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Structural health monitoring (SHM) of wind turbines is critical for maintaining 
continuous operation, minimizing maintenance expenses, and maximizing 
energy production. Recent advancements in sensor technology have made it 
possible to gather extensive ultrasonic guided wave (UGW) data from wind 
turbine components, enabling assessment of their structural integrity. This 
research examines UGW-based nondestructive evaluation techniques applied 
to composite wind turbine blades under varied structural conditions using 
experimental and numerical analysis. UGW signals recorded through an 
actuator-sensor network contain essential information on blade health. A 
Random Forest model is used to predict changes in A0 and S0 mode group 
velocities and amplitudes due to erosion/corrosion, longitudinal debonding, and 
transverse debonding across damage sizes ranging from 0 to 40 mm. To assess 
prediction reliability, 95% confidence intervals are included as uncertainty bands; 
narrower bands suggest higher confidence, while a wider band indicates greater 
uncertainty. Sensitivity analysis highlights the impact of damage size and type on 
UGW signal properties, supporting improved predictions. This study underscores 
the potential of UGW-based SHM to enhance wind turbine reliability and promote 
sustainable energy generation.

KEYWORDS

composite wind turbine blade, damage detection, structural health monitoring, 
ultrasonic guided waves, uncertainty quantification

1 Introduction

Wind energy is a form of renewable energy that has gained significant importance in 
recent decades. Many countries are starting to invest in the wind energy sector. The use of 
this form of energy is not expected to decrease over time (Márquez et al., 2012; Maas, 2023). 
The growing trend in this sector is the manufacture and deployment of bigger wind 
turbines. Akhtar et al. (2024) studied the wakes from wind farms with small and large wind 
turbines in the North Sea. The work analysed the effect of these turbines on near-surface 
climate and power production. The findings showed that wind farms with larger turbines 
have a smaller impact on the near-surface climate compared to farms with many small 
turbines. This implies that large wind turbines may have less effect on ocean dynamics and 
the ecosystem. These turbines are designed to work in harsh climates and in areas that are 
hard to reach (Grindheim et al., 2023). As a result, structural health monitoring (SHM) 
becomes essential. It allows for remote assessment of structural integrity, reduces periodic 
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inspection costs, minimizes downtime and breakdowns, and helps 
prevent unnecessary component replacements during service 
(Schulz and Sundaresan, 2006).

The critical component susceptible to damage in wind turbines 
is the wind turbine blade (WTB). The WTBs are constructed in 
conjunction with other parts of the turbine. These form the primary 
component in capturing wind energy, making them susceptible to 
environmental forces. The efficiency and functionality of turbines 
are compromised when WTBs are damaged. Also, the value of a 
WTB is approximately 15%–20% of the total cost of the wind turbine 
(Li et al., 2014). Therefore, it becomes essential to study the 
importance of operation and mitigation strategies to reduce WTB 
damage (Dimitrova et al., 2022; Algolfat et al., 2023; Dadashbaki 
et al., 2025).

WTBs are made from composites such as glass fibre, carbon 
fibre, balsa wood, or foam. These materials are chosen to improve 
efficiency by increasing the strength-to-weight ratio. However, their 
composite structures are prone to damage such as disbond or 
delamination due to manufacturing defects, ageing, or repeated 
impacts. Blades can also corrode when exposed to harsh 
environments (Raju et al., 2024). The repetition of loads causes 
fatigue damage to build up, which leads to material cracks even early 
in their service life (Gaidai et al., 2023). Studies on detecting and 
mitigating internal damage have been carried out to prevent 
structural failure (Giurgiutiu et al., 2002; Giurgiutiu, 2005; Sikdar 
et al., 2024).

Many studies have examined health monitoring techniques for 
detecting damage in WTBs. These techniques include visual 
inspection, acoustic emission, ultrasonic testing (UT), static strain 
measurements, and short-range Doppler radar (Joosse et al., 2002; 
Verijenko and Verijenko, 2005; Yan et al., 2007; Schubel et al., 2013; 
Zhang and Jackman, 2014; Habibi et al., 2015; Skaga, 2017; Zhao 
et al., 2021; Bejger et al., 2023). Ultrasonic guided wave testing is 
often used because of its wide range of transducers, high defect 
sensitivity, and ability to detect damage over long distances (Nam 
et al., 2018; Shoja et al., 2018).

Claytor et al. (2010) tested a multi-scale SHM system for WTBs 
using piezoelectric transducer (PZT) active sensing. The study 
detected damage on a CX-100 blade section by integrating Lamb 
wave propagation, frequency response analysis, and time-series 
(ARX model) techniques. Lamb waves provided good damage 
localisation but needed high power. Frequency response analysis 
proved reliable and moderately efficient. The time-series ARX 
model was best for detecting subtle changes, but required more 
computing. Taylor et al. (2012) conducted a full-scale fatigue test of a 
9 m CX-100 WTB to evaluate SHM techniques under realistic 
damage progression. The blade was instrumented with 
piezoelectric (guided-wave), diffuse wave-field, frequency 
response sensors, and an experimental wireless low-power SHM 
platform. It was observed from the study that guided-wave sensing 
was best for local and early damage detection.

Further, trailing edge damage of a WTB is experimentally 
detected using the aerofoil aerodynamic noise measurement 
(Zhang et al., 2022). The experimental investigation includes 
the effect of varying mean flow velocities, inflow turbulence 
intensities and angles of attack for the detection of trailing edge 
damage. It was observed that the damage detection was possible 
by understanding the tonal noise features. Ou et al. (2021) set up 

an experimental benchmark for SHM using a small-scale WTB 
considering temperature variations. The study shows that 
environmental conditions (especially temperature) have a 
measurable effect on the vibration response of the blade. Xue 
et al. (2023) developed Multi-task Complex Hierarchical Sparse 
Bayesian Learning, which encodes multi-task learning using 
guided wave data at multiple frequencies to ensure 
consistency in damage location across tasks. This algorithm 
outperforms single-task models in terms of the localisation 
accuracy for multiple damage locations. Gómez Muñoz et al. 
(2019) developed an approach for disunity detection between 
layers of composite WTBs. The method was able to detect the 
presence of disbonds in the damaged blade. It was also 
concluded from the study that despite the large attenuation in 
composite materials, UGWs were able to assess the condition of 
the blade. A case study on the use of condition monitoring for 
detecting damage on a real WTB using non-linear acoustics and 
guided waves was done by Yang et al. (2018). It was observed 
from the study that detection using non-linear acoustics was 
insensitive to damage. In comparison to this method, the guided 
wave pitch-catch approach was accurate in detecting damage. 
Sinner et al. (2023) investigated the sensitivity of a preview- 
enabled model predictive controller for wind turbines. This was 
developed using upstream wind speed measurements. This 
improved the rotor speed regulation and was robust to timing 
errors in wind delay estimation.

An approach to identify delamination in laminated composites 
was proposed using Lamb wave propagation (Su et al., 2002). The 
noise was suppressed using a Wavelet transform-based signal 
processing technique. The detection of damage was found to be 
accurate using this method. Hay et al. (2003) developed a damage 
localisation algorithm for non-destructive evaluation of core crush 
damage in honeycomb composite sandwich panels using ultrasonic 
guided waves. The developed algorithm enabled accurate mapping 
of damage within the sensor network. Lanza Discalea et al. (2007)
monitored a composite wing skin-to-spar joint in an unmanned 
aerial vehicle using UGWs. Poorly curved adhesives and disbanded 
interfaces were simulated. Using a semi-analytical finite element 
(FE) method considering viscoelastic damping, dispersion wave 
propagation was obtained. This was verified using experimental 
tests. It was observed from the work that across the defective bonds, 
there is an increase in the ultrasonic strength of transmission.

Oliveira et al. (2020) proposed a method to identify structural 
damage in WTBs using ultrasonic non-destructive testing (NDT) 
combined with novelty detection. The process is to obtain ultrasonic 
signals from the blade in its healthy state, preprocess (wavelet 
denoising and principal component analysis (PCA)), and then 
apply a novelty detector trained only on healthy data so that 
deviations indicate damage. The study covers signals recorded 
from WTBs under controlled conditions; the focus is on 
detecting any damage rather than specifically localising it. The 
novelty detection approach was effective in distinguishing 
damaged from undamaged states in the tested blades, despite not 
having explicit damage-type training data. Mendikute et al. (2025)
and Zhu et al. (2025) presented a deep learning–based approach for 
detecting internal defects in wind turbine blades using UT data. 
Convolution Neural Networks (CNNs) were applied to 
automatically learn and classify patterns from ultrasonic scans. 
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This approach achieved high accuracy in defect detection, 
outperforming conventional feature-based UT analysis. Chai 
et al. (2025) developed an SHM system for WTBs using UGW 
technology. Failure modes like gelcoat cracks and adhesive joint 
debonding were detected using UGW across multiple 
frequency bands.

The existing research established that the ultrasonic guided wave 
method is efficient in localising and characterising the defects in 
layered composite materials (Lowe et al., 2000; Camanho, 2002). The 
advantage of this technique is that the wave structure is dependent 
on the frequency and phase velocity, and it can also propagate long 
distances with penetration in hidden layers (Humer et al., 2022; 
Junqueira et al., 2024). Although work has been done to detect 
damage using guided waves in WTBs, wave attenuation occurs in 
the usage of guided waves, thus limiting the application to small 
regions. Additionally, the complex design of WTBs hinders the 
application of this technique commercially, as the process of 
extracting information from the complex signals becomes 
difficult. Thus, the need for effective monitoring solutions for 
WTBs becomes more critical.

This paper examines guided wave propagation in composite 
WTBs affected by common damage types. UGWs are well-suited 
for this task due to their ability to propagate over long distances, 
allowing early-stage damage detection with minimal sensor 
deployment. This study establishes baseline guided wave 
responses from healthy WTBs, which are compared against 
damaged cases using three-dimensional finite element 
modeling in ABAQUS. Numerical results are validated 
experimentally, and parametric analyses assess the impact of 
various damage types and severities on wave behavior. 
Analytical and machine learning techniques are then applied to 
evaluate prediction accuracy and reliability. By integrating 
experimental, numerical, and machine learning approaches, the 
framework enhances damage detection precision, reduces 
extensive testing requirements, and improves scalability and 
robustness beyond prior single-method studies. Future work 
will focus on autonomous damage detection and 
characterization using data-driven models.

2 Experimental analysis

Laboratory experiments have been carried out on multiple 
composite WTB samples using a pair of PZT transducers (8 mm 
dia., 0.5 mm thin) serve as Actuator and/or Sensor mounted to the 
blade surface for actuation and reception of guided wave signals. A 
signal generator and data acquisition system are used to operate the 
PZTs. The PZT disc sensors were designed primarily for 
longitudinal wave excitation and reception, optimized for the 
S0 and A0 Lamb wave modes.

The experimental setup with a healthy blade sample is shown in 
Figure 1. These blades are made of a 3 mm thick glass fibre 
reinforced composite (GFRC) laminate (0o/90o/45o/-45o/90o/0o). 
In the study, four types of WTB samples are considered- (i) 
healthy WTB, (ii) WTB with edge erosion/corrosion (25 mm 
long), (iii) WTB with longitudinal debond (35 mm × 6.5 mm) 
and (iv) WTB with transverse debond (45 mm × 6.5 mm): H, D1, 
D2, and D3 respectively.

These debonds were artificially introduced to the blade samples. 
The disbond locations in the WTBs are schematically represented in 
Figure 2. In the experiments, 5-cycle sine burst signals of 150 kHz 
are applied as the PZT excitation signal for all experimental analyses 
to confine the frequency content narrowly and reduce unwanted 
reflections. During data acquisition, signals were averaged multiple 
times to enhance stability and suppress random electrical and 
environmental noise, particularly at low frequencies (<4 kHz). 
Raw signals were digitized using a high-resolution data 
acquisition system and subsequently processed through bandpass 
filtering and time-windowing to isolate the guided wave packets.

To ensure repeatability and consistency, each experimental test 
was performed multiple times under identical conditions, and the 
sensor signals were recorded for each trial. Statistical analysis of the 
repeated measurements showed minimal variation in both signal 
amplitude and time-of-flight, confirming high consistency. 
Furthermore, the experimental setup-including sensor placement, 
excitation parameters, and environmental conditions-was carefully 
controlled to reduce variability. These measures collectively ensured 
that the experimental results were reliable and reproducible.

FIGURE 1 
Experimental setup for guided wave-based inspection of WTB samples.
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3 Numerical modelling of wind 
turbine blade

The prediction of intricate interactions between elastic wave 
dynamics and damage in multi-layered composite WTBs is 
challenging due to complex structural geometry and boundary 
conditions. This becomes more difficult for damage types such as 

cracks, corrosion and debonding. Therefore, a numerical analysis 
using FE simulations has been done using ABAQUS software to 
investigate the influence of the damage types on the propagation of 
guided waves in composite blades.

This is achieved using a 3D numerical modelling of the 
composite WTB and simulating guided wave propagation within 
the blade. This simulation closely mirrors laboratory experiments 

FIGURE 2 
Schema of WTBs for (a) edge erosion/corrosion, (b) longitudinal and (c) transverse debond.

FIGURE 3 
WTB model in ABAQUS for simulation of guided waves under variable conditions. (A is the actuation location and S is the sensing location).
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employing a surface-mounted actuator and sensor system as 
represented in Figure 3. These numerical simulations of the 
actuator-induced guided wave propagation within the glass-fibre 
composite blade prove to be intriguing and demanding. The FE 
modelling and analysis of the WTB with dimensions used in a real- 
world scenario was computationally expensive, considering the 
number of elements and computational time. So, a scaled-down 
model of the WTB is used. The dimensions of the WTB used in FE 
analysis are similar to the dimensions used in the experimental 
study. Thus, a 500 mm long WTB was modelled in ABAQUS/CAE 
2022 version 6.22.

Four types of FE models are developed, namely (i) healthy 
WTB, (ii) WTB with edge erosion/corrosion, (iii) WTB with 
longitudinal debond and (iv) WTB with transverse debond; 
represented as H, D1, D2 and D3, respectively. In the FE 
simulation, guided waves are actuated from the actuation 
location, ‘A’ and the guided waves (time domain) are 
recorded at the sensing position, ‘S’, illustrated in Figure 3. 
The actuation signals are selected as a 5-cycle sine burst 150 kHz 
signal, which is shown in Figure 4 (top), and the frequency 

response of the actuation signal is shown in Figure 4 (bottom). 
Table 1 outlines the homogenised material properties used in the 
FE analysis of composite WTBs (Barr and Jaworski, 2019).

In Table 1, E11, E22 and E33 represent the longitudinal modulus 
of elasticity, modulus of elasticity in the transverse direction and 
modulus of elasticity along the thickness respectively. G12, G23 and 
G13 refer to the modulus of rigidities in 1–2 plane, 2–3 plane and 
1–3 plane respectively. ν12, ν13, ν23 are the Poisson’s ratios in 
1–2 plane, 1–3 plane and 2–3 plane, respectively; and ρ is the 
density of material.

Damage in composite materials occurs in two stages, namely 
damage initiation and evolution. Damage initiation refers to the 
onset of degradation in a composite material (Kalgutkar and 
Banerjee, 2024; Sikdar and Banerjee, 2016). The failure modes 
linked to Hashin’s criteria are fibre and matrix failure modes. 
These implicate four different modes of damage initiation, which 
are fibre tension, fibre compression, matrix tension and matrix 
compression. The following Equations 1–4 are considered for the 
initiation criteria (Hashin, 1980):

Fibre tension (σ̂11 ≥ 0)

FIGURE 4 
Actuation signal in time domain (top) and its frequency response from Fast Fourier Transform (FFT) (bottom).
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Ftf �
σ̂11

XT
􏼠 􏼡

2

+ α
τ̂12

SL
􏼠 􏼡

2

(1)

Fibre compression (σ̂11 < 0)

Fcf �
σ̂11

XC
􏼠 􏼡

2

(2)

Matrix tension (σ̂22 ≥ 0)

Ftm �
σ̂22

YT
􏼠 􏼡

2

+ α
τ̂12

SL
􏼠 􏼡

2

(3)

Matrix compression (σ̂22 < 0)

Fcm �
σ̂22

2ST
􏼠 􏼡

2

+
YC

2ST
􏼠 􏼡

2

− 1⎡⎣ ⎤⎦
σ̂22

YC
+

τ̂12

SL
􏼠 􏼡

2

(4)

where, XT, XC, YT, YC, SL, ST and α denotes tensile strength in the 
direction of fibre, compressive strength in the direction of fibre, 
tensile strength in the direction perpendicular to the fibre direction, 
compressive strength in the direction perpendicular to the fibre 
direction, longitudinal shear strength, transverse shear strength and 
coefficient that determines the contribution of the shear stress to the 
fibre tensile initiation criterion respectively. σ̂11, σ̂22, τ̂12 denote the 
components of effective stress tensor, σ̂; which is computed using 
the following equation 

σ̂ �Mσ (5)

where, σ and M are the nominal stress and damage operator 
respectively. The damage operator in Equation 5 is given as 

M �

1
1 − df

0 0

0
1

1 − dm
0

0 0
1

1 − ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

In Equation 6, df, dm and ds represent the internal damage 
variables characterising fibre matrix and shear damage respectively. 
These variables are derived from the damage variables dtf, dcf, dtm, 
dcm corresponding to the fibre tension, fibre compression, matrix 
tension and matrix compression modes respectively. These modes in 
terms of the damage variables are given below 

df �
dtf if σ̂11 ≥ 0
dcf if σ̂11 < 0􏼨 (7)

dm �
dtm if σ̂22 ≥ 0
dcm if σ̂22 < 0􏼨 (8)

ds � 1 − 1 − dtf􏼐 􏼑 1 − dcf􏼐 􏼑 1 − dtm( 􏼁 1 − dcm( 􏼁 (9)

It is to be noted that prior to any damage initiation and evolution 
the damage operator, M, is equal to the identity matrix, i.e., σ̂ � σ. 
Once damage initiation and evolution have occurred for at least one 
mode, the damage operator becomes significant in the criteria for 
damage initiation of other modes. The effective stress, σ̂, is intended 
to represent the stress acting over the damaged area that effectively 
resists the internal forces. The Hashin’s damage initiation criteria 
integrated on ABAQUS follows the damage initiation as explained 
above (Hashin and Rotem, 1973; Lapczyk and Hurtado, 2007).

Damage evolution represents the rate of degradation of material 
stiffness once the damage initiation criteria has been reached. The 
response of the material with damage initiation and evolution is 
computed using the following Equation 10 (Matzenmiller 
et al., 1995) 

σ � Cdε (10)

where, ε is the strain and Cd is the damage elasticity matrix 
(Matzenmiller et al., 1995), which is expressed as 

Cd �
1
D

1 −df􏼐 􏼑E1 1 −df􏼐 􏼑 1 −dm( )]21E1 0
1 −df􏼐 􏼑 1 −dm( )]12E2 1 −dm( )E2 0

0 0 1 −ds( )GD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

D � 1 − 1 − df􏼐 􏼑 1 − dm( )]12]21 (12)

In Equations 11 and 12, df, dm and ds reflects the present state of 
fibre damage, matrix damage and shear damage. E1 is the modulus of 
elasticity in the direction of fibres, E2 is the modulus of elasticity in 
the direction perpendicular to the fibres, G is the shear modulus and 
]12 and ]21 are the Poisson’s ratios. The damage variables df, dm and 
ds are given in Equations 7–9.

TABLE 1 Elastic material properties of the WTB (Barr and Jaworski, 2019).

Material E11 

(GPa)
E22 

(GPa)
E33 

(GPa)
G12 

(GPa)
G13 

(GPa)
G23 

(GPa)
ν12 

(GPa)
ν13 

(GPa)
ν23 

(GPa)
ρ 
(kg/m3)

GFRC 41 9 9 4.1 4.1 4.1 0.27 0.27 0.27 1890

FIGURE 5 
Graphical representation of equivalent stress and equivalent 
displacement.
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The damage variable evolves with reference to the stress 
displacement behaviour for each of the four different modes as 
shown in Figure 5 (Matzenmiller et al., 1995; Warren 
et al., 2016).

In Figure 5, the positive slope of the stress-displacement curve 
corresponds to the period before damage initiation, and the material 
properties are linear elastic in nature. The negative slope 
corresponds initiation of damage, which is achieved by the 
evolution of the respective damage variables, given in 
equations below.

Fibre tension (σ̂11 ≥ 0)

δfteq � L
C

�����������

〈ε11〉2
+ αε2

12

􏽱

(13)

σfteq �
〈σ11〉〈ε11〉 + ατ12ε12

δfteq􏼮LC
(14)

Fibre compression (σ̂11 < 0)

δfceq � L
C〈−ε11〉 (15)

σfceq �
〈−σ11〉〈−ε11〉

δfceq􏼮LC
(16)

Matrix tension (σ̂22 ≥ 0)

δmteq � L
C

����������

〈ε22〉2
+ ε2

12

􏽱

(17)

σmteq �
〈σ22〉〈ε22〉 + τ12ε12

δmteq 􏼮LC
(18)

Matrix compression (σ̂22 < 0)

δmceq � L
C

�����������

〈−ε22〉2
+ ε2

12

􏽱

(19)

σmceq �
〈−σ22〉〈−ε22〉 + τ12ε12

δmceq 􏼮LC
(20)

In Equations 13–20, LC is the characteristic length of elements 
with a plane stress formulation and the symbol 〈 〉 represents the 
Macauley bracket operator, which is defined for every α ∈ R as 
〈α〉 � (α + |α|)/2. After damage initiation, δeq ≥ δ0

eq, the damage 
variable for a particular mode is given below in Equation 21

d �
δfeq δeq − δ0

eq􏼐 􏼑

δeq δfeq − δ0
eq􏼐 􏼑

(21)

where δ0
eq is the initial equivalent displacement at which the 

initiation criterion for that mode was met, and δfeq is the 
displacement at which the material is completely damaged in this 
failure mode. The behaviour pertaining after damage initiation 
(ABAQUS, 2008) is presented in Figure 6.

The values of δ0
eq for different modes depend on the elastic 

stiffness and the strength parameters specified as part of damage 
initiation. The energy dissipated due to failure; GC corresponds to 
each failure mode and is obtained from the area of triangle in the 
equivalent stress and equivalent displacement plot. The values of δfeq
for different modes depend on the respective GC values 
(Matzenmiller et al., 1995; Warren et al., 2016). The materials are 
assumed to have a linear softening behaviour for the damage 
evolution process.

3.1 Damage modelling

Hashin’s damage criteria is considered for damage initiation, 
and damage evolution is based on the energy dissipated in each 
failure mode. The material properties used for damage initiation and 
evolution for all the damage models are given in Table 2 (Boudounit 
et al., 2020).

The finite element modelling process is outlined as follows: The 
wind turbine blade geometry was generated by extruding an 
elliptical reference cross-section along the blade span. Additional 
cross-sections were generated using longitudinally positioned 
datum planes. These profiles were connected via solid extrusion 
in Abaqus/CAE and then appropriately partitioned to achieve a 
high-quality mesh. The resulting solid model was partitioned and 
converted into a shell-based representation to facilitate accurate 
definition of the composite layup. Material properties and ply 
orientations were assigned using the Shell Composite Section 
module, in alignment with the experimental specimen described 
in Section 2. The mesh consisted of four-node, doubly curved S4R 
shell elements (element size: 0.5 mm × 0.5 mm), with reduced 
integration and hourglass control enabled.

The damage modelling employed a combination of Hashin 
failure criteria and Cohesive Zone Modelling (CZM) concepts to 
capture the initiation and evolution of erosion, longitudinal 
debonding, and transverse debonding. Damage was introduced 
through zero-volume regions at predefined nodes in case of edge 
erosion, longitudinal debond and transverse debond, where node- 
to-node connections were selectively removed to represent the local 
loss of stiffness. For longitudinal and transverse debonding, an 
equivalent scaling factor of 0.0132 mm was applied to the 
damaged region, with corresponding modulus and shear values 
of 850 MPa (ABAQUS, 2017). Erosion damage was simulated using 
a thickness factor of 1 × 10−6 mm, combined with surface-based 
traction-separation behaviour. To replicate cohesive effects without 
explicit cohesive elements, connector damage mechanisms were 
defined through force-based initiation and tabular motion-based 
evolution laws (ABAQUS, 2017).

FIGURE 6 
Graphical representation of damage variable and equivalent 
displacement.
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To enable direct comparison with experimental results, the 
boundary conditions and loading scenarios in the finite element 
analysis were made fully consistent with those used in the 
experimental tests. The blade root was modelled as fully 
constrained, accurately representing the clamping mechanism 
employed in the test setup. A 5-cycle sine-Hanning excitation 
pulse at 150 kHz, identical to the one detailed in Section 2, was 
applied at the actuator location to initiate guided wave 
propagation. Simulations were conducted once for the 
undamaged (healthy) condition and three times for each 
damage scenario. The analysis was run using Dynamic Explicit 
in ABAQUS CAE 2022 version 6.22. The time step considered is 
1 × 10−7 s, and the total time considered for analysis is 0.005 s. The 
CPU time required to run the healthy WTB model was 1.042 h; the 
analysis was run on one core, implying that parallelisation 
was minimal.

4 Uncertainty quantification (UQ) and 
prediction

This section presents the relationship between different types of 
damage sizes and variations in group velocity or amplitudes. The 
goal is to assess the model’s accuracy within known data and its 
reliability in extrapolating beyond observed values. In this Random 
Forest model, each tree generates an individual prediction, and the 
overall prediction is the mean of all trees in the ensemble. 
Uncertainty is quantified by calculating the standard deviation of 
predictions from each tree, capturing the variability in the model’s 
outputs. The confidence interval (Cint), visualized as shaded 
uncertainty bands, is calculated in Equation 22 as: 

Cint � Ŷ± 1.96 × σ (22)

where Ŷ is the predicted mean and σ is the standard deviation, 
providing a 95% confidence interval under a normality assumption. 
Figure 7 flowchart explains the prediction model.

The uncertainty bands visualize the confidence in the 
predictions: narrower bands indicate higher certainty, while 
wider bands suggest greater variability and lower confidence. 
This approach allows robust assessment of model performance 
on both observed and extrapolated damage cases and guides 
future data collection to improve prediction accuracy.

Implemented in Python, the Random Forest model predicts 
changes in guided wave mode group velocities and amplitudes 
caused by damage types such as erosion, corrosion, and 
debonding in composite wind turbine blades, while 
simultaneously estimating prediction uncertainty.

Key time- and frequency-domain features extracted from the 
ultrasonic guided wave signals include peak amplitude, time of 
flight, energy content, entropy, skewness, kurtosis, and spectral 
centroid. These features were selected due to their established 
sensitivity to damage-induced changes in wave propagation. To 
enhance model efficiency and accuracy, a correlation-based feature 
selection method was applied to remove redundant features, 
retaining only those strongly correlated with damage size and 
type (such as peak amplitude, RMS amplitude, group velocity, 
and first-arrival time of the primary wave modes and the 
frequency-domain features like dominant frequency shift, spectral 
centroid and bandwidth).

The Random Forest model’s predictive accuracy was evaluated 
using the Root Mean Square Error (RMSE), which measures the 
average magnitude of errors between predicted and actual damage 
measurements. RMSE is particularly useful because it penalizes 
larger errors more heavily, providing a reliable measure of model 
precision. Lower RMSE values reflect more accurate predictions and 
closer alignment with true damage values. The reported RMSE 
demonstrates the model’s effectiveness in estimating damage 
parameters in composite wind turbine blades.

TABLE 2 Material properties of the WTB for damage initiation and evolution.

Material XT 

(GPa)
XC 

(GPa)
YT 

(GPa)
YC 

(GPa)
SL (GPa) ST 

(GPa)
GC

ft
(N/m)

GC
fc

(N/m)
GC

mt
(N/m)

GC
mc

(N/m)

GFRC 1.0123 0.978 0.0295 0.1718 0.0353 0.0353 300 300 600 600

FIGURE 7 
Flowchart of the UQ and prediction model.
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5 Results and discussion

The experimental and numerical response of the healthy and 
damaged WTB models, along with the theoretically obtained 
dispersion curves, are explained in this section. The variations in 
amplitude and group velocity of the guided wave modes for each 
damage condition are also discussed in detail.

5.1 Dispersion of guided waves in WTB

The guided wave dispersion curves for the pristine WTB sample 
are obtained by using an established semi-analytical model explicitly 
described in Pol and Banerjee (2013). The global-matrix method- 
based theoretical model of guided wave propagation in the WTB is 
prepared in Fortran for 500 k iterations. The model uses the elastic 
material properties of the composite blade as per Table 1, 3 mm 
thickness, 0–200 kHz frequency range, and free-free boundary 
conditions. In the model, the dispersion condition for the 
propagating guided wave modes is given by Equation 23

V ξ,ω( ) � 0 (23)

For the desired range of wave propagation frequency, ‘ω’, 
wavenumber ‘ξ’ components were calculated, and the 
corresponding frequency vs. group-velocity, ‘Vg’ dispersion curves 
are obtained for the real roots of ‘ξ’ from the equation given below 

Vg �
δω
δξ

(24)

The dispersion curves are calculated as per Equation 24 and 
presented in Figure 8. The plot clearly shows the group velocities of 
the primary symmetric (S0) and anti-symmetric (A0) guided wave 

modes at the operating frequency of 150 kHz. The calculated 
dispersion values are used to identify the primary wave modes in 
the numerical and experimental signals in the time domain. The 
spikes observed in the dispersion curves result from numerical 
instabilities in the root-solving process and do not affect the 
identification of the guided wave modes.

5.2 Comparison between experimental and 
numerical responses for WTB models

The time-domain response (time in microseconds (μs) versus 
amplitude in millimetres (mm)) obtained at the sensing location 
using both experiments and FE analysis for the healthy WTB, WTB 
with edge erosion (25 mm long), WTB with longitudinal debond 
(35 mm × 6.5 mm), and WTB with transverse debond (45 mm × 
6.5 mm), generated by a predefined actuation signal (150 kHz), is 
shown in Figure 9. The waveform plot from the FE simulation is 
presented in Figure 10. The raw voltage signals measured by the PZT 
sensors were converted to equivalent out-of-plane displacement 
(mm) through a calibration process. Representing the 
measurements as displacement facilitates interpretation of guided 
wave amplitudes and their variations due to damage 
(Giurgiutiu, 2014).

The obtained signal shows the presence of two primary Guided 
wave modes, identified as S0 and A0 modes, as observed from 
Figures 9a–d. The S0 mode is the symmetric mode, and the A0 mode 
is the anti-symmetric mode. This ordering and separation of modes 
agree well with the theoretical dispersion characteristic at the chosen 
excitation frequency (150 kHz). The experimental and numerical 
guided wave signals exhibit consistent waveform patterns and phase 
behaviour, with minor amplitude variations attributed to different 

FIGURE 8 
Group velocity dispersion curves of guided wave propagation in the GFRC.
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amplification ranges applied during acquisition. The Spearman 
correlation between the experimental and numerical signals for 
healthy WTB, WTB with edge erosion/corrosion, WTB with 

longitudinal debond and WTB with transverse debond is 92.8%, 
93.41%, 95.26% and 92.60% respectively. These correlations indicate 
a high level of agreement between the experimental and numerical 

FIGURE 9 
The time domain response obtained at the sensing location using experiment and FE analysis for (a) healthy WTB, (b) WTB with edge erosion (25 mm 
long), (c) WTB with longitudinal debond (35 mm × 6.5 mm) and (d) WTB with transverse debond (45 mm × 6.5 mm).
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signals for the healthy and damaged states of WTB. The different 
amplification ranges applied during acquisition contribute to the 
remaining 5–8% deviation. Further, the close agreement between 
experimental and numerical results confirmed that the influence of 
noise was negligible.

It is observed that due to the presence of damage, the 
amplitude of the output signals is reduced in each mode, i.e., 
S0 and A0 modes, as compared to the healthy condition for both 
experimental and FE analysis. The reason attributed to the 
reduction in amplitude is the wave attenuation, which occurs 
when the guided waves interact with damage. This is because the 

energy absorption increases due to the presence of damage in 
comparison to the healthy WTB model. Moreover, these 
structures are composed of complex layers of materials. This 
anisotropy due to different ply-orientations causes a directional 
dependency resulting in additional pulses, which can be observed 
from Figures 9a–d. At the excitation frequency of 150 kHz, the 
corresponding wavelengths for the A0 and S0 modes are 
12.11 mm and 20.39 mm, respectively. This results in 
approximately 24 elements per wavelength for the A0 mode 
and 41 elements per wavelength for the S0 mode, ensuring 
sufficient spatial resolution for accurate propagation of guided 
waves. The mesh thus satisfies the commonly recommended 
criterion of more than 10 elements per wavelength for 
numerical stability and precision in wave propagation analysis 
(Landskron et al., 2025). The reduction in amplitudes with 
damaged WTB in comparison to the healthy WTB can also be 
observed from the waveform plots in Figures 10a–d.

5.3 Parametric study of damage

The effect of the size of damage is important for the health 
monitoring of a WTB using guided waves. In order to understand 
this effect on the guided wave signal, a parametric study has been 
carried out in ABAQUS.

5.3.1 Edge erosion damage
Edge erosion/corrosion damage is induced for elements of size 

15 mm × 5 mm, 25 mm × 5 mm and 35 mm × 5 mm. The elastic 
properties of these elements were modified based on their thickness, 
which was considered as 1 × 10−6 mm. The material properties 
corresponding to damage were taken from Table 2, and the elastic 
properties for the elements without damage were considered 
from Table 1.

The response is obtained at the sensing location for various 
damage sizes as mentioned above and compared with the healthy 
WTB model. The healthy case is treated as a no-damage condition 
with a zero length (0 mm) as a reference.

FIGURE 10 
Waveform plots from FE simulation of the WTBs under (a) healthy 
(b) edge erosion/corrosion (c) longitudinal debond, and (d) transverse 
debond conditions.

FIGURE 11 
Variation of output response for different edge erosion/ 
corrosion size.
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The theoretical group velocities for the healthy and damaged 
WTB models using numerical analysis are compared with the 
experimental results. In the experiment and numerical analysis, 
signals are collected at a distance (Δx) of 150 mm from the actuation 
point. The time difference (Δt) between the peak of each envelope of 
a wave group for the actuation signal and receiver signal (signal 
obtained at the sensing point) is determined. This time shift is then 
determined for different modes, and the corresponding group 
velocity, Vg, is obtained employing a TOF analysis (Baid et al., 
2015; Mustapha et al., 2011). Vg is determined as Δx

Δt .
The output responses for the numerical simulation for varying 

damage size are shown in Figure 11. The comparison of damage 
lengths (5 mm × 5 mm, 10 mm × 5 mm, 15 mm × 5 mm, 20 mm × 
5 mm, 25 mm × 5 mm, 30 mm × 5 mm and 35 mm × 5 mm) and the 
corresponding maximum normalised amplitude and group velocity 
of S0 and A0 modes are shown in Figure 12.

It is observed from Figure 11 that edge erosion/corrosion 
reduces the local stiffness of the laminate and disrupts the wave 
propagation path. The normalized amplitude trends in Figure 12a
further reinforce this observation. The A0 mode exhibits a rapid 
decrease in amplitude even for small erosion sizes, demonstrating 
strong sensitivity to edge erosion/corrosion. This is expected due to 
local loss of stiffness. However, the S0 mode shows a more gradual 
reduction in amplitude. In Figure 12b, the A0 mode exhibits 
variation in group velocity with increasing edge erosion/ 
corrosion size due to its sensitivity to local bending stiffness 
reduction caused by material loss. Meanwhile, the S0 mode 
shows only minor variations in group velocity, indicating that 
small levels of erosion do not significantly alter in-plane stiffness. 
Although the relative changes in group velocity for S0 and A0 modes 
are comparable, the A0 mode remains the more useful damage 
indicator for early-stage debonding because it shows a larger 
amplitude drop at small debond sizes and more complex velocity 
variation around intermediate debond sizes.

Collectively, the amplitude and velocity results demonstrate that 
the A0 mode is substantially more sensitive to edge erosion and 
debond growth than the S0 mode. This sensitivity is advantageous 
for early-stage damage detection and localisation, while the 

S0 mode’s stability can be beneficial for reliable signal 
transmission in structural health monitoring systems. The 
complementary behaviour of the two modes suggests that a 
multimodal Lamb-wave approach can provide enhanced 
robustness and improved diagnostic capability for detecting and 
characterising edge-related degradation in plate-like structures.

The S0 and A0 modes are not pure modes due to the complex 
geometry of the WTB and the composite material construction. This 
mode impurity introduces minor uncertainty, especially at large 
defect sizes. The group velocity extraction experiences small shifts in 
arrival-time identification due to overlapping wave modes. 
However, the relative variation with defect size remains 
monotonic and physically consistent; the observed trends are 
reliable, even if the modes are not perfectly isolated.

5.3.2 Longitudinal debond
The WTB is partitioned in the longitudinal direction into small 

elements of dimensions 15, 25 and 35 mm. The material properties 

FIGURE 12 
Comparison of (a) maximum normalised amplitude, (b) group velocity with edge erosion/corrosion size for S0 and A0 modes.

FIGURE 13 
Comparison of output response for different longitudinal 
debond lengths.
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for these partitioned elements are detailed in Table 2, while the 
material properties for the remaining portion of the blade are given 
in Table 1. The elastic properties considered for the partitioned 
elements of size 15, 25 and 35 mm are described in Section 3.1, while 
the zero length (0 mm) is considered as a no damage case and is used 
as a healthy case. The numerical response with variation in the 
length of debond is shown in Figure 13.

The variation of maximum normalised amplitude and group 
velocity of S0 and A0 modes with debond size of 5 mm, 10 mm, 
15 mm, 20 mm, 25 mm, 30 mm and 35 mm using experimental and 
numerical analysis is shown in Figure 14.

As the longitudinal debond length increases from 15 mm to 
35 mm, the measured signals exhibit changes in amplitude of the 
S0 and A0 modes, as observed from Figure 13. This is due to the 
reduction in stiffness and transmission through the damaged areas. 
From Figure 14a, it can be observed that the S0 mode experiences a 
reduction in amplitude for small debond sizes, indicating that it is 
responsive to the initiation of longitudinal debond. The A0 mode 
shows an initial dip in amplitude followed by a gradual increase for 
larger debonds. This rise in amplitude for 25–35 mm debonds is 
characteristic of flexural waves interacting with extended 
delamination, where out-of-plane bending motion becomes 
amplified due to reduced through-thickness constraint. The 
group velocity decreases consistently with increasing debond 
length for the S0 mode, as observed from Figure 14b. This 
behaviour is due to the reduction in effective in-plane stiffness 
and increased scattering in the damaged region, which slows the 
extensional mode. The A0 mode, however, displays a non- 
monotonic trend: its velocity initially decreases, reaching a 
minimum at intermediate debond sizes, and then increases 
slightly for larger debonds. This behaviour is governed by 
stiffness loss and dispersion-induced energy redistribution.

5.3.3 Transverse debond
The WTBs are partitioned in the transverse direction. The size of 

the partition elements is 15, 25 and 35 mm. The material properties 
and elastic properties considered for these elements are given in 
Table 2 and mentioned in Section 3.1. The elastic properties for the 

undamaged portion of the blade are taken from the values given in 
Table 1. The comparison of the response with the debond size is 
shown in Figure 15. The experimental and numerical variation of 
maximum normalised amplitude and group velocity of S0 and 
A0 modes with debond sizes of 5 mm–35 mm, with an 
increment of 5 mm, is shown in Figure 16.

The contrasting amplitude trends observed for the S0 and 
A0 modes arise from their different deformation mechanisms, as 
observed from Figure 15. The S0 mode is dominated by in-plane 
extensional motion and relies on the through-thickness and inter- 
laminar stiffness of the laminate. As the transverse debond grows, 
this stiffness is progressively reduced, causing scattering and 
reflection of the S0 wave and consequently leading to a 
monotonic decrease in its measured amplitude. In contrast, the 
A0 mode is flexural in nature and is primarily governed by bending 
stiffness rather than in-plane rigidity. This reduction in bending 
resistance amplifies the flexural motion, resulting in an increase in 
A0 amplitude for larger debond sizes. Therefore, while both modes 

FIGURE 14 
Comparison of (a) maximum normalised amplitude, (b) group velocity with debond size for S0 and A0 modes.

FIGURE 15 
Variation in output response for different transverse 
debond sizes.
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are affected by the loss of stiffness, S0 amplitude diminishes due to 
energy loss through scattering, whereas A0 amplitude grows because 
the debond amplifies bending-dominated wave components. This 
variation can be observed in experimental and numerical results, as 
seen from Figure 16a for both S0 and A0 modes. The group velocity 
for the S0 mode decreases with debond length and then increases, 
due to the reduction in effective stiffness as the wave continuously 
encounters a larger damaged region, as observed from Figure 16b. 
Although this debond reduces local stiffness, the measured group 
velocity of the S0 mode increases because the defect filters out slower 
dispersive components. Additionally, scattering and redirection at 
the debond cause earlier-arriving S0 components to dominate the 
received signal, resulting in an increase in wave speed in the 
damaged WTB. The A0 mode displays a non-monotonic trend as 
observed from Figure 16b, where the velocity first decreases to a 
minimum at intermediate debond sizes (upto 20 mm), before 
increasing slightly at larger debond sizes. This behaviour arises 
because of the initial stiffness reduction and mode interaction at 
small or intermediate sizes.

It should be noted that because of the limited number of 
available specimens and certain experimental restrictions, only 
two representative defect sizes were examined experimentally in 
this study. To complement these results, additional numerical 
simulations were performed for intermediate defect sizes, 
confirming a consistent relationship between amplitude reduction 
and defect dimension.

5.3.4 UQ for extended prediction
UQ was carried out on the outputs of the Random Forest model 

using the numerical simulation dataset, which encompassed 
different defect sizes (0–40 mm) and types, including edge 
erosion/corrosion, longitudinal debonding, and 
transverse debonding.

The 95% confidence intervals were calculated by taking the 
standard deviation of predictions across all decision trees in the 
ensemble, reflecting variability in the model’s responses. The 
sample size corresponds to the total number of prediction 
cases derived from these simulated damage scenarios used 

during model training and testing. Experimental results were 
utilized solely for model validation. The sample size 
corresponds to the total number of prediction cases generated 
from multiple guided-wave measurements covering all damage 
types and sizes. Each damage class includes a sufficient number of 
samples to ensure statistical robustness, typically ranging from 
10 to 100 samples per class.

As described in Section 4, this subsection focuses on UQ of the 
Random Forest model’s predictions for changes in A0 and S0 mode 
group velocities (Vg) caused by edge erosion/corrosion, longitudinal 
debond, and transverse debond over damage sizes ranging from 0 to 
40 mm. The model was developed using a relatively small, targeted 
dataset corresponding to eight distinct damage sizes across various 
damage types. This dataset, compiled from both experimental 
measurements and validated numerical simulations, proved 
sufficient given the specific nature of the prediction task. To 
ensure reliable learning, approximately 70% of the data was used 
for training and 30% for testing, maintaining balanced 
representation of all damage sizes. To prevent overfitting and 
enhance model generalisation, 5-fold cross-validation was applied 
during the training phase. This approach allowed the Random 
Forest model to be validated on multiple data partitions, thereby 
reducing bias and variance and ensuring robust performance across 
unseen data.

Figure 17 illustrates the predicted changes in group velocity with 
uncertainty bands representing 95% confidence intervals. These 
bands are calculated based on the standard deviation of 
predictions across individual trees in the Random Forest model, 
offering a measure of prediction confidence. Narrower uncertainty 
bands indicate higher confidence in the model’s predictions, while 
wider bands reflect greater variability and uncertainty. In Figure 17, 
L-Debond represents Longitudinal Debond and T-Debond 
represents Transverse Debond.

Similarly, Figure 18 illustrates the relative variation in A0 and 
S0 mode amplitudes with respect to the different damage types 
(Edge Erosion/corrosion, Longitudinal Debond, and Transverse 
Debond) and their sizes, with uncertainty bands representing the 
95% confidence intervals around the predicted values. In Figure 18, 

FIGURE 16 
Variation of (a) maximum normalised amplitude, (b) group velocity for S0 and A0 modes with debond size.
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L-Debond and T-Debond represents Longitudinal Debond and 
Transverse Debond respectively.

Figures 17, 18 present the effect of different defect types and 
sizes on guided wave features, along with associated prediction 
uncertainties. The results show that the S0 mode exhibits higher 
sensitivity to variations in defect size compared to the A0 mode, 
indicating its greater suitability for detecting and characterizing 

damage in composite wind turbine blades. The confidence 
intervals reflect the variability in model predictions, where 
narrower intervals suggest higher confidence and stability of 
the results. Here, “higher sensitivity” refers to the stronger 
and more consistent changes observed in the S0 mode’s group 
velocity and amplitude as defect size increases, compared to the 
A0 mode. This is evident from the steeper trends and larger 

FIGURE 17 
Damage size vs. change in (a) A0 and (b) S0 mode group velocities due to Edge Erosion/corrosion, L-Debond, and T-Debond, with 
uncertainty bands.
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variation magnitudes in Figures 17, 18, along with narrower 
uncertainty bands for the S0 mode, indicating more reliable and 
robust damage detection. These findings provide practical 
guidance for selecting appropriate excitation frequencies 
(100–200 kHz) and wave modes for field-scale guided-wave 
inspection of GFRC blades, enabling more accurate and 
reliable damage detection. The 95% confidence intervals were 
chosen due to their ease of computation and straightforward 

interpretability. Uncertainty is effectively captured by utilizing 
the variability in predictions from individual trees within the 
Random Forest ensemble, without significantly increasing 
computational demands. Although more advanced methods, 
such as Bayesian approaches, can offer deeper probabilistic 
insights, they often require increased model complexity and 
computational resources. Given the practical focus of this 
study, use of this confidence intervals was considered 

FIGURE 18 
Damage size vs. change in (a) A0 and (b) S0 mode amplitudes due to Edge Erosion, L-Debond, and T-Debond, with uncertainty bands representing 
the 95% confidence intervals.
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appropriate. More sophisticated UQ methods may be explored in 
future work to enhance prediction robustness.

6 Conclusion

This study investigated guided wave propagation and its 
interaction with various types of damage for structural health 
monitoring of composite wind turbine blades. Experimental 
testing, numerical simulations, and UQ were combined to 
evaluate the sensitivity of guided wave parameters to different 
defect sizes and types. The key findings include:

• Guided-wave responses in composite blades showed 
multimodal characteristics, with significant amplitude 
reductions observed in damaged specimens due to energy 
scattering and absorption.

• Damage types influenced the S0 and A0 modes differently: 
A0 mode is sensitive to edge erosion/corrosion, while S0 mode 
is sensitive to longitudinal debond; both S0 and A0 modes are 
sensitive to transverse debond.

• Damage types influenced wave propagation velocities 
differently: the group velocity for the A0 mode changes 
with increasing edge erosion or corrosion due to its 
sensitivity to reduced bending stiffness, while the S0 mode 
shows only slight velocity changes, indicating minimal impact 
on in-plane stiffness; increasing longitudinal debond length 
consistently reduces the S0 mode group velocity due to 
diminished in-plane stiffness, while the A0 mode exhibits a 
non-monotonic response, with its velocity decreasing at 
intermediate debond sizes; the S0 mode shows an initial 
decrease followed by an increase in group velocity with 
increase in transverse debond length, due to reduced 
stiffness, while the A0 mode exhibits a non-monotonic 
trend, with its velocity decreasing to a minimum at 
intermediate debond sizes before slightly rising at larger 
ones, due to the combined effects of stiffness loss and mode 
interaction.

• UQ applied to Random Forest model predictions, expressed 
via 95% confidence intervals, indicated varying confidence 
levels, enhancing the robustness of damage assessment.

• The combined use of simulation and experimental data 
validates the framework’s capability to correlate guided- 
wave features with damage progression effectively.

These results provide a practical basis for selecting optimal 
guided-wave modes and excitation frequencies (100–200 kHz) for 
field inspections of composite blades.

The use of low-frequency guided waves and edge computing- 
compatible algorithms reduces power consumption and hardware 
costs compared to more complex sensing techniques. Future work 
will focus on comprehensive economic and energy assessments to 
support practical deployment at scale.

The proposed framework lays the groundwork for advanced, 
intelligent structural health monitoring systems for composite wind 

turbine blades, with ongoing efforts aimed at autonomous, multi- 
level damage detection under realistic operational conditions.
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