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In response to the significant waste of agricultural irrigation resources and the
inaccuracy of water demand predictions, this study aims to develop an
automated irrigation system that can reduce fluctuations in water volume and
enable precise control. Against the backdrop of current water scarcity and low
agricultural water efficiency, improving irrigation precision is of great significance
for ensuring food security and promoting sustainable agricultural development.
This study combines particle swarm optimization algorithm with extreme
learning machine and integrates it into a microcontroller to construct a new
intelligent irrigation system. This technology can solve the problem of inaccurate
crop water demand predictions in existing technologies and promote the
transformation of intelligent agriculture from empirical to data-driven. This
technology uses a LoRa based wireless sensor network to collect data and is
controlled by amicrocontroller. The particle swarm algorithmoptimizes the initial
parameters of the extreme learning machine, improving the accuracy with which
it predicts farmland water demand. The results showed that the proposed
method had the lowest root mean square error value, with an average of only
0.1025, indicating that the algorithm had the most accurate irrigation prediction
effect. The automatic water-saving irrigation technology proposed in this study
required less water compared to traditional irrigation techniques, with aminimum
water consumption of 3015 m3/hm2 and a maximum water consumption of only
5268.3 m3/hm2. The system’s accuracy in predicting crop irrigation water
demand could reach over 98%. The method proposed in this study can
accurately control irrigation water. It can also maximize irrigation water
conservation. This brings new research directions for the knowledge system
of automatedwater-saving irrigation technology in farmland. It also provides new
technical ideas for the development of intelligent agricultural irrigation
technology.
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1 Introduction

Although China is a sizable agricultural nation, there are disparities in the allocation of
water resources both in space and time. Although agricultural irrigation water (IW)
consumption accounts for 61.2% of total water consumption (WC), its effective
utilization coefficient is only 0.559. This is significantly lower than the range of

OPEN ACCESS

EDITED BY

Kanak Kalita,
Vel Tech Dr. RR and Dr. SR Technical University,
India

REVIEWED BY

Swaty Dash,
University College of Engineering, India
Mantena Sireesha,
Sasi Institute of Technology and Engineering,
India

*CORRESPONDENCE

Dongfang Song,
songdongfanghn@126.com

Chuansheng Zhang,
15101265621@163.com

RECEIVED 28 April 2025
ACCEPTED 13 October 2025
PUBLISHED 03 November 2025

CITATION

Ji H, Song D and Zhang C (2025) Automatic
water-saving irrigation technology for farmland
based on PSO-ELM algorithm and micro
control unit.
Front. Mech. Eng. 11:1619319.
doi: 10.3389/fmech.2025.1619319

COPYRIGHT

© 2025 Ji, Song and Zhang. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Mechanical Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 03 November 2025
DOI 10.3389/fmech.2025.1619319

https://www.frontiersin.org/articles/10.3389/fmech.2025.1619319/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1619319/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1619319/full
https://www.frontiersin.org/articles/10.3389/fmech.2025.1619319/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2025.1619319&domain=pdf&date_stamp=2025-11-03
mailto:songdongfanghn@126.com
mailto:songdongfanghn@126.com
mailto:15101265621@163.com
mailto:15101265621@163.com
https://doi.org/10.3389/fmech.2025.1619319
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2025.1619319


0.7–0.8 observed in industrialized nations (Uddin and Dhar, 2020;
Attri et al., 2022). Developing water-saving irrigation technology is
crucial for alleviating water scarcity, reducing waste, and improving
agricultural water use efficiency. The rise of smart agriculture has
created new opportunities for upgrading irrigation systems with
technologies such as the Internet of Things and artificial intelligence
(Zhao et al., 2023). However, the current coverage rate of efficient,
water-saving irrigation technology is relatively low. It is mostly
concentrated in plains with superior conditions, which results in
problems such as low irrigation efficiency, serious water resource
waste, and high investment costs in vast areas. This is especially true
in the central and western regions, where water resources are scarce
(Pervaiz et al., 2022). Existing automated irrigation systems rely
heavily on simple threshold control. They lack the ability to
accurately predict crop water requirements, which makes it
difficult for them to adapt dynamically to complex and changing
environmental factors (Manoharan, 2021). Particle swarm
optimization (PSO) and extreme learning machine (ELM), as
efficient optimization and prediction tools, have demonstrated
great potential in successful applications in fields such as energy
load and financial forecasting. In view of this, this study aims to
address the problems in farmland irrigation, overcome the
shortcomings of existing farmland irrigation technologies, reduce
the WC rate of farmland irrigation. Moreover, it designs an energy-
saving and high-precision farmland IW consumption control
system. This study will design automatic irrigation technology for
farmland by combining microcontroller technology with PSO and
ELM. The research expects that the PSO-ELM algorithm can
significantly improve the performance of automatic irrigation
technology in farmland and reduce water resource waste. The
innovation of this study lies in combining two neural network
algorithms to predict the irrigation amount of irrigation
equipment. The application of this combination algorithm can
not only save costs, but also be applicable to international
irrigation standards.

This study mainly includes five sections. The first section
primarily discusses the current state of IW resource utilization in
farmland, existing research progress, and gaps. It also clarifies the
theoretical and practical significance of this study. The second
section primarily reviews the progress of applying domestic and
foreign farmland irrigation technology and machine learning to
agricultural irrigation. It also summarizes current research gaps. The
third section is the methods and materials section. This section
mainly introduces the hardware design of the automatic irrigation
system for farmland and the calculation methods related to crop
water demand. It also introduces the principle and implementation
path of the PSO-ELM algorithm. The fourth section is the results
section, which verifies the research effectiveness through
experiments. The fifth section is for discussion and conclusion,
summarizing the results of this study and pointing out the
limitations and future prospects of the research.

2 Literature review

The issue of farmland WSI system design has been widely
noticed and discussed by scholars at home and abroad. Zhao
(2022) found that the WSI system could be combined with the

IoT to achieve intelligent control. Therefore, the study proposed a
design of WSI system based on IoT. The design was centered on
wireless sensor network (WSN) sensor node design and coverage
computation. The results showed that the system could perform
smart irrigation in a timely and accurate manner. Ramkumar et al.
(2021) found that water supply was being wasted in Indian farms.
Based on this, the research suggested a technique to use IoT to
automate the irrigation system in an attempt to save time and water.
The findings demonstrated that farmers could more effectively
regulate how much water was used for crop and livestock
production. Water scarcity was a major danger to agriculture’s
sustainable development, according to research by Yang et al.
(2022). On the basis of this, the study suggested a WSI
application that included guidelines for agricultural water
conservation. The findings demonstrated a considerable rise in
the agricultural IW’s effective usage coefficient. Zhou et al. (2022)
found that the development of WSA was not only important for
farmers to increase production and income, but also for the
protection of water resources. Therefore, the study designed a
stepped water price control system. The results showed that the
system could greatly promote the sustainable development of WSA
in China. Zha et al. (2022) found that WSA started earlier in Europe
and achieved certain results. Therefore, a learning software for
irrigation WSA was designed to improve information sharing.
The results showed that the software played an important
academic significance in the protection of water resources as well
as the development of WSA.

The application of automatic control technology combined with
machine learning in agricultural irrigation can greatly develop
intelligent irrigation and improve water production efficiency.
Ifriza and Sam’an (2021) found that rural water use was often
limited by the flow of water from reservoirs, which led to an
unbalanced distribution of rural water use systems. The study
proposed a combination of correlation based feature selection
(CFS) and an improved binary PSO method for optimizing
irrigation management of agricultural reservoirs to address this
issue. The results showed that the accuracy of the proposed
method was 91.84%, much higher than similar algorithms.
Veerachamy and Ramar (2021) (Veerachamy and Ramar, 2022)
found that IoT in the agricultural sector could continuously provide
agricultural information to the world, but lacked warnings about the
irrigation needs of farmland. Therefore, the study first used neural
networks to cluster the recommended irrigated farmland by
agricultural experts, and then proposed an optimized PSO
algorithm for predicting irrigation conditions. The results showed
that the proposed method could accurately determine the irrigation
demand and location based on soil moisture, temperature, wind
speed, and other conditions in the agricultural field through the IoT.
Behzadipour et al. (2023) found that the implementation of
intelligent irrigation and adjustment of irrigation systems was
crucial in today’s agricultural systems. Therefore, a combined
model of measuring farmland air humidity through sensors and
processing leaf images to adjust the microcontroller of the intelligent
irrigation system was proposed. The results showed that the
proposed model reduced the IW consumption by 11% compared
to the previous year, demonstrating significant water saving benefits.
To make the evaluation of IW use efficiency evaluation indicators
more comprehensive and scientific, Dong et al. (2020) constructed a
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new optimization model for evaluation indicators, which took the
indicator of irrigation machine driver pressure state influence
correspondence and information significance difference as the
evaluation benchmark. The results showed that the proposed
model provided a simpler and more convenient index
optimization system for the study of IW use efficiency evaluation
indicators. Zhao (2022) further investigated the design of a WSI
system based on IoT to address the serious problem of water waste in
automatic farmland irrigation. At the same time, a WSI system
structure model combining wireless sensors was built, and the
farmland irrigation system was tested by wireless signals. The
results showed that the system proposed by the research could
perform intelligent irrigation in a timely and accurate manner. The
comparison of the above literature methods is shown in Table 1.

The inclusion criteria for literature are as follows: (1) The
research topic is agricultural automation and water-saving
irrigation technology. It involves intelligent algorithms, the
Internet of Things, and microcontroller applications. (2) The
publication period is from 2021 to 2025. (3) The source is a
peer-reviewed journal article. (4) Clear experimental data or
validation results for method comparison are provided. The
exclusion criteria are as follows: (1) Grey literature such as
government reports, enterprise technology white papers, and
unpublished dissertations. (2) Irrigation research in non-
agricultural fields. (3) Literature that only describes theory
without empirical verification. In conclusion, researchers from
both domestic and foreign institutions have put forth a multitude
of optimization strategies for the implementation of automatic WSI
technology in agricultural settings. However, there has been a
paucity of scholars who have employed neural network
algorithms for the purpose of IW control prediction. Based on
this, a field automatic WSI technology combining microcontroller
technology with PSO and ELM is studied and designed. The two
neural network algorithms are combined for predicting the
irrigation amount of WSI devices.

The contribution of the methods proposed by the research to the
existing relevant knowledge system is mainly reflected in the
following aspects: (1) The research provides a new technological

solution for WSI of farmland by integrating microcontroller
technology, PSO, and ELM. This interdisciplinary technology
integration helps promote the development of intelligent
agricultural technology, especially in improving irrigation
efficiency and water resource utilization. (2) The optimized
algorithm can be used as part of an intelligent irrigation control
system to reduce manual intervention and increase the level of
automation in irrigation management through automatic control
and intelligent decision making. (3) The research results can serve as
a part of the intelligent agricultural technology system, promote the
transformation of agriculture from “empirical” to “precise”
development, and provide new impetus for accelerating
agricultural modernization. (4) The efficacy of the algorithm is
validated through simulation experiments in this study, thereby
bridging the gap between theoretical research and practical
applications. The transformation and implementation of scientific
research outcomes is facilitated, and tangible technical solutions for
the domain of farmland irrigation are provided.

3 Methods and materials

The study addresses the issues of automated WSI system in
agricultural fields. Firstly, for the selection of network sensors for the
irrigation system is explained and the experiment finally selects long
range radio (LoRa) as the transmission network. Then the
influencing factors of crop water demand are calculated to
facilitate the control variables. This is the basis for the proposal
of the PSO-ELM combined control algorithm and the explanation of
its operation logic.

3.1 Circuit MCU design for automatic WSI
technology in farmland

Before implementing automatic irrigation technology for
agricultural crops, several key issues need to be addressed to
ensure the effectiveness and sustainability of the technology.

TABLE 1 Comparison of advantages and disadvantages of automatic water-saving irrigation methods for farmland mentioned in the literature review
section.

Reference Method
corresponding
author

Advantage Shortcoming

Zhao (2022) Zhao (2022) Through wireless sensor networks, real-time data such as
soil moisture and meteorological information can be
obtained to adjust irrigation rates in a timely manner and
ensure that crops receive appropriate moisture

The stability and reliability requirements for IoT
technology and sensor nodes are high, and any technical
failure may affect irrigation efficiency

Ramkumar et al.
(2021)

Ramkumar et al. (2021) Automated irrigation systems can reduce water waste,
improve agricultural production efficiency, and save
farmers’ time and energy

Automation systems rely on stable power supply and have
high requirements for power infrastructure

Zhou et al. (2022) Zhou et al. (2022) It plays a positive role in the sustainable development of
water-saving agriculture and is beneficial for long-term
protection and management of water resources

The design of tiered water pricing may raise fairness issues,
especially for farmers in poorer areas who may face certain
burdens

Zha et al. (2022) Zhang et al. (2022) By designing tiered water pricing, farmers and farm
owners can be incentivized to conserve water and
optimize irrigation strategies

The implementation of tiered water pricing requires
cooperation and management from the government and
relevant regulatory departments, with high management
costs and complexity
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First, it is necessary to understand and study the growth habits and
water requirements of agricultural crops at different stages of
growth. The control of IW usage also relies on understanding
soil moisture. If the soil moisture meets the standard, only a
small amount of irrigation or no irrigation is needed. Otherwise,
it is necessary to control the amount of water used for plant
irrigation. Under different weather conditions, the volatilization
of soil moisture in agricultural crops varies. The study introduces
the Penman Monteith formula to calculate crop evapotranspiration,
as shown in Equation 1.

ETc � KcET0 (1)
In Equation 1, ET0 represents the CET. Kc is crop growth

coefficient. The study set Kc to 1.05. ETc represents the crop’s water
evapotranspiration during crop growth. From this, the actual
amount of water irrigated can be deduced and calculated as
shown in Equation 2.

ET0 � 0.408△ Rn − G( ) + γ 900
T+273u2 es − ea( )

△ + γ 1 + 0.34u2( ) (2)

In Equation 2, γ represents the average value of surrounding
temperature for crop growth. G represents the natural wind speed in
a radial direction of 2 m. G represents the soil heat below the crop
plant. Rn represents the net radiation in a normal environment. △
represents the slope of air temperature and water pressure in the
time dimension. T stands for moment. Water evaporation from the
soil is closely related to IW use, so the study introduced the double
ring percolation method to measure water infiltration in the soil.
The profile measurements of this method are shown in Figure 1.

In Figure 1, the study sets the diameter of the inner ring of the
measurement ground plane to 0.25 m, while the diameter of the
outer ring is 0.5 m, and the measurement depth is 0.5 m in both
cases. However, the centers of the inner ring and the outer ring
overlap, and they are both rooted into the soil at a depth of 0.1 m.
When the height of the water level in the outer ring Hk reaches
0.1 m, irrigation is not required. The two-ring infiltration method,
on the other hand, observes WC once every 5 min and transmits the
changes to the observation terminal via sensors. The infiltration rate
is calculated as shown in Equation 3.

V � Qn*10
tnS

(3)

In Equation 3, V represents the infiltration rate of soil moisture
(mm/min). Qn represents the amount of IW required by the crop
(mL). tn represents the point in time between observations of
irrigation. S represents the area covered at the time of irrigation.
Accordingly, it can be deduced that the infiltration coefficient of the
double ring percolation method is calculated as shown in
Equation 4.

K � Qn*10
tnS

×
L

Hk
(4)

In Equation 4, K represents the infiltration coefficient. Hk

represents the outer ring water table line. L represents the depth
of the irrigation tool into the soil. The infiltration coefficients of IW
at different temperatures are inconsistent. The irrigation infiltration
coefficients at different temperatures is extrapolated from Equation
4 and calculated as shown in Equation 5.

K10 � Kt

0.7 + 0.03t
(5)

In Equation 5, K10 represents the irrigation infiltration
coefficient at a temperature of 10 °C. Kt represents the
infiltration coefficient at a temperature of t. t represents the
water temperature. Knowing the soil moisture evaporation as
well as the irrigation infiltration coefficient, the irrigation time
point can be predicted. The study projected uniform irrigation
time is calculated as shown in Equation 6.

T � 0.1*a*d RH1 − RH0( )
ETc + 60Kt

(6)

In Equation 6, RH1 represents the average soil moisture of the
farmland to be irrigated. RH0 represents the suitable soil moisture
required for crop growth in the farmland. a represents the depth of
soil cover. d represents the soil capacity weight per Gram of cubic
centimeter. In summary, the study to control the amount of water
used for irrigation of farmland crops, then the circuit system of
automatic WSI technology for farmland can be further designed.
However, WSI technology for farmland involves the operational
experience of growers and the need to accurately grasp the growth
of crops in irrigated farmland. Traditional crop growth observation
techniques still rely on manual inspection, which is inefficient and
costly (Shi, 2021). Automatic WSI technology for farmland relies on
computers and information terminals to record and monitor crop
growth, control soil moisture and irrigation volume. It is possible to
increase the efficiency of observations and reduce costs by choosing
the right sensors to monitor soil moisture, weather conditions, etc.
WSN is a distributed sensor network, with sensors at its periphery that
can perceive and inspect the external world. WSN sensors
communicate wirelessly, allowing for flexible network settings. The
location of devices can be changed at any time, and connections to the
internet can be wired or wireless. Research has chosen LoRa as the
signal transmission network for agricultural areas, and agriculture
urgently needs low-power and low-cost sensors. LoRa is well suited for
such scenarios, and its transmission logic is shown in Figure 2.

After confirming the signal sensors covering farmland, it is
necessary to use micro control unit (MCU) technology as the

FIGURE 1
Schematic diagram of profile measurement method for double
ring infiltration method.
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control terminal to control the circuit. MCU is a portable product
with high integration, small size, high reliability, strong control
function, low voltage, low power consumption, and easy production.
The application fields of MCU are very extensive, such as smart
meters, real-time industrial control, communication devices,
navigation systems, household appliances, etc. The hardware
architecture of the WSI system for farmland research and design
is shown in Figure 3.

In Figure 3, the power supply module is involved to drive the
power supply to control the operating voltage of all the sensors in the
irrigation system. In addition to this, the study considers the
atmospheric pressure, natural wind speed, sunlight light intensity

and natural humidity in the air environment. Therefore the
optimization system such as louver box, soil moisture sensor and
light sensor are added to the irrigation system.

3.2 Predictive irrigation technology based on
PSO-ELM algorithm for crop water use
in farmland

After the hardware configuration planning of the automaticWSI
technology in farmland is completed, it is also necessary to consider
the accuracy of the irrigation system in controlling the amount of

FIGURE 2
Schematic diagram of LoRa network transmission logic.

FIGURE 3
Schematic diagram of the hardware architecture of the agricultural WSI system designed for research.
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IW demanded by farmland crops. Based on this, the study
introduces PSO to effectively solve the water demand projection
of the irrigation space. PSO is a stochastic search technique that first
requires the initialization of all particles and their positions and
velocities to imitate the foraging behavior of flocks of birds and
collective intelligence (Liu et al., 2021; Camacho-Villalón et al., 2021;
Demir and Sahin, 2023). At the outset of the calculation, the study
normalizes all water data to ensure the algorithm’s generalizability
and accelerate the convergence speed of the algorithmic learning
process. The normalization equation is shown in Equation 7.

Xnorm � X −Xmin

Xmax −Xmin
(7)

Equation 7 represents the linear normalization function. Among
them, Xnorm represents the normalized data, X represents the
original data, Xmax represents the maximum value (MaxV) of the
dataset, and Xmin represents the minimum value (MinV) of the
dataset. Once the data normalization process is complete, it is
essential to establish the historical best pBest of the particles as
the current position and the best particle in the population as the
current gBest. Subsequently, it is essential to calculate the fitness
function values for each particle in each iteration. It is assumed a
flock of birds foraging, with m birds forming a group in a
D-dimensional space, the position of the ith bird is calculated as
shown in Equation 8.

Xi � x1
i , x

2
i , . . . , x

D
i( ) (8)

In Equation 8, Xi represents the location of the i th bird, or the
location of the i th plant irrigated. From this, it can be inferred that
the point position of the crop in the irrigated area is calculated as
shown in Equation 9.

Pi � p1
i , p

2
i , . . . , p

D
i( ) (9)

In Equation 9, Pi represents the point in the irrigated crop where
the most accurate amount of water is used. Based on Equation 9 the

irrigation rate can be deduced as the average appropriate water use
of the irrigation system, which is calculated as shown in Equation 10.

Vi � v1i , v
2
i , . . . , v

D
i( ) (10)

In Equation 10, Vi represents the irrigation rate of the i th plant.
In summary, the irrigation rate at different points and the irrigated
area points can be deduced and calculated as shown in Equation 11.

vdi � wvdi + c1r1 pd
i − xd

i( ) + c2r2 pd
g − xd

i( ) (11)

In Equation 11, vdi represents the irrigation rate at different
points. r represents the transformed random number in the interval
0–1. pd

g represents the point position with the smallest adaptation
value for the whole irrigation area. Figure 4 illustrates the impact of
the PSO algorithm suggested in the study on the recording of
irrigation sites.

However, the PSO algorithm also has drawbacks in that it
cannot optimize the collected point data in the implicit layer,
and it can confuse and overlap with the recorded data, which
affects the accuracy of irrigation prediction. To enhance the
irrigation system’s computational accuracy and learning speed,
the study presents the ELM method, which is based on the PSO
algorithm. The novel feature of the ELM algorithm is that it
significantly decreases computation because the connection
weights between the implicit and input layers can be set
randomly and do not need to be modified repeatedly (Bandewad
et al., 2023). The second is that the connection weights do not need
to be adjusted iteratively and can be solved at once by solving a
system of equations. The study assumes a neural network with L
hidden points. Its expression is shown in Equation 12.

∑L

i�1βig Wi ·Xj + bi( ) � oj, j � 1, 2, ...N (12)

In Equation 12, g represents the required connection weights for
ELM.Xj represents the activation equation. βi represents the output
weights. bi represents the position of the ith implicit point. N
represents either sample and Wi represents the inner product. If
the error in the output weights needs to be controlled, Equation 13
is obtained.

∑L

i�1βig Wi ·Xj + bi( ) � tj, j � 1, 2, ...N (13)

The nodes of the single-layer implicit neural network can be
derived from Equation 13, which is calculated as shown in
Equation 14.

H WA
i b

A
i − T( )���� ���� � min

W,b,β
Wi, bi( )βi − T

���� ���� (14)

In Equation 14, T represents the hidden node output. T
represents the desired output value. From this the minimum loss
function of ELM can be calculated as shown in Equation 15.

E � ∑N

j�1 ∑L

i�1βig Wi ·Xj + bi( ) − tj( )
2

(15)

In Equation 15, E represents the minimization loss function. The
weights of single layer implicit neural network are calculated as
shown in Equation 16.

β � H + T (16)

FIGURE 4
Schematic diagram of the effect of PSO algorithm on irrigation
point recording.
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According to Equation 16 the MinV as well as the unique value
can be measured accurately. Combining the aforementioned
requirements, Figure 5 depicts the ELM algorithm’s
network topology.

The final project builds an intelligent automatic WSI system for
farming based on the PSO-ELM algorithm, combining the benefits
of the two algorithms. The PSO-ELM algorithm constructed by the
study firstly needs to normalize the collected historical data of IW
use, and then set the training set and test set. Immediately after that,
an implicit node restriction needs to be applied to the input data set
of the ELM. It is then subdivided into the output layer, as well as the

need to set restrictions on the number of training iterations, IW
particle intervals for the PSO algorithm. The study adopts mean
squared error (MSE) as the regression evaluation index and
calculates the single crop water requirement as the optimization
benchmark to adjust the global particles. The study then investigates
the final optimal parameter that can be obtained by comparing the
error minimization records for the number of iterations. This
parameter will be applied as a representative index in the
irrigation system. In summary, the operation logic of the PSO-
ELM algorithm proposed by the study is shown in Figure 6.

3.3 Experimental design and
evaluation methods

This study uses data from two sources. The first source is a
historical dataset of major farmland ecological sites in northern
China from 2003 to 2025, published by the China Meteorological
Science Data Center. The second source is real-time data collected
by a sensor network deployed in a wheat-maize rotation
experimental field in the North China Plain. The historical
dataset has a data volume of approximately 1.2 GB and includes
over 400000 valid daily records. Each record contains 14 original
characteristic variables, including average temperature, maximum
temperature, minimum temperature, average relative humidity,
average wind speed, sunshine hours, precipitation, and reference
crop evapotranspiration calculated using the Penman Monteith
formula. Meteorological data is collected once a day. To match
irrigation decision-making needs, soil moisture data is generated
through virtual sensors at a frequency of once every 30 min.
Moreover, its daily average is calculated and included in the
dataset. During the 120 days experimental period, the real dataset
deploys 5 soil moisture sensors and 1 micro meteorological station
in each experimental field, collecting over 17000 valid data records.
In the experiment, data cleaning, feature selection, and dataset

FIGURE 5
Schematic diagram of ELM algorithm network structure.

FIGURE 6
Schematic diagram of the running logic of the PSO-ELM algorithm proposed by the research.
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partitioning are required. First, quality control is applied to the raw
data to eliminate outliers that are clearly beyond the physical range.
For a small number of missing values, time series linear
interpolation is used to fill in. Then, based on the principles of
agricultural hydrology, characteristics directly related to crop water
demand are selected. These characteristics include temperature,
humidity, wind speed, sunshine, and soil moisture. The Pearson
correlation coefficients between all preliminary characteristics and
actual IW requirements are calculated, and characteristics with
correlation coefficients below 0.1 are excluded. Thus, eight
characteristics are determined for the model input, including
average temperature, daily maximum temperature, average
relative humidity, average wind speed, sunshine hours, previous
day soil moisture, cumulative precipitation, and reference crop
evapotranspiration. Finally, the 7:3 ratio is divided into training
and testing sets.

After completing data preprocessing, to fairly evaluate the
performance of PSO-ELM, the study selects backpropagation
neural network (BPNN), wavelet neural network (WNN), and
standard extreme learning machine (ELM) as baseline models for
comparison. The comparative indicators include prediction error
RMSE, MAE, as well as goodness of fit R2 and actual water-saving
effect. To avoid the limitations of traditional voting counting
methods, this study used effect size analysis to quantify the
performance differences between PSO-ELM and various baseline
models. This was done by calculating Cohen’s d and combining it
with an independent sample t-test to verify the statistical
significance of the differences (α = 0.05). This ensured the
statistical robustness of the model comparisons. To address the
issue of incomparability caused by dataset heterogeneity, time scale
differences, and differences in indicator dimensions, this study
standardizes all indicators. For error indicators such as RMSE
and MAE, the min max scaling method is used to convert
them to the [0, 1] interval to eliminate the influence of
dimensionality. To account for variations in data types and
time periods, these standardized metrics must be further
converted into z-scores. All data should be uniformly
transformed to a common baseline for description, ensuring
fair comparisons across different scenarios. To enhance the
objectivity of experimental quality evaluation, this study uses
inter rater reliability for testing. Two researchers with agricultural
intelligent algorithm backgrounds independently verifies the
accuracy of experimental data input and the accuracy of
evaluation index calculation. Subsequently, Cohen’s kappa
coefficient is used to quantify consistency, with a kappa
coefficient of 0.92, indicating excellent consistency.

4 Results

To verify that the proposed PSO-ELM algorithm can improve
the WSI system, the experiment firstly analyzes the error of the
algorithm and compares the R2 value, so as to prove the effectiveness
and advantages of the algorithm. Second, the PSO-ELM algorithm is
combined with the WSI system to carry out experiments to compare
the results of monitoring soil moisture and sunshine hours, which
are the indicators of irrigation impact. Finally, the WC and crop
output of the technology are compared.

4.1 Impact analysis of PSO-ELM algorithm
on automatic WSI technology in farmland

To ascertain whether the PSO-ELM algorithm and
microcontroller proposed by the research can enhance the
efficacy of automatic WSI technology in agricultural settings, a
series of experiments are conducted. First, in order to determine
the optimal values of population size, iteration times, and inertia
weights in the proposed algorithm, this study designs ablation
experiments. By holding other parameters constant and altering
the target parameter’s value, the optimal parameter combination is
selected through comparing the model’s RMSE, MAE, and R2 values
on the test set, as well as the accuracy of water demand forecasts.
ELM has 30 hidden layer nodes, activation function Sigmoid, and
regularization coefficient 0.01. The results are shown in Table 2.

In Table 2, when the population size is 10, the RMSE is 0.186,
which is the maximum. R2 is the smallest at 0.921. The insufficient
number of particles at this time results in inadequate coverage of the
search space. This makes it difficult to find the optimal initial
parameters for ELM. As the population size increases, particle
diversity improves, search accuracy improves, RMSE decreases,
and R2 increases. However, when the population size exceeds 30,
RMSE increases. The reason is that too many particles lead to
computational redundancy and are prone to oscillations around
local optimal values. This results in comprehensive performance and
computational efficiency. When the number of iterations is 50, the
RMSE is 0.215, which is the maximum. At this point, the particles
have not fully explored the parameter space. When the number of
iterations gradually increases to 300, RMSE continues to decrease
and R2 increased, indicating that increasing the number of iterations
promotes parameter optimization. When the number of iterations is
400, the RMSE decreases by only 0.001. This indicates that the
performance improvement is relatively small, but the iteration time
increases significantly. When the inertia weight is 0.07, the RMSE is
the smallest at 0.103 and the R2 is the largest at 0.986, indicating a
balance between global and local search. Overall, it can be
determined that the optimal population size is 30, the optimal
number of iterations is 300, and the optimal inertia weight is 0.7.
Then, the PSO-ELM algorithm is used to analyze the error in
determining irrigation demand. The experiment introduced
BPNN, WNN, and single ELM method. The comparison results
are shown in Figure 7.

In Figure 7a, the MSE of the proposed PSO-ELM algorithm
under study reduces with the increase in the iterations and the curve
shows a decreasing state. The maximum of the MSE appears before
50 iterations with a value of 4.3. Its error curve stabilizes when it is
iterated up to 100 times. The minimum occurs in the interval of
200–300+ iterations with a value of 2.6. This indicates that the
calculation error of PSO-ELM algorithm tends to stabilize with the
increase of irrigation demand. The MSE curve of the WNN
algorithm is at the top, indicating that the error is large and the
algorithm has a poor impact. The MaxV of the root mean squared
error (RMSE) forWNN is 4.19 and theMinV is 3.4. In Figure 7b, the
mean absolute error (MAE) of the proposed PSO-ELM algorithm of
the study reduces with the increase in the iterations, and the curve
shows an overall flat decreasing state. This indicates that the
proposed method has the lowest error and overall performance is
relatively stable. The maximum MAE occurs in the interval of
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50–100 iterations, with a value of 2.7. Its error curve stabilizes after
100 iterations, and the minimum occurs in the interval of 250–300+
iterations, with a value of 2.3. The MAE curve of the WNN
algorithm remains at the top, indicating that the mean absolute
error between the algorithm’s predicted and true values is large and
the algorithm has little impact on the irrigation system. TheMaxV of
the RMSE ofWNN is 3.9 and theMinV is 3.1. The above data proves
that the research’s proposed combined algorithm has smaller
calculation errors than other similar algorithms. It has a
minimum mean square error of 2.6 and 2.3, respectively, which

greatly improves the irrigation system. The experiment employs the
PSO-ELM and WNN algorithms to predict evapotranspiration of
crops. These algorithms exhibit a notable discrepancy in error,
thereby further substantiating the merits of the proposed
algorithm. The test results are shown in Figure 8.

In Figure 8a, the maximum phase of predicted volatilization of
evapotranspiration by the proposed method of the study appears
between 0–50 days and 400–450 days, with a high value of 9.6 mm.
However, the minimum phase of volatilization occurs between
248 and 276 days, with a value of −1.8 mm. The actual

TABLE 2 Ablation experiment.

Parameter Parameter values RMSE MAE R2 Prediction accuracy (%)

Population size 10 0.186 0.152 0.921 90.5

20 0.112 0.091 0.978 97.2

30 0.108 0.088 0.981 97.5

40 0.115 0.093 0.976 96.8

50 0.132 0.105 0.965 95.3

Iteration count 50 0.215 0.178 0.896 88.2

100 0.142 0.118 0.952 93.5

200 0.110 0.090 0.979 97.3

300 0.102 0.082 0.987 98.1

400 0.101 0.081 0.988 98.2

Inertia weight 0.4 0.156 0.125 0.945 92.8

0.5 0.132 0.108 0.963 95.1

0.6 0.115 0.095 0.975 96.7

0.7 0.103 0.083 0.986 97.9

0.8 0.128 0.102 0.969 95.7

FIGURE 7
Comparison of RMSE and MAE results of four methods. (a) Iterative mean square error. (b) Iterative average absolute error.
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volatilization is in line with the range of predicted volatilization
peaks and troughs, with a maximum of 9.5 mm and a minimum
of −1.9 mm. Peak and troughs are in agreement with the prediction
of the data both differed by 0.1 mm. It can be clearly seen from
Figure 8a that the predicted volatility curve is close to the actual
volatility curve, indicating that the PSO-ELM algorithm can
accurately predict crop evapotranspiration. In Figure 8b, the
prediction results of CET by the WNN algorithm differs greatly
from the actual evapotranspiration results. The maximum stage of
evapotranspiration predicted volatilization occurs between 0 and
50 days, which is as high as 9.9 mm. However, the minimum stage of
volatilization occurs between 200 and 250 days, with the value
of −2 mm. The MaxV of actual volatilization is 10 mm, and the
MinV is −1.9 mm. This indicates that the method does not enhance
the performance of the irrigation system. In general. The predictive
performance of the PSO-ELM algorithm is superior, with a
maximum difference of only ±0.1 mm from the actual
volatilization amount. It can provide decision-making reference
for saving IW. The experiment concludes with a comparison of
the R2 and RMSE results of the four methods as a means of verifying

that the proposed algorithm of the study is able to locate the point of
the crop to be watered faster. The results are shown in Figure 9.

In Figure 9a, the RMSE value of the proposed method of the
study is the lowest with a mean value of only 0.1025. It suggested that
the PSO-ELM algorithm is the most accurate for irrigation
prediction. The BPNN algorithm has the largest RMSE value of
5.0410. The RMSE value of ELM algorithm is second only to the
value of the algorithm proposed in the study with a mean value of
0.6078. The mean value of RMSE of WNN algorithm is 0.7577. In
Figure 9b, the higher value of R2 represents that the result is closer to
the accurate value. The PSO-ELM algorithm has the largest R2 value
of 0.9876. The BP algorithm has the smallest R2 value of 0.7889. The
R2 values of WNN and ELM are in the middle of the range of
0.9188 and 0.8652, respectively. In summary, the PSO-ELM
algorithm proposed in the study can greatly enhance the
performance of the automatic irrigation system. It is able to
control irrigation accurately and at the same time predict the
factor variables rationally. The algorithm can provide strong
technical support for the accuracy and energy saving of irrigation
technology.

FIGURE 8
Comparison of two methods for predicting crop evapotranspiration. (a) PSO-ELM prediction of evapotranspiration. (b) WNN prediction of
evapotranspiration.
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4.2 Experimental analysis of automatic WSI
technology for farmland based on PSO-ELM
algorithm and MCU

In order to verify that the PSO-ELM combination algorithm
proposed in the study has more accurate water control for farmland
irrigation, the climate conditions of a certain irrigation plain are
referred to as the data for the test set, and simulation experiments are
conducted. Due to the limited geographical location of the
experiment, a static application is chosen. At the outset of the
experiment, it is hypothesized that dynamic applications
necessitate a dynamic data simulation system capable of updating
and responding to farmers’ inputs in real time. This is to ensure that
the application can reflect changes and demands in the real world at
runtime. The final experiment uses Matlab R2019b software to
simulate and calculate the irrigation model. The experimental
observation period is 3600 days, involving the climate conditions,
average wind speed, soil moisture, etc. of the plain. The training set
data is sourced from the National Meteorological Science Center
http://data.cam.cn. The test set data is shown in Table 3.

The experiment randomly selects 7 days of observation data to
test the performance of the smart self-service WSI system on
farmland. The irrigation impact indicators soil moisture as well
as sunshine hours of these 7 days observation data are also

compared. The monitoring results and measured results are
shown in Figure 10.

In Figure 10a, the irrigation system based on PSO-ELM
algorithm proposed by the study is more accurate in monitoring
the sunshine hours. Among them, the monitoring results on days 3,
6, and 7 are consistent with the measured results. The longest
sunshine hours occur on day 7 with 14.5 h. The shortest
sunshine hours occur on day 2 with 1.00 h, and the measured
hours are 1.05 h, with a difference of only 0.5 h. This indicates that
the proposed algorithm is able to accurately control the sunshine
information in the actual monitoring of the farmland. It is very
useful for the control of soil moisture as well as the WC of plant
irrigation. In Figure 10b, the proposed irrigation system based on
PSO-ELM algorithm can accurately control the soil moisture in the
farmland. The monitoring results on days 1, 2, 3, and 6 is consistent
with the measured results. The highest value of soil moisture
retention occurs on day 3 with a value of 89.5%. The lowest
value of soil moisture retention occurred on day 4 with a value
of 87.7% and the measured moisture is 87.0% with a difference of
0.7%. This shows that the proposed method can control the soil
moisture in the farmland to be irrigated, which can provide an
accurate reference for the water supply of theWSI system. At the end
of the experiment, the crop yield and WC of the irrigated plain are
analyzed, and simulation experiments are conducted by combining

FIGURE 9
Comparison of R2 and RMSE results of four methods. (a) Comparison of standard errors among four methods. (b) Comparison of R2 indicators for
four methods.

TABLE 3 Partial data of test set.

Time/
day

Average
temperature/°C

Daily maximum
temperature/°C

Average
relative
humidity/%

Average wind
speed m/s

Daily minimum
temperature

Sunlight
hours1

1 21.7 33.2 45 6.5 13.6 11

2 20.8 29.3 70 6.0 10.6 6.4

. . .. . . — — — — — —

3599 25.6 30.8 69 2.1 25.6 11.2

3600 24.3 30.6 82 3.1 24.3 9.5
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FIGURE 10
Comparison of sunshine count and soil moisture using themethod proposed by the research. (a)Comparison of Sunshine Duration. (b)Comparison
of soil moisture conditions.

FIGURE 11
Comparison of production efficiency between traditional irrigation methods and research methods. (a) Comparison of Water Consumption
between Two Irrigation Methods. (b) Comparison of Water Consumption between Two Irrigation Methods. (c) Comparison chart of water
production efficiency.

Frontiers in Mechanical Engineering frontiersin.org12

Ji et al. 10.3389/fmech.2025.1619319

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1619319


traditional methods of artificial irrigation with the methods
proposed in the research. The results are shown in Figure 11.

In Figure 11a, the proposed automatic WSI technique for
farmland based on PSO-ELM algorithm is studied with less WC.
The maximum WC of the traditional irrigation method appears on
day 3 with a value of 7647.1 m3/hm2. The minimum WC of the
irrigation system proposed by the study appears on day 1 with a
value of 3015 m3/hm2. The maximum WC appears on day 4 with a
value of 5268.3 m3/hm2. In Figure 11b, the difference in crop yield
between the two irrigation methods is also large. Themaximum crop
yield of the irrigation system mentioned in the study is 8840.5 kg/
hm2. However, the maximum crop yield under the conventional
irrigation method is only 8260.5 kg/hm2 and the minimum yield is
8009.3 kg/hm2. In Figure 11c, the water productivity varies between
the two irrigation methods. The MaxV of water production
efficiency of the irrigation system proposed by the study is
1.68 kg/m3. Whereas, the water production efficiency of the
conventional irrigation method is lower with a value of 1.06 kg/
m3. The above data shows that the irrigation system with the control
algorithm proposed by the study is able to use less IW. This produces
more crop volume and higher water supply efficiency, which is a
better overall performance than traditional irrigation methods. This
method can greatly achieve the effect of WSI, and plant irrigation.
To further verify the effectiveness of the microcontroller-based
automatic irrigation system using the PSO-ELM algorithm, a
120-day field experiment was conducted in a wheat-maize
rotation area in northern China. The experiment is divided into
a control area and an experimental area, each with an area of 1 ha.
The control area adopts conventional irrigation methods, while the
experimental area deploys the proposed automatic irrigation system.
During the experiment, the total IW consumption, crop yield, and
water productivity are recorded. The results are shown in Table 4.

As shown in Table 4, the total IW consumption of the proposed
system is 4,326.8 ± 198.7 m3/hm2, which is significantly lower than
that of conventional irrigation methods. The proposed system can
save 38.1% of water, which is a statistically significant difference (p <
0.05). The crop yield of the proposed system is 8765.3 ± 192.1 kg/hm2,
while the crop yield of conventional irrigation methods is 8125.6 ±
285.4 kg/hm2. Compared with conventional irrigation methods, the
proposed system increases yield by 79%, with a significant difference
(p < 0.05). The water productivity of the proposed system is 2.03 ±
0.11 kg/m3, which is much higher than that of conventional irrigation
methods. There is a significant difference between the two (p < 0.05).
The above results indicate that the proposed system can adapt to real
fluctuations in agricultural environments, proving its effectiveness
and reliability in practical applications.

5 Discussion and conclusion

With the advancement of science and technology, China’s
automatic IW-saving technology for farmland is also tending
toward intelligent development, but there are also problems such
as high water demand, high WC rate and high labor cost. To solve
these problems, it is necessary to study how to accurately control IW
consumption and improve water efficiency. Therefore, the study
proposed an automatic WSI algorithm for farmland that combined
microcontroller technology with the PSO-ELM algorithm. The
results showed that the maximum mean square error of the PSO-
ELM algorithm proposed by the research occurred before
50 iterations, with a value of 4.3 and a MinV of 2.6. The MaxV
of the MAE index was 2.7 and the MinV was 2.3. This indicated that
the combined algorithm proposed by the research had small
calculation errors and could accurately irrigate according to
irrigation needs and environmental characteristics, which greatly
improved the entire irrigation system. In addition, the automatic
WSI technology for farmland proposed by the research required less
water, with a minimumWC of 3015m3/hm2 and a maximumWC of
5268.3 m3/hm2. The accuracy of predicting the IW demand for crops
using the irrigation system proposed by the research could reach
over 98%. This study validates the effectiveness and enormous
potential of data-driven methods that combine intelligent
optimization algorithms and embedded hardware to solve
complex problems in the optimization of agricultural systems. At
the same time, it provides multiple insights for the development path
of intelligent agriculture. For agricultural technology promotion and
policymakers, the importance of investing in agricultural IoT data
infrastructure has been emphasized. Forward looking investment is
needed in agricultural IoT data infrastructure. Data insights should
be transformed into fair water-saving incentive policies. For
agricultural engineers and data scientists, it reveals the necessity
of interdisciplinary collaboration. The deep integration of advanced
algorithms with reliable hardware requires full consideration of the
complexity of the agricultural environment. It also requires
consideration of the limitations of equipment computing power
and the usage habits of farmers. The integration of computational
intelligence tools provides agronomists and producers with an
opportunity to quantify and model traditional planting
experience. This shifts irrigation decisions from experience-driven
to data-driven. However, this study still has some limitations.
Although LoRa technology is an ideal choice for this system
because of its low power consumption and ability to
communicate over long distances, complex terrain in rural
farmland environments may obstruct and attenuate signals,

TABLE 4 Performance comparison of different irrigation systems in real scenarios.

Evaluation metrics Total irrigation water consumption
(m3/hm2)

Crop yield
(kg/hm2)

Water productivity
(kg/m3)

Conventional irrigation methods 6985.4 ± 345.2 8125.6 ± 285.4 1.16 ± 0.08

Automatic irrigation system based on microcontroller
and PSO-ELM

4326.8 ± 198.7 8765.3 ± 192.1 2.03 ± 0.11

t 25.67 9.89 38.45

p <0.05 <0.05 <0.05
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leading to unstable communication when the technology is
deployed. The hardware cost of deploying a large number of
sensor nodes, the maintenance cost in the later stage, and the
requirement for farmers’ technical literacy will also have an
impact on its promotion. At the same time, the system’s
economic feasibility has not been thoroughly analyzed. The initial
cost of a complete automatic irrigation system, including sensors,
microcontrollers, actuators, communication modules, and software
development, is relatively high. The investment payback period
between it and the long-term benefits brought by water-saving
and income increase is still unclear. For small-scale farmers with
weaker capital capacity, this is the core consideration in deciding
whether to adopt this technology. Therefore, future research will
optimize network topology, introduce relay nodes to enhance the
robustness of LoRa networks in complex environments, and explore
low-cost, open-source hardware solutions to reduce deployment
costs. In addition, long-term and large-scale field trials will be
conducted to quantify the comprehensive benefits of the system
in terms of water conservation, yield increase, and labor savings.
Detailed cost-benefit analysis will be conducted to provide clear
economic feasibility reports for farms of different operating scales.
Explore sustainable business models based on services. Examples
include government or cooperative investment in building cloud
platforms and infrastructure, as well as farmers using services
through leasing or pay-as-you-go. These models lower the initial
investment threshold for small farmers and improve the accessibility
and scalability of technology.
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