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As high-speed rail networks continue to expand, the workload for train
maintenance has risen correspondingly, and the conventional
experience−based manual adjustment of spring compression during bogie
overhauls introduces significant uncertainty and safety risks. To address this
challenge, we develop a theoretical model for static spring-load adjustment in
two-axle railway vehicles, applicable to all four-axle bogie configurations,
including locomotives, urban metro cars, high-speed passenger units, and
freight wagons. By idealizing the bogie as a planar rigid body, we derive a
coupling matrix that relates the loads among the springs. To solve this model,
we propose an enhanced Grey Wolf Optimizer (S-GWO) designed to rapidly and
accurately identify the optimal adjustment strategy. Specifically, S-GWO
introduces three key enhancements to the standard Grey Wolf Optimizer: a
Gaussian-distributed nonlinear convergence factor that promotes extensive
global exploration in early iterations and rapid, precise convergence in later
stages, thereby improving both speed and accuracy; an adaptive learning and
exploration scheme that strengthens global search capabilities; and a Cauchy
perturbation mechanism applied to the α-wolf, which effectively balances local
search refinement with global jumping behavior. We validate the algorithm’s
performance by benchmarking S-GWO against several state-of-the-art
metaheuristics on twelve classical test functions and the engineering spring
function, employing rank-sum tests to confirm the superiority of our
enhancements. An ablation study is conducted to isolate and quantify the
independent contributions of each proposed modification. We apply the
model to the CRH2 bogie parameters and compare S-GWO’s performance
with that of several widely cited optimization algorithms. Experimental results
demonstrate that S-GWO offers significant advantages in convergence speed,
solution accuracy, practicality of shim placement schemes, and robustness.
These improvements further enhance the efficiency of controlling static bogie
center-of-gravity deviations. This study thus provides robust technical support
for precise center-of-gravity adjustment and prediction in four-axle rail vehicles.
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1 Introduction

According to the International Union of Railways (UIC)
statistics for 2024, the global railway network spans
1,305,000 km, of which 48,000 km are high-speed lines,
representing approximately 68% of the world’s total high-speed
railway mileage (Malott, 2023). Against this macro backdrop, the
large-scale operation and maintenance demands of high-speed
electric multiple units (EMUs; CRH series) have also grown
explosively. By 2024, the fleet of EMUs had rapidly risen to over
4,000 trainsets, and the total volume of corresponding maintenance
operations had increased several-fold (Tong et al., 2016). Roughly
estimated, each CRH trainset requires approximately 180 first-level
inspections and 12 second-level inspections per year, amounting to
tens of thousands of first- and second-level maintenance operations
system-wide annually (Hong et al., 2014). Such immense
maintenance demands pose unprecedented challenges to repair
efficiency, technical workforce capacity, and equipment
performance stability.

During EMU maintenance, the load distribution of the vehicle
suspension system critically affects wheel–rail forces, dynamic
performance, and passenger ride comfort. In particular, precise
adjustment of the secondary suspension load is crucial, as it
directly relates to optimizing vehicle dynamic performance and
ensuring running stability (Wickens, 1991). However, most
current methods for adjusting EMU suspension loads rely on
manually adding shims to regulate spring deflection, a process
characterized by high randomness and trial and error, often
failing to meet design specifications in one iteration and thus
significantly extending maintenance time (Ao and Wu, 2023).
Moreover, the exponential increase in the electric multiple-unit
fleet has precipitated a pronounced shortage of skilled
technicians, rendering it difficult to satisfy the substantial
demands of both manufacturing and maintenance markets and
thereby further exacerbating the bottleneck in overhaul efficiency.

In recent years, researchers have conducted comprehensive
investigations into rail vehicle safety and maintenance from a
variety of perspectives. Xu et al. carried out a multi-objective
optimization and decision-making study on metal/CFRP hybrid
energy-absorbing structures, leveraging a hyper-volume/energy
absorption (HFEAS) model together with a gain matrix–cloud
model best–worst (G-CBW) method to deliver an efficient
Pareto-optimal solution screening strategy for absorber design
and demonstrated exceptional performance in localized impact
response (Xu et al., 2024). Yang et al. conducted a systematic
investigation into the fatigue damage behavior of subway
platform screen doors under aerodynamic loads induced by
passing trains, integrating wind-tunnel experiments with finite-
element fatigue simulations. They proposed an enhanced hinge
design and localized reinforcement scheme, achieving an average
increase in fatigue life exceeding 20% (Yang et al., 2025a).
Chengxing Yang et al. drew inspiration from the biomimetic
cross–hexagonal lattice (HQLS) configuration to propose a novel
energy-absorbing concept based on steel/CFRP-filled square tubes.
They developed a high-precision parametric model that exhibits
simulation errors below 4% and applied a design-of-experiments
coupled with a surrogate-model approach to optimize wall thickness
and unit-cell height, thereby achieving a remarkable 24.6% increase

in total energy absorption and an 8% improvement in specific energy
absorption (SEA) (Yang et al., 2025b).

Despite the significant advances in structural energy absorption
and fatigue-life prediction, the rapid and precise control of static
spring-load deviations during EMU bogie maintenance still relies
predominantly on manual trial and error, resulting in low efficiency,
high variability, and numerous iterative cycles. To address this
bottleneck, intelligent optimization algorithms have been
introduced for load-distribution modeling and adjustment in rail
vehicle suspension systems, thereby enhancing both adjustment
efficiency and model accuracy. Bajpai (2014) investigated the
impact of suspension spring parameters on ride comfort;
Abhishek et al. used the Grasshopper algorithm to optimize the
snubber-spring structure (Neve et al., 2020); Xiao and Wu (2025)
employed a high-power Harris Hawk optimization algorithm for
bogie load deviation control.

This study proposes an improved Grey Wolf Optimization
algorithm (S-GWO) with strong global search capabilities, which
has attracted widespread scholarly attention for its proficiency in
solving nonlinear optimization problems. To address the static-
spring load adjustment problem in rail vehicles presented here, we
made targeted enhancements to the standard GWO: we improved
the nonlinear convergence factor via a Gaussian distribution (Hou
et al., 2022), enabling extensive early exploration and rapid late-stage
convergence to boost both speed and accuracy; second, this article
integrates opposition-based learning and exploration strategies
(Adegboye et al., 2024) to enhance global search; finally, we
introduce a Cauchy-perturbation mechanism for the α wolves
(Liu et al., 2023), effectively balancing local search. Experimental
evidence confirms that the proposed enhanced GreyWolf Optimizer
(S-GWO) possesses strong global search capabilities. Both
simulation and on-site validations demonstrate that, relative to
comparative algorithms, S-GWO delivers faster convergence,
improved load-distribution accuracy, and superior shim count
and thickness optimization across twelve benchmark functions,
the spring function (Paredes et al., 2002), and the actual
parameters of the CRH2 bogie, achieving design specifications in
a single run without iterative stacking trials.

1. We develop a theoretical model for the static adjustment of
spring loads in twin-axle railway vehicles. This modeling
methodology is universally applicable to all four-axle bogie
platforms, including locomotives, urban metro cars, high-
speed passenger units, and freight wagons, and markedly
streamlines the computational procedure.

2. By improving the linear convergence factor with a Gaussian
distribution, this strategy ensures thorough early exploration
and rapid late convergence, enhancing both convergence speed
and accuracy.

3. The integration of opposition-based learning with exploration
not only broadens the search space via opposite solutions but
also injects fresh diversity through random perturbations,
markedly improving global optimization capability.

4. The Cauchy perturbation mechanism for α wolves is simple to
implement and computationally inexpensive yet effectively
balances local search and global jumps.

5. This study evaluates the enhanced algorithm on three
categories of problems: twelve classical benchmark
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functions, the engineering spring function, and a bogie-specific
engineering function, and compares its performance against
several highly cited classical algorithms to verify the superiority
of the proposed enhancements, followed by ablation studies to
demonstrate the independent contributions of each
enhancement.

6. We integrate the CRH2 bogie parameters into the static spring-
load adjustment model for twin-axle railway vehicles.
Experimental results demonstrate that the enhanced Grey
Wolf Optimizer (S-GWO) offers marked improvements in
convergence speed, solution accuracy, and robustness.
Moreover, its minimal-shim-quantity scheme proves the
most rational, enabling rapid and precise resolution of bogie
spring-load adjustment challenges, thereby underscoring the
algorithm’s theoretical significance and engineering value in
practical applications.

2 Standards and applications of shim-
load adjustment in railway bogies

2.1 National standards for shim usage
specifications

The railway industry and national standards provide explicit
requirements and guidelines for bogie height and load adjustment
via shim placement (TB/T 1490-2004, 2025). This document
stipulates that the bogie structure must allow for the adjustment
of coupler height, carbody tilt, and wheel-load differences. Under
the vehicle’s dead-weight condition, the height difference between
the first-stage and second-stage coil springs must remain within the
standard’s prescribed limits (which vary by speed classification) and
may be corrected by inserting shims, with shim thickness accounted
for in the spring-seat height calculation. This provision thus

recognizes shim placement beneath the spring seats as an
approved means of eliminating corner-height deviations in
the bogie.

2.2 Shim thickness specifications and
permissible tolerances

Shim stacks used for bogie adjustment are typically
manufactured in standardized thicknesses to facilitate
combination and stacking to achieve the required correction.
Common shim thicknesses include 0.2 mm, 0.5 mm, 1 mm, and
2 mm. In practice, various thicknesses may be paired and layered to
obtain the desired total height. To ensure adjustment precision,
maintenance regulations limit both the maximum total shim-stack
height and the individual shim thickness: for CRH-series EMUs, the
total shim stack must not exceed 21 mm, and thick shims are placed
beneath thinner ones when stacking (Maintenance regulations for
Harmony 2C/CRH380A EMUs, excerpted from a document issued
by the National Railway Administration, 2025).

2.3 Investigation of suspension spring
parameters in CRH2 EMU bogies

The primary suspension of the CRH2 high-speed EMU is
located between the wheelset and the bogie frame, employing
metallic helical cylindrical coil springs to bear vertical loads (Jia
et al., 2023).

2.4 Thresholds of shim-stack adjustments
and their nonlinear response characteristics

According to the CRH2 EMU maintenance regulations, newly
manufactured vehicles shall employ no more than three spring
shims per axle-box assembly, whereas vehicles following a Level-

FIGURE 2
Components of the primary suspension in a rail vehicle.

FIGURE 1
Bogie of the CRH-type EMU.
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3 overhaul may use up to five shims. Each adjustment shim is
approximately 2 mm thick, resulting in a maximum total stack
height of approximately 10 mm when five shims are applied (Wang
et al., 2014).

3 Modeling of bogie load distribution
and establishment of
kinematic equations

The bogie is a running gear that supports, guides, and brakes the
carbody while permitting relative rotation, featuring vibration
buffering and steering functions, and plays a key role in train
operation safety, reliability, and ride quality. It is chiefly
assembled from the frame, primary suspension, secondary
suspension, and traction and braking units. The support
structure of the CRH3 bogie is shown in Figure 1.

The primary suspension system consists of the first-stage suspension
and the second-stage suspension. The primary suspension is shown in
Figure 2, and the secondary suspension is shown in Figure 3. The first-
stage suspension (axle−box suspension assembly) is comprised of the
axle−box spring, the vertical damper, and the axial locating device. The
axial locating device transmits and cushions loads between thewheel and
the frame, affecting the system’s critical speed and hunting stability; the
vertical damper reduces vertical vibrations, improving dynamic
performance; the circular axle spring transmits and cushions vertical
loads between the wheel and frame, influencing ride comfort. Because
the effect of the axle−box locating device on vertical load transmission is
negligible, it is omitted in this study.

The secondary suspension comprises a central coil spring, lateral
dampers, lateral buffers, and anti-hunting dampers, with the vertical
damper transmitting vertical forces between the bogie frame and
the carbody..

In summary, the primary suspension of a two-axle bogie is
located at the connection between each wheelset and the frame, with
one axle−box coil spring installed per wheelset, totaling four; the
secondary suspension is a central spring assembly comprising two
central coil springs.

This study focuses on the issue of center-of-gravity shift caused
by vertical load distribution in the bogie and puts forward the
following assumptions:

1. The dual-axle bogie contains six springs that influence the
vertical load distribution;

2. Neglecting the vertical height differences among the six
springs, we assume they all lie in a common horizontal
plane. We then model the four-wheel, two-axle bogie as a
homogeneous, planar rectangular rigid body of length 2 b and
width 2 a (with negligible thickness), with vertices labeled A, B,

FIGURE 3
Components of the secondary suspension in a rail vehicle.

FIGURE 4
Equivalent mechanical model of the bogie.
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C, and D. The carbody’s weight F is represented as a
concentrated force acting at the center of gravity, whose
initial eccentricity is defined as mx,my, as illustrated
in Figure 4.

The springs are arranged at the suspension load application
points, with coordinates in sequence: (−b, −a), (0, −a), (b, −a), (b, a),
(0, a), and (−b, a). Fi denotes the force of the spring (for i = 1, 2, 3, 4,
5, and 6 corresponding to A, B, C, D, E, and F, respectively), in N; the
spring stiffness coefficient is k, in N/mm. Each spring is fitted with a
shim to adjust its compression, having a thickness hi (in mm), with
the initial state hi � 0. The calculation formula for k is shown in
Equation 1. This theoretical model aims to correct the center-of-
gravity position of the rectangular rigid plate by adjusting spring
compression with theminimal number of shims, neglecting any shift
in the plate’s center of gravity along the Z-axis. Taking the
CRH2 bogie as an example for calculation (Yang and Liu, 2017),
its structural parameters are shown in Table 1.

∑6
i�1
ΔFi � 0,

∑ΔMx � G1ΔmxXi,∑ΔMy � G1ΔmyYi.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

The theoretical model of the static suspension system load for
the two-axle EMU bogie is as follows:

According to Hooke’s law, as shown in Equation 2

hi � 1
ki
Fi, (2)

where Ki denotes the spring stiffness, with units of N/mm. Spring
load Fi is a multivariate linear function of the shim thicknesses Fi at
the six suspension load points; therefore, then the load variation is as
shown in Equation 3 (Hong et al., 2014)

ΔFi � ∑6
i�1

hi*kij( ) (3)

The physical meaning of this equation (Hong et al., 2014) is that
the combined change resulting from adjusting multiple shim
thicknesses corresponds to the load variation caused at a single
support point. The initial load on each spring is F0 (in kN). Define
Kij as the ratio of the deflection of the jth spring to the thickness of
the shim added at the ith spring position.

The matrix Kij is shown in Table 2. The calculation formula for
the relationship of Kij is the following formula (Malott, 2023),∑ i�1

6 ΔFi � 0, which indicates that the sum of all vertical force
vectors is zero. ∑ΔMx ∑ΔMy indicates that the load forces
produce a zero net moment about the X and Y-axes.

After changing the shims, the load distribution of each spring is
given by Equation 4.

Fi � F0 +∑6
j�1

h*
j kij( ). (4)

Wickens (1991) represents the load-adjustment formula of the
static suspension system for a dual-axle EMU bogie and serves as a
key theoretical basis for center-of-gravity deviation control. By
combining the equations of Tong et al. (2016) and Wickens
(1991), Equation 5 is obtained

−G +∑6
i�1
Fi � 0,

−mx*G − a F1 + F3 + F5( ) + a F2 + F4 + F6( ) � 0,
−my*G − b* F1 + F2 + F3( ) + b* F3 + F4 + F5( ) � 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

Meanwhile, because the rectangular plate model is simply
supported in its connection to the bogie, the springs cannot
provide tensile force along the Z-axis; thus, constraint Equation 6
is proposed as follows

0≤Fi ≤G, (6)

Define S as the variance of the loads at the six support points in
Figure 5 relative to a uniformly distributed load. The static load is
denoted by F. The smaller F is, the smaller the load deviation at the

TABLE 1 Structural parameters of the CRH2 vehicle.

Lateral span of the air spring A 2460 mm

Lateral span of the primary suspension B 2000 mm

Mass of the carbody G 261,000 N

Longitudinal spring stiffness K 0.0137 N/mm

TABLE 2 Kij matrix of shim thickness versus spring deformation.

i
j

K1 K2 K3 K4 K5 K6

K1 0.5835 −0.1667 0.0831 −0.0834 0.1663 0.4161

K2 −0.1667 0.8333 −0.1667 0.1663 0.1663 0.1663

K3 0.0831 −0.1667 0.5835 0.4161 0.1663 −0.0834

K4 −0.0834 0.1663 0.4161 0.5835 −0.1667 0.0831

K5 0.1663 0.1663 0.1663 −0.1667 0.0833 −0.1667

K6 0.4161 0.1663 −0.0834 0.0831 −0.1667 0.5835

FIGURE 5
Simplified suspension model of the CRH2 bogie.
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FIGURE 6
(Continued).
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FIGURE 6
(Continued). Comparative plot of convergence curves of the algorithms on the test functions. (a) The curve on F17, (b) The curve on F16, (c) The
curve on F15, (d) The curve on F14, (e) The curve on F13, (f) The curve on F12, (g) The curve on F11, (h) The curve on F10, (i) The curve on F4, (j) The curve
on F3, (k) The curve on F2, and (l) The curve on F1.
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support points and the more uniform the load distribution. F
represents the average load, as shown in Equations 7, 8 is the
objective function.

�F � 1
4
∑6
i�1
Fi, (7)

S � ∑6
i�1Fi − 6

G( )2
6

. (8)

By substituting Equation 5 into Equation 8, Equation 9 (Bajpai,
2014) is obtained.

Fi � F0i + ∑n
i�1
Ki

*Δhi,

minS � 1
6
∑4
i�1

Fi − F

6
( )2

,

∑MX � 0,

∑MY � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

The physical meaning of Equation 9 (Bajpai, 2014) is that the
static load on each spring satisfies the static equilibrium equations,
and Smin serves as the objective function for optimization.

4 Optimization scheme for the
mathematical model

4.1 Penalty for exceeding limits

In the section on shim-stack thresholds and nonlinear behavior,
it is noted that, during actual bogie production and machining, the
total shim thickness typically does not exceed 10mm. Therefore, any
solution proposing a shim stack greater than 10 mm should incur a
penalty to prevent the algorithm from selecting such boundary cases,
thereby ensuring that the springs remain within their linear
operating range.

Define the shim adjustment vector as X � [x1, ..., x6]. If any
component of this vector falls outside the [−10,10] range, a
penalty is applied immediately, and the out-of-bounds
condition is reported. The mathematical derivation is shown
in Equations 10, 11.

∂i � max 0, xi| | − 10( ). (10)

If max i|xi|> 10 exists, then

j x( ) � 108 +∑6
i�1
∂i. (11)

4.1.1 Priority penalty
4.1.1.1 First priority

Once the load variance requirement is met, if two or more shim-
position–thickness combinations are available, select the solution with
the smaller total shim thickness as the secondary optimization objective.
The mathematical derivation is shown in Equations 12–14.

The aim is to minimize the number of nonzero components in
xi, thereby reducing the number of shims that are modified.

cnt � ∑6
i�1
1 |xi ≥ ε|( ), Pcount � w1*cnt. (12)

4.1.1.2 Second priority
After the variance requirement is met, select the scheme with the

smallest total shim thickness.

pmag � w2∑6
i�1

Xi| |. (13)

4.1.1.3 Third priority
Once the above priorities are met, ensure that the loads at the six

suspension support points are as close to one another as possible,
thereby minimizing their dispersion.

j0 � 1
6
∑6
i�1

F
j( )

i − �Fj( ). (14)

5 Improvement strategies for the Grey
Wolf algorithm

5.1 Introduction to the standard Grey
Wolf algorithm

The Grey Wolf Optimizer (GWO) is a population-based
intelligence optimization algorithm inspired by the social
behaviors of gray wolves in nature, particularly their hunting,
encircling, and social interactions (Mirjalili et al., 2014). The core
idea of the GWO algorithm is to simulate how a pack of gray wolves
encircles and cooperates to capture prey. The algorithm performs
optimization search by mimicking the hunting behaviors of gray
wolves; the specific process is as follows:

Step 1: Prey encirclement

Wolves encircle prey by gradually approaching it, a process
analogous to information exchange among individuals. In this
manner, agents update their positions and progressively converge
toward the target solution.

Step 2: Prey tracking

Once the prey’s position is determined, wolves commence
tracking it. During the optimization process, the algorithm
continuously adjusts agent positions to approach the optimal
solution. This tracking behavior represents an intensive
exploration of the solution space.

Step 3: Prey attack

After encirclement and tracking, the wolf pack ultimately
captures the prey, analogous to the algorithm’s combination of
global and local searches to find the global optimum. The GWO
algorithm updates agent positions using the following mathematical
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model to simulate wolf hunting behavior: Assume there are nnn gray
wolves in the population, and their positions are denoted by �X �
(X1, X2, . . . , Xn). The position of each wolf is evaluated by the
objective function to determine fitness; the smaller (or larger,
depending on the problem type) the objective value, the higher
the fitness. The GWO update primarily depends on the positions of
the three roles α, β, δ; the position update formula is shown in
Equation 15.

Xnew
i � Xold

i + A*D. (15)

5.2 Algorithm improvement strategies

5.2.1 Nonlinear convergence factor based on a
Gaussian distribution

In the original GWO, the convergence factor α(t) decreases
linearly from 2 to 0 over the iterations, serving to control the search
radius. The decay formula for the convergence factor after the
update is given by Equation 16.

a t( ) � 2 exp −
t
T − μ( )2
2σ2

⎛⎝ ⎞⎠. (16)

Here, t represents the current iteration, T is the maximum number
of iterations, and σ, μ determines the shape of the Gaussian curve. The
curve is relatively flat during the early iterations, maintaining a larger α
to ensure global exploration, and then drops sharply in later iterations,
accelerating local convergence. This strategy allows the algorithm to
perform extensive exploration early on and quickly converge later,
improving both convergence speed and accuracy.

5.2.2 Opposition-based learning and
exploration strategy

To enhance global search capability, we integrate opposite-based
learning (OBL) with stochastic exploration. Specifically, for a subset
of the population (e.g., the 50% of individuals with the lowest
fitness), we compute their opposite solutions as shown in
Equation 17

x*i � L + U − xi. (17)

To enhance global search performance, we integrate opposite-
based learning (OBL) with stochastic exploration. Specifically, for a
subset of the population (e.g., the 50% of individuals exhibiting the
poorest fitness), we compute their opposite solutions as follows: As
shown in Equation 18

xc
i � xi + ϵ*randn(). (18)

Here, ϵ denotes the perturbation amplitude, and randn() is a
random variable drawn from the standard normal distribution. This
mechanism simulates minor perturbations in the solution space,
thereby enhancing the algorithm’s capability to escape local optima.

5.2.3 The alpha wolf’s Cauchy
perturbation mechanism

For the optimal solution (α wolf) within the Grey Wolf social
hierarchy, we introduce a Cauchy-perturbation mechanism. The

probability density function of the Cauchy distribution is shown in
Equation 19.

f x( ) � 1

πλ 1 + x
π( )2[ ]. (19)

Here, λ serves as a scaling factor that governs the tail “thickness.”
Compared with the Gaussian distribution, the heavy-tail characteristic
of the Cauchy distribution entails occasional large perturbations,
thereby enabling the α-wolf to escape from local optima.

After each iteration, a Cauchy-distributed perturbation is
applied. The perturbation formula is as shown in Equation 20

xα
′ � xα + λ*C. (20)

Here, C denotes the perturbation vector randomly sampled from
the Cauchy distribution. The heavy-tail property of the Cauchy
distribution entails occasional large jumps, aiding the α-wolf in
escaping local traps and discovering new advantageous regions. If
f(xα′)<f(xα), then update α. This mechanism is simple to control
and incurs minimal computational overhead yet effectively
enhances the balance between local search and global exploration.

5.3 Workflow of the enhanced algorithm

The algorithm’s parameters are listed in Table 3. All values were
determined through extensive preliminary tuning experiments to
strike a balance between search capability and convergence
efficiency. When transferring the method to other optimization
problems, these parameters may be fine-tuned as appropriate to the
problem’s complexity.

Step 1: Randomly generate N wolf pack individuals �X �
(X1, X2, . . . , Xn) within the range [L,U]. Then compute
the fitness f(xi) of each individual and select the top three
performers as α, β, δ.

Step 2: Calculate the Gaussian-based nonlinear
convergence factor.

Step 3: Opposition-based learning and exploration. Generate
opposite solutions x*i � L + U − xi for roughly the
bottom 50% of individuals by fitness; if condition
f(x*

i )<f(xi) is met, replace them; apply small-scale
random chaotic perturbations to a subset of individuals
(selected randomly or according to a strategy).

Step 4: Traditional encirclement and position update—compute
three candidate positions for each non-leader wolf X and
update its position.

Step 5: Alpha wolf Cauchy perturbation—sample vector C from a
Cauchy distribution, compute candidate xα′ � xα + λ*C,
and if f(xα′)<f(xα), update α.

Step 6: Reevaluate the fitness of the entire wolf pack and update
individuals α、β、δ.

Step 7: Output the results.

5.4 Pseudocode of the S-GWO algorithm

Algorithm S-GWO (pop, dim, maxIter, lb, ub, fobj)
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Inputs:
pop ← population size
dim ← problem dimensionality

maxIter ← maximum number of iterations
lb, ub ← vectors of lower and upper bounds (length = dim)
fobj(x) ← objective function

Outputs:
Best_pos ← best solution found
Best_fitness ← objective value at Best_pos
─── Initialization ───
1. Generate initial population X ∈ R {̂pop × dim}:

for i in 1 . . . pop:
X[i] ← lb + rand(dim) ⊙ (ub–lb)

2. Evaluate fitness:
for i in 1 . . . pop:
f[i] ← fobj(X[i])

3. Identify α, β, δ wolves:
Sort wolves by f ascending.
α_pos ← position of best wolf; α_score ← best fitness
β_pos ← position of 2nd-best; β_score ← 2nd-best fitness
δ_pos ← position of 3rd-best; δ_score ← 3rd-best fitness
Best_pos ← α_pos; Best_fitness ← α_score

─── Main Loop ───
for t in 1 . . . maxIter:
a ← 2 · (1 – t/maxIter)//convergence factor
for each wolf i in 1 . . . pop:
for each dimension j in 1 . . . dim:

//Random coefficients
A1 ← 2·a·rand() – a;
C1 ← 2·rand()
A2, C2 and A3, C3 likewise
//Distance to α, β, δ
Dα ← |C1·α_pos[j] – X[i,j]|
Dβ ← |C2·β_pos[j] – X[i,j]|
Dδ ← |C3·δ_pos[j] – X[i,j]|

//Candidate positions
X1 ← α_pos[j] – A1·Dα
X2 ← β_pos[j] – A2·Dβ
X3 ← δ_pos[j] – A3·Dδ

//Combine with OBL and Cauchy perturbation
avgX ← (X1 + X2 + X3)/3
oblX ← lb[j] + ub[j] – avgX
newPos ← 0.5·(avgX + oblX) + γ tan(π·(rand() – 0.5))

//Enforce bounds
X[i,j] ← clip(newPos, lb[j], ub[j])

end for
//Update fitness
f[i] ← fobj(X[i])
end for
//Update α, β, δ wolves if better
Resort wolves by f ascending; update α_pos, β_pos, δ_pos,

and scores
if α_score < Best_fitness:

Best_pos ← α_pos
Best_fitness ← α_score

end if
end for

6 Algorithm performance experiments
and analysis

The experiments were conducted on a computer equipped with
an 11th-generation Intel® Core™ i7-11700 processor clocked at
2.50 GHz, 16 GB of RAM, and a 64-bit Windows 11 operating
system. The algorithm was implemented in MATLAB R2021a. To
evaluate the performance of S-GWO, twelve representative
functions were selected from a pool of 23 classical benchmark
functions, together with an engineering test function for
compression-spring design. The test functions are listed as follows.

The unimodal functions are given by Equations 21–24:

F1 X( ) � ∑n
i�1
x2
i , (21)

F2 X( ) �∑n
i�1

∣∣∣∣xi

∣∣∣∣, (22)

F3 X( ) �∑n
i�1

∣∣∣∣xi +| ∏n
i�1

∣∣∣∣xi

∣∣∣∣, (23)

F4 X( ) � ∑n
i�1

xi| | +∏n
i�1

xi| |⎡⎣ ⎤⎦. (24)

The multimodal functions are given by Equations 25–27:

F10 X( ) � ∑n
i�1

xi( ), (25)

TABLE 3 Algorithm parameters.

Parameter Value Description

Population size N 100 Number of wolves in the population

Maximum iterations T 100 (engineering experiments)/200 (theoretical
functions)

Upper limit of iterations

Cauchy perturbation scale factor λ 0.5 Controls the perturbation amplitude of α-wolves

Standard deviation of the Gaussian
distribution σ

0.3 Controls the smoothness of the nonlinear convergence factor’s decline
curve

Opposition-based learning replacement ratio 50% Selects the latter half of individuals ranked by fitness for the opposition-
based update

Chaos perturbation injection ratio 10% Introduces random perturbations to enhance diversity
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F11 X( ) � ∑n
i�1

sin πxi( ) + sin 3πxi( )( ), (26)

F12 X( ) � sin πxi( ), if − 1≤xi ≤ 1,
0, otherwise.

{ (27)

The fixed-dimension multimodal test functions are given by
Equations 28–31:

F14 X( ) � ∑n
i�1

3 + xi −
�����
3 + xi

√( )2, (28)

F15 X( ) � ∑n
i�1
x2
i

⎡⎣ ⎤⎦ − 2 ∑n
i�1
xi

⎡⎣ ⎤⎦ + 4x3
4 + 4x2

5, (29)

F16 X( ) � ∑n
i�1

x2
i − 2x1x2 + 3x3( ), (30)

F17 X( ) � ∑n
i�1

4xi − 3( )2. (31)

Engineering test function: spring
The objective of the compression-spring design problem is to

minimize the mass function f(x) subject to four inequality
constraints: minimum deflection, shear stress, natural
(oscillation) frequency, and outer-diameter limits, using three
design variables: the mean coil diameter D(x2), the wire (metal)
diameter d(x1), and the number of active coils N(x3).

The objective functions are given by Equations 32, 33:

minf x( ) � N + 2( )Dd2, (32)

g1 x( ) � 1 − D3N

71785d4
≤ 0. (33)

TABLE 4 Mean and standard deviation for twelve test functions.

Function MVO S-GWO GWO WOA HBO

F1 Mean 1.06 1.74e−27 1.54 3.49e−73 2.64e−06

Std 0.41 2.93e−27 0.54 1.819e−72 8.44e−06

F2 Mean 1.64 1.91e−15 1.44 9.45e−50 5.82e−05

Std 1.509 2.48e−05 2.32 3.66e−49 3.66e−05

F3 Mean 202.49 9,88e−06 32 40663 18999.45

Std 84.4 7.4e−07 45 13987 7309

F4 Mean 2.11 3.73e−15 1.21 8.009e−07 12.04

Std 0.87 2.78e−15 0.45 0.09 3.43

F10 Mean 20.3 2.23e−3 18.21 0.0105 20.00

Std 0.03 0.006 5.98 0.038 7.61e−05

F11 Mean 0.107 0.003 2.43 0.037 0.0049

Std 3.85 0.018 0.43 0.035 0.0018

F12 Mean 2.92 0.04 0.23 0.62 0.0069

Std 1.46 0.21 0.14 0.25 0.026

F13 Mean 0.32 0.74 0.21 1.62 0.0058

Std 0.417 1.99 1.25 1.01 0.0198

F14 Mean 0.98 2.1 2.55 0.0006 0.49

Std 6.9e−06 0.008 0.12 0.0003 3.5

F15 Mean 0.001 0.001 0.05 0.34 0.12

Std 0.012 2.3e−03 2.4 3.45 2.3e−06

F16 Mean −1.03 −0.103 −0.56 −1.03 −0.98

Std 4.44e−07 2.72 2.1 4.01e−9 3.2

F17 Mean 0.39 0.39 0.39 0.39 0.39

Std 4.94 0.002 2.21 1.43e−05 0

Spring Mean 0.017 0.012 6.9 0.013 0.017

Std 0.001 2.6e−05 8.75 0.0014 2.93e−05
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The constraints are given by Equations 34, 35;

g2 x( ) � 4D2 −Dd

12566 Dd3 − d4( ) +
1

5108d2
,−1≤ 0, (34)

g3 x( ) � 1 − 140.45d
D2N

. (35)

6.1 Comparative algorithms and
parameter settings

This study selects five algorithms: the improved Grey Wolf
Optimizer (S-GWO), Whale Optimization algorithm (WOA), Heap-
based Optimization (HBO), Standard Multi-verse Optimizer (MVO),
and Harris Hawks Optimizer (HHO) for comparative simulation
experiments on twelve test functions, evaluating mean fitness (mean)
and fitness standard deviation (std). In this experiment, the population
size for each algorithm is set to 50, and the dimensionality of the non-
fixed-dimension test functions is dim = 30.

6.2 Benchmark function testing and analysis

Table 4 presents the mean fitness values (mean) and fitness
standard deviations (std) obtained by running the S-GWO
algorithm and its comparative optimizers independently for
30 trials. GWO.

The best results in the experimental data have been highlighted in
bold. The S-GWO algorithm achieved the best mean fitness and the
lowest standard deviation on functions F3, F4, F11, F15, and spring, and
also demonstrated advantages in both mean and standard deviation
over some comparison algorithms on functions F1, F2, F3,x F4, F11,
F15, F16, and F17. Compared to the standard GWO, S-GWO achieved
better fitness and lower standard deviation on all functions except

F12 and F13. The results indicate that the improved Grey Wolf
Algorithm (S-GWO) significantly outperforms the standard GWO
in benchmark tests and maintains an advantage over high-
performance algorithms such as WOA and MVO. These findings
show that S-GWO provides a substantial improvement across the
twelve benchmark functions.

As shown in Figure 6, convergence curves for five
optimization algorithms on twelve test functions are plotted.
Panels (c), (i), (g), and (j) indicate that the improved Grey Wolf
Optimizer converges more rapidly on functions F15, F11, F4, and
F3, with especially pronounced performance on F11,
demonstrating S-GWO’s superior efficacy on multimodal
landscapes. Panel (m) confirms that S-GWO performs well on
the engineering spring function. Conversely, panels (h) and (d)
show that S-GWO becomes trapped and fails to reach the global
optimum on F10 and F14. These observations corroborate the
results reported in Table 4.

6.3Wilcoxon rank-sum test on function data

The rank-sum test—also known as the Wilcoxon rank-sum test
or Mann–Whitney U Test—is a nonparametric statistical method
employed to assess whether two independent samples originate from
distributions that differ significantly. By definition, the p-value in the
rank-sum test indicates the test’s significance level; the indicator
variable hhh denotes the test outcome: h = 0 implies failure to reject
the null hypothesis, whereas h = 1 indicates rejection of the null,
thereby signifying a statistically significant difference between the
two algorithms.

In this study, we evaluated the performance of five metaheuristic
optimization algorithms: Grey Wolf Optimizer (GWO), improved
Grey Wolf Optimizer (S-GWO), Multi-verse Optimizer (MVO),
Whale Optimization algorithm (WOA), and Heap-based Optimizer

TABLE 5 Mean Mean optimal values of the optimization algorithms.

Function form S-GWO GWO MVO WOA HBO

Spring −9.8273e+07 −4.8398e+07 −9.8131e+07 −9.8944e+07 −1.0001e+08

F1 3.1493e−11 6.5995e+04 5.0125e+00 1.2368e−33 3.8515e−01

F2 5.7916e−06 2.9091e+42 6.2391e+26 8.8662e−21 7.3544e−01

F3 3.7595e−01 1.1746e+05 8.9304e+02 6.4724e+04 3.1419e+04

F4 8.3595e−03 8.5643e+01 4.1315e+00 5.5111e+01 2.1235e+01

F10 2.0923e+01 2.1386e+01 2.0604e+01 9.7996e−15 2.0065e+01

F11 8.2840e−03 1.7025e+01 3.7070e−01 8.6638e−03 3.8493e−02

F12 7.2176e−02 4.0175e+190 3.5606e+57 1.5918e−01 4.2834e+97

F13 1.0692e+00 4.6537e+192 3.5978e+110 1.0735e+00 9.2304e+100

F14 2.2287e+00 1.1724e+01 9.8064e−01 1.5726e+00 9.8057e−01

F15 1.1083e−03 6.8677e+00 5.5039e−03 1.6496e−03 1.0597e−03

F16 −1.0316e+00 7.1837e+05 −1.0309e+00 −1.0316e+00 −1.0316e+00

F17 4.3486e−01 8.2368e+01 7.2353e−01 5.1093e−01 3.9792e−01

Bold formatting indicates optimal values.
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(HBO) across a suite of test functions, including the spring function
and functions F1–F4 and F10–F17. Each algorithm was executed
30 independent times, with the best objective value recorded in each
run. The means of these optimal values were then computed, and
pairwise Wilcoxon rank-sum tests were conducted among all
algorithms to determine whether performance differences were
statistically significant.

The results revealed that all hhh values equaled 1, indicating that
every pairwise comparison exhibited statistically significant
performance differences. As shown in Table 5, a smaller mean
optimal value reflects stronger search capability on the
corresponding test function, that is, a greater propensity to
discover lower objective function values (better feasible solutions
or closer approximations to the global optimum). Comparing the
algorithms’ mean optimal values leads to the conclusion that
S-GWO demonstrates the best performance on the spring
function as well as functions F3, F4, F12, and F13, while
exhibiting comparable performance to WOA and HBO on
function F16.

6.4 Ablation study

With respect to the three major enhancements in the improved
S-GWO—the Gaussian-distributed nonlinear convergence factor,
the opposite-based learning and exploration strategy (OBL), and the
Cauchy perturbation mechanism applied to the α-wolf—this study
proposes a comprehensive ablation experimental framework. By
forming four comparative groups, each isolating individual modules
as well as a fully integrated configuration, and conducting
experiments on both single-dimension and multi-dimension
standard benchmark function suites, we compare the mean
fitness (mean) and fitness standard deviation (std) to
quantitatively evaluate the independent and synergistic
contributions of each enhancement.

Control group design: as shown in Table 6.

Benchmark test function suite: the classical unimodal function
F1 and the multimodal function F10 were selected as the test set. In
this experiment, each algorithm’s population size was set to 50, the
dimensionality of the non-fixed-dimension test functions was set to
D = 30, the number of runs N = 30, and the search interval
was [−100, 100].

As shown in Table 7, the integration of the three
enhancement strategies confers a comprehensive advantage to
the fully augmented S-GWO. On F1, S-GWO’s mean error is
nearly zero (on the order of 10−27), representing an
approximately 27-orders-of-magnitude reduction compared to
the original GWO’s 1.54; the std is likewise effectively zero,
indicating exceptional solution accuracy and stability. On F10,
S-GWO achieves a mean value of 0.00223—an improvement of
four orders of magnitude over GWO’s 18.21—and the lowest std
(0.006), demonstrating its reliable ability to escape multimodal
traps and converge to the global optimum. Ablation results for
individual modules: with only the Gaussian convergence factor
(S-GWOA), F1 still exhibits a substantial residual error (6.94 ×
10−4) and an std of approximately 6.7 × 10−3, indicating that while
the Gaussian factor alone accelerates convergence, it becomes
trapped away from zero without local exploration or escape
mechanisms. On F10, its mean value approaches the boundary
(≈20), and the std reaches 9.22, severely compromising its ability
to handle multimodal landscapes.

TABLE 6 Control group design for ablation experiments.

Control group Gaussian convergence factor (A) Opposition-based learning (B) Cauchy perturbation (C)

GWO ✖ ✖ ✖

S-GWO-A ✔ ✖ ✖

S-GWO-B ✖ ✔ ✖

S-GWO-C ✖ ✖ ✔

S-GWO ✔ ✔ ✔

TABLE 7 Ablation experiments based on F1 and F10.

Function Statistic GWO S-GWO S-GWOA S-GWOB S-GWOC

F1 Mean 1.54 1.74 × 10−27 6.94 × 10−4 3.57852 × 10−9 3.15587 × 10−9

F1 Std 0.54 2.93 × 10−27 6.73 × 10−3 2.58743 × 10−9 2.15993 × 10−9

F10 Mean 18.21 2.23 × 10−3 20 5.81626 × 10−2 1.88027 × 10−1

F10 Std 5.98 0.006 9.22 2.59877 × 10−1 8.50469 × 10−1

TABLE 8 Model input parameters.

Algorithm
parameters

a B k F0

Input quantity 1,230 mm 1,000 mm 0.0137 N/
mm

42,630 N

Number of iterations 50

Maximum search
volume

100
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With only opposite-based learning (S-GWOB), F1 converges
near the global optimum (3.6 × 10−9) with an std of the same order;
on F10, it achieves a mean of 0.058 and an std of 0.26. Although this
is not as strong as S-GWO, it represents roughly a 300-fold
improvement over the original GWO, demonstrating OBL’s
powerful global escape capability in multimodal problems.

With only Cauchy perturbation (S-GWOC), F1 also converges
to the ~10−9 level, with an std similarly on the order of 10−9, on par
with OBL; on F10, it records a mean of 0.188 and an std of 0.85—an
obvious improvement, though with slightly inferior performance
and stability than OBL, indicating that Cauchy perturbation favors
local fine-grained search.

Robustness (std) comparison: S-GWO exhibits the smallest std,
indicating virtually no random fluctuation when all three modules
are combined; S-GWOB follows with an average std below 0.3 across
the two functions; S-GWOC and S-GWOA show significantly larger
stds, particularly on F10 at 0.85 and 9.22, respectively, reflecting the
insufficient stability of single modules in multimodal environments.

Conclusion: The synergy of the three modules in S-GWO yields the
optimal convergence accuracy (smallest mean) and consistency
(smallest std). Opposite-based learning is the most effective single
enhancement, maintaining global search capability while providing
robustness. Cauchy perturbation excels in unimodal problems but
exhibits greater fluctuation in multimodal settings; the Gaussian
factor performs worst when used alone and must be combined with

other modules to demonstrate value. Therefore, in practical
optimization, it is recommended to enable opposite-based learning
at a minimum, supplemented by Cauchy perturbation or the Gaussian
factor to achieve comprehensive performance improvements.

7 Engineering experiment verification
and analysis

To validate the superiority of the improved Multi-verse Optimizer
proposed in this study, experiments were conducted on a simplified
CRH2 bogie structural model to assess the convergence curves, the
variance of uniformly distributed loads, and the number andmagnitude
of shim adjustments produced by different algorithms. The model’s
input parameters are presented in Table 8.

7.1 Experimental validation

The solutions and simulations were performed using the standard
GWO, the S-GWO, the Multi-Verse Optimizer (MVO), and the Heap-
based Optimization (HBO) algorithms, respectively.

Figure 7 depicts the convergence curves of the four algorithms. The
algorithms were configured with 50 iterations and a population size of
100. The ideal objective-function threshold is 0, and we take ε � 1*10−6

as the objective-function threshold. Based on 30 independent trials, we
plotted each algorithm’s mean convergence curve at the threshold, with
shaded regions indicating the 95% confidence intervals, thereby clearly
illustrating differences in stability among the algorithms. The statistical
results from these 30 independent runs are presented in Table 9:

7.2 Shim filling experiment

Figure 8 presents the shim filling schemes produced by the five
algorithms for solving the mathematical model proposed in this
study. The horizontal axis denotes the positions of the load-
suspension points, while the vertical axis indicates the shim-fill
height at each suspension point.

The results indicate that all algorithms produced shim
adjustment schemes requiring six shims, among which the
S-GWO achieved the smallest mean absolute shim adjustment
value, denoted as |hi|. According to the chapter on shim
thickness specifications and permissible tolerances, the smaller
the |hi|, the fewer and less voluminous the shims required,
thereby improving practical implementability and further
reducing bogie maintenance time. The calculation formula for

FIGURE 7
Comparison of convergence curves based on the
engineering function.

TABLE 9 Quantitative analysis of algorithm convergence performance.

Algorithm Average iterations
(mean ± std)

Iteration speed
vs. GWO

Average optimal objective value
(mean ± std)

Objective value
improvement

GWO 28.3 ± 5.4 iterations Baseline 1.17× 10−6 ±0.12× 10−6 Baseline

MVO 40.2 ± 8.1 iterations 42.1% slower 1.24× 10−6 ±0.15× 10−6 5% increase (worse)

HBO 22.5 ± 3.9 iterations 20.5% faster 1.03× 10−6 ±0.10× 10−6 12% reduction (better)

S-GWO 12.1 ± 2.2 iterations 57.2% faster 0.99× 10−6 ±0.08× 10−6 15% reduction (better)
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FIGURE 8
Comparison of shim-filling schemes for the algorithms. (a) Shim placement scheme of the S-GWO algorithm. (b) Shim placement scheme of the
GWO algorithm. (c) Shim placement scheme of the MVO algorithm. (d) Shim placement scheme of the GEO algorithm, and (e) Shim placement scheme
of the HBO algorithm.
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the average absolute value of the shim variation is as shown in
Equation 36.

hi
∣∣∣∣ ∣∣∣∣ � 1

6
∑6
i�1

hi| | (36)

7.3 Model generalizability and parameter
sensitivity analysis

This study presents a universally applicable computational
framework for bogie load-distribution control. Specifically, the
model formulation is governed by key parameters: spring
transverse span, primary-suspension transverse span, carbody
mass, and longitudinal spring stiffness, and its generality lies in
its ability to adapt these parameters for locomotives, metro vehicles,
high-speed EMUs, and freight-train bogies.

8 Conclusion

1. This study proposes a theoretical framework for static spring-
load adjustment in two-axle railway vehicles, in which the
bogie suspension system is idealized as a planar rigid body and
the primary and secondary suspension springs are represented
as six discrete loads on a common plane. This modeling
approach is universally applicable to two-axle rail vehicles,
including locomotives, metro cars, and EMUs.

2. This work develops an application model of the improved Grey
Wolf Optimizer for static center-of-gravity deviation control in rail
vehicles. The model overcomes the drawbacks of manual spring-
load adjustment in traditional bogie maintenance, enhancing both
efficiency and precision of load calibration, and can advance
practices in rail-vehicle manufacturing and production.

3. We introduce a Gaussian-based nonlinear convergence factor
to allow extensive exploration early and rapid convergence
later, improving both convergence rate and accuracy;
incorporate an opposition-based learning and exploration
strategy to strengthen global search; and add a Cauchy-
perturbation mechanism for the α wolf to effectively balance
local exploitation and global jumps.

4. This study evaluates the enhanced algorithmon three categories of
problems: twelve classical benchmark functions, the engineering
spring function, and a bogie-specific engineering function, and
compares its performance against several highly cited classical
algorithms to verify the superiority of the proposed
enhancements, followed by ablation studies to demonstrate the
independent contributions of each enhancement.

5. We integrate the CRH2 bogie parameters into the two-axle
railway vehicle’s static spring-load adjustment model.
Experimental results demonstrate that the S-GWO offers
marked advantages in convergence speed, optimal solution
accuracy, and robustness, produces the most rational minimal-
shim filling scheme, and can rapidly and precisely resolve bogie
spring-load adjustment challenges, thereby underscoring the
algorithm’s theoretical significance and engineering value in
real-world applications.

9 Limitations and future directions

Although the proposed enhanced Grey Wolf Optimizer
(S-GWO) demonstrates strong performance in static spring-load
adjustment, several limitations remain. First, the current model is
grounded in a simplified two-dimensional rigid-body theory; its
modeling fidelity must be extended to accommodate more complex
bogie geometries and scenarios involving nonlinear deformations.
Second, the present formulation does not account for dynamic
loading effects encountered during operation, such as lateral
forces, torsional stiffness, and the nonlinear characteristics of the
suspension system, focusing solely on the static equilibrium of body-
weight-induced loads.

Future work will seek to integrate multi-source sensor data fusion
and leverage real-world operating data to calibrate model parameters
and will explore novel hybrid schemes that couple deep-learning-based
predictive modules with heuristic optimization algorithms, thereby
advancing the model’s intelligence and enhancing its suitability for
practical, deployable engineering applications.
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