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Nuclear energy is considered one of the safest sources of energy in the world,
however there is a low probability of occurrence of a nuclearaccident that might
trigger a nuclear emergency. As of December 2023, there are 413 operating
nuclear power plants in 31 different countries,and although the design of these
nuclear power plants is based upon the concepts of Defence in Depth with very
conservative assumptions,the hazard from natural disaster, human error and
non-vigilant actions might results in nuclear emergency. Since the last
majornuclearaccident Fukushima Daichi in 2011, many researchers have
highlighted the need for more advanced and automated system tosupport the
emergency preparedness and response in optimizing the protective action
strategies. In this study we introduce the concept ofapplying artificial
intelligence to enhance the readiness and the response capability during
nuclear emergency. Through the predictability and computational features of
AI models and machine learning techniques, the EPR systems can be enhanced
by improving the hazardassessment, optimizing the dose projections models,
enhancing the protective actions strategies and improving the decision-making
process. However, this application also presents challenges such as data
reliability, cybersecurity and regulatory compliance. The results of this
studyhighlight the significance of applying AI in EPR and the need for further
research on this applicationwith a particular focus on addressingthese challenges
to ensure safe implementation.
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1 Introduction

Nuclear power is deemed to be one of the safest sources of energy (Hussain, 2023),
however, there is still a very low probability of the occurrence of a nuclear accident within
the nuclear power plant (NPP) that might lead to a nuclear emergency which could impact
the workers, public and environment. In the nuclear energy sector, controlled nuclear chain
reactions produce heat, which is then used to generate electricity through steam turbines
(Hussain, 2023). As of the end of December 2023, the worldwide operational nuclear power
capacity is 371.5 GW (electric), generated by 413 nuclear reactors in 31 countries and
additional 21.3 GW (electric) generated from 25 reactors which are licensed for operation
but stayed in suspended operations during 2023 (IAEA, 2024b).

Furthermore, since the construction of the first reactor in 1954, the public have been
concerned about the consequences of the health effects of a nuclear accident within the
operated NPPs (Hussain, 2023). Although the design of these plants is based on the concept
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of Defense in Depth (DiD) (CNSC, 2014) with very conservative
assumptions and with high safety margin, the hazards from natural
disasters, errors made by humans, and non-vigilant actions might
result in a nuclear accident, which will trigger a nuclear emergency.

Since the construction of the first nuclear reactor, three major
nuclear accidents have occurred over the past 70 years in three
different member states. Themost recent was the Fukushima Daiichi
accident in Japan in 2011, preceded by the Chernobyl disaster in
Ukraine in 1986, and the earliest was the partial meltdown of the
Three Mile Island (TMI) Unit in the United States in 1979 (Hussain,
2023). According to the International Nuclear and Radiological
Event Scale (INES), only the Chernobyl and Fukushima Daiichi
accidents were rated at the maximum severity level of INES 7,
reflecting widespread health and environmental consequences. In
contrast, the TMI accident was rated at INES level 5, as its off-site
impact was limited.

During the evaluation of the effectiveness of the protective
actions that were taken during the Fukushima Daiichi accident, it
was identified that some of the protective actions were not optimized
and were doing more harm than good (Sawano et al., 2021).

For instance, during the Fukushima Daiichi evacuation, it was
reported that some of the critical patients passed away during
evacuation due to lack of staff and disruption of infrastructure
(Sawano et al., 2021). Therefore, poorly prepared protective
response during emergencies can lead to serious impacts on
vulnerable populations, thus it is fundamental to identify risks
associated with nuclear emergencies and it is crucial to be well
prepared for these emergencies by implementing suitable and
effective protective actions.

According to Carr (2018) the limited protective actions taken
during the Fukushima Daiichi and Chernobyl accidents caused
numerous social problems, such as depression, anxiety, and
societal problems. There is a need to use advanced
methodologies, criteria, and approaches to prepare for a nuclear
emergency and have contingency plans in place that will not fail
during the response. For those reasons, in this present work we are
proposing a novel idea for enhancing the emergency preparedness
and response by implementation of advanced automated techniques
that are based on Artificial Intelligence (AI) models and Machine
Learning (ML) algorithms. The first part of this paper provides an
overview of the AI technologies in EPR and the different machine
learning techniques in emergency management. The second part
highlights the existing and the potential application of AI in EPR.
Subsequently the last part of this paper focus on the associated
challenges with this applications, significance of this application to
EPR and some future work recommendations.

2 Overview of AI technologies in EPR

Artificial Intelligence was first invented in the 1940s, however,
advancement in AI capabilities has been rapidly growing since 2010
(DHS, 2024). This growth was due to the huge increase in the
computational capabilities, publicly available data, novel algorithms
and the increase in the number of individuals with the ability to
manipulate this computational power (DHS, 2024). Recently,
processing and computational capabilities have become more
accessible by organizations and by individuals, which made the

AI very scalable and can be applied in different applications (DHS,
2024). In this paper we are exploring the applicability and the
scalability of AI in the field of nuclear emergency preparedness
and response.

2.1 Nuclear emergency data source

Data sources are the key components in any artificial intelligence
model as they are the main inputs to the machine learning
algorithms associated with the model. The data used to train and
test the AI models in the field of nuclear emergency and response are
crucial to the accuracy and the reliability of the output pf these
models. This data mainly comes from three different categories
(Jendoubi and Asad, 2024). The first set of data comes from
mathematical models and simulators based on complex physics
and thermal hydraulics equations (Ejigu, 2024). Thus, mathematical
modelling data can be used to train the AI-based EPR models and
decision support systems. The second set of data might come from
the experiments in the laboratory; nevertheless, this type of data is
not always accessible and might require an elevated expenditure to
perform the experiment. However, we still can use this type of data
to train and test the ML algorithms used in EPR models (Ejigu,
2024). The last set of data comes from the actual operation sensors,
real-time data transmission Internet of Things (IoT) sensors, aerial
images, sensors on the drones, etc. This type of data serves as
important inputs to the EPR models and decision support systems
based on ML algorithms.

2.2 Machine learning algorithms for
emergency management

ML algorithms have been around for decades however they have
attained new popularity as AI has grown in prominence (Hong,
2020). The variety of ML techniques include supervised learning,
unsupervised learning, semi-supervised learning, reinforcement
learning, classification, regression, decision tree, clustering, deep
learning, etc., (Hong, 2020).

Few scientific works have been published regarding the ML
algorithm used for nuclear emergencymanagement. However, in the
literature, several works explored the use of different ML technique
to manage other type of emergency such as, earthquake or
Hurricane. Given the similarity in the predictivity and the
identification features of all the emergency which implies
deviation of the data from the predicted trend, we are able to
match the ML algorithm used to forecast and monitor other type
of emergencies with the nuclear emergency.

In his paper, Xu (2017) used a clustering technique to detect
patterns of abnormal activities that could potentially escalate into
nuclear security events, which are events involving malicious acts,
unauthorized access, or intentional disruptions that threaten the safe
operation of a nuclear facility. By identifying such patterns early,
machine learning (ML) algorithms can assist security and
emergency teams in taking pre-emptive measures, thus
enhancing overall control and situational awareness during a
nuclear emergency. Similarly Yin et al. (2012) employed an
Online Incremental Clustering algorithm to continuously
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monitor and classify unusual signals or events, supporting real-time
situational awareness. In our case, we could use the same technique
during nuclear emergency to enhance radiological risk awareness
within the affected population in the EPZ. Another author (Harris,
2017), used Fast K-means Clustering technique to detect the
incident location based the crowd sourcing patterns. In our case,
we can use this technique to track andmonitor the evacuation routes
during the response. This is important because during nuclear
emergency, people tend to escape from their homes even without
any evacuation orders, which would result in traffic and the
probability for vehicle accident increase under the anxiety and
fear of radiation exposure, as we saw during the Three Mile
Island Accident.

In paper, Martínez-Álvarez et al. (2011) used a regression
technique to predict the magnitude of earthquakes by identifying
correlations between seismic precursor patterns and resulting
earthquake strength. Although earthquakes and radiation releases
are fundamentally different phenomena, regression techniques can
still be applied to model cause-effect relationships in nuclear
emergencies.

In our case, regression models can be trained using historical
plant data and simulated scenarios to estimate the extent of radiation
levels following a release event. For example, inputs such as the size
of the release, containment status, meteorological conditions, and
ventilation patterns can serve as predictors for the spatial and
temporal distribution of radiation. This approach does not
assume that radiation behaves like seismic activity but rather
leverages the same statistical principle of regression to quantify
relationships between input parameters and predicted outcomes.

Likewise, Sakaki (2010) employed Support Vector Machine
(SVM) to detect an emergency event and classify the emergency
attributes positive and negative classes. In our case, we can take
advantage of this method during the triage after a contamination
event. Another author, Fersini (2016) used Bayesian-based technique
to train the AI model to be able to send early warning regarding the
emergency magnitudes and degree of the predicted damage.

In our case, this technique can be used to detect a sequence of
events that may lead to severe nuclear accidents and provide an early
warning to the operator and emergency response authorities.
According to the IAEA’s emergency classification system, such
detection can automatically trigger a predefined emergency
category (e.g., Alert, Site Area Emergency, or General
Emergency), which in turn activates the corresponding
protective actions.

For example, if the predicted conditions meet the criteria for a
General Emergency, authorities can immediately invoke the
Precautionary Action Zone (PAZ), initiate public notification,
and implement urgent protective measures such as sheltering or
distributing Thyroid Blocking Tablets (TBTs).

Similarly, author in Kim et al. (2014) used Multilayer Feed-
Forward Network and Back Propagation technique to forecast the
level of damage caused by a hurricane. In our case, this technique
can be adapted to predict the level of damage resulting from
combined emergencies, such as a nuclear event occurring
simultaneously with a natural disaster. The model can be trained
using historical data and simulated scenarios where multiple hazards
overlap, such as the Fukushima Daiichi accident in 2011, where a
nuclear emergency coincided with a tsunami.

Specifically, a Multilayer Feed-Forward Network with Back
Propagation could take as input variables related to both the
nuclear plant (e.g., reactor thermal power, coolant system status,
and containment pressure) and the natural disaster (e.g., tsunami
wave height, flooding level, and seismic activity). By processing these
multi-hazard inputs, the network can estimate a combined damage
index, which reflects the expected severity of plant degradation, off-
site radiological consequences, and infrastructure impact. This
adaptation allows EPR authorities to forecast worst-case
outcomes for complex scenarios, enabling them to prioritize
resources, pre-stage protective measures, and mitigate cascading
effects before they fully develop. By forecasting the level of damage
caused by the combination of events, the EPR authorities can plan
and have more robust and effective protective actions to mitigate the
consequences caused by this type of combined emergency. Another
author in Bai et al. (2018) used Convolutional Neural.

Network (CNN) to train the AI model based on pixels images
from radar Earth observation satellite in the purpose to evaluate
damage level of the affected regions, the output from the AI models
was instant evaluation and classification of the damaged area into
the following categories “washed away”, “collapsed” and “slightly
damaged regions”. In our case we can use this CNN technique to
evaluate the contamination level after a severe nuclear accident and
classify the affected area in “Highly contaminated area”, “moderate
contaminated area”, and “slightly contaminated areas”. This is very
important, because during the evacuation process, it is crucial to
determine the non-contaminated route to make sure the evacuation
is done safely. The following Table 1 summarizes the machine
learning techniques reviewed in this section.

3 AI application in EPR

In this section of this paper, we are introducing the existing and
the possible application of artificial intelligence in the area of nuclear
emergency and response.

3.1 Predictive modeling of nuclear security
threat scenarios

Nuclear power plants face different types of threat that includes
nuclear security threat, examples includes cyberattack and physical
intrusion. These threats may affect the safety of the NPP operation
and cause significant risks to the public (Choi, 2020), that’s why it is
crucial for the nuclear facilities to be well prepared for these type of
attacks in order to mitigate the consequence. Artificial intelligence is
a very powerful tool that can be used during the emergency
preparedness phase to help with the protective action strategies
for offsite and onsite response plans during a nuclear emergency that
is triggered by a nuclear security event. According to DHS (2024) AI
is already used by the Department of Homeland Security of the
United States to predict detect, identify and mitigate the impact of
the threat that is raised from nuclear security situation. Machine
learning (ML) algorithms can support the simulation of various
nuclear security attack scenarios—such as physical intrusion, cyber-
attacks, and coordinated threats—by analyzing the outputs of
simulation models rather than directly running the simulations
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(Wasil et al., 2024). In practice, the simulations themselves are
typically executed using physics-based or agent-based modeling
tools to generate large datasets representing system behavior
under different attack conditions. ML is then applied to process
and interpret these outputs, identify recurring vulnerabilities, detect
anomalous patterns, and predict the likelihood of cascading failures.
This approach allows security planners to focus on high-risk
scenarios, prioritize protective measures, and improve the
robustness of the emergency preparedness and response plan.

By running the simulation codes, the emergency planners can
assess the impact of such type of attack on the nuclear power plant
and they will be able to determine the extent of the emergency
planning zones (EPZs) according to the simulation results from the
ML algorithms. These algorithms, such as Deep Learning (DL)
(Chernavskikh, 2024) hold a significance simulation and scenario
reconstruction capabilities (NNSA, 2023) that can optimize the
extension of the EPZs and therefore optimize the protective
action and the emergency response plans onsite and offsite the
plant. In his paper, NNSA (2023) states that since 1992, the National
Nuclear Security Administration (NNSA) of the United States has
undergone different testing for artificial intelligence integration for
nuclear security purposes, to detect and identify any potential threat
through prediction algorithm and simulate different nuclear security
threat scenarios through and an advanced program called Advanced
Simulation and Computing (ASC) program. In the same paper,
NNSA (2023) affirms that in 2023, this simulation program ASC has
reached unique modeling and simulation capabilities that use
extensive machine learning tools allowing the simulator to mimic
the nuclear security attack which high accuracy (NNSA, 2023),
which will result in high accuracy in predicting the impact of this

attack, thus more effective protective action planning strategy.
Therefore, AI can be applied in EPR during the hazard
assessment phase to address Requirement number 4.22 in the
GSR-Part 7 (IAEA, 2015) to include nuclear security threat
assessment in the hazard assessment, and it can simulate
different nuclear security threat scenarios to assess the extension
of their potential impacts on the public. The concept of applying AI
in predictive modeling in nuclear security threat assessment is
illustrated in Figures 1, 2.

3.2 Prediction of the atmospheric dispersion
model and deposition profiles

Atmospheric dispersion models are indispensable modelling
tools in projecting the consequences of the radioactive release
from a severe accident at a NPP. This consequences assessment
is a crucial part of the decision making process for implementation
of effective protective actions to mitigate the health and societal
consequences of this impact. Nuclear emergencies are different from
any other emergencies because their impact is long-lasting and may
continue to cause this impact through generations if justified and
optimized protective actions are not implemented (Hussain, 2022).
The application of artificial intelligence in plume dispersion
modelling can enhance the prediction of these atmospheric
models and improve the prediction of deposition profiles during
the emergency preparedness phase. Machine learning algorithms
such as Long Short-Term Memory (LSTM) can be used to train the
dispersion models using the historical data of radioactive releases to
predict future deposition patterns based on different atmospheric

TABLE 1 Modern AI algorithms used in emergency management.

Emergency
phase

Emergency
management

task

ML technique Other emergencies
application

Nuclear emergency
application

Reference

Preparedness stage Event Detection Clustering Detect events that are more likely
to trigger an emergency

Detect and recognize the set of
events related to nuclear security

events

Xu (2017)

Response Phase Situational Awareness Online Incremental
Clustering

Situational awareness Enhance radiological risk awareness Yin et al. (2012)

Response Phase Crowd-sourcing Fast K-means
Clustering

Detect the incident location based
on the crowd sourcing patterns

Track and monitor the evacuation
routes

Harris (2017)

Preparedness Stage Prediction Regression Predict magnitude of earthquakes Predict the extent of the radiation
dose

Martínez-Álvarez
et al. (2011)

Response Phase Detection/Classification Support Vector
Machine (SVM)

Detect an emergency event and
classify the emergency attributes
positive and negative classes

Triage after a contamination event Sakaki (2010)

Urgent Response
Phase

Crowdsourcing/Early
Warning

Bayesian-based
technique

Early warning regarding the
emergency magnitudes and degree

of the predicted damage

Detect nuclear events and send an
early warning for Iodine

Prophylaxis

Fersini (2016)

Preparedness Stage Prediction Multilayer Feed-
Forward Network and
Back Propagation

Forecast the level of damage
caused by a hurricane

Predict the level of damage caused
by a combination of a nuclear

emergency and a natural disaster

Kim et al. (2014)

Response Phase Evaluation Convolutional Neural
Network (CNN)

Evaluate damage level of the
affected regions: “washed away”,
“collapsed” and “slightly damaged

regions”

Evaluate the contamination level:
“Highly contaminated area”,

“moderate contaminated area”, and
“slightly contaminated areas”

Bai et al. (2018)
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characteristics scenarios (Filho, 2024). In his paper, Filho (2024)
employed LSTM model to predict the movement of the point of the
maximum whole-body dose rate coordinates at an optimized timing
during the passage of the radioactive plume in the scenario of a
severe accident from pressurized water reactor (PWR) in Brazil
(Filho, 2024). The LSTM model used the maximum point of the
simulated plume coordinates, wind speed and wind direction as
input variable to the AI model to predict the whole-body dose rate
(Filho, 2024). Furthermore, regression models, such as Linear
Regression (LR) can be employed in this context to predict the

intensity of the ground deposition based on variable input data such
as the wind speed, the stability class and the height of the release (Al-
Aizari et al., 2024). Other ML algorithms such as Gradient Boosting
(GB) and Random Forest (RF) algorithms can enhance the
emergency preparedness by handing complex interactions
between the atmospheric dispersion variables such as the
topography, precipitation patterns and the interplay of the wind
(Al-Aizari et al., 2024). Artificial Neural Network (ANN) algorithms
are also very useful tools that can be employed in the context of EPR
for plume modelling as they have proved to deliver accurate

FIGURE 1
Predictive modeling of nuclear security threat scenarios.

FIGURE 2
Enhanced nuclear security threat assessment for optimal hazard assessment.
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prediction for temporal data-based model (Ayoub, 2024), such as
the plume model. In his paper, Desterro et al. (2020) used Deep
Rectifier Neural Network (DRNN) to predict the spatial dose rate
distribution for accident scenarios with radioactive material release,
where the AI based model shows a better dispersion pattern than the
simulated model.

For instance, Recurrent Neural Network (RNN) are neural
network algorithms and can be used to model the evolution of
the plume dispersion over time (Ma, 2023). Convolution Neural
Network (CNN) is another ANN algorithm that is very useful in the
context of spatial data modelling, in the case of EPR, the CNN can be
utilized to train the AI model and predict deposition areas with high
resolution (Asahi et al., 2023). In his paper, Asahi et al. (2023) was
able to predict the ground plume concentration for the future 30min
in less than a second using CNN, by predicting the speed of the
plume dispersion. Furthermore, as the plume dispersion model is
vulnerable to many variations, and during the emergency
preparedness phase, the goal is to predict as close as possible the
emergency scenario so that the protective action is optimized.
Combining RNN and CNN algorithms can be a useful hybrid
model to predict the dispersion model with less uncertainty
because these two algorithms account for both spatial and
temporal variations in the dispersion (Mas-Pujol, 2022).

Traditional atmospheric dispersion models such as HOTSPOT
use Gaussian models to predict the plume dispersion model based
on static assumptions (Ren, 2024). Artificial Intelligence can be used
in the context of these traditional model to replace the static
assumptions with dynamic and real time predictions inputs, that
will eventually enhance plume behavior, thus the response plans
(Snoun, 2023).

3.3 Prediction of optimal timing for iodine
prophylaxis

Following nuclear accident, the World Health Organization
(WHO) recommends iodine prophylaxis for children, adolescent
and pregnant women, and restrict it for persons over 45 years
(Portius, 2013). The dosage of the stable iodine and the distribution
radius of the tablets depends on the released quantity of the
radioactive iodine from the NPP (Portius, 2013), thus optimizing
the planning radius for the distribution of the iodine tablets is crucial
in the preparedness phase to ensure that the iodine tablet are
distributed to the affected member of public. The Chernobyl
accident has proven that radioactive iodine I-131 released in a
nuclear accident can trigger cancerous thyroid nodules to develop
in young population that is located within a 300 mile radius of the
nuclear accident (Braverman et al., 2014). Additionally, timely
potassium iodide (KI) management can avoid the progress of
thyroid cancer (Braverman et al., 2014), and as the iodine
prophylaxis has effect only less than 24 h prior to the release and
up to 2 h after the exposure to radioactive iodine (Paladino, 2022), it
is important to predict accurately the release time and quantity so
that the stable iodine can be taken by the public at the right time.
Artificial intelligence can be employed for this purpose to monitor
the critical nuclear power plant data and detect any anomalies in
these data to predict the failure of the system thus the release
quantity and timing. In his paper, Jendoubi and Asad (2024)
explained how machine learning algorithms such as ANN are
able to predict the nuclear releases based on comparison between
the measured NPP data and the forecasted data from the neural
network. Another Yang et al. (2024) used DL models such as

FIGURE 3
AI-based prediction of radioactive iodine release and optimal iodine prophylaxis timing.
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Conventional Transformer (ConvTran) for rapid diagnosis and
prediction of the radioactive Cs and I release during large Loss of
Coolant Accident (LOCA).

By predicting the radioactive releases, artificial intelligence
algorithms can use these releases as inputs, along with the
population distribution around the plant, to predict and
determine the radius of the zones in which the stable iodine
tablets may be distributed and taken to mitigate the stochastic
effect caused by the radioactive iodine releases. Therefore, the
utilization of artificial intelligence in EPR can enhance protective
action also during the Precautionary and Urgent phase to reduce the
risk of thyroid cancer due to radioactive iodine releases. This idea is
modelled in Figure 3.

3.4 Artificial intelligence for smart
evacuation during nuclear emergencies

During a nuclear emergency, radioactive contamination in the
air and on the ground presents significant challenges for
implementing protective actions such as public evacuation.
Evacuation becomes particularly complex because contaminated
zones can restrict safe routes, delay transportation, and increase
exposure risks for both the public and emergency responders.
These challenges can be further amplified in combined
emergencies, such as when a nuclear incident coincides with a
natural disaster, as occurred during the 2011 Fukushima Daiichi
NPP accident in Japan (Tsujiguchi et al., 2018). The integration of
smart computational approaches such as artificial intelligence can
improve the effectiveness of the evacuation process by
recommending the safest route to evacuate the residents within
the Precautionary Action Zone (PAZ), Urgent Protective Action
Planning zone (UPZ) or out of UPZ based on the declared
emergency class. The implementation of artificial intelligence
capabilities and the Internet Of Things (IoT) technology, the
evacuation process during a nuclear emergencies can be
automated via a smart system based on machine learning
algorithm and IoT sensors (Alqahtani, 2024). These sensors
have the ability to collect remotely different radioactivity
measurements due to the passage of the plume (Alqahtani,
2024), and the ML algorithms have the ability to process these
data and create dynamic risk map (Jendoubi and Asad, 2024), with
the recommended routes for evacuation. In his paper, Alqahtani
(2024) used Support Vector Machine (SVM) as ML algorithm to
process the sensor data during emergencies and used Markov

Decision Process (MDP) to compute the processed data and
propose safe evacuation routes. The proposed idea here is to
use the different ML algorithm as used by the previous author
to recommend evacuation routes during nuclear emergencies and
incorporates the Markov decision process (MDP) to determine the
optimal route for emergency management, particularly in the Early
phase, where the actual emergency situation deviate from the
planned scenario, and the planned response action are no
longer valid to mitigate the consequence of the nuclear
emergency. In this situation, the application of artificial
intelligence to generate fast and optimal evacuation routes map
based on real-time data transmission is paramount to take the
most effective protective action that are not executed ad planned.

3.5 Optimization of generic criteria and
operational intervention level (OILs)

Generic criteria and OILs are tools to assist EPR authorities
when planning protection strategies for nuclear emergency
(Health Canada, 2018). The generic criteria are conveyed as
dose levels over a specified time interval which, when
surpassed, indicate that protective actions and accompanying
response actions are warranted (Health Canada, 2018). The OIL
intervention levels are instead employed after the release to adjust
the execution of protective actions based on monitoring data
measurements (Health Canada, 2018). The generic criteria and
the OILs are used to develop protective action that are optimized
and justified on the basis of the identified hazards as required by
the IAEA (Requirement 5) (IAEA, 2015). The generic criteria are
based upon the projected dose and the received dose, which are
based on code and simulation modelling. Artificial intelligence can
play a pivotal role in strengthening the accuracy and the stability of
these models which will result in optimized generic criteria, thus
effective emergency protective strategies, as modelled in Figure 4.
The existing simulation models used for dose projections to
develop the generic criteria contain uncertainties (Warner,
2023), however, is these models are enhanced using machine
learning algorithm, the uncertainties levels decrease
considerably. In his paper, Tyralis (2024) explores the benefit of
Random Forest and DL algorithms in quantifying and filtering the
uncertainties associated with the modeling and the simulation
spatial and temporal models, which are very similar to the release
of radioactivity models during nuclear emergency that evolve over
the time and over the space.

FIGURE 4
Concept of optimization of generic criteria and OILs using AI models.
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3.6 AI-based decision support system during
nuclear emergency

Deterministic and stochastic effects are two concerns associated
with nuclear power plant accidents, and managing a nuclear

emergency adds supplementary pressure on decision-makers to
address the direct and long-term consequences of these type of
emergencies. The decision-making process is more challenging
during the early phases of the nuclear emergency due to the
increased levels of uncertainties in the unpredictable aspect of the

FIGURE 5
Proposed algorithm framework for intelligent reassessment.
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emergency circumstances and due to the unavailability of the
information. For thee reasons, we are proposing a novel idea to
implement artificial intelligence for this purpose to create a smart
decision support system that serve as an important decision-making
tool to support and help the emergency authorities to make the best
decision during the early phases of the nuclear emergency. This AI-
based Decision Support System would be composed of a real-time
decision emergency attribute processing unit and an ML-based
decision-making unit. The real time decision emergency attribute
processing unit would collect and process the emergency attributes
such as data from sensors, data regarding the containment integrity,
data regarding the core meltdown risk, data regarding the available
resources, data regarding the available trained and professional staff,
data regarding radiation measurement, data regarding the weather,
data regarding the number of beds available in hospitals, data
regarding the capacity of the evacuation center and the energy
shelters, etc. The ML-based decision-making unit analyze the
processed emergency attributes, compare it to the historical
emergency data, forecast the future trend, then decide about the
optimized decision using advanced artificial intelligence techniques.
In his paper, Soori et al. (2024) employed Natural Language
Processing (NLP) and DL to train the AI model to learn from
previous data, analyze real-time data and propose the optimal
decision with never before-seen accuracy and efficiency. In his
paper, Hussain et al. (2023) introduced a systematic approach
called ROSYNA to serve as real-time decision support system
during nuclear emergency when the uncertainties level are high.
The different emergency attributes used in his proposed approach
included six attributes, Risk of core melt, Maintaining of
containment integrity, Information on release of radioactivity,
Reliable weather forecast data, Reliable modelling products,
Radiation measurement data, and Impeding factors in the
implementation of protective measures (Hussain et al., 2023).
Although, Hussain et al. (2023) and Soori et al. (2024) used,
respectively, real-time decision making system and ML-based
decision-making techniques, they did not combine the power of
real-time data transmission and AI in decision making which makes
the proposed idea in this section unique and novel in the field of EPR
for nuclear emergencies. Furthermore, the proposed AI-Based

Decision Support System would serve as valuable means during
nuclear emergencies and can be used to obtain decision support
regarding classifying the severity of the emergency, prioritizing the
response tasks, and allocating the human and emergency resources
to ensure critical tasks are addressed promptly.

3.7 Intelligent chatbots communication
system during nuclear emergency

Nuclear emergencies pose significant concerns to people if the
emergency is not managed and communicated adequately with the
public. Generally, the management of natural emergencies has
always integrated a major communication component in the
form of notification, alerts, warnings of civilians about
fluctuations in risks, evacuation instructions, etc., (Ogie, 2018).
The communication component is vital to ensure effective
management of nuclear emergencies, because inadequate
communication weakens the decisions and responses from both
emergency workers and residents, possibly worsening the effect of
nuclear accident on the people (Ogie, 2018). In the case of lack of an
effective communication system, first responders might not be able
to retrieve the right information at the exact time. Furthermore,
inadequate decisions may possibly develop due to lacking or
misleading information, or even due to overlapping explanation
of the same facts (Ogie, 2018), which will result in ineffective
communication. In order to address this issue of communication,
we are proposing a novel idea for artificial intelligence application to
improve the communication system during nuclear emergencies.
This intelligent communication system would operate as an AI
Chatbot which would enhance communications during the different
phases of the emergency (CISA, 2024). The foundation for AI in
emergency communication is that machines can be trained to
accelerate rapid extraction of appropriate information and the
classification of same to enhance the overall awareness and
warnings communication process (Ogie, 2018). In his paper,
Aslam (2023) used Natural Language Processing (NLP), Natural
Language Understanding (NLU) and Elaboration Likelihood Model
(ELM) to train the data set and develop Chatbots technology.

FIGURE 6
Intelligent reassessment of protective action effectiveness during emergency.
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Similarly, Alazzam (2023) explored the Chatbots development using
Artificial Intelligence Markup Language (AIML), Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN).

3.8 Intelligent reassessment of protective
action effectiveness during emergency

Actual emergency situations do not necessarily follow the
planned scenario patterns. The existing emergency circumstances
sometimes deviate from the assumption made during the
preparedness phase. For these reasons, the preplanning strategies
should include different emergency scenarios and implement
different contingencies to ensure the efficacy of the protective
actions. Furthermore, as the emergency evolve, there is a need to
reassess the effectiveness of certain protective action. For instance,
the reassessment of “sheltering” as protective action taken according
to the planned response may reveal the inefficacity of sheltering
people in place while the radioactivity levels are increasing and
consequently the dose rate is increasing. Therefore, the revaluation
of the “Sheltering” as protective action would result in more effective
action in the existing emergency circumstances such as
“Evacuation”. In this paper we are proposing a novel idea to

automate the reassessment process of the nuclear emergency
using Artificial Intelligence. This intelligent reassessment would
use ML and DL algorithms to assess how the situation is
evolving and suggest different protective actions as the
emergency situation progress. This novel idea is modelled in a
simplified algorithmic framework as shown in Figure 5. The
proposed algorithm includes seven input data, “Radiation
Outside Shelters”, “Radiation Inside Shelter”, Evacuation Route
Radiation”, “Evacuation Center Capacity”, “Traffic Status”, “OIL
Value” and “Population Health Data”. This algorithm aims to
monitor the current protective action, diagnose it and compare it
with the OIL values (IAEA, 2017), the evacuation center capacity,
dose values in evacuation route, and the public health data coming
from hospitals and medical points. After that, the proposed
algorithms predict the safety and the effectiveness of the current
protective action based on the previous comparison and suggest the
recommended next protective action or it can suggest continuing to
use the current protective action. The algorithm will also collect the
data every 5 min, as a conservative assumption, and repeat the
assessment. In essence, the proposed novel idea of intelligent
reassessment of protective action effectiveness during nuclear
emergencies would dynamically adjust the next protective action
recommendation based radiation levels and the available resource to

FIGURE 7
Significance of AI application in addressing GSR-part-7 requirements.
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ensure that the taken protective actions are working well, as
modelled in Figure 6.

3.9 Predictive prognosis based real-time
monitoring

During a nuclear emergency triggered by nuclear reactor severe
accident, the level of release of radioactivity might continue to
increase even after the declaration of the emergency class. This
can happen during a reactor core meltdown accident where the
reactor core melts gradually. The core meltdown can happen at the
level of one channel as seen in CANDU reactor Unit 2 at Pickering
NPP in 1983 (Government of Canada, 2021), partial meltdown as in
Three Mile Island Accident in 1979 (Wikipedia, 2024) or total core
meltdown as seen in Chernobyl accident in 1986 (IAEA, 2024a). In
every case, the quantity of the radioactive material release is different
and depend on the meltdown scheme. The radioactive releases can
continue to increase while the reactor is shuttled down, e.g., in case
of breach of containment integrity. At that point the protective
action that has been already implemented may not be effective
anymore as the radiation levels are increasing. In case the change in
the radioactive material release from the affected reactor is fast, the
emergency responders authorities may not notified promptly, thus
the intervention of the protective actions can be delayed and the
consequence of the release might not be mitigated on time. For these
reasons predicting the quantity of the radioactive releases to
diagnostic the prognosis of the nuclear emergency is paramount
in the early phase of the emergency. Artificial intelligence can be
employed to serve as the prediction tool in this purpose. In his paper,
Joo et al. (2023) used Long Short-Term Memory (LSTM) to predict
the radioactive material releases from Kori NPP in the event of
severe accident scenario with high accuracy. Similarly, Fu et al.
(2023) employed Gated Recurrent Unit (GRU) algorithm and
SHapley Additive exPlanations (SHAP) method to forecast and

train the trends of large severe accidents in NPP. The prediction
of evolution of the nuclear power plant data during nuclear
emergencies imply early prediction of the emergency prognosis
which result in informative decision making and robust
protective action implementation or reconsideration.

3.10 Enhancing human reliability in nuclear
emergencies through artificial intelligence

In Nuclear Power Plants (NPPs), emergency situations such as
Loss-of-Coolant Accidents (LOCA), Steam Generator Tube
Ruptures (SGTR), or external events like earthquakes and
cyberattacks require rapid and accurate decisions by human
operators and emergency planners (Liu et al., 2021). The success
of these decisions is critical to mitigating radiological consequences
and ensuring public safety. However, human reliability during such
high-stakes scenarios is challenged by multiple factors, including
time pressure, fatigue, cognitive overload, and stress. Under these
conditions, the likelihood of human error increases, as demonstrated
in several Human Reliability Analyses (HRA) such as the Technique
for Human Error Rate Prediction (THERP) (Kirwan, 1995) and the
Standardized Plant Analysis Risk-Human Reliability Analysis
(SPAR-H) (USNRC, 2004). Artificial Intelligence (AI) presents a
transformative opportunity to enhance human reliability during
emergencies (Liu et al., 2021). AI systems can continuously collect
and process data from multiple plant sensors, identify early signs of
component degradation or abnormal behavior, and support
predictive diagnostics (Liu et al., 2021). During a severe accident
such as a LOCA, AI can rapidly simulate accident progression,
predict reactor core damage, and recommend optimal mitigation
strategies. These AI-driven insights help operators and emergency
planners make faster, evidence-based decisions, ultimately reducing
the risk of human error. Recent studies published have explored the
integration of AI-based decision support systems into nuclear safety

FIGURE 8
Number of the reviewed paper in this article.
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infrastructures. For instance, models trained on historical incident
data and real-time sensor input have demonstrated high accuracy in
forecasting radiological releases and equipment failures (Liu et al.,
2021). In a simulated SGTR scenario, AI systems equipped with
natural language processing and real-time reasoning were shown to
reduce decision latency by over 30%, while improving procedural
compliance among operators (Liu et al., 2021). These findings
underscore AI’s growing role in strengthening Emergency
Preparedness and Response (EPR) by complementing human
judgment with timely and data-driven insights.

4 Challenges

Although artificial intelligence is advanced enough to assist in
managing nuclear emergencies, its application is associated with
different types of challenges.

4.1 Data related issues

The deployment of AI in EPR relies on a large amount of data
to train and test the AI algorithms. The data related issues
include data availability and accessibility (Soori et al., 2024).
In numerous cases, the data available might be incomplete or
inconsistent which may cause inadequate output (Ang et al.,
2020). Additionally, the data related issue could be due to the
data privacy and security because in the case of EPR the data
used is related to safety and security of the public. Hence, some
ethical and legal issue could arise from this application. In order
to overcome this issue, the emergency authorities must ensure
the most sensitive information is secured while used by
AI models.

4.2 Computational resources issues

Implementation of Artificial intelligence in nuclear emergency
management requires application of considerable computational
resource, especially to train and process the deep learning
algorithms (Guo, 2020). The limitation in computational
resources in some areas, such as in remote location or in isolated
location, may cause a challenge for these resources to support the
artificial intelligent model (Velev, 2023) in some scenarios of nuclear
emergencies. This limitation in computational resources might
affect the application of AI to support the emergency response
during real nuclear emergencies.

4.3 Integration with existing
emergency system

The proposed novel idea in this paper implies introduction of
artificial intelligence in the emergency preparedness and reason se
systems. This introduction is not going to ignore the current
systems that are working, instead, the idea is to implement AI
within the existing systems and infrastructure of the emergency
management program onsite and offsite. Integrating AI based

system with the existing technological system, equipment,
sensors, and other devices would require continuous
interoperability (Soori et al., 2024). Machine learning based
solutions for emergency management should have the ability to
integrate with existing systems, e.g., command and control centers,
sensors networks and emergency response networks (Wang, 2018).
Furthermore, unrelated technologies often delay smooth
integration, thus developing standardized interfaces and
protocols to exchange the AI data with the existing emergency
system is need (Werbrouck et al., 2024) to overcome the challenge
of integrating intelligent algorithms with the existing emergency
infrastructure.

4.4 Real-time performance capabilities

The application of AI in EPR is based on two main concepts,
real-time data transmission and future trend prediction. One of the
challenges associated with these concepts is the performance of real-
time data transmission and processing. Real-time performance
capabilities are essential in all the emergency scenarios (Velev,
2023). In order for the AI algorithms to be able to support the
emergency responders and to provide real-time situation awareness
and mapping, they must have the capability to process and analyze
big amounts of data in real-time (Velev, 2023).

4.5 Scalability

The scalability in this context is to develop scalable solutions that
are capable of handling vast amounts of data generated (Soori et al.,
2024). In the case of the proposed topic in this paper, the scalability
challenge refers to the ability of the ML algorithms to handle huge
volumes of data and sustain real-time decision-making during
nuclear emergencies. Furthermore, the scalability of the AI
models and ML algorithms to reach expanding needs while
sustaining performance levels might be challenging. Therefore, in
order to ensure the performance and scalability of AI in EPR
applications, there is a need to balance computational resources,
processing power and memory, with the complexity of ML
algorithms (Simaiya et al., 2024).

4.6 Black-box dilemma

Several modern AI systems act as black boxes, which means very
little information is accessible to the user regarding how the system
produces an output from its inputs (CNSC, 2024). Machine learning
and deep learning algorithms are commonly viewed as “black boxes”
in because of their complex topologies (Soori et al., 2024), hidden
layers and complex feature for encoding the process (Jendoubi and
Asad, 2024) and sometimes it can be challenging to recognize and
understand the predicted information by these algorithms (Wang
et al., 2024).

In a regulated industry like the nuclear industry, applying AI in
EPR can be challenging due to the “Black Box” aspects of theML and
DL algorithms that are used to train the AI-based emergency
preparedness models.
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4.7 AI and human collaboration

The implementation of AI in emergency preparedness and
response implies a shift in emergency responders and planners
duties, moving from direct physical operation to supervisory and
decision-support functions. Therefore, an active collaboration
between emergency planners, emergency responders and
decision-makers and AI systems is crucial to ensure safe and
ideal application of artificial intelligence in EPR.

4.8 Transparency and interpretability

The deployment of artificial intelligence in emergency
preparedness and response might raise concerns about the
transparency and interpretability of ML and DL algorithms.
Thus, it is indispensable to confirm that these algorithms are
transparent, and their predictability and decision-making
processes can be understood and analyzed (Velev, 2023).

Furthermore, AI models that could potentially be applied to
support the EPR program are complex and can be hard for
emergency planners to comprehend these models. Therefore, it is
important to ensure interpretability and transparency in the AI
model output (Ejigu, 2024).

4.9 Bias and fairness issues

Artificial intelligence models and ML algorithms can preserve
biases and unfairness, in the case the data used to train these
algorithms is biased or in the case the ML algorithms are
intended to preserve selected biases (Velev, 2023). The preserved
bias and fairness are considered as a challenge during emergencies,
because the decisions made by ML algorithms can be affected by the
bias which might cause indefinite outcomes (Velev, 2023).

In order to mitigate bias and the fairness, emergency
organizations must apply fairness-aware algorithms and
consistently examine the ML algorithms and the AI models for
bias (Soori et al., 2024). Furthermore, the transparency in AI
decision-making methods and the insertion of distinct
perspectives during model development might further reduce the
bias (Soori et al., 2024).

4.10 Cybersecurity challenges

The deployment of artificial intelligence in emergency response
and preparedness poses a challenge for data security, privacy and
cybersecurity. For instance, the implementation of AI to support the
decision system during nuclear emergency requires to process very
sensitive data which could raise many concerns regarding the
privacy and the security of the data (Soori et al., 2024).
Therefore, the emergency response authorities must follow a
careful data protection regulation and employ robust
cybersecurity measures to safeguard data (Allahrakha, 2023).

Furthermore, cyberattacks are another challenge associated with
the automation of the emergency management system, for instance,
the cybersecurity attacks could be in form of interference with the

critical computer-controlled infrastructures that support the AI
models, hi-jack, cut off sensors, cut off actuators, or even the
cyberattacks may compromise the emergency-computing
infrastructure (Nunavath, 2020). Therefore, qualifying the AI
models against the cybersecurity threats is paramount in order to
ensure safe and reliable application of artificial intelligence in
managing nuclear emergencies.

4.11 Regulatory compliance

The upgrading of nuclear emergency preparedness and response
by artificial intelligence requires amendments to existing regulations
as well as development of new regulations, because the actual
regulatory document does not include any requirement or
guidance regarding the safe use of AI in the nuclear industry.
This guidance is essential to guarantee compliance while
maintaining the highest values of safety and reliability (Ejigu, 2024).

4.12 Technical expertise and
training challenge

Deploying and implementing artificial intelligence-based
systems to manage and support the nuclear emergency response
might be challenging in case of lack of technical expertise.

Furthermore, the deployment of AI in EPR needs a high level of
technical expertise, which might not be immediately available in
many areas of application (Forsyth, 2019).

4.13 Cost burdens challenge

The proposed concept of applying AI in EPR is associated with a
considerable cost burden. This burden is related to infrastructure
expenses, new expert workforce expenses and continuous training
expenses (Jendoubi and Asad, 2024). Matching the benefits of the AI
technologies with the accompanying expenses could be a challenge
for EPR authorities to take the initiative to deploy it in their systems.
Additionally, implementing I to manage nuclear emergencies can be
expensive for the countries that might lack the infrastructure or the
resource to support such technology (Velev, 2023).

5 Significance of AI application in EPR

The application of artificial intelligence in the area of
emergency preparedness and response holds significant
potential to improve the readiness and the performance of the
response during nuclear emergencies. The different artificial
intelligence algorithms and real-time data transmission enable
robust management of emergency situations and mitigation of
the associated consequences.

The integration of artificial intelligence within the emergency
preparedness systems can revolutionize the hazard assessment
process by optimizing the identification of all the possible
hazards that can trigger a nuclear emergency, based on the large
computational capabilities of the AI algorithms to generate different
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hazard scenarios. This feature helps in meeting Requirement 4 of the
IAEA GSR-Part-7 document.

Artificial intelligence algorithms are able to predict the release of
radioactive material from nuclear power plant during an accident,
and they are also able to predict the atmospheric dispersion models
and the deposition profiles, which support the decision makers and
help them decide about the safest protective actions to mitigate the
stochastic effects from the radiation exposure. This feature helps in
meeting Requirements 4 and Requirement 5 of the IAEA GSR-
Part-7 document.

The integration of artificial intelligence and real-time data
transmission offers the feature of fast and accurate mapping of
the contaminated area and routes which could potentially enhance
the monitoring and evacuation process during large nuclear
accidents. This feature helps in meeting Requirement 14 of the
IAEA GSR-Part-7 document.

Furthermore, the artificial intelligence algorithms are able to
filter the uncertainties in the EPR simulation models, leading to
more accurate modeling of the emergency scenarios, hence
optimizing the dose projections during the preparedness phase.
This feature helps in meeting Requirements 5, paragraph 4.28 of
the IAEA GSR-Part-7 document.

By leveraging the predictability features of AI algorithms, the
EPR system can benefit from it by forecasting the prognosis of the
emergency situation, hence optimizing the protective actions in the
early phase. This feature help in meeting the recommendation of the
IAEA in their document “Operations Manual for IAEA Assessment
and Prognosis During a Nuclear or Radiological Emergency”.

Artificial intelligence can also be employed to enhance
communication to the public during emergencies by potential
implementation of intelligent Chatbots. This feature helps in
meeting Requirement 13 of the IAEA GSR-Part-7 document.

In essence, the application of AI in EPR includes several features
that hold promises to enhance the emergency response from the
preparedness phase to the termination phase. Additionally, this
application would eventually help the EPR authorities to meet
the general and the functional requirements in GSR-Part-
7 document, as shown in Figure 7, hence meeting the
international standards and guidelines for dealing with nuclear
emergencies.

6 Future work directions

The deployment of artificial intelligence in emergency
preparedness and response is an evolving field with high
potential to have robust application in the next years. Based on
the comprehensive literature review, that is based on the most recent
research papers as shown if Figure 8, and the proposed novel ideas in
the present paper, the future work should focus on enhancing the
reliability of AI algorithms to be able to be applied safely in nuclear
emergency preparedness and response. More research to improve
predictability and the real-time performance of AI is recommended
as future work. This will lead to more accurate output of the AI
algorithms and models during nuclear emergencies. Furthermore,

enhancing the EPR hazard assessment by deployment of AI in
hazard scenario prediction and threat identification is another area
of research that is recommended based on the comprehensive
established in this paper. Additionally, application of AI in
contamination monitoring and mapping holds many promises
and requires further research and development to be able to be
employed safely by emergency responders authorities. We are also
recommending more research on the proposed idea of autonomous
assessment and prognosis of the emergency situation using artificial
intelligence. This is because currently, the assessment of the
emergency, which is critical to determine the efficacy of the
protective actions, is only performed by humans. Added to that,
as the AI algorithms rely heavily on the data, in our case the data that
are coming from the sensors, we are recommending more research
to develop advanced measurement devices and IoT sensors that can
be integrated easily within the EPR systems and can be exploited
smoothly by the AI algorithms and models. It is also highly
recommended to develop and upgrade the current AI algorithms
to be able to deliver more accurate outputs in the area of decision-
making. This is because the decision-making process in EPR is very
important and requires optimized output to be considered in the
final decision.

Another important area of future development is cybersecurity.
This is not only related to applying AI in EPR, but it is related to any
application that integrates AI with its systems, especially in the
nuclear engineering field. This is because the different inputs to the
AI algorithms are the data that is coming from NPP or from
radiation levels sensors, etc. which are critical to the safety and
the security of the plant and the public. Therefore, more work is
recommended to be done in the area of cybersecurity to make sure
that the data is transmitted securely from the EPR systems to the AI
algorithms. Lastly, the last area of future research recommendation
is the regulatory compliance area. More work should be done to
address the different concerns that the regulatory authorities might
have regarding the application of AI in emergency preparedness and
response. Additionally, the regulatory authorities should also
conduct more work in the future to develop new regulatory
documents regarding the safe use of AI in EPR, with a clear set
of requirements and guidance.

7 Conclusion

The application of artificial intelligence in emergency
preparedness and response systems is a transformative approach
to optimize the readiness and response during nuclear emergencies.
The combination of the predictability capabilities and the
computational features of artificial intelligence models and
machine learning techniques holds many promises the enhance
the readiness and the protective action strategies during
emergencies. Through the continuous evolution of technology,
future development will further enhance these capabilities leading
to more enhanced and optimized protections strategies. The
significance of integration artificial intelligence in EPR includes
enhanced hazard assessment, optimized dose projections models,
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advanced evacuation strategy, improved communication and
enhanced decision-making throughout the different stages of the
emergency. However, the adoption of these technologies also
necessitates addressing challenges related to cybersecurity,
regulatory compliance, and algorithm reliability. In this paper, we
have reviewed the most recent papers published in the areas of
emergency management, we have emphasized the significance of
applying artificial intelligence in EPR and we have highlighted the
need for further research on this application with a particular focus
on addressing the associated challenges to ensure safe and reliable
implementation of the AI models in the nuclear emergency
management systems.
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Glossary
AI Artificial Intelligence

AIML Artificial Intelligence Markup Language

ANN Artificial Neural Network

ASC Advanced Simulation and Computing

CANDU Canada Deuterium Uranium

ConvTran Conventional Transformer

CNN Convolutional Neural Network

DHS Department of Homeland Security

DL Deep learning

DRNN Deep Rectifier Neural Network

DiD Defence in Depth

ELM Elaboration Likelihood Model

EPR Emergency Preparedness and Response

EPZ Emergency Planning Zone

GB Gradient Boosting

GRU Gated Recurrent Unit

IAEA International Atomic Energy Agency

IoT Internet of Things

LOCA Loss Of Coolant Accident

LR Linear Regression

LSTM Long-Short Term Memory

MDP Markov Decision Process

ML Machine Learning

NLP Natural Language Processing

NLU Natural Language Understanding

NNSA National Nuclear Security Administration

NPP Nuclear Power plant

OIL Operational Intervention Level

PAZ Precautionary Action Zone

PWR Pressurized Heavy water reactor

RF Random Forest

RNN Recurrent Neural Network

SHAP SHapley Additive exPlanations

SVM Support Vector Machine

UPZ Urgent Protective Action Planning zone

WHO World Health Association
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