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Structural health monitoring (SHM) of wind turbines is critical for maintaining
continuous operation, minimizing maintenance expenses, and maximizing
energy production. Recent advancements in sensor technology have made it
possible to gather extensive ultrasonic guided wave (UGW) data from wind
turbine components, enabling assessment of their structural integrity. This
research examines UGW-based nondestructive evaluation techniques applied
to composite wind turbine blades under varied structural conditions using
experimental and numerical analysis. UGW signals recorded through an
actuator-sensor network contain essential information on blade health. A
Random Forest model is used to predict changes in AO and SO mode group
velocities and amplitudes due to erosion/corrosion, longitudinal debonding, and
transverse debonding across damage sizes ranging from 0 to 40 mm. To assess
prediction reliability, 95% confidence intervals are included as uncertainty bands;
narrower bands suggest higher confidence, while a wider band indicates greater
uncertainty. Sensitivity analysis highlights the impact of damage size and type on
UGW signal properties, supporting improved predictions. This study underscores
the potential of UGW-based SHM to enhance wind turbine reliability and promote
sustainable energy generation.

KEYWORDS

composite wind turbine blade, damage detection, structural health monitoring,
ultrasonic guided waves, uncertainty quantification

1 Introduction

Wind energy is a form of renewable energy that has gained significant importance in
recent decades. Many countries are starting to invest in the wind energy sector. The use of
this form of energy is not expected to decrease over time (Marquez et al., 2012; Maas, 2023).
The growing trend in this sector is the manufacture and deployment of bigger wind
turbines. Akhtar et al. (2024) studied the wakes from wind farms with small and large wind
turbines in the North Sea. The work analysed the effect of these turbines on near-surface
climate and power production. The findings showed that wind farms with larger turbines
have a smaller impact on the near-surface climate compared to farms with many small
turbines. This implies that large wind turbines may have less effect on ocean dynamics and
the ecosystem. These turbines are designed to work in harsh climates and in areas that are
hard to reach (Grindheim et al., 2023). As a result, structural health monitoring (SHM)
becomes essential. It allows for remote assessment of structural integrity, reduces periodic
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inspection costs, minimizes downtime and breakdowns, and helps
prevent unnecessary component replacements during service
(Schulz and Sundaresan, 2006).

The critical component susceptible to damage in wind turbines
is the wind turbine blade (WTB). The WTBs are constructed in
conjunction with other parts of the turbine. These form the primary
component in capturing wind energy, making them susceptible to
environmental forces. The efficiency and functionality of turbines
are compromised when WTBs are damaged. Also, the value of a
WTB is approximately 15%-20% of the total cost of the wind turbine
(Li et al, 2014). Therefore, it becomes essential to study the
importance of operation and mitigation strategies to reduce WTB
damage (Dimitrova et al., 2022; Algolfat et al., 2023; Dadashbaki
et al., 2025).

WTBs are made from composites such as glass fibre, carbon
fibre, balsa wood, or foam. These materials are chosen to improve
efficiency by increasing the strength-to-weight ratio. However, their
composite structures are prone to damage such as disbond or
delamination due to manufacturing defects, ageing, or repeated
impacts. Blades can also corrode when exposed to harsh
environments (Raju et al., 2024). The repetition of loads causes
fatigue damage to build up, which leads to material cracks even early
in their service life (Gaidai et al., 2023). Studies on detecting and
mitigating internal damage have been carried out to prevent
structural failure (Giurgiutiu et al., 2002; Giurgiutiu, 2005; Sikdar
et al., 2024).

Many studies have examined health monitoring techniques for
detecting damage in WTBs. These techniques include visual
inspection, acoustic emission, ultrasonic testing (UT), static strain
measurements, and short-range Doppler radar (Joosse et al., 2002;
Verijenko and Verijenko, 2005; Yan et al., 2007; Schubel et al., 2013;
Zhang and Jackman, 2014; Habibi et al., 2015; Skaga, 2017; Zhao
et al., 20215 Bejger et al., 2023). Ultrasonic guided wave testing is
often used because of its wide range of transducers, high defect
sensitivity, and ability to detect damage over long distances (Nam
et al., 2018; Shoja et al., 2018).

Claytor et al. (2010) tested a multi-scale SHM system for WTBs
using piezoelectric transducer (PZT) active sensing. The study
detected damage on a CX-100 blade section by integrating Lamb
wave propagation, frequency response analysis, and time-series
(ARX model) techniques. Lamb waves provided good damage
localisation but needed high power. Frequency response analysis
proved reliable and moderately efficient. The time-series ARX
model was best for detecting subtle changes, but required more
computing. Taylor etal. (2012) conducted a full-scale fatigue test of a
9 m CX-100 WTB to evaluate SHM techniques under realistic
damage progression. The blade was instrumented with
diffuse
response sensors, and an experimental wireless low-power SHM

piezoelectric  (guided-wave), wave-field, frequency
platform. It was observed from the study that guided-wave sensing
was best for local and early damage detection.

Further, trailing edge damage of a WTB is experimentally
detected using the aerofoil aerodynamic noise measurement
(Zhang et al., 2022). The experimental investigation includes
the effect of varying mean flow velocities, inflow turbulence
intensities and angles of attack for the detection of trailing edge
damage. It was observed that the damage detection was possible

by understanding the tonal noise features. Ou et al. (2021) set up
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an experimental benchmark for SHM using a small-scale WTB
considering temperature variations. The study shows that
environmental conditions (especially temperature) have a
measurable effect on the vibration response of the blade. Xue
et al. (2023) developed Multi-task Complex Hierarchical Sparse
Bayesian Learning, which encodes multi-task learning using
data at
consistency in damage location across tasks. This algorithm
outperforms single-task models in terms of the localisation

guided wave multiple frequencies to ensure

accuracy for multiple damage locations. Goémez Mufnoz et al.
(2019) developed an approach for disunity detection between
layers of composite WTBs. The method was able to detect the
presence of disbonds in the damaged blade. It was also
concluded from the study that despite the large attenuation in
composite materials, UGWs were able to assess the condition of
the blade. A case study on the use of condition monitoring for
detecting damage on a real WTB using non-linear acoustics and
guided waves was done by Yang et al. (2018). It was observed
from the study that detection using non-linear acoustics was
insensitive to damage. In comparison to this method, the guided
wave pitch-catch approach was accurate in detecting damage.
Sinner et al. (2023) investigated the sensitivity of a preview-
enabled model predictive controller for wind turbines. This was
developed using upstream wind speed measurements. This
improved the rotor speed regulation and was robust to timing
errors in wind delay estimation.

An approach to identify delamination in laminated composites
was proposed using Lamb wave propagation (Su et al., 2002). The
noise was suppressed using a Wavelet transform-based signal
processing technique. The detection of damage was found to be
accurate using this method. Hay et al. (2003) developed a damage
localisation algorithm for non-destructive evaluation of core crush
damage in honeycomb composite sandwich panels using ultrasonic
guided waves. The developed algorithm enabled accurate mapping
of damage within the sensor network. Lanza Discalea et al. (2007)
monitored a composite wing skin-to-spar joint in an unmanned
aerial vehicle using UGWs. Poorly curved adhesives and disbanded
interfaces were simulated. Using a semi-analytical finite element
(FE) method considering viscoelastic damping, dispersion wave
propagation was obtained. This was verified using experimental
tests. It was observed from the work that across the defective bonds,
there is an increase in the ultrasonic strength of transmission.

Oliveira et al. (2020) proposed a method to identify structural
damage in WTBs using ultrasonic non-destructive testing (NDT)
combined with novelty detection. The process is to obtain ultrasonic
signals from the blade in its healthy state, preprocess (wavelet
denoising and principal component analysis (PCA)), and then
apply a novelty detector trained only on healthy data so that
deviations indicate damage. The study covers signals recorded
from WTBs under controlled conditions; the focus is on
detecting any damage rather than specifically localising it. The
novelty detection approach was effective in distinguishing
damaged from undamaged states in the tested blades, despite not
having explicit damage-type training data. Mendikute et al. (2025)
and Zhu et al. (2025) presented a deep learning-based approach for
detecting internal defects in wind turbine blades using UT data.
Networks (CNNs) applied to
automatically learn and classify patterns from ultrasonic scans.

Convolution Neural were
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FIGURE 1
Experimental setup for guided wave-based inspection of WTB samples.

This approach achieved high accuracy in defect detection,
outperforming conventional feature-based UT analysis. Chai
et al. (2025) developed an SHM system for WTBs using UGW
technology. Failure modes like gelcoat cracks and adhesive joint
debonding were detected wusing UGW across multiple
frequency bands.

The existing research established that the ultrasonic guided wave
method is efficient in localising and characterising the defects in
layered composite materials (Lowe et al., 2000; Camanho, 2002). The
advantage of this technique is that the wave structure is dependent
on the frequency and phase velocity, and it can also propagate long
distances with penetration in hidden layers (Humer et al., 2022;
Junqueira et al., 2024). Although work has been done to detect
damage using guided waves in WTBs, wave attenuation occurs in
the usage of guided waves, thus limiting the application to small
regions. Additionally, the complex design of WTBs hinders the
application of this technique commercially, as the process of
extracting information from the complex signals becomes
difficult. Thus, the need for effective monitoring solutions for
WTBs becomes more critical.

This paper examines guided wave propagation in composite
WTBs affected by common damage types. UGWs are well-suited
for this task due to their ability to propagate over long distances,
allowing early-stage damage detection with minimal sensor
deployment. This study establishes baseline guided wave
responses from healthy WTBs, which are compared against
finite
results are

damaged cases using three-dimensional element
in ABAQUS. Numerical validated

experimentally, and parametric analyses assess the impact of

modeling

various damage types and severities on wave behavior.
Analytical and machine learning techniques are then applied to
evaluate prediction accuracy and reliability. By integrating
experimental, numerical, and machine learning approaches, the
framework enhances damage detection precision, reduces
extensive testing requirements, and improves scalability and
robustness beyond prior single-method studies. Future work
focus on autonomous detection  and

will damage

characterization using data-driven models.

Frontiers in Mechanical Engineering

Data Acquisition System

10.3389/fmech.2025.1658430

Sensor (.15 m Actuator

2 Experimental analysis

Laboratory experiments have been carried out on multiple
composite WTB samples using a pair of PZT transducers (8 mm
dia., 0.5 mm thin) serve as Actuator and/or Sensor mounted to the
blade surface for actuation and reception of guided wave signals. A
signal generator and data acquisition system are used to operate the
PZTs. The PZT disc sensors were designed primarily for
longitudinal wave excitation and reception, optimized for the
S0 and A0 Lamb wave modes.

The experimental setup with a healthy blade sample is shown in
Figure 1. These blades are made of a 3 mm thick glass fibre
reinforced composite (GFRC) laminate (0°/90°/45°/-45°/90°/0°).
In the study, four types of WTB samples are considered- (i)
healthy WTB, (ii) WTB with edge erosion/corrosion (25 mm
long), (iii) WTB with longitudinal debond (35 mm x 6.5 mm)
and (iv) WTB with transverse debond (45 mm x 6.5 mm): H, D1,
D2, and D3 respectively.

These debonds were artificially introduced to the blade samples.
The disbond locations in the WTBs are schematically represented in
Figure 2. In the experiments, 5-cycle sine burst signals of 150 kHz
are applied as the PZT excitation signal for all experimental analyses
to confine the frequency content narrowly and reduce unwanted
reflections. During data acquisition, signals were averaged multiple
times to enhance stability and suppress random electrical and
environmental noise, particularly at low frequencies (<4 kHz).
Raw signals were digitized using a high-resolution data
acquisition system and subsequently processed through bandpass
filtering and time-windowing to isolate the guided wave packets.

To ensure repeatability and consistency, each experimental test
was performed multiple times under identical conditions, and the
sensor signals were recorded for each trial. Statistical analysis of the
repeated measurements showed minimal variation in both signal
amplitude and time-of-flight, confirming high consistency.
Furthermore, the experimental setup-including sensor placement,
excitation parameters, and environmental conditions-was carefully
controlled to reduce variability. These measures collectively ensured
that the experimental results were reliable and reproducible.

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1658430

Pillai and Sikdar

10.3389/fmech.2025.1658430

()

FIGURE 2

Schema of WTBs for (a) edge erosion/corrosion, (b) longitudinal and (c) transverse debond.

X

FIGURE 3

WTB model in ABAQUS for simulation of guided waves under variable conditions. (A is the actuation location and S is the sensing location).

3 Numerical modelling of wind
turbine blade

The prediction of intricate interactions between elastic wave
dynamics and damage in multi-layered composite WTBs is
challenging due to complex structural geometry and boundary
conditions. This becomes more difficult for damage types such as

Frontiers in Mechanical Engineering

cracks, corrosion and debonding. Therefore, a numerical analysis
using FE simulations has been done using ABAQUS software to
investigate the influence of the damage types on the propagation of
guided waves in composite blades.

This is achieved using a 3D numerical modelling of the
composite WIB and simulating guided wave propagation within
the blade. This simulation closely mirrors laboratory experiments
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FIGURE 4

Actuation signal in time domain (top) and its frequency response from Fast Fourier Transform (FFT) (bottom).

employing a surface-mounted actuator and sensor system as
represented in Figure 3. These numerical simulations of the
actuator-induced guided wave propagation within the glass-fibre
composite blade prove to be intriguing and demanding. The FE
modelling and analysis of the WTB with dimensions used in a real-
world scenario was computationally expensive, considering the
number of elements and computational time. So, a scaled-down
model of the WTB is used. The dimensions of the WTB used in FE
analysis are similar to the dimensions used in the experimental
study. Thus, a 500 mm long WTB was modelled in ABAQUS/CAE
2022 version 6.22.

Four types of FE models are developed, namely (i) healthy
WTB, (ii) WTB with edge erosion/corrosion, (iii) WTB with
longitudinal debond and (iv) WTB with transverse debond;
represented as H, D;, D, and Dj respectively. In the FE
simulation, guided waves are actuated from the actuation

"
recorded at the sensing position, ‘S’, illustrated in Figure 3.

location, and the guided waves (time domain) are

The actuation signals are selected as a 5-cycle sine burst 150 kHz
signal, which is shown in Figure 4 (top), and the frequency

Frontiers in Mechanical Engineering

response of the actuation signal is shown in Figure 4 (bottom).
Table 1 outlines the homogenised material properties used in the
FE analysis of composite WTBs (Barr and Jaworski, 2019).

In Table 1, Eq;, E,; and Es; represent the longitudinal modulus
of elasticity, modulus of elasticity in the transverse direction and
modulus of elasticity along the thickness respectively. Gy, G,3 and
G;; refer to the modulus of rigidities in 1-2 plane, 2-3 plane and
1-3 plane respectively. vy, Vi3, Vo3 are the Poisson’s ratios in
1-2 plane, 1-3 plane and 2-3 plane, respectively; and p is the
density of material.

Damage in composite materials occurs in two stages, namely
damage initiation and evolution. Damage initiation refers to the
onset of degradation in a composite material (Kalgutkar and
Banerjee, 2024; Sikdar and Banerjee, 2016). The failure modes
linked to Hashin’s criteria are fibre and matrix failure modes.
These implicate four different modes of damage initiation, which
are fibre tension, fibre compression, matrix tension and matrix
compression. The following Equations 1-4 are considered for the
initiation criteria (Hashin, 1980):

Fibre tension (d7; >0)

frontiersin.org
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TABLE 1 Elastic material properties of the WTB (Barr and Jaworski, 2019).

Material  Eqq Eso Ess Gy

((€]2F)] ((€]2F)] (GPa) (€]2F)]

10.3389/fmech.2025.1658430

GFRC 41 9 9 4.1 4.1

. o\2 L o\2
on Ti2

Fibre compression (d1; <0)

C 6 ’
P = (%) @

Matrix tension (&5, >0)

A \2 . \2
02 Ti2

Matrix compression (45, <0)

2\ (YN Q6n ()

() ) e (e) o
where, X', X%, Y', Y%, §%, S" and « denotes tensile strength in the
direction of fibre, compressive strength in the direction of fibre,
tensile strength in the direction perpendicular to the fibre direction,
compressive strength in the direction perpendicular to the fibre
direction, longitudinal shear strength, transverse shear strength and
coefficient that determines the contribution of the shear stress to the
fibre tensile initiation criterion respectively. 61, 622, 712 denote the
components of effective stress tensor, d; which is computed using
the following equation

6 =Mo (5)

where, 0 and M are the nominal stress and damage operator
respectively. The damage operator in Equation 5 is given as

LS 0
1-d,
M=l o 1 o ©)
1-d,
1
O

In Equation 6, ds d,, and d; represent the internal damage
variables characterising fibre matrix and shear damage respectively.
These variables are derived from the damage variables d';, d5, d,,,,
d;, corresponding to the fibre tension, fibre compression, matrix
tension and matrix compression modes respectively. These modes in
terms of the damage variables are given below

diif 611>20
=17f
df_{dj,if&u<0 @)
| dif 6,220
d’”_{dfnif622<0 ®
d,=1-(1-d))(1-d5)(1-d,,)(1-d;) ©)
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FIGURE 5
Graphical representation of equivalent stress and equivalent

displacement.

It is to be noted that prior to any damage initiation and evolution
the damage operator, M, is equal to the identity matrix, i.e., 6 = 0.
Once damage initiation and evolution have occurred for at least one
mode, the damage operator becomes significant in the criteria for
damage initiation of other modes. The effective stress, 4, is intended
to represent the stress acting over the damaged area that effectively
resists the internal forces. The Hashin’s damage initiation criteria
integrated on ABAQUS follows the damage initiation as explained
above (Hashin and Rotem, 1973; Lapczyk and Hurtado, 2007).

Damage evolution represents the rate of degradation of material
stiffness once the damage initiation criteria has been reached. The
response of the material with damage initiation and evolution is
computed using the following Equation 10 (Matzenmiller
et al., 1995)

o=Cue (10)

where, ¢ is the strain and C; is the damage elasticity matrix
(Matzenmiller et al., 1995), which is expressed as

(1-dy)E, (1-dy)(1-dy)vnE, 0
Ca=5|(1-ds)(1-dp)viEs (1-d)E, 0
0 0 (1-d.)GD
(1n
D=1-(1-d;)(1-du)vivn (12)

In Equations 11 and 12, dg d,,, and d; reflects the present state of
fibre damage, matrix damage and shear damage. E; is the modulus of
elasticity in the direction of fibres, E, is the modulus of elasticity in
the direction perpendicular to the fibres, G is the shear modulus and
12 and v,; are the Poisson’s ratios. The damage variables dj; d,,, and
d, are given in Equations 7-9.
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FIGURE 6

Graphical representation of damage variable and equivalent
displacement.

The damage variable evolves with reference to the stress
displacement behaviour for each of the four different modes as
shown in Figure 5 (Matzenmiller et al., 1995; Warren
et al., 2016).

In Figure 5, the positive slope of the stress-displacement curve
corresponds to the period before damage initiation, and the material
properties are linear elastic in nature. The negative slope
corresponds initiation of damage, which is achieved by the
evolution of the respective damage variables, given in
equations below.

Fibre tension (61, >0)

81t = Loy + agl, (13)

ft _ oy <en) + arpen

0l = 6£/LC (14)

Fibre compression (41, <0)
8¢ = L%=en) (15)
o = (o {—en) (16)

eq — c
ol Le
Matrix tension (5, >0)

(S\:‘l; = LC \ <822>2 + 8%2 (17)

¢ o) {en) + Tnén

eq 8:; / LC

(18)

Matrix compression (62, <0)

(SZ;C = LC \ <—522>2 + 8%2 (19)

- —en) +
GZ,E _ (=00){—€20) + Ti2én (20)
a o /e

In Equations 13-20, L€ is the characteristic length of elements
with a plane stress formulation and the symbol () represents the
Macauley bracket operator, which is defined for every a € R as
{a) = (a+ |al)/2. After damage initiation, SquSSq, the damage
variable for a particular mode is given below in Equation 21
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AT
RSPV ORY (21)

Oeq (aeq B 8eq)
where 82q is the initial equivalent displacement at which the
initiation criterion for that mode was met, and 6gq is the
displacement at which the material is completely damaged in this
failure mode. The behaviour pertaining after damage initiation
(ABAQUES, 2008) is presented in Figure 6.

The values of 62q for different modes depend on the elastic
stiffness and the strength parameters specified as part of damage
initiation. The energy dissipated due to failure; G corresponds to
each failure mode and is obtained from the area of triangle in the
equivalent stress and equivalent displacement plot. The values of 8{ q
for different modes depend on the respective G values
(Matzenmiller et al., 1995; Warren et al., 2016). The materials are
assumed to have a linear softening behaviour for the damage
evolution process.

3.1 Damage modelling

Hashin’s damage criteria is considered for damage initiation,
and damage evolution is based on the energy dissipated in each
failure mode. The material properties used for damage initiation and
evolution for all the damage models are given in Table 2 (Boudounit
et al., 2020).

The finite element modelling process is outlined as follows: The
wind turbine blade geometry was generated by extruding an
elliptical reference cross-section along the blade span. Additional
cross-sections were generated using longitudinally positioned
datum planes. These profiles were connected via solid extrusion
in Abaqus/CAE and then appropriately partitioned to achieve a
high-quality mesh. The resulting solid model was partitioned and
converted into a shell-based representation to facilitate accurate
definition of the composite layup. Material properties and ply
orientations were assigned using the Shell Composite Section
module, in alignment with the experimental specimen described
in Section 2. The mesh consisted of four-node, doubly curved S4R
shell elements (element size: 0.5 mm X 0.5 mm), with reduced
integration and hourglass control enabled.

The damage modelling employed a combination of Hashin
failure criteria and Cohesive Zone Modelling (CZM) concepts to
capture the initiation and evolution of erosion, longitudinal
debonding, and transverse debonding. Damage was introduced
through zero-volume regions at predefined nodes in case of edge
erosion, longitudinal debond and transverse debond, where node-
to-node connections were selectively removed to represent the local
loss of stiffness. For longitudinal and transverse debonding, an
equivalent scaling factor of 0.0132 mm was applied to the
damaged region, with corresponding modulus and shear values
of 850 MPa (ABAQUS, 2017). Erosion damage was simulated using
a thickness factor of 1 x 107° mm, combined with surface-based
traction-separation behaviour. To replicate cohesive effects without
explicit cohesive elements, connector damage mechanisms were
defined through force-based initiation and tabular motion-based
evolution laws (ABAQUS, 2017).
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TABLE 2 Material properties of the WTB for damage initiation and evolution.

10.3389/fmech.2025.1658430

S-(GPa) ST G¢ G¢ G¢ G¢

©

(GPa)  (N/m)  (N/m (N/m) (N/m)

Material X' X< \& e
(GPa) (e]25)) (GPa) (GPa)
GFRC 1.0123 0.978 0.0295 0.1718 0.0353
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FIGURE 7
Flowchart of the UQ and prediction model.

To enable direct comparison with experimental results, the
boundary conditions and loading scenarios in the finite element
analysis were made fully consistent with those used in the
experimental tests. The blade root was modelled as fully
constrained, accurately representing the clamping mechanism
employed in the test setup. A 5-cycle sine-Hanning excitation
pulse at 150 kHz, identical to the one detailed in Section 2, was
applied at the actuator location to initiate guided wave
propagation. Simulations conducted once for the
undamaged (healthy) condition and three times for each

were

damage scenario. The analysis was run using Dynamic Explicit
in ABAQUS CAE 2022 version 6.22. The time step considered is
1 x 1077 s, and the total time considered for analysis is 0.005 s. The
CPU time required to run the healthy WTB model was 1.042 h; the
analysis was run on one core, implying that parallelisation
was minimal.
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4 Uncertainty quantification (UQ) and
prediction

This section presents the relationship between different types of
damage sizes and variations in group velocity or amplitudes. The
goal is to assess the model’s accuracy within known data and its
reliability in extrapolating beyond observed values. In this Random
Forest model, each tree generates an individual prediction, and the
overall prediction is the mean of all trees in the ensemble.
Uncertainty is quantified by calculating the standard deviation of
predictions from each tree, capturing the variability in the model’s
outputs. The confidence interval (C;,), visualized as shaded
uncertainty bands, is calculated in Equation 22 as:

Ciw =Y+ 1.96 X ¢ (22)

where Y is the predicted mean and o is the standard deviation,
providing a 95% confidence interval under a normality assumption.
Figure 7 flowchart explains the prediction model.

The uncertainty bands visualize the confidence in the
predictions: narrower bands indicate higher certainty, while
wider bands suggest greater variability and lower confidence.
This approach allows robust assessment of model performance
on both observed and extrapolated damage cases and guides
future data collection to improve prediction accuracy.

Implemented in Python, the Random Forest model predicts
changes in guided wave mode group velocities and amplitudes
caused by damage types such as erosion, corrosion, and
debonding in composite wind turbine blades, while
simultaneously estimating prediction uncertainty.

Key time- and frequency-domain features extracted from the
ultrasonic guided wave signals include peak amplitude, time of
flight, energy content, entropy, skewness, kurtosis, and spectral
centroid. These features were selected due to their established
sensitivity to damage-induced changes in wave propagation. To
enhance model efficiency and accuracy, a correlation-based feature
selection method was applied to remove redundant features,
retaining only those strongly correlated with damage size and
type (such as peak amplitude, RMS amplitude, group velocity,
and first-arrival time of the primary wave modes and the
frequency-domain features like dominant frequency shift, spectral
centroid and bandwidth).

The Random Forest model’s predictive accuracy was evaluated
using the Root Mean Square Error (RMSE), which measures the
average magnitude of errors between predicted and actual damage
measurements. RMSE is particularly useful because it penalizes
larger errors more heavily, providing a reliable measure of model
precision. Lower RMSE values reflect more accurate predictions and
closer alignment with true damage values. The reported RMSE
demonstrates the model’s effectiveness in estimating damage

parameters in composite wind turbine blades.
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FIGURE 8
Group velocity dispersion curves of guided wave propagation in the GFRC.

5 Results and discussion

The experimental and numerical response of the healthy and
damaged WTB models, along with the theoretically obtained
dispersion curves, are explained in this section. The variations in
amplitude and group velocity of the guided wave modes for each
damage condition are also discussed in detail.

5.1 Dispersion of guided waves in WTB

The guided wave dispersion curves for the pristine WTB sample
are obtained by using an established semi-analytical model explicitly
described in Pol and Banerjee (2013). The global-matrix method-
based theoretical model of guided wave propagation in the WTB is
prepared in Fortran for 500 k iterations. The model uses the elastic
material properties of the composite blade as per Table 1, 3 mm
thickness, 0-200 kHz frequency range, and free-free boundary
conditions. In the model, the dispersion condition for the
propagating guided wave modes is given by Equation 23

V(§w)=0 (23)
For the desired range of wave propagation frequency, ‘w’,
wavenumber ‘&’ components were calculated, and the

corresponding frequency vs. group-velocity, ‘V,” dispersion curves
are obtained for the real roots of ‘¢’ from the equation given below

_ dw

Vo=

(24)

The dispersion curves are calculated as per Equation 24 and
presented in Figure 8. The plot clearly shows the group velocities of
the primary symmetric (S0) and anti-symmetric (A0) guided wave
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modes at the operating frequency of 150 kHz. The calculated
dispersion values are used to identify the primary wave modes in
the numerical and experimental signals in the time domain. The
spikes observed in the dispersion curves result from numerical
instabilities in the root-solving process and do not affect the
identification of the guided wave modes.

5.2 Comparison between experimental and
numerical responses for WTB models

The time-domain response (time in microseconds (fs) versus
amplitude in millimetres (mm)) obtained at the sensing location
using both experiments and FE analysis for the healthy WTB, WTB
with edge erosion (25 mm long), WTB with longitudinal debond
(35 mm x 6.5 mm), and WTB with transverse debond (45 mm x
6.5 mm), generated by a predefined actuation signal (150 kHz), is
shown in Figure 9. The waveform plot from the FE simulation is
presented in Figure 10. The raw voltage signals measured by the PZT
sensors were converted to equivalent out-of-plane displacement

(mm) through a calibration process. Representing the
measurements as displacement facilitates interpretation of guided
wave amplitudes and their variations due to damage

(Giurgiutiu, 2014).

The obtained signal shows the presence of two primary Guided
wave modes, identified as SO and A0 modes, as observed from
Figures 9a—d. The SO mode is the symmetric mode, and the A0 mode
is the anti-symmetric mode. This ordering and separation of modes
agree well with the theoretical dispersion characteristic at the chosen
excitation frequency (150 kHz). The experimental and numerical
guided wave signals exhibit consistent waveform patterns and phase
behaviour, with minor amplitude variations attributed to different
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FIGURE 9
The time domain response obtained at the sensing location using experiment and FE analysis for (a) healthy WTB, (b) WTB with edge erosion (25 mm
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longitudinal debond and WTB with transverse debond is 92.8%,
93.41%, 95.26% and 92.60% respectively. These correlations indicate
a high level of agreement between the experimental and numerical

10

35 mm X 6.5 mm) and (d) WTB with transverse debond

(

long), () WTB with longitudinal debond

amplification ranges applied during acquisition. The Spearman
correlation between the experimental and numerical signals for
healthy WTB, WTB with edge erosion/corrosion, WIB with
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signals for the healthy and damaged states of WTB. The different
amplification ranges applied during acquisition contribute to the
remaining 5-8% deviation. Further, the close agreement between
experimental and numerical results confirmed that the influence of
noise was negligible.

It is observed that due to the presence of damage, the
amplitude of the output signals is reduced in each mode, i.e.,
S0 and A0 modes, as compared to the healthy condition for both
experimental and FE analysis. The reason attributed to the
reduction in amplitude is the wave attenuation, which occurs
when the guided waves interact with damage. This is because the
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FIGURE 11

Variation of output response for different edge erosion/
corrosion size.

energy absorption increases due to the presence of damage in
comparison to the healthy WTB model. Moreover, these
structures are composed of complex layers of materials. This
anisotropy due to different ply-orientations causes a directional
dependency resulting in additional pulses, which can be observed
from Figures 9a-d. At the excitation frequency of 150 kHz, the
corresponding wavelengths for the A0 and SO modes are
12.11
approximately 24 elements per wavelength for the A0 mode

mm and 20.39 mm, respectively. This results in

and 41 elements per wavelength for the SO mode, ensuring
sufficient spatial resolution for accurate propagation of guided
waves. The mesh thus satisfies the commonly recommended
criterion of more than 10 elements per wavelength for
numerical stability and precision in wave propagation analysis
(Landskron et al., 2025). The reduction in amplitudes with
damaged WTB in comparison to the healthy WIB can also be

observed from the waveform plots in Figures 10a-d.

5.3 Parametric study of damage

The effect of the size of damage is important for the health
monitoring of a WTB using guided waves. In order to understand
this effect on the guided wave signal, a parametric study has been
carried out in ABAQUS.

5.3.1 Edge erosion damage

Edge erosion/corrosion damage is induced for elements of size
15 mm x 5 mm, 25 mm X 5 mm and 35 mm x 5 mm. The elastic
properties of these elements were modified based on their thickness,
which was considered as 1 x 107 mm. The material properties
corresponding to damage were taken from Table 2, and the elastic
properties for the elements without damage were considered
from Table 1.

The response is obtained at the sensing location for various
damage sizes as mentioned above and compared with the healthy
WTB model. The healthy case is treated as a no-damage condition
with a zero length (0 mm) as a reference.
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The theoretical group velocities for the healthy and damaged
WTB models using numerical analysis are compared with the
experimental results. In the experiment and numerical analysis,
signals are collected at a distance (Ax) of 150 mm from the actuation
point. The time difference (At) between the peak of each envelope of
a wave group for the actuation signal and receiver signal (signal
obtained at the sensing point) is determined. This time shift is then
determined for different modes, and the corresponding group
velocity, Vi, is obtained employing a TOF analysis (Baid et al,
2015; Mustapha et al, 2011). V, is determined as 4%,

The output responses for the numerical simulation for varying
damage size are shown in Figure 11. The comparison of damage
lengths (5 mm x 5 mm, 10 mm x 5 mm, 15 mm x 5 mm, 20 mm X
5mm, 25 mm X 5 mm, 30 mm x 5 mm and 35 mm x 5 mm) and the
corresponding maximum normalised amplitude and group velocity
of SO and A0 modes are shown in Figure 12.

It is observed from Figure 11 that edge erosion/corrosion
reduces the local stiffness of the laminate and disrupts the wave
propagation path. The normalized amplitude trends in Figure 12a
further reinforce this observation. The A0 mode exhibits a rapid
decrease in amplitude even for small erosion sizes, demonstrating
strong sensitivity to edge erosion/corrosion. This is expected due to
local loss of stiffness. However, the SO mode shows a more gradual
in amplitude. In Figure 12b, the A0 mode exhibits
in group velocity with increasing edge -erosion/

reduction
variation
corrosion size due to its sensitivity to local bending stiffness
reduction caused by material loss. Meanwhile, the SO mode
shows only minor variations in group velocity, indicating that
small levels of erosion do not significantly alter in-plane stiffness.
Although the relative changes in group velocity for SO and A0 modes
are comparable, the A0 mode remains the more useful damage
indicator for early-stage debonding because it shows a larger
amplitude drop at small debond sizes and more complex velocity
variation around intermediate debond sizes.

Collectively, the amplitude and velocity results demonstrate that
the A0 mode is substantially more sensitive to edge erosion and
debond growth than the SO mode. This sensitivity is advantageous

for early-stage damage detection and localisation, while the
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FIGURE 13
Comparison of output response for different longitudinal
debond lengths.
SO mode’s stability can be beneficial for reliable signal

transmission in structural health monitoring systems. The
complementary behaviour of the two modes suggests that a
Lamb-wave enhanced

multimodal approach provide

robustness and improved diagnostic capability for detecting and

can

characterising edge-related degradation in plate-like structures.
The SO and A0 modes are not pure modes due to the complex
geometry of the WTB and the composite material construction. This
mode impurity introduces minor uncertainty, especially at large
defect sizes. The group velocity extraction experiences small shifts in
arrival-time identification due to overlapping wave modes.
However, the relative variation with defect size remains
monotonic and physically consistent; the observed trends are

reliable, even if the modes are not perfectly isolated.

5.3.2 Longitudinal debond
The WTB is partitioned in the longitudinal direction into small
elements of dimensions 15, 25 and 35 mm. The material properties
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Comparison of (a) maximum normalised amplitude, (b) group velocity with debond size for SO and A0 modes.

for these partitioned elements are detailed in Table 2, while the
material properties for the remaining portion of the blade are given
in Table 1. The elastic properties considered for the partitioned
elements of size 15, 25 and 35 mm are described in Section 3.1, while
the zero length (0 mm) is considered as a no damage case and is used
as a healthy case. The numerical response with variation in the
length of debond is shown in Figure 13.

The variation of maximum normalised amplitude and group
velocity of SO and A0 modes with debond size of 5 mm, 10 mm,
15 mm, 20 mm, 25 mm, 30 mm and 35 mm using experimental and
numerical analysis is shown in Figure 14.

As the longitudinal debond length increases from 15 mm to
35 mm, the measured signals exhibit changes in amplitude of the
S0 and A0 modes, as observed from Figure 13. This is due to the
reduction in stiffness and transmission through the damaged areas.
From Figure 14a, it can be observed that the SO mode experiences a
reduction in amplitude for small debond sizes, indicating that it is
responsive to the initiation of longitudinal debond. The A0 mode
shows an initial dip in amplitude followed by a gradual increase for
larger debonds. This rise in amplitude for 25-35 mm debonds is
characteristic of flexural waves interacting with extended
delamination, where out-of-plane bending motion becomes
amplified due to reduced through-thickness constraint. The
group velocity decreases consistently with increasing debond
length for the SO mode, as observed from Figure 14b. This
behaviour is due to the reduction in effective in-plane stiffness
and increased scattering in the damaged region, which slows the
extensional mode. The A0 mode, however, displays a non-
monotonic trend: its velocity initially decreases, reaching a
minimum at intermediate debond sizes, and then increases
slightly for larger debonds. This behaviour is governed by
stiffness loss and dispersion-induced energy redistribution.

5.3.3 Transverse debond

The WTBs are partitioned in the transverse direction. The size of
the partition elements is 15, 25 and 35 mm. The material properties
and elastic properties considered for these elements are given in
Table 2 and mentioned in Section 3.1. The elastic properties for the
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Variation in output response for different transverse
debond sizes.

undamaged portion of the blade are taken from the values given in
Table 1. The comparison of the response with the debond size is
shown in Figure 15. The experimental and numerical variation of
maximum normalised amplitude and group velocity of SO and
A0 modes with debond sizes of 5 mm-35 mm, with an
increment of 5 mm, is shown in Figure 16.

The contrasting amplitude trends observed for the SO and
A0 modes arise from their different deformation mechanisms, as
observed from Figure 15. The SO mode is dominated by in-plane
extensional motion and relies on the through-thickness and inter-
laminar stiffness of the laminate. As the transverse debond grows,
this stiffness is progressively reduced, causing scattering and
reflection of the SO wave and consequently leading to a
monotonic decrease in its measured amplitude. In contrast, the
A0 mode is flexural in nature and is primarily governed by bending
stiffness rather than in-plane rigidity. This reduction in bending
resistance amplifies the flexural motion, resulting in an increase in
A0 amplitude for larger debond sizes. Therefore, while both modes
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are affected by the loss of stiffness, SO amplitude diminishes due to
energy loss through scattering, whereas A0 amplitude grows because
the debond amplifies bending-dominated wave components. This
variation can be observed in experimental and numerical results, as
seen from Figure 16a for both S0 and A0 modes. The group velocity
for the SO mode decreases with debond length and then increases,
due to the reduction in effective stiffness as the wave continuously
encounters a larger damaged region, as observed from Figure 16b.
Although this debond reduces local stiffness, the measured group
velocity of the SO mode increases because the defect filters out slower
dispersive components. Additionally, scattering and redirection at
the debond cause earlier-arriving SO components to dominate the
received signal, resulting in an increase in wave speed in the
damaged WTB. The A0 mode displays a non-monotonic trend as
observed from Figure 16b, where the velocity first decreases to a
minimum at intermediate debond sizes (upto 20 mm), before
increasing slightly at larger debond sizes. This behaviour arises
because of the initial stiffness reduction and mode interaction at
small or intermediate sizes.

It should be noted that because of the limited number of
available specimens and certain experimental restrictions, only
two representative defect sizes were examined experimentally in
this study. To complement these results, additional numerical
simulations were performed for intermediate defect sizes,
confirming a consistent relationship between amplitude reduction
and defect dimension.

5.3.4 UQ for extended prediction

UQ was carried out on the outputs of the Random Forest model
using the numerical simulation dataset, which encompassed
different defect sizes (0-40 mm) and types, including edge
erosion/corrosion, longitudinal debonding, and
transverse debonding.

The 95% confidence intervals were calculated by taking the
standard deviation of predictions across all decision trees in the
ensemble, reflecting variability in the model’s responses. The
sample size corresponds to the total number of prediction

cases derived from these simulated damage scenarios used
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during model training and testing. Experimental results were
utilized The
corresponds to the total number of prediction cases generated

solely for model validation. sample size
from multiple guided-wave measurements covering all damage
types and sizes. Each damage class includes a sufficient number of
samples to ensure statistical robustness, typically ranging from
10 to 100 samples per class.

As described in Section 4, this subsection focuses on UQ of the
Random Forest model’s predictions for changes in A, and S, mode
group velocities (V) caused by edge erosion/corrosion, longitudinal
debond, and transverse debond over damage sizes ranging from 0 to
40 mm. The model was developed using a relatively small, targeted
dataset corresponding to eight distinct damage sizes across various
damage types. This dataset, compiled from both experimental
measurements and validated numerical simulations, proved
sufficient given the specific nature of the prediction task. To
ensure reliable learning, approximately 70% of the data was used
and  30%

representation of all damage sizes. To prevent overfitting and

for training for testing, maintaining balanced
enhance model generalisation, 5-fold cross-validation was applied
during the training phase. This approach allowed the Random
Forest model to be validated on multiple data partitions, thereby
reducing bias and variance and ensuring robust performance across
unseen data.

Figure 17 illustrates the predicted changes in group velocity with
uncertainty bands representing 95% confidence intervals. These
bands are calculated based on the standard deviation of
predictions across individual trees in the Random Forest model,
offering a measure of prediction confidence. Narrower uncertainty
bands indicate higher confidence in the model’s predictions, while
wider bands reflect greater variability and uncertainty. In Figure 17,
L-Debond represents Longitudinal Debond and T-Debond
represents Transverse Debond.

Similarly, Figure 18 illustrates the relative variation in A0 and
SO0 mode amplitudes with respect to the different damage types
(Edge Erosion/corrosion, Longitudinal Debond, and Transverse
Debond) and their sizes, with uncertainty bands representing the
95% confidence intervals around the predicted values. In Figure 18,
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L-Debond and T-Debond represents Longitudinal Debond and
Transverse Debond respectively.

Figures 17, 18 present the effect of different defect types and
sizes on guided wave features, along with associated prediction
uncertainties. The results show that the S, mode exhibits higher
sensitivity to variations in defect size compared to the A, mode,
indicating its greater suitability for detecting and characterizing
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damage in composite wind turbine blades. The confidence
intervals reflect the variability in model predictions, where
narrower intervals suggest higher confidence and stability of
the results. Here, “higher sensitivity” refers to the stronger
and more consistent changes observed in the SO mode’s group
velocity and amplitude as defect size increases, compared to the
A0 mode. This is evident from the steeper trends and larger
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Damage size vs. change in (a) AO and (b) SO mode amplitudes due to Edge Erosion, L-Debond, and T-Debond, with uncertainty bands representing
the 95% confidence intervals.

variation magnitudes in Figures 17, 18, along with narrower

uncertainty bands for the SO mode, indicating more reliable and
robust damage detection. These findings provide practical
guidance for selecting appropriate excitation frequencies
(100-200 kHz) and wave modes for field-scale guided-wave
inspection of GFRC blades, enabling more accurate and
reliable damage detection. The 95% confidence intervals were
chosen due to their ease of computation and straightforward

Frontiers in Mechanical Engineering

interpretability. Uncertainty is effectively captured by utilizing
the variability in predictions from individual trees within the
Random Forest ensemble, without significantly increasing
computational demands. Although more advanced methods,
such as Bayesian approaches, can offer deeper probabilistic
insights, they often require increased model complexity and
computational resources. Given the practical focus of this
study, use of this confidence intervals was considered
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appropriate. More sophisticated UQ methods may be explored in
future work to enhance prediction robustness.

6 Conclusion

This study investigated guided wave propagation and its
interaction with various types of damage for structural health
monitoring of composite wind turbine blades. Experimental
testing, numerical simulations, and UQ were combined to
evaluate the sensitivity of guided wave parameters to different
defect sizes and types. The key findings include:
in showed

o Guided-wave responses

characteristics,

composite blades
with  significant
reductions observed in damaged specimens due to energy

multimodal amplitude
scattering and absorption.

» Damage types influenced the SO and A0 modes differently:
A0 mode is sensitive to edge erosion/corrosion, while SO mode
is sensitive to longitudinal debond; both SO and A0 modes are
sensitive to transverse debond.

o Damage types influenced wave propagation velocities
differently: the group velocity for the A0 mode changes
with increasing edge erosion or corrosion due to its
sensitivity to reduced bending stiffness, while the SO mode
shows only slight velocity changes, indicating minimal impact
on in-plane stiffness; increasing longitudinal debond length
consistently reduces the SO mode group velocity due to
diminished in-plane stiffness, while the A0 mode exhibits a
non-monotonic response, with its velocity decreasing at
intermediate debond sizes; the SO mode shows an initial
decrease followed by an increase in group velocity with
increase in transverse debond length, due to reduced
stiffness, while the A0 mode exhibits a non-monotonic
trend, with its velocity decreasing to a minimum at
intermediate debond sizes before slightly rising at larger
ones, due to the combined effects of stiffness loss and mode
interaction.

« UQ applied to Random Forest model predictions, expressed
via 95% confidence intervals, indicated varying confidence
levels, enhancing the robustness of damage assessment.

o The combined use of simulation and experimental data
validates the framework’s capability to correlate guided-
wave features with damage progression effectively.

These results provide a practical basis for selecting optimal
guided-wave modes and excitation frequencies (100-200 kHz) for
field inspections of composite blades.

The use of low-frequency guided waves and edge computing-
compatible algorithms reduces power consumption and hardware
costs compared to more complex sensing techniques. Future work
will focus on comprehensive economic and energy assessments to
support practical deployment at scale.

The proposed framework lays the groundwork for advanced,
intelligent structural health monitoring systems for composite wind
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turbine blades, with ongoing efforts aimed at autonomous, multi-
level damage detection under realistic operational conditions.
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