation, and the data is adjusted to
physical space through inverse transformation to preserve more
accurate load characteristic information (Basiri et al., 2023). The
iterative process of FNO network is shown in Equation (9).

Yr+1 x( ) � σ WYt x( ) + ƛ a,ϕ( )Yt( ) x( )( ) (9)

In Equation 9, σ represents the activation function. ƛ(a,ϕ)
represents the integral operator. W represents a local linear
transformation. Yt(x) represents the input. x represents the

spatial physical information. (K(a,ϕ)vt)(x)) is the Fourier kernel
integration operator. After Fourier transform, the Fourier kernel
integration operator is calculated, as shown in Equation 10.

ƛ a,ϕ( )Yt( ) x( ) � −1  ƛϕ( ) ·  Yt( )( ) x( ),∀x ∈ D (10)

In Equation 10,  represents the Fourier transform. ƛϕ
represents the integral operator. The study uses Euclidean norm
and mean square error as evaluation functions for FNO networks.
The mean square error can effectively distinguish the difference
between the label and the predicted value, and improve the
convergence effect by reducing the error, as presented in
Equation 11 (Cao et al., 2023).

MSE � 1
n
∑n
i�1

f x( ) − y( )2 (11)

In Equation 11, y refers to the actual label. f(x) represents the
output value. n is the sample size. In addition, the network utilizes
the Euclidean norm to calculate information errors, which provides
better feedback on network performance, as displayed in
Equation 12.

T2 �

��������������∑d
i�1

yx − f xi( )( )2√√
(12)

In Equation 12, d represents the number of summation terms.
yx refers to the label. xi represents the network output value. In
addition, to improve the robustness and convergence of the FNO
network and optimize the parameter learning effect, the Adam
algorithm is taken as the optimizer for the network. The
dynamic parameter after gradient update is shown in Equation 13.

Δθ � −α × ŝ/ �̂
r

√ + δ( ) (13)

In Equation 13, α represents the learning rate. r̂ represents the
cumulative variable. ŝ represents the gradient update direction
parameter. δ represents the adjusted parameter. Through the

FIGURE 2
FNO network framework.
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above optimization, the study sets the learning rate of the network to
0.001. The entire load detection process of industrial robots based on
FNO network is shown in Figure 3.

According to the load detection process in Figure 3, the original
physical space data and physical end load data are first subjected to
feature normalization, and the dataset is divided. Then, the data is
input into the FNO network for training, and the Fourier transform
is used to filter out low-frequency signals that retain more features.
The final industrial robot load detection results are obtained through
data feature analysis.

2.3 Modeling of industrial robot load
detection based on improved FNO network

The previous subsection adopts the FNO network for load data
analysis and solving to extract more accurate load information and
improve the load detection accuracy of industrial robots. However,
traditional FON networks also face shortcomings in load feature
extraction, including limitations in low-frequency feature
extraction. They mainly extract low-frequency feature data
through Fourier transform, while load information not only
includes low-frequency features, but also has high-frequency
detail features. In addition, FNO only relies on the frequency

domain features obtained from Fourier transform, which may
not fully characterize the complex nonlinear relationship between
load and robot dynamic parameters. To address the aforementioned

FIGURE 3
Load detection process of industrial robots based on FNO network.

FIGURE 4
Schematic diagram of FADA model structure.
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issues, further improvements will be made to the FNO network. The
FADA model is introduced to enhance the attention and extraction
of important load features of industrial robots by FNO network.
Figure 4 presents the structure of the FADA.

From Figure 4, the Fourier module in the original FNO network
can only filter and process specific high-frequency information in
the raw data, and then use linear transformation to obtain
corresponding feature signals. After introducing FADA, if there
is insufficient accuracy in processing low-frequency feature signals
(process 2), FADA data processing can continue (process 1). It
expands low-frequency information to high-frequency signals,
jointly outputting high-frequency and low-frequency features and
improving the accuracy of load information extraction. The FADA
model includes convolutional attention layers, convolutional layers,
input layers, and output layers, where the convolutional attention
layer is composed of two parts, spatial attention and channel
attention, connected in series (Zhang et al., 2023). The channel
attention weighting coefficient is defined as Gc(F), as shown in
Equation 14.

Gc F( ) � Fc · σ Wm c[ ]( ) · σ Wc c[ ]( ) (14)

In Equation 14, Wc and Wm represent two linear layer weight
parameters. σ represents the activation function. c represents the
convolution calculation. The spatial attention weighting coefficient
is shown in Equation 15.

Gs F−( ) � σ c7×7 M2;E2( )( ) (15)

In Equation 15, E2 represents the global maximum feature. M2

represents the global average feature. By concatenating the E2 and
M2 features, a new feature map with important detailed features can
be obtained. Then, FADA is used to extend the feature data from
low-frequency to high-frequency, and combined with the original
low-frequency data to jointly output (Lokhande and Ganorkar,
2025). In addition, the study also considers that the dynamic
model of industrial robots cannot reflect information such as
temperature and flexible deformation of linkage motion.
Therefore, there are still errors in actual load detection (Liu
et al., 2023b; Jia et al., 2024). To compensate for the
aforementioned error issues, a compensation layer is added to
optimize the error, that is, adding an error compensation layer
based on convolutional networks in the FADA output. Its main
function is to use the deviation between the benchmark value and
the theoretical load as the network training label, and use the
deviation compensation layer and FADA to achieve overall data
discrimination, thereby optimizing the load detection error caused
by external factors (Bastl et al., 2023). The output of the
compensation layer is presented in Equation 16.

Fn+1 i, j( ) � ∑Ri

R�1
∑f
x�1

∑f
y�1

Yn
R s0i + x, s0j + y( )ωn+1

R x, y( )[ ] + b (16)

In Equation 16, f represents the size of the convolution kernel. b
represents the bias. R represents the number of network channels. s0
represents the convolution stride. ωR represents the channel layer
weight. Yn

R represents the input of network n + 1. In addition, in load
detection based on industrial robot dynamics models, the parameter
estimation of Equation 8 is affected by current fluctuations, and
there are nonlinear errors that have not been considered. These

errors are mainly caused by factors such as temperature and
deformation (Koshelev, 2024). Therefore, a load detection error
compensation process is added, as shown in Figure 5.

According to Figure 5, to improve the accuracy of load detection
for industrial robots, based on the raw physical information of
robots, dynamic models and FNO networks are used to identify and
predict loads. Meanwhile, to improve the detection accuracy of load
by FNO, FADAmodel and convolutional network are introduced to
enhance the raw data learning and extract important features.
Finally, based on the deviation of the theoretical load and the
prediction results of the convolutional network, the error
correction is performed by combining the two types of data to
obtain the industrial robot load detection results. The whole
technical process is shown in Figure 6.

According to Figure 6, the whole technology includes three
parts: dynamic load analysis, load detection modeling based on FNO
network, and load detection modeling of improved FNO network.
The technical research is completed through the joint design of the
three parts.

3 Results

3.1 Experimental analysis of industrial robot
load based on improved FNO network

Next, to verify the application effect of the industrial robot load
detection technology, corresponding experiments are conducted.
The load detection case empirical analysis of EFORT QH165 six axis
industrial robot in the automotive manufacturing industry is
conducted. The robot has a maximum load of 165 kg and adopts
a Panasonic A5 series servo drive system (rated torque 23.875N·m,
reduction ratio 210, and transmission efficiency 80%). Experimental
process data analysis method explanation: The study uses TCP/IP
protocol and Windows Sockets programming to obtain real-time
raw data such as joint current and acceleration (sampling frequency
120 Hz, cycle 20 s, and sample size 8,952). The research on data
preprocessing process adopts moving average filtering to eliminate
network fluctuation noise and extract load change trends. In
addition, the improved FNO network module is deployed in the
pytorch framework. The low-frequency load characteristics are
extracted by Fourier transform, and the key information
recognition is strengthened by combining FADA attention
mechanism. The real-time data including current and load
pressure are visually viewed by finebi tool. The software and
hardware parameter information of the experimental
environment is shown in Table 1.

According to Table 1, SolidWorks platform is used for 3D
modeling of the motion process of industrial robots, and V-rep is
employed for simulation experiment analysis. In addition, the initial
model training and parameter optimization are completed on
desktop computers equipped with Intel i7-12700K and NVIDIA
Jetson AGX Orin. After the final model is determined, it is deployed
to the edge IPC (Industrial Personal Computer) located at the
factory site for actual load detection verification. Edge IPC uses
the same NVIDIA Jetson AGX Orin GPU as the desktop training
platform to ensure consistency in computing architecture and avoid
inference bias caused by hardware differences. The number of terms
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K of Fourier series is set to 5 in the experimental process, which is
determined by trajectory optimization experiment to balance the
data sampling error and computational complexity, and ensure the
load parameter detection accuracy. In addition, the learning rate α is
set to 0.001, which is set based on the gradient update stability
requirement in the Adam optimizer of FNO network. The network
batch size is set to 64 to ensure the balance between the processing
speed of single batch data and the generalization ability of the model.
In the experiment, the current information of the end joint of the
industrial robot is collected, and the robot load is detected through
torque conversion calculation. The experimental collection period is
set to 20 s, the sampling frequency is 120 Hz, and a total of
8,952 samples are collected. The preferred research is to test the
training accuracy of neural networks, and the loss function curves of
the neural network on test and training sets are shown in Figure 7.

According to Figure 7, the green and red colors represent the
training data loss results, the blue color represents the test data loss
results, and the evaluation function is the L2 norm. After
250 iterations, the loss function and evaluation function
maintained a similar curve. In the test dataset, there were
significant fluctuations in the early stage, but gradually stabilized

after 100 iterations and maintained a low-loss state, indicating that
the neural network has good training performance. Next, the study
needs to select the optimal load torque solution method as the
computational basis. Common torque solution methods include
Global Parameter method (GP), Parameter Difference method (PD),
and Torque Solution method (TS). The load detection results are
shown in Figure 8 (Amer et al., 2024).

Figure 8a shows the test results under a load of 1 kg. GP had
significant fluctuations in the solution process, especially in the early
sampling where the load fluctuation exceeded the actual load by
more than 50%, resulting in poor comprehensive solution
performance. The TS and PD solutions were closer, but TS was
closer to the actual 1 kg load and had higher accuracy. Figure 8b
shows the test results of a 2 kg load scenario. There were significant
fluctuations in the three solution methods in the early stage under
2 kg load. In the later stage, the sampling points of TS and PD were
closer to the actual 2 kg load solution results, but overall TS still
performed better. Figure 8c shows the test results of the 3 kg load
scenario. In the early stage, all three solutions had significant
deviations from the collected load, but gradually stabilized in the
later stage. The GP solution method was closer to the actual value.

FIGURE 5
Load error compensation process.
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Figure 8d shows the test results of the 4 kg load scenario. The three
methods still have significant fluctuations in the early stages, and the
overall accuracy of load solution is poor. Overall, the TS solution
method is closer to the actual load of 4 kg and has better
comprehensive performance. Next, the relative errors and time
consumption of the three solving methods are compared, as
presented in Figure 9.

Figure 9a displays the comparison results of relative errors.
According to testing, the accuracy of traditional TS solution was
lower than that of GP in low-load conditions. For example, when the
load was 0.5 kg, the relative error of GP was 2.95%, while that of TS
was −5.72%. As the load increased, the accuracy of TS solution was

significantly higher. For example, when the load was 4 kg, the
relative errors of TS and GP were 3.22% and 8.14%, respectively.
Figure 9b compares the time consumption of three solving methods.
According to the test results, TS had a longer solving time compared
to GP and PD, mainly because it performed two inverse operations,
which slowed down the calculation speed. Based on the above
results, the study adopts TS as the fundamental method for load
solving to ensure the load prediction accuracy. The study introduces
FNO network to optimize its low-load detection and solving time
problems, and extract key features by introducing FADAmodel. The
learning rate of the proposed FADA-FNO is 0.01, the batch size is
64, and the number of Fourier layers is 4. In the experiment, Fully

FIGURE 6
The whole technical process.

TABLE 1 Experimental environment parameter information.

Index Parameter Robot parameters Specific numerical values

Operating system WINDOWS 11 Maximum load 165 kg

Simulation platform V-rep Brand and model of servo drive system Panasonic A5 series

Run graphics card NVIDIA Jetson AGX Orin Rated torque 23.875N·m

Computer processing platform INTEL i7 12700K Reduction ratio Two hundred and ten

Types of industrial robots EFORT QH165 model industrial robot Transmission efficiency 80%

Robot 3D data modeling SolidWorks Data collection protocol Tcp/ip protocol

Deep learning framework PyTorch 1.12.1 Real time data visualization tool FineBI
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Convolutional Network (FCN), Feedforward Neural Network
(FFNN), and Physics-Informed Neural Network (PINN) are
introduced to compare the effect of force matrix solving with the
FADA-FNO model. The comparison of load prediction
performance among multiple models is presented in Table 2.

In the multi-model load prediction in Table 2, the overall
performance of the proposed model was better, but the
performance was relatively average at the low-load. When the
load was 0 kg, the predicted value of PINN was closer to the
actual load of 0 kg, and the prediction accuracy performed the
best, with a predicted load of −0.0418 kg. Next was the proposed
model, with a predicted load of −0.0461 kg. When the load was
0.5 kg, the FCN was closer to the actual value at 0.4842 kg, followed
by the proposed model at 0.4799 kg. As the load gradually increased,
such as when the load was 2 kg, 2.5 kg, and 3 kg, the prediction
accuracy of the proposed model was the best, which were 2.0044 kg,
2.5102 kg, and 3.0150 kg, respectively. To further analyze the
effectiveness of different technologies in load prediction, the load
prediction is quantitatively analyzed, with a load testing range of

FIGURE 7
Results of neural network training loss function.

FIGURE 8
Comparison of the effectiveness of three torque solving methods. (a) Load 1 kg. (b) Load 2 kg. (c) Load 3 kg. (d) Load 4 kg.
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0–4.0 kg, and the end joints of industrial robots are loaded to
simulate the handling scenario of automotive components (Engine
pistons, connecting rods, flywheels, etc.). Quantitative analysis
indicators such as Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are introduced for analysis. The quantitative
analysis of load prediction for different technologies is shown
in Table 3.

According to the test results in Table 3, the RMSE of the
proposed model was 0.038 kg in the typical load range of
2.0–4.0 kg, which was 60.8% lower than that of FNO and 82.6%
lower than that of traditional TS method TS. The proposed model
uses Fourier transform to effectively extract low-frequency

dominant features, while the FADA module enhances the signal-
to-noise ratio of low-load signals through frequency domain
extension. In addition, in the low-load 0.5 kg test, the absolute
error of the proposed model was 3.25 (0.0201 kg), while the TS
method was 5.72% (0.5 kg), which was significantly lower than that
of the FNO’s 12.02 (0 kg). Finally, in the load sensitivity analysis, the
error of the traditional model (TS/FCN) was strongly negatively
correlated with the load (r > 0.8), while the correlation of the
proposed model was weak, and r = 0.32. The proposed model
has good resistance to load disturbances. Next, the relative errors
and time consumption of different loads are compared, as shown
in Figure 10.

FIGURE 9
Comparison of relative error and time consumption of three solving methods. (a) Comparison of relative errors. (b) Time comparison.

TABLE 2 Load prediction accuracy of different models.

Theoretical load (kg) 0 (kg) 0.5 (kg) 1.0 (kg) 1.5 (kg) 2.0 (kg) 2.5 (kg) 3.0 (kg) 3.5 (kg) 4.0 (kg)

TS −0.1103 0.4779 0.9607 1.4959 2.0111 2.5517 3.0765 3.6900 4.2163

FNO 0.0145 0.5258 1.0046 1.4633 1.9587 2.5894 3.0814 3.6625 4.2035

FCN −0.0464 0.4842 0.9696 1.4324 1.9315 2.5930 3.1101 3.6934 4.1438

FFNN −0.1228 0.4696 0.9528 1.4527 1.9783 2.5568 3.0422 3.6488 4.1808

PINN −0.0418 0.4692 0.9239 1.3934 1.8375 2.5229 3.0153 3.6250 4.1464

Proposed FADA-FNO −0.0461 0.4799 0.9875 1.4922 2.0044 2.5102 3.0150 3.6053 4.1203

TABLE 3 Quantitative analysis of load prediction for different technologies.

Model type RMSE (kg) MAE (kg) Maximum relative error (%) Error and load correlation r value

TS 0.218 0.189 5.72 (0.5 kg) >0.800

FNO 0.097 0.082 12.02 (0 kg) 0.756

FCN 0.201 0.173 14.83 (0 kg) 0.723

FFNN 0.231 0.21 112.51 (0 kg) 0.624

PINN 0.126 0.104 9.75 (1.0 kg) 0.456

FADA-FNO 0.038 0.031 3.25 (4.0 kg) 0.320
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Figure 10a shows the comparison results of relative errors. The
results showed that FFNN and FCN had significant errors in the
early stage of low-load. For example, when the load size was 0 kg, the
detection errors of FFNN and FCN models were −112.51%
and −92.25%, respectively, which were larger than those of other
models. Further analysis revealed that FNO and the proposed model
performed the best on prediction accuracy, with both models being
able to control the average error within 6.2% at low-loads. As the
load increases, the prediction accuracy of the proposed model is
significantly better than that of similar models, and its stability is
also stronger. The overall average relative error was 3.25%,
indicating the best performance. Meanwhile, a single FNO
network also exhibits excellent performance, with an average
relative error of 4.58%. Figure 10b compares the time
consumption of multiple models. The test results showed that
FNO took significantly less time, followed by the proposed
model, and FFNN took the longest time. The proposed model
took longer time compared to FNO, mainly due to the added
FADA module, which enhances load feature extraction and
increases model computation time. However, it performs equally
well in time-consuming calculations. In addition, at the same 120 Hz
sampling rate, FNO took an average of 0.81 ms per sample, while the
proposed model took 0.82 ms, showing significantly better
performance than similar models.

3.2 Analysis of load detection for industrial
robots incorporating error compensation

In the previous subsection, the study tests the performance of the
proposed improved FNO network. However, in actual industrial
robot load detection, the load is also easily affected by temperature,
flexible deformation, and other factors, leading to increased errors.
To address this issue, error compensation is introduced to improve
the load detection performance. Firstly, the ablation experiment
analysis is conducted, including individual FNO, FNO + FADA, and

FNO + FADA + CNN. The ablation experiment tests are shown
in Table 4.

According to the ablation experiment in Table 4, the load
detection model integrating FNO + FADA + CNN was
significantly better than the single FNO and FADA-FNO models.
In the MAE error test, the error values of FNO + FADA + CNN,
FADA-FNO, and FNO were 0.082 kg, 3.25 kg, and 2.82 kg,
respectively. The overall prediction accuracy of FNO + FADA +
CN is better. 2 kg and 4 kg load scenarios are selected to test the error
compensation effect, as shown in Figure 11.

Figures 11a,b show the error compensation results for two load
scenarios of 2 kg and 4 kg, respectively. According to the results, the
maximum load in a 2 kg load was 2.22 kg. After load compensation,
it was 2.06 kg. In the 4 kg load, the maximum load was 4.24 kg. After
load compensation, it was 4.05 kg. Load compensation can
effectively reduce the interference of external factors on
recognition and improve the model detection accuracy. Next,
error compensation is introduced in different models for
optimization, and the test results are shown in Figure 12.

Figure 12a shows the corrected relative error result. According to
the test results, after error compensation, the maximum relative
error of the proposed model was controlled within 3.25%, while
FNO was controlled within 12.02%. Figure 12b shows the time
comparison after correction. The test results show that adding error
compensation layers mainly based on convolution to filter irrelevant
information improves the prediction accuracy of the model, but the
prediction time of all models has increased. FNO had the shortest
overall time consumption, with an average time of 0.89 ms, while
PINN and the proposed model had similar time consumption, with
0.98 ms and 0.11 ms respectively, both showing good performance
in time consumption. In addition, using standard load data to train
the model network is difficult to reflect its generalization ability.
Therefore, the experiment is conducted with a load interval of
0 kg–4.5 kg, selecting data with 80% load information as the
training set for testing, and the remaining as the test set to test
the error compensation prediction effect, as shown in Figure 13.

FIGURE 10
Comparison of relative errors and time consumption among different models. (a) Relative error comparison. (b) Time comparison.
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Figure 13a shows the results of the unknown load prediction test.
According to testing, the model with added error compensation had
excellent theoretical load fitting ability at a low-load below 0.8 kg.
Under the high-load, the model with error compensation correction
had higher accuracy and was closer to the actual predicted value.
Figure 13b shows the multi-model prediction results for unknown

data. According to the results, the proposed model adopted error
compensation, which was closer to the theoretical value under
unknown data, with a relative error control of 4.24%, better than
that of FBO (7.25%), and performed the best among similar
technologies. In addition, to further explore the generalization
and load detection performance of the proposed model, three

TABLE 4 Analysis of ablation experiments.

Model type RMSE (kg) MAE (kg) Maximum relative error (%) Error and load correlation r value

FNO 0.097 0.082 12.02 (0 kg) 0.756

FADA-FNO 0.038 0.031 3.25 (4.0 kg) 0.320

FNO + FADA + CNN 0.024 0.019 2.82 (0 kg) 0.305

FIGURE 11
Error compensation test. (a) 2 kg load compensation. (b) 4 kg load compensation.

FIGURE 12
Load detection results after error compensation optimization. (a) Comparison of errors before and after correction. (b) Comparison of time
consumption before and after correction.
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industrial robots are added: KUKA KR20 (maximum load 20 kg),
FANUC LR Mate 200iD (maximum load 7 kg), and Yaskawa GP7
(maximum load 7 kg). The experiment sets an error step size of
0.5 kg and expands the load range to 0–20 kg. All robots are tested
under high-load action conditions, and the load detection effects

before and after error compensation for each model are shown
in Table 5.

According to the test results in Table 5, in the 20 kg high-load
(KUKA KR20) scenario, traditional models (such as FFNN) had a
maximum relative error of 7.83% due to not considering joint flexibility

FIGURE 13
Test results under unknown data. (a) Unknown load prediction test. (b) Multi model prediction under unknown load.

TABLE 5 Comparison of load detection effects among multiple models.

Types of
industrial
robots

Model Maximum relative
error before

compensation (%)

Maximum relative
error after

compensation (%)

Time consumption
before

compensation (ms)

Time consumption
after

compensation (ms)

KUKA KR20 (20 kg) FNO 8.92 6.31 10.8 11.2

FCN 12.15 9.67 17.2 18.0

FFNN 7.83 5.94 12.7 13.8

PINN 5.46 3.82 10.9 11.6

The
proposed
model

4.25 2.97 11.1 13.2

Fanuc LR
mate (7 kg)

FNO 9.74 7.02 8.2 9.1

FCN 14.30 10.85 14.7 15.5

FFNN 6.55 4.78 10.2 11.2

PINN 4.89 3.41 8.3 9.2

The
proposed
model

3.68 2.51 8.5 9.4

Yaskawa GP7 (7 kg) FNO 8.15 6.20 8.7 9.6

FCN 13.42 10.13 14.9 15.8

FFNN 7.21 5.36 10.5 11.5

PINN 5.02 3.58 8.7 9.5

The
proposed
model

3.85 2.63 8.8 9.9
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deformation. The proposed model enhanced low-frequency feature
extraction through FADA module, with an error of only 4.25% before
compensation and further reduced to 2.97% after compensation,
significantly better than similar models. In addition, after
compensation, the time consumption of each model has increased,
but it is within the lower consumption range. For example, in the
KUKA KR20 (20 kg) test, the FNO before compensation was 10.8 ms.
After compensation optimization, it was 11.2 ms. Overall, the proposed
model, FNO, and PINN perform well on time consumption. In
addition, in other industrial robot tests, the proposed model also
showed the best overall performance. In the 7 kg load test of
Yaskawa GP7, the maximum relative error of the proposed model
before compensation was 3.85%, significantly lower than that of other
models. Meanwhile, after adjusting the compensation optimization, the
relative error of the proposed model was 2.63%, demonstrating
excellent overall performance. To verify the effectiveness of the
proposed model in real-world scenarios, three types of dynamic
task scenarios are set up to test the KUKA KR20 (20 kg),
simulating inertial and trajectory related loads in manufacturing to
verify the effectiveness of the compensation method. Scenario 1 is
workpiece picking (center of mass offset ±30 mm, acceleration 0.5 g).
Scenario 2 is welding trajectory (variable acceleration 0.3–0.6 g, curved
trajectory). Scenario 3 is polishing operation (reciprocating variable
acceleration 0.4 g, load fluctuation ±2 kg). The relative error values of
load prediction for the model in different scenarios are shown
in Table 6.

According to the test results in Table 6, the proposed model
performed well in load prediction in real dynamic scenarios, with a
maximum relative error controlled at 3.49%, significantly better than
that of PINN at 4.85% and FFNN at 6.05%, and overall performed
the best. In all scenarios, the proposed model had the highest load
prediction accuracy, verifying the effectiveness of the model in real-
world scenarios. The research summary of the paper is shown
in Table 7.

According to Table 7, in terms of accuracy and efficiency, the
improved FNO model extends low-frequency to high-dimensional
features and dynamic error compensation through the FADA
module, significantly improving load sensitivity and anti-
interference ability. Within the typical load range (2–4 kg), the

model error is reduced by over 60%. At a low-load (0.5 kg), the error
is reduced by over 50% compared to traditional methods. In terms of
robustness and generalization, the model has been tested onmultiple
brands of robots such as KUKA and Yaskawa, with a maximum
error stable at 2.51%-2.97%. The weak correlation (r = 0.32)
indicates that it is less affected by load fluctuations and solves
the error amplification caused by joint friction and temperature
drift in traditional models. The error compensation mechanism
further controls the impact of external interference (such as
structural deformation) within 3.25%.

4 Discussion

Industrial robots need to provide effective control forces based
on different loads in complex operating environments, and effective
load detection is the key to high-precision control. In recent years,
FNO, as a new type of deep learning architecture, has been able to
learn mappings of infinite dimensional function spaces, providing a
new technological means for load detection in industrial robots.
Therefore, this study explores the application effects of related
technologies in the field of industrial robot load detection based
on improved FNO networks.

In the multi-model load prediction stage, the proposed FADA-
FNO predicts the most advanced actual values within the load range
of 2.0–4.0 kg, and the results are significantly better than similar
models. The main reason is that it enhances the frequency domain
features by extending the low-frequency dominant feature to the high-
frequency band through the FADA module, solving the insufficient
signal-to-noise ratio in traditional FNO for low-load signal extraction.
In addition, the FADA-FNO model has improved the attention
mechanism, such as the convolutional attention layer suppressing
key interference factors such as joint friction and temperature drift.
The absolute error is only 0.0201 kg at a low-load of 0.5 kg. Compared
with similar advanced technologies, the RMSE of FADA-FNO is
0.038 kg, which is 60.8% lower than that of FNO and 82.6% lower than
that of TS. The correlation between error and load (r = 0.32) is
significantly lower than that of traditional models (r > 0.8), indicating
its stronger ability to resist load disturbances. In addition, various

TABLE 6 Load detection of industrial robots in real dynamic scenarios.

Dynamic testing scenario FNO (%) FCN (%) FFNN (%) PINN (%) Ours (%)

Scenario 1 6.95% 10.23 6.05 4.85 3.02

Scenario 2 7.25% 11.27 5.68 3.92 3.49

Scenario 3 7.07% 9.25 5.82 4.21 3.15

TABLE 7 Main findings of the research paper.

Research indicators Improved performance of FNOmodel The model performance of comparison models

Typical load range (2–4 kg) RMSE 0.038 kg, MAE 0.031 kg The RMSE of TS method is 0.218 kg, and the RMSE of FNO is 0.097 kg

Low-load accuracy (0.5 kg) Absolute error 0.0201 kg (relative error 3.25%) The relative error of TS method is 5.72%, while the relative error of FNO is 12.02%

Anti-interference ability Error and load correlation r = 0.32 (weak correlation) Traditional model (TS/FCN): r > 0.8 (strong negative correlation)

Multi-model generalization KUKA robot 20 kg load: maximum error 2.97% The error after FNO compensation is 6.31% (KUKA)
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industrial robots with different loads are introduced for load
prediction testing, including KUKA, FANUC, and Yaskawa. In the
prediction accuracy testing, the error of the optimized research model
remains at 2.51%-2.97%, with the best stability and accuracy, verifying
that the proposed model has better stability and generalization
performance compared to similar technologies. The main reason is
that the proposed model adopts FADA module to extract noise
signals, which is more conducive to recognize load parameters by
the model. In addition, the model can reduce the influence of
nonlinear factors such as temperature and deformation through
error compensation optimization, and improve the model
sensitivity to data. Finally, the study compares the time
consumption of the model before and after compensation. After
compensation optimization, all models show an improvement in
time consumption, but the overall time consumption of the
proposed model is at an excellent level. The main reason is that
FNO maps data to the frequency domain through Fourier transform,
which is more adaptable to strong load characteristics. Moreover, the
architecture design of FNO can better process data, ensuring both load
recognition accuracy and computational efficiency compared to
similar technologies. In addition, the study also compares it with
the improved FNO technique proposed in reference (Koshelev, 2024).
The research introduces FADA module to enhance low-frequency
feature extraction, and introduces CNN error compensation layer to
improve the fitting of nonlinear noise data, resulting in better load
detection accuracy and stability. This result also indicates that the
proposed model has excellent performance in industrial robot
load detection.

The improved FNO network in this study has good application
effects in industrial robot load detection. High detection accuracy
and short detection time meet the high-precision control
requirements of robots.

5 Conclusion

The current industrial automation is constantly advancing.
Accurately identifying industrial robot parameters, especially load
detection accuracy, plays a key role in improving robot motion
accuracy and dynamic performance. However, traditional load
recognition technology still faces many problems, such as large
recognition errors in low-load states and low-solution accuracy. To
improve the load recognition performance of industrial robots, a
load recognition method based on an improved FNO network was
proposed. The study used Fourier series for excitation trajectory
design and the least squares estimation method for load solution.
Subsequently, FNO was introduced to process the raw data,
extracting low-frequency feature data from spatial physical
information through Fourier transform, and using kernel
integration operator to operate on the transformed data to obtain
accurate load information. In addition, FADA was used to enhance
the attention and extraction of key load features, thereby improving
the accuracy of network recognition. The experimental results
showed that the proposed model performed the best overall, such
as in the 0–4 kg load range. Compared with traditional TS methods,
the RMSE of the model was reduced by 82.6%, and the MAE was
significantly reduced. Compared with models such as FNO, the
RMSE decreased by 60.8% and the average relative error was only

3.25% in the typical load range of 2–4 kg, while FNO was 4.58% and
TS was 5.72%. In the low-load 0.5 kg test, the absolute error of the
proposed model was 3.25% (0.0201 kg), significantly lower than that
of TS’s 5.72% (0.5 kg) and FNO’s 12.02% (0 kg). The model
performed excellently in multi-model testing and had strong
generalization ability. For example, in the 20 kg high-load
scenario of KUKA KR20, the error before compensation was
only 4.25%. After compensation, it further dropped to 2.97%,
which was significantly better than that of similar models.
However, the proposed model only focuses on detecting the end
load of the device and does not take into account the motion impact
on the environmental space. In the future, it is necessary to fully
consider the impact of factors such as motion inertia and changes in
the center of mass on load detection, to improve the effectiveness of
technological applications.
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