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Introduction: In the present study, fluid and mass transport along a microchannel 
are aimed to be solved using physics-informed neural networks (PINN), which is 
an emerging solution method for partial differential equations (PDEs). For 
verification purposes, the same cases under identical conditions are modeled 
with a solver for finite element analysis (FEA), COMSOL Multiphysics.
Materials and methods: Continuity, Navier-Stokes, and Nernst-Planck Equations, 
which characterize momentum and mass conservation, are solved 
simultaneously by PINN as well as COMSOL Multiphysics. The problems are 
defined as steady or time-dependent with varying Reynolds numbers in the 
interval of 5 × 10−6 ≤ Re ≤ 5 × 10−2. The fluid is flowed by either pressure-driven or 
electrokinetically-driven. PDEs are nondimensionalized by scaling the quantities 
for PINN solving on the purpose of alleviating the computational burden. In 
contrast to usual approach, where the pressure scale is viscosity multiplied by the 
velocity scale divided by the length scale, pressure scale is determined as its 
maximum value.
Results and discussion: Calculation errors of PINN solver are observed as 
reasonably low, such as 3.04 × 10−5, 4.76 × 10−3, 3.60 × 10−4, 6.02 × 10−3 for 
steady pressure-driven flow, time-dependent pressure-driven flow, steady 
electroosmotic flow, and time-dependent electroosmotic flow, respectively. 
To reduce the error margin at these values, pressure scale must be defined as 
the maximum pressure value. Therefore, the results of the FEA solver exhibit 
excellent overlap with the data obtained from PINN. For PINN, species 
concentrations of 0.52–1.75–2.71–3.36 mol/m3 are accumulated at the outlet 
under pressure-driven flow for time points 50–100–150–200 seconds, 
respectively. Under electrokinetic flow, species concentrations are varied as 
0.72–1.93–2.83–3.46 mol/m3 for the same time points, respectively. In 
consideration of FEA, species concentrations are calculated as 
0.52–1.75–2.71–3.39 mol/m3 and 0.55–1.85–2.84–3.52 mol/m3 under similar 
conditions for pressure-driven and electroosmotic flows, respectively.
Conclusion: Both Navier-Stokes and Nernst-Planck Equations can be solved with 
PINN in a single model, regardless of the flow generation method and the time 
dependency of the model. Because nearly identical calculations are carried out 
by the FEA solver. As a result, PINN is a notable alternative for simultaneous 
modeling of the flow and mass transport under pressure-driven and 
electrokinetic conditions for microfluidic applications.
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1 Introduction

Fluid flow is a prominent component in many engineering 
applications, such as micro-nanofluidic chips (Canpolat et al., 
2013a), hemodialysis (Abohtyra et al., 2019), etc. Therefore, a 
significant effort is made to understand the complex nature of the 
fluid flow. For instance, flow in the progressing cavity pumps (Al- 
Safran et al., 2017), viscous flow in a pressure-swirl atomizer (Laurila 
et al., 2019), flow along the obstructed airway (Tsuboi et al., 2019), 
multiphase flow in porous media (Lauser et al., 2011), etc. Countless 
analyses in this field are conducted in silico media due to relatively low 
costs, rapid results, and quantitative insight for the proposed designs. 
Navier-Stokes and Continuity equations are mainly used to solve fluid 
flow from the point of view of the continuum. If diluted chemical 
species are in action within the fluid medium, the Nernst-Planck 
Equation is generally incorporated into the model to understand 
different transport mechanisms of the dissolved chemical species, 
such as diffusion, convection, and electromigration. The fluids are 
conventionally mobilized with pressure differences across the 
channels. However, some significant disadvantages are attributed 
to the pressure-driven flow systems. The parabolic flow profile is 
effective in the flowing domain, which attenuates control over the 
emerging flow. Moreover, the system must be equipped with 
mechanical pumps, which leads to higher fabrication costs and 
heating effects due to friction. Alternatively, a material can also be 
moved with externally applied electrical fields, which is referred to as 
electrokinetic phenomena (Canpolat et al., 2013b). In these systems, 
electrodes are embedded in the channel to implement electrical fields 
to the flow domain; thus, the drawbacks of pressure-driven systems 
are avoided. By this way, the parabolic flow profile is replaced with a 
plug-like flow profile. These flow systems allow to control fluid and 
particles by miniaturizing the geometry of the design, which is one of 
the advantages of microfluidic applications. For instance, a few 
circulating tumor cells are isolated from the whole blood in the 
work of Sarioglu et al. (2015), optimum sizes of the liposomes are 
investigated to the extent of drug delivery vehicles in the work of 
Andar et al. (2014), an efficient gene delivery is carried out to hard-to- 
transfect typed cells by Hur et al. (2020), and some biological toxins as 
far as to picomolar levels are able to be detected by Meagher et al. 
(2008). Moreover, several additional precious advantages can be 
attributed to microfluidic systems, which can be sorted as 
improved control on the fluid flow, low sample consumption, low 
analysis duration, high sensitivity, portability, and readily integration 
with useful parts. Fluids are also mobilized with surface acoustic waves 
(SAW) in many studies, such as analysis of water droplet motion for 
varying RF powers and frequencies (Insepov et al., 2021), investigation 
of SAW control parameters on the sessile drop under gravitational 
force (Noori et al., 2021), analyzing acoustophoretic movement of 
polystyrene beads, white blood cells, MCF-7 breast cancer cells 
(Namnabat et al., 2021), generation of heating in a fluid (Das 
et al., 2019). Generally, applications of microfluidics, especially in 
the bioscience are conducted under low Reynolds number (Re), 
Re<<1 (Tatlιsoz and Canpolat, 2018). Because effective control of 
synthetic and biological particles can be achieved, and high shear 
stresses due to the high Re number can also threaten the conservation 
of the structure and function of biological molecules such as enzymes, 
proteins, and cells. For instance, the intracellular transport of 
biomolecules under electroosmotic flow conditions is modeled by 

Andreev approximately at Re ≈ 10−5, droplets are formed with Re = 
1.16 × 10−7 in the work of Fadhil Majnis et al. (2018), micromixing 
with the magnetically actuated cilia is carried out at Re = 1.16 × 10−3 by 
Wu et al. (2017), uneven colloidal particles are transported in 
coordinate for Re < 10−4 according to the work of Reinmüller 
et al. (2013), simulating circulating tumor cell movement in an 
arteriole is performed under Re = 2.98 × 10−3 as proposed in the 
work of Xiao et al. (2021). Moreover, transport in a nanopore with 
electroosmotic or pressure-driven flow occurs in a low Reynolds 
number regime (Mao et al., 2014).

Machine learning is an extremely popular topic among scientific 
studies, due to its feasibility in many diverse areas, such as energy 
management (Musbah et al., 2021), chemical reactions (Singh et al., 
2019), two-phase flows (Jalili et al., 2024), etc. Neural networks are a 
subset of machine learning that utilizes densely interconnected 
neurons to solve problems. Training of the neural network is 
possible solely with the datasets. However, this approach is 
impractical for many problems, due to the demand for large 
datasets and being deprived of physical constraints. Raissi et al. 
(2019) developed PINN to address this issue. Either forward or 
inverse problems are described as partial differential equations 
(PDEs) and solved with neural networks. Moreover, physical 
constraints can be incorporated into the model with PINN; thus, 
the accuracy of the results can be enhanced. Navier-Stokes Equation 
is frequently introduced to PINN for various flow problems, such as 
aneurysms in blood vessels (Oldenburg et al., 2023), the flows with 
vortex-induced vibrations (Bai and Zhang, 2022), and the 
investigation of fluid flow around circular and elliptical solid 
particles (Hu and McDaniel, 2023). PINN is also considered to 
solve the transport problems of the materials via the Nernst-Planck 
Equation (Huang et al., 2024). However, many problems should be 
described with both the Navier-Stokes Equation and the Nernst- 
Planck Equation, such as electrokinetic fluid flow through a 
nanopore (Mao et al., 2014), investigating flow effects on ion- 
selective electrodes (Andrews et al., 2023), directing and 
capturing of the DNA particle in a nanopore (Paik et al., 2012), 
electrodiffusion in fluids (Constantin et al., 2021), ion transport 
throughout a porous medium (Agnaou et al., 2020).

In this study, Navier-Stokes and Nernst-Planck equations are 
solved simultaneously with PINN to understand the liquid flow and 
species transport along a straight microchannel under pressure-driven 
and electroosmotic flow conditions for various Reynolds numbers 
within 5 × 10−6 ≤ Re ≤ 5 × 10−2. When the time-independent problem 
calculations are completed, time-dependent versions of the given 
problems are introduced to the PINN. In this sense, liquid flow is 
generated by a pressure difference or electrokinetically. The same 
models are established with the finite element solver COMSOL 
Multiphysics, and the obtained results from the PINN are validated 
through comparison. The PDEs are solved with neurons and weight 
parameters by PINN. Acquiring matching results with different solving 
techniques can be submitted as a powerful verification method.

1.1 Novelty of the study

The present investigation provides a novel approach utilizing 
the Physics-Informed Neural Network (PINN) for modeling the 
fluid and species transport along a microchannel, which is the critical 
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component for bio-/microfluidic devices. These transport mechanisms 
are analyzed under pressure gradients and electrokinetic forces, which 
are the primary driving mechanisms in microfluidics. For this purpose, 
the Navier-Stokes and the Nernst-Planck equations are coupled on the 
common term velocity. In contrast to the previous studies, this work 
introduces a key refinement by defining the pressure scale based on the 
inlet pressure value; thus, lower error margins are achieved during the 
neural network training. The calculated results of the PINN are 
compared with the Finite Element Analysis (FEA) software 
COMSOL Multiphysics, whose results are highly consistent with the 
actual results. Thus, outcomes of the PINN can be evaluated using 
actual values. This proposed model can be safely implemented in 
biomedical engineering designs, including mass transport, bioreactors, 
bioanalytical devices, micromixers, etc. Given the growing interest in 
PINN-based solutions recently, PINN has been an emerging field and 
has gathered significant attention. We believe this work will attract 
considerable interest within the relevant community and contribute to 
ongoing achievements in the field.

2 Materials and methods

The fluid flow is modeled in a 2-dimensional (2D) rectangular 
channel, which has a length of L = 200 μm and width of W = 20 μm, 
as shown for parabolic flow and plug-like flow profiles in Figures 
1a,b, respectively. Left and right boundaries of the microchannel are 
determined as the inlet and the outlet, respectively. The fluid is 
characterized as Newtonian and incompressible, while its flow 

behavior is described with time-dependent Navier-Stokes 
equations along with the continuity equation, as shown below: 

ρ
∂u
∂t
� −∇p + μ∇2V + f (1)

∇.V � 0 (2)

where the symbols of V, ρ, p, μ, f (Equations 1, 2) are velocity, density, 
viscosity, pressure, and body force, respectively. The bold characters 
are preferred to indicate vector quantities. The inertial term is 
excluded from Equation 1, due to the very low Re being effective, 
such as Re = 5 × 10−6, 5 × 10−4, and 5 × 10−2 (Ai et al., 2009; Namnabat 
et al., 2021). Under these circumstances, flow disturbances on the 
biological specimen can be avoided, and more functionality can be 
gained from shorter microfluidic channels with enhanced control of 
whole microfluidic system. Moreover, the body force term equals 
zero, due to no external body force acting on the system for all 
developed models. All the parameter values are listed in Table 1.

Fluid flow is generated either pressure-driven or electrokinetically. 
For pressure-driven flow, a pressure gradient is established throughout 
the channel, by applying an equation for parabolic velocity profile to 
the inlet of the microchannel, as shown in Equation 3: 

uparabolic �
ΔpW2

8μL
1 −

4y2

W2􏼠 􏼡 (3)

where Δp is the pressure drop through the channel length, which 
equals to difference between inlet and outlet pressures, i.e., Pin–Pout. 
Moreover, outlet pressure is defined as zero, and zero velocity is 

FIGURE 1 
(a) Parabolic flow profile is governed in a microchannel with the length of L = 200 µm and width of W = 20 µm (b) Plug-like flow profile is governed in 
a microchannel with the length of L = 200 µm and width of W = 20 µm (c) Designed neural network to solve pressure-difference problems (d) Designed 
neural network to solve electrokinetically-driven problems.
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defined to the upper and lower walls of the microchannel due to no- 
slip boundary condition. If the electroosmotic flow is in question, a 
potential is defined to the inlet of the channel, ϕin, and the outlet is 
grounded. Therefore, an electrical potential gradient is established 
throughout the channel. With the assigned anode potential, flow 
velocity through the cross-section of the channel equals the 
maximum velocity value for the pressure-driven flow. Because 
the channel width is scaled to the extent of micrometers, the 
existence of an electrical double layer (EDL), in the vicinity of 
the upper and lower boundaries is neglected. The characteristic 
nano-scaled thickness of EDL is much lower than the proposed 
micro-scaled channel width; hence, this approximation is valid 
(de Rutte et al., 2016). Therefore, Smoluchowski slip velocity is 
applied to both upper and lower boundaries of the microchannel, 
instead of the no-slip boundary condition, as given in Equation 4: 

ueow � −
εζw
μ

Et (4)

where the symbols of ε, ζw, μ, Et are the electrical permittivity, zeta 
potential of the microchannel walls, the viscosity, and the tangential 
component of the external electrical field. Due to 2D design in 
Cartesian coordinates, vectorial quantities are comprised of x- and 

y-components. Therefore, the x-component and y-component of 
the velocity quantity are denoted as u and v, respectively. While non- 
zero velocity values are always attributed to the u component, a zero 
value is always defined for the v component. Another outcome of the 
no-EDL approximation is related to the electrical charge distribution 
within the microchannel. Laplace equation, Equation 5, is employed 
for solution domain, instead of the Poisson equation, due to the 
elimination of the only net charge, including the area within the 
cross-section of the channel: 

∇2ϕ � 0 (5)

where ϕ is the electrical potential.
A single chemical species is dissolved within the fluid. Transport 

of the dissolved species is described with Equation 6, which is time- 
dependent Nernst-Planck Equation: 

∂C
∂t
� D∇2C−V.∇C (6)

where the symbols of C and D are the concentration and diffusion 
coefficient of the diluted species, respectively. While first term of the 
right side of the equation is the diffusive flux, and the second term is 
the convective flux. The diffusion coefficient is assumed constant, 

TABLE 1 Parameters and definitions used in the present study.

Symbol Definition Value

W Width of the channel 20 μm

L Length of the channel 200 μm

μ Viscosity of the fluid 10−3 Pa. s

ρ Density of the fluid 1,000 kg/m3

pin Inlet pressure 10−3 Pa

ε0 Permittivity of free space 8.854 × 10−12 F/m

εr Relative permittivity of the fluid 80

ζ Zeta potential of the channel walls −0.01 V

ϕin Inlet potential 0.0070621 V

D Diffusion coefficient of the diluted species 10−10 m2/s

Cin Inlet concentration 5 mol/m3

Dscale Diffusion coefficient term scaling factor 10−10 m2/s

Pscale Pressure term scaling factor 10−3 Pa

Cscale Concentration term scaling factor 5 mol/m3

ϕscale Electric potential term scaling factor 0.0070621 V

uscale Velocity term scaling factor 2.5 × 10−7 m/s

L* Dimensionless length of the channel 1 (=L/L)

W* Dimensionless width of the channel 0.1 (=W/L)

D* Dimensionless diffusion coefficient of the diluted species 1 (=D/Dscale)

P* Dimensionless inlet pressure 1 (=P/Pscale)

C* Dimensionless inlet concentration 1 (=Cin/Cscale)

φ* Dimensionless inlet potential 1 (=φin/φscale)
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due to the usage of a single type of fluid, isothermal conditions, 
and low pressure drop between the inlet and the outlet. 
Accordingly, term V is assigned as the coupling parameters, 
due to the co-existence of the Navier-Stokes and the Nernst- 
Planck equations. Note that the chemical species is assumed as 
neutral; thus, the electromigration term of the Nernst-Planck 
equation is discarded. If the isoelectric point of the relevant 
species is equalized to the ambient pH, zero electromigration 
can be obtained. The entrance of the chemical species to the 
microchannel is carried out by defining a constant concentration 
at the inlet, C = Cin. The chemical species is collected from the 
outlet. The upper and lower boundaries are defined as non- 
permeable, as well. These definitions are implemented to the 
system by Equation 7: 

n.D∇C � 0 (7)

The proposed models are carried out with PINN as well as 
commercial simulation software COMSOL Multiphysics, and 
subsequently the acquired solutions are compared. Because FEA 
is utilized by COMSOL Multiphysics for problem-solving, a mesh 
with tetragonal elements is applied to the microchannel domain. A 
model is consecutively solved for meshes with 
1,000–2000–3,000–4,000–16000 quadrangle elements, and less 
than 1% solving difference is observed between the last two 
combinations. Therefore, the mesh with 4,000 elements is used 
for all FEA models. Instead of discretization by meshing, governing 
equations and boundary/initial conditions are converted to an 
optimization problem, whose performance is qualitatively 
evaluated by a loss function, for PINN modeling. Estimations are 
made in an unsupervised manner according to some specific points 
within the space-time domain to minimize the loss function. 
Therefore, the proposed mathematical model is introduced to a 
neural network with three hidden layers of 100 neurons. The neuron 
number of the outlet layer always equals to the number of dependent 
variables, such as x-velocity, y-velocity, pressure, and concentration 
for the current problem. For the model including the electrokinetics 
phenomenon, the electrical potential difference is incorporated into 
the model; hence, five neurons are located in the output layer. 
Correspondingly, neuron numbers of the inlet are determined 
according to the number of independent variables of the 
problem, which are the x-coordinate, the y-coordinate, and time. 
Therefore, three and two neurons are stationed at the inlet boundary 
for time-dependent and steady problems, respectively. Weight 
parameters are defined upon all these connections and loss 
function is diminished by solely altering the weight parameters 
during the problem solving. Hyperbolic tangent function (tanh) is 
applied inside of the neurons as an activation function (σ), due to 
better approximation performance on the analytical function (De 
Ryck et al., 2021). Adam optimizer is used for training the neural 
network, which is based on gradient descent algorithm with adaptive 
learning rates for weight parameters (Kingma and Ba, 2014). After 
40,000 iterations with the learning rate of 1 × 10−4, L-BFGS 
optimizer is employed to further reduce the loss function. 
L-BFGS is the memory efficient version of a quasi-Newton 
algorithm BFGS, which uses line search to determine the 
optimum weight parameters (Rafati and Marica, 2020). The 
simulations are sustained for t = 200 s, due to system can 

substantially approach to steady-state within this duration. The 
PINN model is designed by benefiting from the DeepXDE 
library, which was developed by Lu et al. (2021) in the Python 
programming language.

The neural networks for the pressure-driven and the 
electrokinetically-driven systems are schematized in Figures 1c,d, 
respectively.

Initially, the problems are defined as time-independent; 
hence, the time neuron is subtracted from the inlet layer and 
the term in the left-hand side of the equation is discarded. 
Moreover, the governing equations and boundary conditions 
are nondimensionalized for better training of the model. Some 
scaling parameters are defined for the variables of the 
aforementioned equations with the purpose of 
nondimensionalization. L, pin, D, Cin is used as length scale, 
pressure scale, diffusion coefficient scale, and concentration 
scale, respectively. Accordingly, the maximum value of the 
parabolic velocity profile is used as the velocity scale, which 
equals uscale = (ΔpW2)/(8 μL), and the time scale is determined 
as tscale = L/uscale. Sincethe pressure scale is assigned as pscale = 
μuscale/L, in accordance with the usual approach, the error 
margins can solely be diminished to 1.03 × 10−1 and 1.23 × 
10−1 for steady and time-dependent pressure-driven problems. 
Therefore, the obtained solutions are diverted from the exact 
values. On the contrary, 3.04 × 10−5 and 4.76 × 10−3 error margins 
are reached for steady and time-dependent problems, 
respectively, when pscale = pin. During the solving of steady 
problems, time-dependent parameters at the left-hand side of 
the Navier-Stokes and the Nernst-Planck equations are omitted. 
For PINN solving, time-dependent parameter of the Navier- 
Stokes Equation is not considered for the purpose of alleviating 
the computational burden. On the other hand, no pressure 
difference is exerted on the electrokinetically-driven system; 
hence, pin is defined as unity to prevent the production of 
infinitive value in the Navier-Stokes Equation. As a result, all 
governing equations, such as the Navier-Stokes equation, 
continuity equation, Nernst- Planck equation, and Laplace 
equation, are nondimensionalized as given in Equations 8–11, 
respectively: 

0 � −∇*p* +
μuscale
pscaleL
􏼠 􏼡∇*2V* (8)

∇*.V* � 0 (9)
∂C*
∂t
�

1
Pe
D*∇*2C* − u*.∇*C*( ) (10)

∇*2ϕ* � 0 (11)

where Pe is the dimensionless Peclet number describing the ratio 
between the convective and diffusive fluxes, as Pe = (uscaleL)/D. The 
input variables and boundary/initial conditions are nondimensionalized, 
as well, which are shown in Equations 12–27: 

x* �
x

L
(12)

y* �
y

L
(13)

t* �
t

tscale
(14)
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Pin
* � 1 if x* � 0 andy*

� 0, 0.1[ ] for pressure − driven flow conditions (15)

Pin
* � 0 if x* � 1 andy*

� 0, 0.1[ ] for pressure − driven flow conditions (16)

Pin
* � 0 if x* � 0 andy* � 0, 0.1[ ] for electroosmotic flow conditions

(17)
Pin

* � 0 if x* � 1 andy* � 0, 0.1[ ] for electroosmotic flow conditions
(18)

Vin
* �

Vin

Vscale

if x* � 0 andy* � 0, 0.1[ ] (19)

u* � 1 −
4y*2

W*2􏼠 􏼡 if x* � 0 andy* � 0, 0.1[ ] (20)

u*
p � 0 if x* � 0, 1[ ] andy* � 0 or 1 (21)

ueow
*  � 1 if x* � 0, 1[ ] and y* � 0 or 1 (22)

v* � 0for all boundaries (23)

Cin
* �

Cin

Cscale
if x* � 0 and y* � 0, 0.1[ ] (24)

∂C*
∂x*
� 0 if x* � 0 or 1 andy* � 0, 0.1[ ] (25)

∂C*
∂y*
� 0 if x* � 0, 1[ ] and y* � 0 or 1 (26)

C* � 0 if t* � 0 (27)

Training and test performances of the PINN are evaluated by 
calculating the loss value to the mean-squared error (MSE) approach 
for each of the partial differential equations and the boundary/ initial 
condition, as given in Equation 28: 

L �MSEf +MSEb +MSEinit (28)

where L is the total loss value. MSEf, MSEb, MSEinit are mean- 
squared errors of the partial differential equations, boundary 
conditions, and the initial conditions, respectively, and calculated 
as shown in Equations 29–31, respectively: 

MSEf �
1
N
􏽘

N

i�1
f t*if, x*if, y*if􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

(29)

MSEb �
1
N
􏽘

N

i�1
ũ t*if, x*if, y*if􏼐 􏼑− ũi
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

(30)

MSEinit �
1
N
􏽘

N

i�1
u
═
t*if, x*if, y*if􏼐 􏼑− ūi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

(31)

while f(t*if, x*if, y*if), ũ(t*
i
f, x*if, y*if), u

═
(t*if, x*if, y*if) are the 

calculated values from the partial differential equation, boundary 
condition, initial condition at the relevant collocation points and the 
given time, respectively; the symbols ũ, ū represent the exact 
boundary condition value and the exact initial condition value, 
respectively.

3 Results and discussion

Before solving the actual problems with PINN, it is necessary to 
determine the optimal number of hidden layers and the number of 
neurons per hidden layer, followed by optimizing the number of 

domain points (Nd) and the number of boundary/initial points 
(Nb,i). By this means, the steady electrokinetic model is solved for 
20,000 iterations according to a combination of the number of 
neurons and the number of hidden layers. The hidden layers of 2-3- 
4 are consecutively tested with 50–100–150 neurons per hidden 
layer, as shown in Table 2. The optimal layer and neuron numbers 
are determined as 3 and 100, respectively, based on the lowest error 
margin. Afterwards, a series of domain points and boundary points 
are introduced to the optimum neural network. The collation points 
of 500–1,000–2000–3,000–5,000 are defined in the computation 
domain along with 500/500–1,000/1,000–2000/2000–3,000/ 
3,000 boundary points/initial points, successively. As seen in 
Table 3, the lowest error margin is recorded for 3,000 domain 
points and 3,000/3,000 boundary/initial points. Moreover, no 
significant overfitting is observed with the given hyperparameters. 
The analyses are carried out in a workstation, which has an Intel 
Xeon 2.40 GHz CPU and 64 GB RAM, after approximately 25 h, 
with memory usage of approximately 3500 MB. However, the 
problem-solving is completed in a few minutes and 
approximately 1500 MB of memory usage with COMSOL 
Multiphysics. It can be concluded that artificial neural networks 
requires more improvements to lower the necessary duration and 
memory for problem-solving compared to finite element method. 
For this purpose, one of the suggestion is dividing the excess analysis 
data by the decentralization method to diminish the duration for 
PINN (Yang et al., 2025).

Due to outcomes of FEA are utilized to evaluate the accuracy of 
the PINN solutions, COMSOL Multiphysics calculations are 
validated by using the results of Yuan et al. (2023), and 
significantly overlapping results are obtained, as shown 
Supplementary Figure S1. As the initial problem, a steady 
pressure-driven system is considered. In Figure 2, dependent 
parameters of x-velocity, y-velocity, pressure, and concentration 
are visualized according to the calculations of PINN with 3.04 × 10−5 

error margin. A parabolic flow profile is observed for x-velocity, as 
can be seen in Figure 2a. That is, the minimum velocity magnitudes 

TABLE 2 Error margins for varied hidden layer numbers against varied 
neuron numbers.

Neurons layers 50 100 200

2 2.57E-02 2.93E-02 1.89E-02

3 2.11E-02 4.29E-04 2.63E-02

4 1.05E-02 1.31E-02 1.51E-02

TABLE 3 Error margins for varied boundary/initial point numbers against 
varied domain points.

Nb,i 500 1,000 2,000 3,000 5,000

Nd

500–500 1.35E-02 2.21E-02 8.08E-03 9.27E-03 1.02E-02

1,000–1,000 1.08E-02 8.60E-03 1.33E-02 9.78E-03 7.47E-03

2,000–2,000 1.59E-02 1.02E-02 2.31E-02 7.02E-02 1.74E-02

3,000–3,000 1.37E-02 1.33E-02 1.10E-02 4.29E-04 1.52E-02
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are calculated in the vicinity of upper and lower boundaries and the 
maximum velocity magnitude is obtained on the centerline of the 
microchannel. While the x-velocity at the boundaries is calculated as 
zero due to no-slip boundary condition, the maximum velocity 
magnitude along the centerline is calculated as u = 0.25 μm/s. On the 
other hand, no velocity magnitude for y-component is obtained for all 
points within the computational domain, as seen in Figure 2b. The 
pressure magnitude starts from pin = 0.001 Pa and decreases linearly to 
zero from the inlet to the outlet, as depicted in Figure 2c. Chemical species 
are uniformly scattered throughout the microchannel with the prescribed 
feeding value at the inlet, C0 = 5 mol/m3, as shown in Figure 2d.

The calculations of the PINN are compared with those from 
COMSOL Multiphysics, and the results are graphically exhibited in 

Figure 3. The values of x-velocity are plotted versus the cross-section 
of the microchannel, and the results from two different solvers are 
strongly consistent, as seen in Figure 3a. Although the graphical data 
is not shown here, zero y-velocity values are also observed on every 
point for COMSOL Multiphysics. In contrast to the variable of 
x-velocity, pressure, and concentration variables are graphitized 
through the longitudinal section of the microchannel. As seen in 
Figures 3b,c, the outcomes of pressure and concentration from 
PINN and COMSOL Multiphysics are evaluated as highly 
consistent, respectively. While the ultimate goal is to predict 
concentration distribution within the computational domain, root 
mean square error (RMSE) is calculated for the concentration 
profiles, which is 0.001 for steady pressure-driven flow.

FIGURE 2 
(a) The distribution of streamwise velocity magnitude under pressure-driven flow conditions, (b) The distribution of transverse velocity magnitude 
under pressure-driven flow conditions, (c) The distribution of pressure magnitude under pressure-driven flow conditions, (d) The distribution of chemical 
species at rest in the solution domain for pressure-driven flow conditions.

FIGURE 3 
(a) The plot of streamwise velocity magnitude obtained from PINN and FEA analysis, (b) The plot of pressure variation along the centerline of the 
microchannelsd according to both PINN and COMSOL Multiphysics (c) Uniform concentration profile is observed throughout the length of the 
microchannel for PINN and COMSOL Multiphysics.
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To present the prediction performance of the PINN for higher 
Reynolds numbers, the velocity and concentration profiles at Re = 5 × 
10−4 and Re = 5 × 10−2 are conducted. The Re number is raised to Re = 
5 × 10−4 and Re = 5 × 10−2 by increasing the velocity magnitude of the 
flow, and the results are plotted in Figure 4. Note that, the first row 
demonstrates the results of pressure-driven flow and the second row 
presents those of electroosmotic flow. The concentration distributions 
at Re = 5 × 10−4 and Re = 5 × 10−2 along the centerline of the 
microchannel within 1s are shown in Figures 4a,d, respectively. At 
Re = 5 × 10−4, the concentration can only reach approximately 60 µm 
from the channel wall in the streamwise direction within 1s. However, 
the concentration can reach the exit wall of the channel within 1s at 
Re = 5 × 10−2. In both results, PINN and COMSOL data are in good 
agreement. The velocity profiles of PINN at both Reynolds numbers 
for pressure-driven and electroosmotic flows exhibit excellent 
compatibility with those obtained from COMSOL Multiphysics, as 
seen in Figures 4b,c,e,f. The maximum x-velocity values are u = 
0.025 mm/s and u = 2.5 mm/s for Re = 5 × 10−4 and Re = 5 × 10−2, 
respectively.

Fluid flow in the previous steady model is driven 
electrokinetically via PINN with 3.60 × 10−4 error margin. As 
seen in Figure 5a, x-velocity is uniform throughout the entire 
domain; hence, plug-like flow profile is obtained. Uniformly 
divided zero magnitude is also observed for y-velocity, as 

illustrated in Figure 5b. As depicted in Figure 5c, the electrical 
potential is linearly decreased from the maximum value of ϕ = 
0.0070621 V to zero from the inlet to the outlet. Chemical species are 
uniformly filled to the microchannel domain with the determined 
inlet concentration of C0 = 5 mol/m3, as shown in Figure 5d.

Numerical values from the given dependent variables are 
schematized in Figure 6. As shown in Figure 6a, the x-velocity 
along the width of the microchannel remains constant, which 
overlaps exactly with the outcome of COMSOL Multiphysics. 
The value of the fluid velocity along the x-direction is calculated 
as u = 0.25 µm, equal to the maximum value of the pressure-driven 
flow. Similar to PINN, FEA solution results in no variation in 
y-velocity magnitude. Besides, electrical potential solving along 
the length of the microchannel is nearly identical between PINN 
and FEA, as shown in Figure 6b. Overlapping the outcomes of two 
solvers is also obtained for concentration values, which are plotted 
along the microchannel length in Figure 6c while RMSE = 0.003.

The transport of the species is solved in a time-dependent 
domain, while the other parameters are kept the same. In 
contrast with PINN solver, time-dependent velocity term is 
included to Navier-Stokes equation for finite element solver. 
Nevertheless, x-velocity, y-velocity and pressure profiles are 
perfectly matched for pressure-driven, and electroosmotic flows, 
where x-velocity profiles are presented in Figures 7a,b. Therefore, 

FIGURE 4 
(a) Concentration profiles of the pressure-driven flow along the centerline of the microchannel for both Re = 5 × 10−4 and Re = 5 × 10−2 (b) Velocity 
profile of the pressure-driven flow from lower wall to upper wall for Re = 5 × 10−4 (c) Velocity profile of the pressure-driven flow from lower wall to upper 
wall for Re = 5 × 10−2 (d) Concentration profiles of the electroosmotic flow along the centerline of the microchannel for both Re = 5 × 10−4 and Re = 5 × 
10−2 (e) Velocity profile of the electroosmotic flow from lower wall to upper wall for Re = 5 × 10−4 (f) Velocity profile of the electroosmotic flow from 
lower wall to upper wall for Re = 5 × 10−2.
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computational cost is decreased in PINN solution using this strategy 
safely. On the other hand, the time-dependent concentration term is 
included in the Nernst-Planck Equation for both solvers. Therefore, 
the distribution of the chemical species is altered as time progresses. 
Concentration maps of PINN calculations are illustrated in Figure 8, 
whose error margin is 4.76 × 10−3. As seen in Figure 8a, half of the 
maximum concentration value is reached at approximately 75 μm 
length of the channel at t = 50 s. Besides, half maximum 
concentration value is observed for t = 100 s at approximately 
120 μm length, as shown in Figure 8b. Chemical species are further 
pushed through the channel length, and half of the maximum 
concentration value is barely observed adjacent to the outlet for 
t = 150 s, as shown in Figure 8c. Following the general trend, half of 
the maximum value is exceeded at every point for the last second, as 

shown in Figure 8d. Though the lowest value is calculated at the 
outlet, higher than C = 3 mol/m3 is effective.

Concentration values from the previous maps are also 
schematically displayed in Figure 9. Curves are plotted along the 
centerline of the microchannel with both PINN and FEA. A good 
agreement is observed among the solutions of the solvers. 
Concentration values are initialized from the prescribed inlet 
concentration, which is C0 = 5 mol/m3, and decreased 
quadratically towards the outlet. According to PINN, the 
chemical species is accumulated on the outlet as corresponding 
to C = 0.52 mol/m3 at t = 50 s, this value is gradually increased to C = 
1.75 mol/m3, C = 2.71 mol/m3, C = 3.36 mol/m3 for t = 100s- 
150s–200 s, respectively. From the perspective of FEA, these 
values are calculated as C = 0.52 mol/m3, C = 1.75 mol/m3, 

FIGURE 5 
(a) The distribution of x-velocity in the microchannel domain (b) The distribution of y-velocity in the microchannel domain (c) The variation of 
electrical potential from the inlet to the outlet (d) The distribution of chemical species in the microchannel.

FIGURE 6 
(a) x-velocity magnitudes of electroosmotic flow for PINN and FEA solutions, (b) Electric potential values obtained from PINN and FEA solutions, (c) 
concentration profiles obtained from PINN and FEA solutions.
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C = 2.71 mol/m3, C = 3.39 mol/m3 for t = 50–100-150–200 s, 
respectively. For each of the given time steps RMSE values are 
calculated, such as 0.033–0.005–0.006–0.025 in ascending order.

Electrokinetically-driven system is adapted to a time-dependent 
problem via PINN, with 6.02 × 10−3 error margin. The Navier-Stokes 
and the Continuity equations remain steady-state, similar to the 
pressure-driven modeling. Moreover, no time-dependent 
component is intrinsically possessed by the Laplace Equation. 
Therefore, transformation to time-dependent formation is solely 

implemented in the Nernst-Planck Equation. As a result, identical 
calculations are carried out for all dependent variables, except for the 
concentration. Concentration maps are derived from PINN and 
depicted for t = 50–100-150–200 s in Figures 10a–d, respectively. 
Chemical species are moved from the inlet to the outlet, which leads 
to a filled microchannel with prescribed inlet concentration.

Concentration values are specified along with FEA in Figure 11, 
which are plotted as a quadratically decreasing pattern. Also, the 
curves of PINN and FEA overlap at every time point. For t = 50 s, the 

FIGURE 7 
Comparison of x-velocity profiles of steady PINN solutions and time-dependent COMSOL Multiphysics for (a) pressure-driven flow and (b) 
electrokinetically-driven flow.

FIGURE 8 
Chemical species transport under pressure-driven flow conditions for the moments of (a) t = 50 s (b) t = 100 s (c) t = 150 s (d) 200 s.
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largest deviation is observed between the PINN and FEA, especially 
adjacent to the outlet. Inlet concentration is always calculated as 
C0 = 5 mol/m3, due to the invariable nature of the predefined 
boundary concentration. On the contrary, the outlet concentrations 

are varied as C = 0.72 mol/m3, C = 1.93 mol/m3, C = 2.83 mol/m3 and 
C = 3.46 mol/m3 for t = 50–100-150–200 s, respectively. 
Correspondence of these values is calculated by COMSOL 
Multiphysics, such as C = 0.55 mol/m3, C = 1.85 mol/m3, 

FIGURE 9 
The concentration distributions for pressure-driven flow.

FIGURE 10 
Chemical species transport under electrokinetically-driven flow conditions for the moments of (a) t = 50 s (b) t = 100 s (c) t = 150 s (d) 200 s.
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C = 2.84 mol/m3, and C = 3.52 mol/m3 for t = 50–100-150–200 s, 
respectively. Most deviation is observed at the outlet, which is 30% 
higher than that of PINN. However, RMSE values are calculated as 
adequately low, such as 0.077–0.048–0.014–0.042 t = 50–100- 
150–200 s, respectively. All aforementioned RMSE values for 
the related problems are lower than 0.1, which can be 
considered as fairly acceptable while the concentration interval 
is between 0 and 5. Besides, low RMSE values for pressure-driven 
and electrokinetically-driven flows are another proof for 
consistency between the analyses of steady and time-dependent 
of Navier-Stokes Equations.

4 Conclusions

In the present study, the transport of fluid and species along a 
straight microchannel is presented using physics-informed neural 
networks (PINN) for Reynolds numbers within a range of 5 × 10−6 

≤ Re ≤ 5 × 10−2. For this purpose, Navier-Stokes and Nernst-Planck 
equations are solved simultaneously with PINN, in which the 
velocity term is determined as the coupling parameter between 
these equations. The models are initially defined as steady, and the 
fluid and species transport are investigated in a microscale domain 
under pressure-driven and electroosmotic flow conditions. The 
predefined models are modified to be time-dependent for these 
flow conditions. Each calculated data point is compared with the 
outcomes of a solver for finite element analysis (FEA), COMSOL 

Multiphysics. Since the Navier-Stokes equation remains steady to 
alleviate the computational burden of PINN, its time-dependent 
form is implemented in FEA. Moreover, the pressure scale for PINN 
must be determined according to the inlet pressure to achieve 
reasonable loss values. It is observed that PINN and FEA solvers 
are in alignment for all conditions under the steady and time- 
dependent states. This significant overlap between the two solvers is 
quantitatively expressed with RMSE values. RMSE values for 
concentration profiles are determined as 0.001 and 0.003 for 
steady pressure-driven and electroosmotic flows, respectively. 
RMSE values of concentration profiles are separately calculated at 
t = 50–100-150–200 s for time-dependent problems, which are 
0.033, 0.005, 0.006, and 0.025, and 0.077, 0.048, and 0.014 for 
pressure-driven flow and electrokinetically-driven flow, 
respectively. Therefore, the steady Navier-Stokes equation can be 
safely utilized instead of the time-dependent one for fluid flow 
problems. The slightly higher RMSE of the electrokinetics can be 
attributed to the inclusion of one more dependent variable. In 
conclusion, PINN provides a suitable alternative for solving fluid 
and mass transport problems along a microchannel under current 
conditions.
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FIGURE 11 
The concentration distributions for electroosmotic flow.
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Nomenclature
t Time variable

x Location variable for the horizontal axis

y Location variable for the vertical axis

L Length of the microchannel and length scale

W Width of the microchannel

V Fluid velocity

u x-velocity

v y-component of the fluid velocity

ρ Fluid density

µ Fluid viscosity

p Pressure

Pin Inlet pressure

Pout Outlet pressure

F Body force

Φ Electrical potential difference

ϕin Inlet electrical potential difference

ueow Smoluchowski slip velocity in the -x direction

ε Electrical permittivity of the medium

ζw Zeta potential of the microchannel walls

Et The tangential component of the electrical field

C Concentration

C0 Inlet concentration

D Diffusion coefficient

σ Activation function of the neural network

tscale Scaling factor for time term

Lscale Scaling factor for length terms

uscale Scaling factor for velocity term

pscale Scaling factor for pressure term

Cscale Scaling factor for concentration term

ϕscale Scaling factor for electric potential term

t* Dimensionless time variable

x* Dimensionless horizontal location variable

y* Dimensionless vertical location variable

V* Dimensionless velocity

u* Dimensionless x-velocity

p* Dimensionless pressure

C* Dimensionless concentration

ϕ* Dimensionless electric potential

2D 2-dimensional

Re Reynolds number

Pe Peclet number

EDL Electrical double layer

FEA Finite element analysis

L Loss term of the neural network

MSEf Mean-squared error of the partial differential equation

MSEb Mean-squared error of the boundary condition

MSEinit Mean-squared error of the initial condition

f (t*if , x*if , y*if ) Calculated values of the partial differential equation

ũ(t*if , x*if , y*if ) Calculated values of the boundary condition

u
═
(t*if , x*if , y*if ) Calculated values of the initial condition

ũ The exact value of the boundary condition

u
═

The exact value of the initial condition
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