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Introduction: In the present study, fluid and mass transport along a microchannel
are aimed to be solved using physics-informed neural networks (PINN), which is
an emerging solution method for partial differential equations (PDEs). For
verification purposes, the same cases under identical conditions are modeled
with a solver for finite element analysis (FEA), COMSOL Multiphysics.

Materials and methods: Continuity, Navier-Stokes, and Nernst-Planck Equations,
which characterize momentum and mass conservation, are solved
simultaneously by PINN as well as COMSOL Multiphysics. The problems are
defined as steady or time-dependent with varying Reynolds numbers in the
interval of 5 X 107 < Re < 5 X 1072. The fluid is flowed by either pressure-driven or
electrokinetically-driven. PDEs are nondimensionalized by scaling the quantities
for PINN solving on the purpose of alleviating the computational burden. In
contrast to usual approach, where the pressure scale is viscosity multiplied by the
velocity scale divided by the length scale, pressure scale is determined as its
maximum value.

Results and discussion: Calculation errors of PINN solver are observed as
reasonably low, such as 3.04 x 107°, 4.76 x 1073, 3.60 x 107*, 6.02 x 107° for
steady pressure-driven flow, time-dependent pressure-driven flow, steady
electroosmotic flow, and time-dependent electroosmotic flow, respectively.
To reduce the error margin at these values, pressure scale must be defined as
the maximum pressure value. Therefore, the results of the FEA solver exhibit
excellent overlap with the data obtained from PINN. For PINN, species
concentrations of 0.52-1.75-2.71-3.36 mol/m?® are accumulated at the outlet
under pressure-driven flow for time points 50-100-150-200 seconds,
respectively. Under electrokinetic flow, species concentrations are varied as
0.72-1.93-2.83-3.46 mol/m® for the same time points, respectively. In
consideration of FEA, species concentrations are calculated as
0.52-1.75-2.71-3.39 mol/m* and 0.55-1.85-2.84-3.52 mol/m?® under similar
conditions for pressure-driven and electroosmotic flows, respectively.
Conclusion: Both Navier-Stokes and Nernst-Planck Equations can be solved with
PINN in a single model, regardless of the flow generation method and the time
dependency of the model. Because nearly identical calculations are carried out
by the FEA solver. As a result, PINN is a notable alternative for simultaneous
modeling of the flow and mass transport under pressure-driven and
electrokinetic conditions for microfluidic applications.

microfluidics, physics-informed neural network, Navier-Stokes equation, nernst-planck
equation, electrokinetics

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fmech.2025.1651334/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1651334/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1651334/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1651334/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2025.1651334&domain=pdf&date_stamp=2026-01-21
mailto:ccanpolat@cu.edu.tr
mailto:ccanpolat@cu.edu.tr
https://doi.org/10.3389/fmech.2025.1651334
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2025.1651334

Tatlisoz and Canpolat

1 Introduction

Fluid flow is a prominent component in many engineering
applications, such as micro-nanofluidic chips (Canpolat et al,
2013a), hemodialysis (Abohtyra et al, 2019), etc. Therefore, a
significant effort is made to understand the complex nature of the
fluid flow. For instance, flow in the progressing cavity pumps (Al-
Safran et al., 2017), viscous flow in a pressure-swirl atomizer (Laurila
et al, 2019), flow along the obstructed airway (Tsuboi et al., 2019),
multiphase flow in porous media (Lauser et al., 2011), etc. Countless
analyses in this field are conducted in silico media due to relatively low
costs, rapid results, and quantitative insight for the proposed designs.
Navier-Stokes and Continuity equations are mainly used to solve fluid
flow from the point of view of the continuum. If diluted chemical
species are in action within the fluid medium, the Nernst-Planck
Equation is generally incorporated into the model to understand
different transport mechanisms of the dissolved chemical species,
such as diffusion, convection, and electromigration. The fluids are
conventionally mobilized with pressure differences across the
channels. However, some significant disadvantages are attributed
to the pressure-driven flow systems. The parabolic flow profile is
effective in the flowing domain, which attenuates control over the
emerging flow. Moreover, the system must be equipped with
mechanical pumps, which leads to higher fabrication costs and
heating effects due to friction. Alternatively, a material can also be
moved with externally applied electrical fields, which is referred to as
electrokinetic phenomena (Canpolat et al., 2013b). In these systems,
electrodes are embedded in the channel to implement electrical fields
to the flow domain; thus, the drawbacks of pressure-driven systems
are avoided. By this way, the parabolic flow profile is replaced with a
plug-like flow profile. These flow systems allow to control fluid and
particles by miniaturizing the geometry of the design, which is one of
the advantages of microfluidic applications. For instance, a few
circulating tumor cells are isolated from the whole blood in the
work of Sarioglu et al. (2015), optimum sizes of the liposomes are
investigated to the extent of drug delivery vehicles in the work of
Andar et al. (2014), an efficient gene delivery is carried out to hard-to-
transfect typed cells by Hur et al. (2020), and some biological toxins as
far as to picomolar levels are able to be detected by Meagher et al.
(2008). Moreover, several additional precious advantages can be
attributed to microfluidic systems, which can be sorted as
improved control on the fluid flow, low sample consumption, low
analysis duration, high sensitivity, portability, and readily integration
with useful parts. Fluids are also mobilized with surface acoustic waves
(SAW) in many studies, such as analysis of water droplet motion for
varying RF powers and frequencies (Insepov et al., 2021), investigation
of SAW control parameters on the sessile drop under gravitational
force (Noori et al., 2021), analyzing acoustophoretic movement of
polystyrene beads, white blood cells, MCF-7 breast cancer cells
(Namnabat et al, 2021), generation of heating in a fluid (Das
et al, 2019). Generally, applications of microfluidics, especially in
the bioscience are conducted under low Reynolds number (Re),
Re<<1 (Tatlisoz and Canpolat, 2018). Because effective control of
synthetic and biological particles can be achieved, and high shear
stresses due to the high Re number can also threaten the conservation
of the structure and function of biological molecules such as enzymes,
proteins, and cells. For instance, the intracellular transport of
biomolecules under electroosmotic flow conditions is modeled by
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Andreev approximately at Re = 107%, droplets are formed with Re =
1.16 x 1077 in the work of Fadhil Majnis et al. (2018), micromixing
with the magnetically actuated cilia is carried out at Re = 1.16 x 107> by
Wu et al. (2017), uneven colloidal particles are transported in
coordinate for Re < 107 according to the work of Reinmiiller
et al. (2013), simulating circulating tumor cell movement in an
arteriole is performed under Re = 2.98 x 107 as proposed in the
work of Xiao et al. (2021). Moreover, transport in a nanopore with
electroosmotic or pressure-driven flow occurs in a low Reynolds
number regime (Mao et al,, 2014).

Machine learning is an extremely popular topic among scientific
studies, due to its feasibility in many diverse areas, such as energy
management (Musbah et al., 2021), chemical reactions (Singh et al.,
2019), two-phase flows (Jalili et al., 2024), etc. Neural networks are a
subset of machine learning that utilizes densely interconnected
neurons to solve problems. Training of the neural network is
possible solely with the datasets. However, this approach is
impractical for many problems, due to the demand for large
datasets and being deprived of physical constraints. Raissi et al.
(2019) developed PINN to address this issue. Either forward or
inverse problems are described as partial differential equations
(PDEs) and solved with neural networks. Moreover, physical
constraints can be incorporated into the model with PINN; thus,
the accuracy of the results can be enhanced. Navier-Stokes Equation
is frequently introduced to PINN for various flow problems, such as
aneurysms in blood vessels (Oldenburg et al., 2023), the flows with
vortex-induced vibrations (Bai and Zhang, 2022), and the
investigation of fluid flow around circular and elliptical solid
particles (Hu and McDaniel, 2023). PINN is also considered to
solve the transport problems of the materials via the Nernst-Planck
Equation (Huang et al., 2024). However, many problems should be
described with both the Navier-Stokes Equation and the Nernst-
Planck Equation, such as electrokinetic fluid flow through a
nanopore (Mao et al., 2014), investigating flow effects on ion-
2023), directing and
capturing of the DNA particle in a nanopore (Paik et al., 2012),

selective electrodes (Andrews et al,
electrodiffusion in fluids (Constantin et al., 2021), ion transport
throughout a porous medium (Agnaou et al., 2020).

In this study, Navier-Stokes and Nernst-Planck equations are
solved simultaneously with PINN to understand the liquid flow and
species transport along a straight microchannel under pressure-driven
and electroosmotic flow conditions for various Reynolds numbers
within 5 x 107° < Re < 5 x 1072 When the time-independent problem
calculations are completed, time-dependent versions of the given
problems are introduced to the PINN. In this sense, liquid flow is
generated by a pressure difference or electrokinetically. The same
models are established with the finite element solver COMSOL
Multiphysics, and the obtained results from the PINN are validated
through comparison. The PDEs are solved with neurons and weight
parameters by PINN. Acquiring matching results with different solving
techniques can be submitted as a powerful verification method.

1.1 Novelty of the study

The present investigation provides a novel approach utilizing
the Physics-Informed Neural Network (PINN) for modeling the
fluid and species transport along a microchannel, which is the critical

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1651334

Tatlisoz and Canpolat

10.3389/fmech.2025.1651334

o1
S o S SN e

WAVl Q:’
72 ,
it

i °5‘z§"'°“‘&\"i
S

A

/'

0
()—)

. v,
(el

L2g

v

>N
\'\
W = 200pum )
1‘/‘
-
=
L =2000pum
W =200pm
L = 2000pum
FIGURE 1

' W 7\
LEON WY
Y 3G
)
N v

W,

Q3
0
(d)

4
\

(a) Parabolic flow profile is governed in a microchannel with the length of L = 200 ym and width of W = 20 pm (b) Plug-like flow profile is governed in
a microchannel with the length of L = 200 um and width of W = 20 pm (c) Designed neural network to solve pressure-difference problems (d) Designed

neural network to solve electrokinetically-driven problems.

component for bio-/microfluidic devices. These transport mechanisms
are analyzed under pressure gradients and electrokinetic forces, which
are the primary driving mechanisms in microfluidics. For this purpose,
the Navier-Stokes and the Nernst-Planck equations are coupled on the
common term velocity. In contrast to the previous studies, this work
introduces a key refinement by defining the pressure scale based on the
inlet pressure value; thus, lower error margins are achieved during the
neural network training. The calculated results of the PINN are
compared with the Finite Element Analysis (FEA) software
COMSOL Multiphysics, whose results are highly consistent with the
actual results. Thus, outcomes of the PINN can be evaluated using
actual values. This proposed model can be safely implemented in
biomedical engineering designs, including mass transport, bioreactors,
bioanalytical devices, micromixers, etc. Given the growing interest in
PINN-based solutions recently, PINN has been an emerging field and
has gathered significant attention. We believe this work will attract
considerable interest within the relevant community and contribute to
ongoing achievements in the field.

2 Materials and methods

The fluid flow is modeled in a 2-dimensional (2D) rectangular
channel, which has a length of L = 200 um and width of W = 20 pym,
as shown for parabolic flow and plug-like flow profiles in Figures
la,b, respectively. Left and right boundaries of the microchannel are
determined as the inlet and the outlet, respectively. The fluid is
characterized as Newtonian and incompressible, while its flow
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described  with Navier-Stokes

equations along with the continuity equation, as shown below:

behavior is time-dependent

0
pa—ttlz—Vp+yV2V+f 1)

V.v=0 (2)

where the symbols of V, p, p, i1, f (Equations 1, 2) are velocity, density,
viscosity, pressure, and body force, respectively. The bold characters
are preferred to indicate vector quantities. The inertial term is
excluded from Equation 1, due to the very low Re being effective,
suchasRe=5x107%5x 107 and 5 x 107> (Ai et al., 2009; Namnabat
et al., 2021). Under these circumstances, flow disturbances on the
biological specimen can be avoided, and more functionality can be
gained from shorter microfluidic channels with enhanced control of
whole microfluidic system. Moreover, the body force term equals
zero, due to no external body force acting on the system for all
developed models. All the parameter values are listed in Table 1.

Fluid flow is generated either pressure-driven or electrokinetically.
For pressure-driven flow, a pressure gradient is established throughout
the channel, by applying an equation for parabolic velocity profile to
the inlet of the microchannel, as shown in Equation 3:

ApW2<l_ﬂ) 3)

Uparabolic = — 7
parabolic = gL, w2

where Ap is the pressure drop through the channel length, which
equals to difference between inlet and outlet pressures, i.e., Pij—Poye.
Moreover, outlet pressure is defined as zero, and zero velocity is
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TABLE 1 Parameters and definitions used in the present study.

10.3389/fmech.2025.1651334

Symbol Definition Value
w Width of the channel 20 ym
L Length of the channel 200 um
n Viscosity of the fluid 107 Pa. s
p Density of the fluid 1,000 kg/m®
Pin Inlet pressure 107 Pa
£ Permittivity of free space 8.854 x 107"* F/m
& Relative permittivity of the fluid 80
g Zeta potential of the channel walls -0.01V
Gin Inlet potential 0.0070621 V
D Diffusion coefficient of the diluted species 107" m?/s
Cin Inlet concentration 5 mol/m?
Dicale Diffusion coefficient term scaling factor 107" m*/s
Pocate Pressure term scaling factor 107 Pa
Cqcale Concentration term scaling factor 5 mol/m?®
Gscale Electric potential term scaling factor 0.0070621 V
Ugcale Velocity term scaling factor 2.5 x 107 m/s
L* Dimensionless length of the channel 1 (=L/L)
wx Dimensionless width of the channel 0.1 (=W/L)
D* Dimensionless diffusion coefficient of the diluted species 1 (=D/Dycqle)
p* Dimensionless inlet pressure 1 (=P/Pgcae)
C* Dimensionless inlet concentration 1 (=Cin/Cscate)
9* Dimensionless inlet potential 1 (=@in/Pscale)

defined to the upper and lower walls of the microchannel due to no-
slip boundary condition. If the electroosmotic flow is in question, a
potential is defined to the inlet of the channel, ¢;,,, and the outlet is
grounded. Therefore, an electrical potential gradient is established
throughout the channel. With the assigned anode potential, flow
velocity through the cross-section of the channel equals the
maximum velocity value for the pressure-driven flow. Because
the channel width is scaled to the extent of micrometers, the
existence of an electrical double layer (EDL), in the vicinity of
the upper and lower boundaries is neglected. The characteristic
nano-scaled thickness of EDL is much lower than the proposed
micro-scaled channel width; hence, this approximation is valid
(de Rutte et al., 2016). Therefore, Smoluchowski slip velocity is
applied to both upper and lower boundaries of the microchannel,
instead of the no-slip boundary condition, as given in Equation 4:

U, = — sc_wEt (4)
U

where the symbols of €, {,, |, E; are the electrical permittivity, zeta
potential of the microchannel walls, the viscosity, and the tangential
component of the external electrical field. Due to 2D design in
Cartesian coordinates, vectorial quantities are comprised of x- and
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y-components. Therefore, the x-component and y-component of
the velocity quantity are denoted as u and v, respectively. While non-
zero velocity values are always attributed to the u component, a zero
value is always defined for the v component. Another outcome of the
no-EDL approximation is related to the electrical charge distribution
within the microchannel. Laplace equation, Equation 5, is employed
for solution domain, instead of the Poisson equation, due to the
elimination of the only net charge, including the area within the
cross-section of the channel:

V=0 )

where ¢ is the electrical potential.

A single chemical species is dissolved within the fluid. Transport
of the dissolved species is described with Equation 6, which is time-
dependent Nernst-Planck Equation:

9P _ DV*C-V.NC (6)
ot
where the symbols of C and D are the concentration and diffusion
coefficient of the diluted species, respectively. While first term of the
right side of the equation is the diffusive flux, and the second term is
the convective flux. The diffusion coefficient is assumed constant,
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due to the usage of a single type of fluid, isothermal conditions,
and low pressure drop between the inlet and the outlet.
Accordingly, term V is assigned as the coupling parameters,
due to the co-existence of the Navier-Stokes and the Nernst-
Planck equations. Note that the chemical species is assumed as
neutral; thus, the electromigration term of the Nernst-Planck
equation is discarded. If the isoelectric point of the relevant
species is equalized to the ambient pH, zero electromigration
can be obtained. The entrance of the chemical species to the
microchannel is carried out by defining a constant concentration
at the inlet, C = C;,. The chemical species is collected from the
outlet. The upper and lower boundaries are defined as non-
permeable, as well. These definitions are implemented to the
system by Equation 7:

n.DVC =0 (7)

The proposed models are carried out with PINN as well as
commercial simulation software COMSOL Multiphysics, and
subsequently the acquired solutions are compared. Because FEA
is utilized by COMSOL Multiphysics for problem-solving, a mesh
with tetragonal elements is applied to the microchannel domain. A
model is  consecutively  solved  for  meshes  with
1,000-2000-3,000-4,000-16000 quadrangle elements, and less
than 1% solving difference is observed between the last two
combinations. Therefore, the mesh with 4,000 elements is used
for all FEA models. Instead of discretization by meshing, governing
equations and boundary/initial conditions are converted to an
optimization problem, whose performance is qualitatively
evaluated by a loss function, for PINN modeling. Estimations are
made in an unsupervised manner according to some specific points
within the space-time domain to minimize the loss function.
Therefore, the proposed mathematical model is introduced to a
neural network with three hidden layers of 100 neurons. The neuron
number of the outlet layer always equals to the number of dependent
variables, such as x-velocity, y-velocity, pressure, and concentration
for the current problem. For the model including the electrokinetics
phenomenon, the electrical potential difference is incorporated into
the model; hence, five neurons are located in the output layer.
Correspondingly, neuron numbers of the inlet are determined
according to the number of independent variables of the
problem, which are the x-coordinate, the y-coordinate, and time.
Therefore, three and two neurons are stationed at the inlet boundary
for time-dependent and steady problems, respectively. Weight
parameters are defined upon all these connections and loss
function is diminished by solely altering the weight parameters
during the problem solving. Hyperbolic tangent function (tanh) is
applied inside of the neurons as an activation function (o), due to
better approximation performance on the analytical function (De
Ryck et al, 2021). Adam optimizer is used for training the neural
network, which is based on gradient descent algorithm with adaptive
learning rates for weight parameters (Kingma and Ba, 2014). After
40,000 iterations with the learning rate of 1 x 107*, L-BFGS
optimizer is employed to further reduce the loss function.
L-BFGS is the memory efficient version of a quasi-Newton
algorithm BFGS, which uses line search to determine the
optimum weight parameters (Rafati and Marica, 2020). The
simulations are sustained for t = 200 s, due to system can
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substantially approach to steady-state within this duration. The
PINN model is designed by benefiting from the DeepXDE
library, which was developed by Lu et al. (2021) in the Python
programming language.

The neural networks for the pressure-driven and the
electrokinetically-driven systems are schematized in Figures lc,d,
respectively.

Initially, the problems are defined as time-independent;
hence, the time neuron is subtracted from the inlet layer and
the term in the left-hand side of the equation is discarded.
Moreover, the governing equations and boundary conditions
are nondimensionalized for better training of the model. Some
scaling parameters are defined for the variables of the
equations  with  the  purpose  of
nondimensionalization. L, p;,, D, C;, is used as length scale,

aforementioned

pressure scale, diffusion coefficient scale, and concentration
scale, respectively. Accordingly, the maximum value of the
parabolic velocity profile is used as the velocity scale, which
equals Us,e = (ApW?)/(8 pL), and the time scale is determined
as tscale = L/Uscale- Sincethe pressure scale is assigned as pgcale =
MUscale/L, in accordance with the usual approach, the error
margins can solely be diminished to 1.03 x 107" and 1.23 x
107" for steady and time-dependent pressure-driven problems.
Therefore, the obtained solutions are diverted from the exact
values. On the contrary, 3.04 x 107> and 4.76 x 10~ error margins
steady and
respectively, when pgee = Pin. During the solving of steady

are reached for time-dependent problems,
problems, time-dependent parameters at the left-hand side of
the Navier-Stokes and the Nernst-Planck equations are omitted.
For PINN solving, time-dependent parameter of the Navier-
Stokes Equation is not considered for the purpose of alleviating
the computational burden. On the other hand, no pressure
difference is exerted on the electrokinetically-driven system;
hence, p;, is defined as unity to prevent the production of
infinitive value in the Navier-Stokes Equation. As a result, all
governing equations, such as the Navier-Stokes equation,
continuity equation, Nernst- Planck equation, and Laplace
equation, are nondimensionalized as given in Equations 8-11,

respectively:
Musmle 2
0=-Vp*+| —— |Vv*V* (8)
4 (psculeL)

V*V*=0 9)

oc* 1
= —D*V*C* — (u*.V*C* 10
ot Pe (u ) (10)
V¥ =0 (11)

where Pe is the dimensionless Peclet number describing the ratio
between the convective and diffusive fluxes, as Pe = (ugy.L)/D. The
input variables and boundary/initial conditions are nondimensionalized,
as well, which are shown in Equations 12-27:

=2 (12)

y* =% (13)
t

r= (14)
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Pi,=lif x* = 0Oand y*

= [0, 0.1] for pressure — driven flow conditions (15)
P;,= 0if x* = land y*
= [0, 0.1] for pressure — driven flow conditions (16)

P,=0if x* = 0and y* = [0,0.1] for electroosmotic flow conditions

(17)
Pj,=0if x* = 1and y* = [0,0.1] for electroosmotic flow conditions
(18)
* Vin .
Vin= v if x*=0and y* =[0,0.1] (19)
scale
4y*2
u*=<1—W*2>ifx*=O(mdy*=[0,0.1] (20)
u;:Oifx*:[O,l]andy*=00r1 (21)
Uy, = Lif x* = [0,1] and y* = Oor 1 (22)
v* = 0 for all boundaries (23)
Cin= CC”” if x* = 0and y* = [0,0.1] (24)
scale
GC* . * * _
E)x*_OIfx =0orland y* =10,0.1] (25)
oC* . .
8y*:01fx*=[0,1]andy =0orl (26)
C*=0ift*=0 (27)

Training and test performances of the PINN are evaluated by
calculating the loss value to the mean-squared error (MSE) approach
for each of the partial differential equations and the boundary/ initial
condition, as given in Equation 28:

L = MSEs + MSE;, + MSE,;; (28)

where L is the total loss value. MSE;, MSE,, MSE;,;; are mean-
squared errors of the partial differential equations, boundary
conditions, and the initial conditions, respectively, and calculated
as shown in Equations 29-31, respectively:

MSE; = %ﬁ £ty (29)
i=1
1, . . 2
MSEy = 3 |a(t*}, x), y*) - | (30)
i=1
1T, 2
MSE;; = NZlu(t*"f,x"’f,y*"f) - ﬂ’l (31)
i=1

while f(t*i ,x*},y*if), ﬁ(t*;,x*},y*}), ft(t*if,x*if,y*}) are the
calculated values from the partial differential equation, boundary
condition, initial condition at the relevant collocation points and the
given time, respectively; the symbols @, G represent the exact
boundary condition value and the exact initial condition value,
respectively.

3 Results and discussion

Before solving the actual problems with PINN, it is necessary to
determine the optimal number of hidden layers and the number of
neurons per hidden layer, followed by optimizing the number of
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TABLE 2 Error margins for varied hidden layer numbers against varied
neuron numbers.

Neurons layers 10) 100 200
2 2.57E-02 2.93E-02 1.89E-02
3 2.11E-02 4.29E-04 2.63E-02
4 1.05E-02 1.31E-02 1.51E-02

TABLE 3 Error margins for varied boundary/initial point numbers against
varied domain points.

500

1,000

2,000 3,000 5,000

500-500 1.35E-02 2.21E-02 8.08E-03 9.27E-03 1.02E-02
1,000-1,000 1.08E-02 ‘ 8.60E-03 ‘ 1.33E-02 9.78E-03 ‘ 7.47E-03
2,000-2,000 1.59E-02 ‘ 1.02E-02 ‘ 2.31E-02 7.02E-02 ‘ 1.74E-02
3,000-3,000 1.37E-02 ‘ 1.33E-02 ‘ 1.10E-02 4.29E-04 ‘ 1.52E-02

domain points (Nd) and the number of boundary/initial points
(ND,i). By this means, the steady electrokinetic model is solved for
20,000 iterations according to a combination of the number of
neurons and the number of hidden layers. The hidden layers of 2-3-
4 are consecutively tested with 50-100-150 neurons per hidden
layer, as shown in Table 2. The optimal layer and neuron numbers
are determined as 3 and 100, respectively, based on the lowest error
margin. Afterwards, a series of domain points and boundary points
are introduced to the optimum neural network. The collation points
of 500-1,000-2000-3,000-5,000 are defined in the computation
500/500-1,000/1,000-2000/2000-3,000/
3,000 boundary points/initial points, successively. As seen in

domain along with
Table 3, the lowest error margin is recorded for 3,000 domain
points and 3,000/3,000 boundary/initial points. Moreover, no
significant overfitting is observed with the given hyperparameters.
The analyses are carried out in a workstation, which has an Intel
Xeon 2.40 GHz CPU and 64 GB RAM, after approximately 25 h,
with memory usage of approximately 3500 MB. However, the
problem-solving is completed in a few minutes and
approximately 1500 MB of memory usage with COMSOL
Multiphysics. It can be concluded that artificial neural networks
requires more improvements to lower the necessary duration and
memory for problem-solving compared to finite element method.
For this purpose, one of the suggestion is dividing the excess analysis
data by the decentralization method to diminish the duration for
PINN (Yang et al., 2025).

Due to outcomes of FEA are utilized to evaluate the accuracy of
the PINN solutions, COMSOL Multiphysics calculations are
validated by using the results of Yuan et al. (2023), and
significantly overlapping results are obtained, as shown
Supplementary Figure SI. As the initial problem, a steady
pressure-driven system is considered. In Figure 2, dependent
parameters of x-velocity, y-velocity, pressure, and concentration
are visualized according to the calculations of PINN with 3.04 x 10~
error margin. A parabolic flow profile is observed for x-velocity, as

can be seen in Figure 2a. That is, the minimum velocity magnitudes
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are calculated in the vicinity of upper and lower boundaries and the
maximum velocity magnitude is obtained on the centerline of the
microchannel. While the x-velocity at the boundaries is calculated as
zero due to no-slip boundary condition, the maximum velocity
magnitude along the centerline is calculated as u = 0.25 pm/s. On the
other hand, no velocity magnitude for y-component is obtained for all
points within the computational domain, as seen in Figure 2b. The
pressure magnitude starts from p;,, = 0.001 Pa and decreases linearly to
zero from the inlet to the outlet, as depicted in Figure 2c. Chemical species
are uniformly scattered throughout the microchannel with the prescribed
feeding value at the inlet, C; = 5 mol/m™ as shown in Figure 2d.

The calculations of the PINN are compared with those from
COMSOL Multiphysics, and the results are graphically exhibited in
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Figure 3. The values of x-velocity are plotted versus the cross-section
of the microchannel, and the results from two different solvers are
strongly consistent, as seen in Figure 3a. Although the graphical data
is not shown here, zero y-velocity values are also observed on every
point for COMSOL Multiphysics. In contrast to the variable of
x-velocity, pressure, and concentration variables are graphitized
through the longitudinal section of the microchannel. As seen in
Figures 3b,c, the outcomes of pressure and concentration from
PINN and COMSOL Multiphysics are evaluated as highly
consistent, respectively. While the ultimate goal is to predict
concentration distribution within the computational domain, root
mean square error (RMSE) is calculated for the concentration
profiles, which is 0.001 for steady pressure-driven flow.
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lower wall to upper wall for Re = 5 X 1072,

To present the prediction performance of the PINN for higher
Reynolds numbers, the velocity and concentration profiles at Re = 5 x
10" and Re = 5 x 107 are conducted. The Re number is raised to Re =
5x 107*and Re = 5 x 107 by increasing the velocity magnitude of the
flow, and the results are plotted in Figure 4. Note that, the first row
demonstrates the results of pressure-driven flow and the second row
presents those of electroosmotic flow. The concentration distributions
at Re = 5 x 10 and Re = 5 x 107 along the centerline of the
microchannel within 1s are shown in Figures 4a,d, respectively. At
Re =5 x 107, the concentration can only reach approximately 60 um
from the channel wall in the streamwise direction within 1s. However,
the concentration can reach the exit wall of the channel within 1s at
Re =5 x 107 In both results, PINN and COMSOL data are in good
agreement. The velocity profiles of PINN at both Reynolds numbers
for pressure-driven and electroosmotic flows exhibit excellent
compatibility with those obtained from COMSOL Multiphysics, as
seen in Figures 4b,ce,f. The maximum x-velocity values are u =
0.025 mm/s and u = 2.5 mm/s for Re =5 x 10 and Re = 5 x 107,
respectively.

Fluid flow steady model is
electrokinetically via PINN with 3.60 x 107* error margin. As

in the previous driven

seen in Figure 5a, x-velocity is uniform throughout the entire

domain; hence, plug-like flow profile is obtained. Uniformly
divided zero magnitude is also observed for y-velocity, as

Frontiers in Mechanical Engineering

illustrated in Figure 5b. As depicted in Figure 5c, the electrical
potential is linearly decreased from the maximum value of ¢ =
0.0070621 V to zero from the inlet to the outlet. Chemical species are
uniformly filled to the microchannel domain with the determined
inlet concentration of Cy = 5 mol/m?, as shown in Figure 5d.
Numerical values from the given dependent variables are
schematized in Figure 6. As shown in Figure 6a, the x-velocity
along the width of the microchannel remains constant, which
overlaps exactly with the outcome of COMSOL Multiphysics.
The value of the fluid velocity along the x-direction is calculated
as u = 0.25 um, equal to the maximum value of the pressure-driven
flow. Similar to PINN, FEA solution results in no variation in
y-velocity magnitude. Besides, electrical potential solving along
the length of the microchannel is nearly identical between PINN
and FEA, as shown in Figure 6b. Overlapping the outcomes of two
solvers is also obtained for concentration values, which are plotted
along the microchannel length in Figure 6¢ while RMSE = 0.003.
The transport of the species is solved in a time-dependent
domain, while the other parameters are kept the same. In
contrast with PINN solver, time-dependent velocity term is
included to Navier-Stokes equation for finite element solver.
Nevertheless, x-velocity, y-velocity and pressure profiles are
perfectly matched for pressure-driven, and electroosmotic flows,
where x-velocity profiles are presented in Figures 7a,b. Therefore,
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concentration profiles obtained from PINN and FEA solutions.

computational cost is decreased in PINN solution using this strategy
safely. On the other hand, the time-dependent concentration term is
included in the Nernst-Planck Equation for both solvers. Therefore,
the distribution of the chemical species is altered as time progresses.
Concentration maps of PINN calculations are illustrated in Figure 8,
whose error margin is 4.76 x 107. As seen in Figure 8a, half of the
maximum concentration value is reached at approximately 75 pm
length of the channel at t = 50 s. Besides, half maximum
concentration value is observed for t = 100 s at approximately
120 pm length, as shown in Figure 8b. Chemical species are further
pushed through the channel length, and half of the maximum
concentration value is barely observed adjacent to the outlet for
t =150 s, as shown in Figure 8c. Following the general trend, half of
the maximum value is exceeded at every point for the last second, as

Frontiers in Mechanical Engineering

shown in Figure 8d. Though the lowest value is calculated at the
outlet, higher than C = 3 mol/m’ is effective.

Concentration values from the previous maps are also
schematically displayed in Figure 9. Curves are plotted along the
centerline of the microchannel with both PINN and FEA. A good
agreement is observed among the solutions of the solvers.
Concentration values are initialized from the prescribed inlet
concentration, which is C, =
quadratically towards the outlet. According to PINN, the

5 mol/m? and decreased
chemical species is accumulated on the outlet as corresponding
to C=0.52 mol/m? at t = 50 s, this value is gradually increased to C =
1.75 mol/m®, C = 2.71 mol/m?, C = 3.36 mol/m?® for t = 100s-
150s-200 s, respectively. From the perspective of FEA, these
values are calculated as C = 0.52 mol/m? C = 1.75 mol/m?,
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C = 2.71 mol/m?® C = 3.39 mol/m?® for t = 50-100-150-200 s,
respectively. For each of the given time steps RMSE values are
calculated, such as 0.033-0.005-0.006-0.025 in ascending order.
Electrokinetically-driven system is adapted to a time-dependent
problem via PINN, with 6.02 x 10~ error margin. The Navier-Stokes
and the Continuity equations remain steady-state, similar to the
pressure-driven  modeling. Moreover, no time-dependent
component is intrinsically possessed by the Laplace Equation.
Therefore, transformation to time-dependent formation is solely

Frontiers in Mechanical Engineering

implemented in the Nernst-Planck Equation. As a result, identical
calculations are carried out for all dependent variables, except for the
concentration. Concentration maps are derived from PINN and
depicted for t = 50-100-150-200 s in Figures 10a-d, respectively.
Chemical species are moved from the inlet to the outlet, which leads
to a filled microchannel with prescribed inlet concentration.
Concentration values are specified along with FEA in Figure 11,
which are plotted as a quadratically decreasing pattern. Also, the
curves of PINN and FEA overlap at every time point. For t = 50 s, the
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largest deviation is observed between the PINN and FEA, especially
adjacent to the outlet. Inlet concentration is always calculated as
Cy = 5 mol/m’, due to the invariable nature of the predefined
boundary concentration. On the contrary, the outlet concentrations
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are varied as C = 0.72 mol/m?, C = 1.93 mol/m’, C = 2.83 mol/m? and
C 346 mol/m® for t 50-100-150-200 s, respectively.
Correspondence of these values is calculated by COMSOL
Multiphysics, such as C 0.55 mol/m?, C 1.85 mol/m?,
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C = 2.84 mol/m* and C = 3.52 mol/m? for t = 50-100-150-200 s,
respectively. Most deviation is observed at the outlet, which is 30%
higher than that of PINN. However, RMSE values are calculated as
adequately low, such as 0.077-0.048-0.014-0.042 t = 50-100-
150-200 s, respectively. All aforementioned RMSE values for
the related problems are lower than 0.1, which can be
considered as fairly acceptable while the concentration interval
is between 0 and 5. Besides, low RMSE values for pressure-driven
and electrokinetically-driven flows are another proof for
consistency between the analyses of steady and time-dependent
of Navier-Stokes Equations.

4 Conclusions

In the present study, the transport of fluid and species along a
straight microchannel is presented using physics-informed neural
networks (PINN) for Reynolds numbers within a range of 5 x 10°°
< Re <5 x 107 For this purpose, Navier-Stokes and Nernst-Planck
equations are solved simultaneously with PINN, in which the
velocity term is determined as the coupling parameter between
these equations. The models are initially defined as steady, and the
fluid and species transport are investigated in a microscale domain
under pressure-driven and electroosmotic flow conditions. The
predefined models are modified to be time-dependent for these
flow conditions. Each calculated data point is compared with the
outcomes of a solver for finite element analysis (FEA), COMSOL
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Multiphysics. Since the Navier-Stokes equation remains steady to
alleviate the computational burden of PINN, its time-dependent
form is implemented in FEA. Moreover, the pressure scale for PINN
must be determined according to the inlet pressure to achieve
reasonable loss values. It is observed that PINN and FEA solvers
are in alignment for all conditions under the steady and time-
dependent states. This significant overlap between the two solvers is
quantitatively expressed with RMSE values. RMSE values for
concentration profiles are determined as 0.001 and 0.003 for
steady pressure-driven and electroosmotic flows, respectively.
RMSE values of concentration profiles are separately calculated at
t = 50-100-150-200 s for time-dependent problems, which are
0.033, 0.005, 0.006, and 0.025, and 0.077, 0.048, and 0.014 for
flow and electrokinetically-driven  flow,
respectively. Therefore, the steady Navier-Stokes equation can be
safely utilized instead of the time-dependent one for fluid flow
problems. The slightly higher RMSE of the electrokinetics can be
attributed to the inclusion of one more dependent variable. In

pressure-driven

conclusion, PINN provides a suitable alternative for solving fluid
and mass transport problems along a microchannel under current
conditions.
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