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Introduction: Accurately determining the bottom boundary of anti-seepage
curtains is critical for ensuring the integrity and performance of this key
engineered composite structure in karst reservoirs. This study leverages artificial
intelligence (Al) to address this materials design challenge.

Methods: We developed hybrid models by integrating a Genetic Algorithm
(GA) with Backpropagation (BP), Support Vector Machine (SVM), and Extreme
Learning Machine (ELM) algorithms. These models were trained and validated
using a comprehensive dataset from the Dehou Reservoir, incorporating critical
material and hydrogeological properties of the karst rock mass. A comparative
analysis with Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and
Light Gradient Boosting Machine (LightGBM) was also conducted.

Results: The results demonstrated that GA optimization significantly enhanced
predictive performance. The GA-BP model achieved superior accuracy (R?
= 0.98, MSE = 7.58). Furthermore, from an engineering safety perspective,
the GA-SVM model provided the most reliable recommendations, frequently
yielding conservative depth estimates. The comparative analysis validated the
competitive advantage of the proposed hybrid models over other benchmark
algorithms.

Discussion: This research underscores the potential of Al-driven approaches
for the performance prediction and rational design of engineered geomaterial
systems. The findings offer a powerful tool for infrastructure projects in complex
geological settings, balancing predictive accuracy with critical engineering
safety considerations.

KEYWORDS

artificial intelligence algorithm, bottom seepage control boundary, karst regions,
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1 Introduction

Karstified rock masses, including carbonates, evaporites, and
conglomerates with a carbonate matrix, are widely distributed
around the world, covering more than 10% of the Earth’s surface
(Milanovi¢, 2018). Specifically, In China alone, karst landscapes
occupy approximately 3.44 million km?, accounting for 28.14% of
the national territory (Zhao et al., 2018; Li et al., 2019; Fang et al.,
2021). From a materials science perspective, these rock masses
represent complex natural geomaterials characterized by intrinsic
heterogeneity and anisotropy, primarily due to their multi-scale
pore-fracture structures resulting from dissolution. The unique
geological features of karst regions, such as caves, conduits, and
fissures, which fundamentally alter the material’s permeability,
present profound engineering challenges engineering challenges,
including rocky desertification, ground instability, and water leakage
(Xu and Huang, 1996; Milanovi¢, 2003; Song et al., 2012; Feng et al.,
2020). In water conservancy projects, the inadequate sealing
performance of this natural geomaterial leads to reservoir leakage
and tunnel inrushes, posing significant risks to project integrity,
safety, and economy. Therefore, research into karstified rock masses
holds profound significance for the prudent construction and
seamless operation of water conservancy and hydropower projects.

One of the most pressing issues faced in karst regions pertaining
to such engineering projects is the leakage. This phenomenon
significantly affects the impoundment of reservoirs and hydropower
stations, which presents substantial threats to project integrity
(TVA-Tennessee Valley Authority, 1972; Yuan, 1991; Liu et al,
2021). To mitigate the negative influence of this issue, extensive
research has been conducted, yielding various notable achievements.
Currently, four primary methods are utilized to investigate the
karst development in project sites: exploration (Lugeon, 1933),
geophysical methods (Arandjelovi¢, 1976; Zhao et al, 2021),
numerical simulation (Li et al., 2021), and intelligent algorithms
(Fu et al.,, 2022; Zhang et al.,, 2022; Xiao et al., 2024). Exploration
is a precise yet costly traditional method that includes drilling
and pitting. It reveals the actual conditions at the exploration
site through in-situ sampling and testing. However, this method
is often expensive. Conversely, geophysical methods can acquire
continuous geological information and present data in 2D or
even 3D formats (Al-Fares, 2011). Nonetheless, these methods
typically require indirect interpretation of physical feedback results,
which may not directly reflect geological conditions, and they
often entail a degree of distortion. Numerical simulation offers
the ability to model and predict seepage states (Fu et al., 2024),
but such simulations are usually based on a series of assumptions.
This leads to conditions that may differ from actual scenarios
to some extent. Intelligent algorithms have emerged in recent
years due to advancements in artificial intelligent technology
(Chen et al, 2025). These algorithms can analyze and predict
karst development based on statistical data and relevant materials
without necessitating a thorough understanding of underlying
geological principles. As geological data becomes increasingly
abundant and algorithms improve, this approach has been widely
utilized, resulting in numerous successful outcomes (Ge et al., 2023).
However, the effectiveness of these algorithms is heavily dependent
on data quality, and some researchers express concerns regarding
their theoretical foundations, as the processes are predominantly
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mathematical rather than grounded in geological engineering
theories. To address leakage issues resulting from karst development,
targeted treatment measures are essential. The most common
and critical measure is the construction of an anti-seepage grout
curtain (Abkemeier and Stephenson, 2005; Riemer and Rer. Nat.,
2015), which functions as a large-scale engineered composite
material. This composite system is formed by injecting grout (a
designed material) into the pore-fracture network of the natural
karst geomaterial, effectively creating a new, low-permeability
barrier. Beyond this underground approach, other alternatives
include surface alternatives, and coupled surface and underground
approaches. The underground alternative can be established through
methods such as grout curtains (Abkemeier and Stephenson, 2005;
Riemer and Rer. Nat., 2015), cavern plugs, and cutoff walls. This
approach is generally effective and economical for disconnecting
horizontal leakage channels. Nevertheless, it is less effective for
vertical leakage channels. Conversely, surface alternatives (Sumarac,
2008) are designed to address vertical or surficial leakage but
tend to be more costly. For many projects, a combination of
treatments is necessary to achieve reliable anti-seepage results.
Despite the availability of these methods, significant challenges
persist. A primary challenge is reliably determining the bottom
boundary of the impermeable curtain — a key parameter that defines
the geometry, volume, and thus the cost and performance of this
engineered composite material. Accurately predicting this boundary
at a reasonable cost remains difficult.

To address this challenge, which is fundamentally a materials
design optimization problem, this study employed a series of Al
algorithms to predict and analyze the bottom boundary of the
impermeable curtain using data derived from the boreholes at
the Dehou Reservoir. A portion of the data was utilized to train
the proposed algorithm for predictions, which was subsequently
validated using the remaining data. We compiled and analyzed
data from 217 boreholes along a 4,814 m long waterproof curtain
and inputted it into the AI algorithms. This study analyzed
the relationship between various impact factors and the bottom
boundary of the waterproof curtain. The findings not only provide
insights for predicting and delineating the bottom boundary of the
waterproof curtain in karst regions but also serve as a valuable
resource of data and algorithms for government policymakers and
project engineers involved in related initiatives.

2 Site characterization
2.1 Project description

The Dehou Reservoir Project (DRP) is situated on the Dehou
River, the right headstream of the Panlong River in Wenshan
Prefecture, Yunnan Province (104°-104.5°E, 23.5°-24°N). It is one of
the largest-scale water conservancy projects in karst regions. This
project has the largest grouting curtain system in the world, with
a length of 4.84 km and a grouting drift length of 30.7 x 10* m, as
illustrated in Figure 1.

The DRP mainly consists of a clay core rockfill dam with a height
of 73.9 m and a crest length of 181.72 m, an anti-seepage curtain
measuring 4,814 m within the dam site and reservoir area, a power
station located behind the dam, and a water conveyance line. The
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FIGURE 1
Study area.

DRP has a total capacity of 1.135 x 10® m® and a design irrigation
area of 92,800 mu (approximately 6,186.67 ha). The dam includes
one spillway and one flood discharge tunnel, which facilitate flood
control. The dam was completed in March 2019. It started storing
water in March 2020, and the water level reached normal levels
in September 2021. After a water storage test, the anti-seepage
performance met the predetermined objectives. By the end of 2022,
the project successfully passed the completion acceptance. It has
supplied a total of 284 million cubic meters of water, including over
100 million cubic meters for ecological purposes, and has generated
more than 8 million kWh of electricity.

2.2 Geological settings

The dam is located within a distinctive V-shaped valley along
the Dehou River, characterized by a meandering river channel and a
riverbed width of approximately 200 m. The height of both banks
is approximately 130 m. They exhibit a gentle slope upwards on
one side and a steep slope downwards on the other side, with
inclinations ranging from 10° to 70°. The lithology in the study
area mainly consists of Quaternary loose deposits (Q), basalt from
the upper Permian Emeishan group (P,f), and siliceous rocks,
siltstones, shales, and bauxites from the middle Permian Longtan
group (P,]). It also includes limestones, siliceous limestones, and
dolomitic limestones from the lower Permian (P,). Additionally,
Permian Variscan basic intrusive rocks (By) and limestones from
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the upper (C;) and middle series of the Carboniferous system
(C,), along with limestone, siliceous limestone, and siliceous rocks
from the lower series of the Carboniferous system (C,) were
also identified (Figure 2). Notably, the carbonate rocks of the
Carboniferous system (C,, C,, C;) and Permian system (P, ) exhibit
significant karstification, which poses a substantial risk of leakage in
the reservoir.

2.3 Hydrogeological overview

There are relatively impermeable strata, such as sandstone and
mudstone between the Dehou River-Jiayi River block on the left
bank of the reservoir area and the Mili River-Maguo River block on
the right bank. Additionally, there is an underground watershed that
isabove the normal water storage level of the reservoir. Therefore, the
potential for leakage from the reservoir to the low adjacent valleys of
the Jiayi River and the Maguo River is relatively low. Underground
watersheds were identified in sections C, D, and E of the Mili River-
Panlong River block in the reservoir area (Figure 2). Leakage in
these sections primarily occurs in the form of fractures and solution
gaps, resulting in limited leakage volume. A certain amount of
leakage is permissible, which allows for the optimization of anti-
seepage treatment rather than its mandatory implementation. In
section A of the Mili River, where non-carbonate rock is present,
no leakage issues have been observed. Similarly, the underground
watershed in section B of the Mili River is situated higher than
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FIGURE 2

dam and its banks.
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the normal water level, thereby precluding any leakage concerns.
However, significant karst leakage problems have been identified
in section F of the Mili River-Panlong River block, as well as
in the sections near the dam on both banks, including the dam
foundation and surrounding areas. This leakage manifests in the
form of karst pipelines and solution gaps, which necessitates the
implementation of anti-seepage treatment. Therefore, the karst anti-
seepage system for Dehou Reservoir consists of the dam foundation,
seepage sections surrounding the dam site, sections adjacent to the
dam on both the left and right banks, and section F of the Mili River
reservoir area (Figure 2).

The bottom seepage control boundary was preliminarily
determined based on karst development patterns and exploration
data. The lower limit elevations of the strong karst zone in the
dam foundation and the surrounding seepage sections, as well as
near the left and right banks of the dam, ranged from 1,216 m to
1,240 m, 1,235 m to 1,265 m, and 1,200 m to 1,300 m. The lower
limit elevation of the strong karst zone in section F of the Mili River
reservoir area mostly ranged from 1,300 m to 1,350 m, and some
local areas varied between 1,234 m and 1,280 m. There is a deep
circulation zone characterized by intense karst development below a
depth of 1,314 m. The lower limits of the strong karst zone in the dam
foundation and the surrounding seepage sections, as well as near the
left and right banks of the dam, were found to be 74-98 m lower
than the riverbed elevation. Approximately 4 km downstream from
the dam site, the Panlong River exposes T,f sandstone and shale that
extend about 2-2.5 km along the river. This restricts the potential of
deeper karst development in the deep circulation zone adjacent to
the dam site and reservoir banks.

Furthermore, the bottom seepage control boundary was finally
established based on the following principles: 1) a depth of
10 m below the lower limit of the strong karst zone, and 2) a
permeability rate (q) of <5Lu in the dam site and surrounding
seepage sections, while section F of the Mili River reservoir is
defined by a permeability rate (q) of <10Lu. Accordingly, the depth
of curtain grouting was defined as follows: for the dam foundation
and surrounding seepage sections, the depth ranges from 153.5 to
171.5 m; for the sections near the left bank of the dam, it ranges from
122.5 to 162.5 m; for the sections near the right bank of the dam,
it is between 65.7 and 171.5 m; and for section F of the Mili River
reservoir area, the depth predominantly ranges from 12.5 to 87.5 m,
with some local areas ranging from 107.5 to 122.5 m.

3 Methodology

In this study, six algorithms were employed to predict the depth
of the bottom boundary of the anti-seepage curtain, which serves as
a critical factor for the waterproofing measures of the karst reservoir.
Specifically, the GA algorithm was used to optimize the connection
weights and threshold values of the BP, SVM, ELM algorithms
to improve their stability and accuracy. The optimized algorithms
were subsequently applied to predict the bottom boundary of the
waterproofing curtain.

The calculation platform used for this research is specified
as follows: 1) Operating system: Windows 10 Professional
Edition (64bit); 2) Processor: 12th Gen Intel(R) Core (TM)
i7-12700H@2.30 GHz; 3) Memory (RAM): 16.0 GB.
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3.1 Data preparation

Data were collected from 217 pilot holes along the reservoir’s
anti-seepage curtain. These data were systematically organized and
analyzed to extract various potentially relevant factors, including
the depth of the anti-seepage curtain’s bottom boundary, the
groundwater level depth, the permeability rate, lithology, the lower
limit depth of the strong karst zone, the depth of the top boundary of
the relatively impermeable layer, faults, karst cavities, karst fractures,
and zones of solution-corroded rock debris. Five typical factors
were selected for training the algorithm: depth of the strong karst
zone lower limit, depth of the top boundary of the relatively
impermeable layer, groundwater level depth, permeability rate,
and lithology (see Figure 3). The selection of these five features
is grounded in the fundamental principles governing permeation
flow in karstified rock masses. They holistically describe the key
aspects of the permeation system: the thickness of permeation
domain is defined by the depth of the strong karst zone lower limit
and the depth of the top boundary of the relatively impermeable
layer; the intrinsic transport properties of the rock mass within
this domain are characterized by the permeability rate, a direct
measure of secondary permeability; and lithology, which influences
the susceptibility to karstification; the driving force for seepage
is represented by the groundwater level depth, which reflects the
hydraulic head conditions. This feature set provides a complete and
physically meaningful parameterization of the system for predicting
the required depth of the anti-seepage curtain.

Furthermore, the dataset was divided into a training set and
a testing set in a ratio of 8:2. This split ensured that the models
were trained and optimized solely on the training data, while the
testing set, which the models never encountered during training,
was strictly reserved for the final evaluation. The training set was
utilized to train the algorithm for predicting the depth of the
bottom boundary of the anti-seepage curtain, while the testing set
was employed to evaluate the algorithm’s generalization ability. The
results reported in Section 4 (e.g., R?, MSE, and prediction errors)
are all based on the predictions from this independent test set,
thereby verifying the model’s practical utility and robustness.

3.2 Basic principles of the BP algorithm

The BP algorithm that serves as a cornerstone in the field
of artificial neural networks (Rumelhart et al., 1986) facilitates
the optimization of predictive and classification performance by
iteratively adjusting the network’s weights and biases to minimize
output error.

3.3 Basic principles of the SVM algorithm

The SVM 1is a supervised machine learning algorithm
predominantly employed for classification and regression tasks
(Vapnik, 1998). It classifies the data into distinct categories by
identifying a hyperplane in a high-dimensional space using a kernel
function. The “support vectors” are the data points that lie closest
to the decision boundary or hyperplane. Therefore, this algorithm
shows high efficiency and robustness.
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3.4 Basic principles of the ELM algorithm

The ELM algorithm is one of the artificial neural network
(ANN) algorithm (Huang et al.,, 2006) and is primarily utilized
for supervised learning tasks. It is a single-layer feedforward
network (SLFN), which means that information flows in a forward
direction from the input nodes to the output nodes. In contrast
to the traditional neural network training algorithms, The ELM
algorithm randomly assigns the weights connecting the input layer
to the hidden layer, which remain fixed during training. The
weights connecting the hidden layer to the output layer are learned
analytically in a single step. This unique approach results in rapid
learning speed and high efficiency, particularly for large datasets.
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3.5 Basic principles of the GA-BP algorithm

The GA-BP algorithm is a hybrid model that integrates the
GA with the BP Algorithm. The BP algorithm, proposed by
Rumelhart and McClelland (Rumelhart et al., 1988), is a gradient-
based optimization algorithm aimed at minimizing the error
between the predicted output of the network and the actual
target output. However, it is prone to becoming trapped in local
minima and exhibits slow convergence speed. The GA enhances
this process by leveraging its global optimization capability, which
is inspired by principles of natural selection and genetics (John,
1975). The procedure of the GA-BP algorithm is illustrated
in Figure 4.
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Generate an initial population of individuals, each
individual is a chromosome representing a set of parameters

Evaluate the performance of each
individual based on a fitness function

Select individuals from the population to serve
as parents for the next generation

Perform crossover to create offspring

Apply mutation to some of the offspring involving
making small random changes to the parameters

Obtain the optimal parameters

Train the new individuals using the Back
Propagation algorithm

If they meet the termination criterion

Output the results of the prediction

FIGURE 4
GA-BP algorithm flowchart.

3.6 Basic principles of the GA-ELM
algorithm

The GA-ELM algorithm combines the optimization capabilities
of the GA with the rapid learning mechanism of the ELM
algorithm. The procedure of the GA-ELM algorithm is depicted
in Figure 5.

3.7 Basic principles of the GA-SVM
algorithm

The GA-SVM is a hybrid algorithm that combines the
optimization capabilities of the GA with the classification efficacy
of the SVM algorithm. The procedure of the GA-SVM algorithm is
illustrated in Figure 6.
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3.8 Principles of benchmark algorithms

To provide a comprehensive benchmark, three prevalent
ensemble learning algorithms, Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Light Gradient Boosting
Machine (LightGBM), were selected for comparison.

RFis an ensemble learning method that operates by constructing
a multitude of decision trees at training time (Abdi et al., 2023). For
regression tasks, the output is the mean prediction of the individual
trees. RF introduces randomness by using bootstrapped datasets
and random feature selection when splitting nodes, which enhances
robustness and helps prevent overfitting.

XGBoost is an optimized distributed gradient boosting library
designed to be highly efficient and scalable (Liang et al., 2020).
It builds trees sequentially, where each new tree aims to correct
the errors made by the previous ones. A key advantage is its
incorporation of a regularization term in the loss function, which
controls model complexity and further reduces overfitting.

LightGBM is a gradient boosting framework that uses tree-based
learning algorithms (Li et al., 2023). It is designed for distributed
computing and offers high efficiency with lower memory usage.
Two innovative techniques it employs are Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB), which
allow it to handle large-scale data much faster than many other
algorithms.

4 Results
4.1 BP and GA-BP algorithms

The BP algorithm demonstrates a notable divergence from the
desirable output values when compared to the GA-BP algorithm
(see Figures 7b,d). For instance, at sample number 14, the predicted
value by the BP algorithm was approximately 152.73, whereas the
actual desirable output value was 184. This resulted in an error
of 31.27, which represents the largest error among the BP results
(see Figure 7a). This finding indicated a lower level of predictive
accuracy. In contrast, the GA-BP algorithm yielded a predicted
value of approximately 175.71 for the same sample number, with
an error of 8.29. While it is the largest error in the GA-BP
results, this algorithm still indicated a superior level of prediction
(see Figures 7¢,f). The prediction error plot in Figure 7f generally
revealed that the GA-BP algorithm has a lower prediction error
compared to the BP algorithm. This suggested that the GA-BP
algorithm is more effective in minimizing the error. Additionally,
both algorithms displayed a similar pattern concerning the relative
variation in error magnitudes for their respective results across
different samples.

As depicted in Figure 7e, the GA-BP algorithm’s fitness value
decreased from 22 to 7.9, signifying an enhancement in the quality
of the solutions. This pattern underscores the genetic algorithm’s
proficiency in navigating the solution space. The lower prediction
error of the GA-BP algorithm indicates a stronger potential for
generalizing to new, unseen data sets. However, this enhanced
accuracy of the GA-BP algorithm is accompanied by increased
computational complexity due to the optimization processes
inherent in the genetic algorithm. The trajectory of the fitness
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Generate an initial population of potential solutions
including input weights, biases, and output weights

Construct an ELM model

Evaluate the fitness of each solution in the population
by training an ELM model

Select individuals from the population based on
their fitness scores

Determine wether it meets the termination criterion

Apply crossover to pairs of selected solutions

Introduce random changes to the genetic makeup of
some solutions in the population

Create a new generation of solutions

FIGURE 5
GA-ELM algorithm flowchart.

The final solution with the highest
fitness in the last generation

Train an ELM model using the optimal set of
parameters obtained from the genetic algorithm
on the entire training dataset

Test the model, and determine wether it meets

the relevant metrics

values of the GA-BP algorithm surpassed that of the BP algorithm,
indicating a more effective optimization strategy. Notably, the GA-
BP’s fitness value decreased to 7.9 after 100 iterations, while the BP
algorithm’s fitness value remained constant (see Figure 7e).

Furthermore, since the predicted values represent the distance
from the ground surface to the bottom boundary of the impermeable
curtain, a predicted value exceeding the actual value results in
a design scheme that is safer but less economical. Conversely,
a predicted value that is less than the actual value leads to a
more economical scheme but increases safety risks. Therefore, for
engineering projects, a deviation greater than the actual value is
generally more acceptable. The proportion of greater deviations
in the BP algorithm was 2%, while that in the GA-BP algorithm
was 63%. This comparison suggests that the GA-BP algorithm
provides more reliable recommendations regarding the depth of the
impermeable curtain bottom boundary when compared to the BP
algorithm.

4.2 ELM and GA-ELM algorithms

The ELM algorithm exhibited a considerably greater divergence
from the desired output values compared to the GA-ELM algorithm
(see Figures 8b,d,f). For instance, at sample number 9, the predicted
value generated by the ELM algorithm was approximately 261.23,
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whereas the desired output value was 168. This resulted in an error
of 93.23, which is the largest in the ELM results (see Figure 8a).
In contrast, the GA-BP algorithm aligns more closely with the
desired values, and its largest error was approximately 29.38 (see
Figures 8¢,f). This indicates a similar optimization effect of the
GA, which demonstrates better performance in terms of accuracy.
The prediction error plot in Figure 8f revealed that the GA-ELM
algorithm has a lower prediction error compared to the ELM
algorithm. Notably, the error patterns of these two algorithms
did not exhibit the same relative magnitude variations in their
respective results for the corresponding samples as observed in
the BP and GA-BP algorithms. This discrepancy can be attributed
to the fact that the two algorithms used in this study did not
employ entirely identical test sets. Nevertheless, it is evident that
the optimization effectiveness of the GA remains significant across
different test sets.

As shown in Figure 8e, the GA-ELM algorithm’s fitness value
decreased from 9.8 x 107 to 7.7 x 107, signifying an enhancement
in the quality of the solutions. This pattern underscores the genetic
algorithm’s proficiency in exploring the solution space. Moreover,
the GA-ELM algorithm demonstrates a stronger generalization
capacity. The trajectory of the fitness values of the GA-ELM
algorithm surpassed that of the BP algorithm, indicating a more
effective optimization strategy. The GA-BP’s fitness value decreased
to 7.7 x 107* after 20 iterations, while the ELM algorithms fitness
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Generate an initial population of potential solutions
including the choice of kernel, kernel parameters,
and the regularization parameter (C)

Evaluate the fitness of each solution in the population
by training an SVM model

Select individuals from the population based on
their fitness scores

Determine wether it meets the termination criterion

Apply crossover to pairs of selected solutions

Introduce random changes to the genetic makeup of
some solutions in the population

Create a new generation of solutions

FIGURE 6
GA-SVM algorithm flowchart.

The final solution with the hi
fitness in the last generation

Train an SVM model using the optimal set of
parameters obtained from the genetic algorithm
on the entire training dataset

Test the model, and determine wether it meets
the relevant metrics

value remained unchanged (see Figure 8¢). Additionally, the GA-
ELM algorithm converged more rapidly compared to the GA-BP
algorithm.

Furthermore, the results indicated that the proportion of larger
deviations in the ELM algorithm is 58%, which is much higher
than that in the BP algorithm. In contrast, the GA-ELM algorithm
exhibited an even higher proportion of 72%. This suggests that
the GA- ELM algorithm provides more reliable recommendations
regarding the depth of the impervious curtain bottom boundary
when compared to the ELM algorithm.

4.3 SVM and GA-SVM algorithms

The SVM algorithm showed a more pronounced divergence
from the desired output values than the GA-SVM algorithm (see
Figures 9b,d,f). For instance, at sample number 15, the predicted
value generated by the SVM algorithm was approximately 147.35,
whereas the desired output value was 215. This resulted in an error
of —67.65, which is the largest error observed in the SVM results (see
Figure 9a). In contrast, the GA-BP algorithm aligned more closely
with the desired values, and its largest error was approximately
9.82 (see Figures 9¢,f). This reveals the similar optimization effect
of the GA algorithm, which demonstrates superior performance in
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terms of accuracy. The prediction error plot in Figure 9f revealed
that the GA-SVM algorithm has a lower prediction error compared
to the SVM algorithm. Notably, the error patterns of these two
algorithms did not exhibit the same relative magnitude variations in
their respective results for the corresponding samples as observed
in the ELM and GA- ELM algorithms. This can be attributed to
the fact that the two algorithms used in this study do not utilize
completely identical test sets. Thus, it can be reaffirmed that the test
set influences the pattern of relative error variation. Nonetheless,
it is evident that the optimization effectiveness of the GA remains
significant across different test sets.

As shown in Figure 9e, the GA-SVM algorithms fitness value
decreased from 4.7 x 107% to 4.2 x 1072, signifying an enhancement
in the quality of the solutions. This further confirms the genetic
algorithm’s proficiency in navigating the solution space and its
stronger generalization capacity. The trajectory of the fitness values
of the GA-SVM algorithm surpassed that of the BP algorithm,
indicating a more effective optimization strategy. The GA-SVM’s
fitness value decreased to 4.2 x 1072 after 15 iterations, while the
SVM algorithms fitness value remained unchanged (see Figure 9e).
Compared to the GA-BP and GA-ELM algorithms, the GA-SVM
algorithm exhibited the fastest convergence.

Finally, the results indicated that the proportion of greater
deviations in the SVM algorithm was 53%, which is substantially
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higher than that in the BP algorithm. In contrast, the GA-SVM
algorithm exhibited an even higher proportion of 81%. Therefore,
it can be concluded that the GA-SVM algorithm provides more
reliable recommendations regarding the depth of the impervious
curtain bottom boundary when compared to the SVM algorithm.

5 Discussions

To assess the accuracy of predictions obtained through various
methods, we utilized the R?> (see Equation 1) coefficient, Mean
Squared Error (MSE) (see Equation 2), Root Mean Square Error
(RMSE) (see Equation 3), and Residual Predictive Deviance
(RPD) (see Equation 4) as metrics for precision evaluation. The R?
coefficient measures the degree of closeness between the model’s
predicted values and the actual observed values. Its value ranges
from 0 to 1. An R* value closer to 1 indicates a better fit of the model
to the data, which suggests that the differences between the model’s
predicted values and the actual observed values are smaller. The MSE
quantifies the difference between the model’s predicted values and
the true values, where a smaller MSE indicates higher prediction
accuracy of the model. The MSE amplifies larger errors through
squared errors, which helps improve the prediction accuracy of the
model. Similarly, a smaller RMSE value indicates higher prediction
accuracy of the model. However, the RMSE, which is derived from
the square root of these squared errors, is relatively less affected by
outliers compared to MSE. The RPD assesses the relative magnitude
of the dispersion of the model’s predicted values in relation to
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the actual observed values. A higher RPD value suggests that the
dispersion of the predicted values is relatively smaller than that of the
actual observed values, which generally indicates superior predictive
performance of the model.

The R? coefficient can be calculated using the following formula:

07

R2:1_z:1 i _’2
Zi:l =)

where 7 is the number of samples, y, is the actual value of sample i, y,

is the predicted value of sample i, y is the mean of the actual values.
The MSE can be calculated using the following formula:

1w R
MSE = u Z ()’i _}’i)z
i=1

where the parameter definitions are consistent with those
provided above.
The RMSE can be calculated using the following formula:

1

2

where the parameter definitions are consistent with those
provided above.

RPD is a metric employed to evaluate model performance by
comparing the consistency between actual and predicted values.
RPD can be calculated using the following formula:

opy S0
SD(yi_)A/i)

where Sp() is the standard deviation function.

)
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TABLE 1 The algorithm evaluation metrics.

10.3389/fmats.2025.1709826

Metrics
R? 0.9 0.98 0.87 0.89 0.94 0.94
MSE 196.89 7.58 448.44 48.87 147.98 3258
RMSE 1.01 0.07 0.02 0.21 0.21 0.44
RPD 431 03 0.07 0.87 0.65 1.82

Bold type indicates the optimal performance of each indicator. The closer the R? value is to 1, the higher the prediction accuracy is. Both the MSE, and RPD, indicators show that the larger the
value, the higher the prediction accuracy. RMSE, indicates that the smaller the value, the higher the prediction accuracy.

5.1 Comparative analysis of BP, SVM and
ELM algorithms

The results of the comparative analysis indicated that the BP
algorithm exhibits a fluctuating prediction error. This observation
suggests that while the BP algorithm can approximate the desired
values, it may not consistently achieve high precision. This variability
is further corroborated by the MSE value of 196.89 (see Table 1),
which is notably higher than those of the SVM and ELM
algorithms. The SVM algorithm, recognized for its efficacy in high-
dimensional spaces, exhibited a desirable output value of 250 and a
predicted value of 200. The prediction results showed a more stable
performance compared to BP, which is reflected in a lower MSE of
147.98. The error chart for the SVM algorithm indicated a more
consistent error margin, which is advantageous for applications
requiring stable predictions. The high R* value of 0.94 suggested that
the SVM algorithm captures a significant portion of the variance,
and its fast training speed resulting from random initialization of
hidden layer weights further contributes to its performance. In
contrast, the ELM algorithm, despite its speed, recorded the lowest
R? value of 0.87 among the three algorithms, indicating a less
accurate model. The high MSE of 448.44 and the RMSE of 0.02
suggested that while the average error is low, the variance in ELM
algorithm predictions is considerable.

The SVM algorithm outperforms both BP and ELM algorithms in
terms of R* and MSE, indicating a superior fit to the data and lower
average squared error. While the ELM algorithm is computationally
efficient, it underperforms in predictive accuracy, as evidenced by the
lower R* and higher MSE. Despite its simplicity and broad applicability,
BP demonstrated greater variability in prediction errors, which may
render it unsuitable for applications requiring high precision.

In summary, the SVM algorithm emerges as the optimal choice for
tasks that require high accuracy and stability. Conversely, in scenarios
where speed is paramount and a less accurate model is acceptable, the
ELM algorithm may serve as a viable alternative. The BP algorithm,
with its moderate performance, may be suitable for applications where
model interpretability is an important consideration.

5.2 Comparative analysis of optimization
with and without GA

The integration of the GA with traditional machine
learning models has garnered considerable interest due to its
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potential to enhance model performance through effective
optimization (Shi et al, 2025). The GA-optimized BP (GA-
BP) model demonstrated a significant improvement over the
standard BP model. Specifically, the R? value increased from 0.9
to 0.98 (see Table 1), indicating a more accurate representation
of the variance in the data. The MSE dropped dramatically from
196.89 to 7.58, suggesting a substantial reduction in the average
squared difference between the actual and predicted values.
This optimization not only enhanced the predictive accuracy
of the model but also improved its generalization capability, as
evidenced by the reduced error metrics. Similarly, the GA-SVM
model demonstrated considerable improvement over the standard
SVM. While the R* value remained high at 0.94, the MSE was
reduced from 147.98 to 32.58. This reduction indicates that GA
optimization effectively fine-tuned the SVM model, resulting in
more precise predictions. The RMSE decreased from 0.44 to 0.21,
further emphasizing the enhanced accuracy of the model. The GA-
ELM model experienced a notable improvement in performance.
The R? value increased from 0.87 to 0.89—a modest but positive
change. However, the most significant improvement was observed
in the MSE, which dropped from 448.44 to 48.87. This substantial
reduction in error indicates that GA optimization effectively refined
the ELM model’s predictions, particularly in reducing the variance
of the prediction errors.

Overall, the GA optimization process positively influenced all
three algorithms, where GA-BP showed the most pronounced
improvement in R? and MSE. This result suggests that GA
optimization is particularly effective in enhancing the performance
of BP. This effectiveness may be due to the algorithm’s dependency
on weight adjustment, which aligns well with GAs optimization
capabilities. For tasks requiring high accuracy and robustness, the
GA-BP algorithm may be the preferred choice. Conversely, for
applications where a balance between accuracy and computational
efficiency is paramount, the GA-SVM algorithm could be more
suitable. In scenarios where rapid model deployment is necessary,
the GA-ELM algorithm may offer an effective compromise between
speed and accuracy.

5.3 The comprehensive analysis of the
studied algorithms

The standard BP algorithm achieved an R? of 0.9, indicating
that it explains 90% of the variance in the data. The MSE for
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this algorithm was 196.89, suggesting a relatively high prediction
error. In contrast, the GA-BP algorithm demonstrated a substantial
improvement in model accuracy, with an R* of 0.98 and an MSE
of 7.58. This enhancement can be attributed to GA’s ability to
fine-tune the weights of the BP model, leading to a more precise
representation of the data. The SVM algorithm had an R? of 0.94
and an MSE of 147.98. However, the GA-SVM model achieved
an MSE of 32.58, while maintaining the same R*> value. This
indicates that while GA optimization did not improve the model’s
explanatory capability, it significantly reduced the prediction error.
The ELM algorithm exhibited an R? of 0.87 and an MSE of 448.44.
The GA-ELM model improved these metrics to 0.89 and 48.87,
respectively. The increase in R* and the substantial reduction in MSE
indicate that GA optimization enhanced the predictive accuracy
of the ELM.

The RMSE values provide insights into the dispersion of the
prediction errors. For the BP algorithm, the RMSE decreased
from 1.01 to 0.07 with GA-BP (see Table 1). Similarly, the RMSE
for the SVM reduced from 0.44 to 0.21 with GA-SVM, and
for ELM, it reduced from 0.21 to 0.02 with GA-ELM. These
reductions indicate that GA optimization not only improves
accuracy but also reduces the variability of prediction errors across
all models.

The iteration speed inferred from the fitness value plots
indicated that the GA-BP and GA-SVM algorithms converge
more rapidly than the GA-ELM algorithm. Specifically, the
GA-BP and GA-SVM algorithms achieved optimal fitness
values within 50 and 15 iterations, respectively, while the GA-
ELM algorithm required 25 iterations. This suggests that the
complexity of the optimization scenarios varies across models,
with BP and SVM algorithms benefiting more rapidly from GA
optimization.

The integration of GA with these algorithms has demonstrated
an enhancement in their predictive capabilities. The GA-BP
algorithm achieved the highest R* and the lowest MSE and RMSE,
indicating superior accuracy and reduced error dispersion. While
the GA-SVM algorithm did not show improvement in R?, it
demonstrated a significant reduction in both the MSE and RMSE,
indicating improved reliability in predictions. Although the GA-
ELM algorithm began from a lower baseline, it exhibited remarkable
improvements. This makes it a viable option for scenarios requiring
rapid model deployment.

From the perspective of guiding engineering design schemes, the
GA-SVM algorithm can provide the most reliable recommendations
regarding the depth of the impermeable curtain bottom boundary
among the studied algorithms. In contrast, the BP algorithm
presents the least favorable choice (see Table 2). The performance
of the ELM and SVM algorithms is quite comparable, and this
comparability aligns with that observed between the GA-ELM and
GA-SVM algorithms. Furthermore, While the models presented in
this study are data-driven, their predictive patterns and the identified
feature importance are highly consistent with the fundamental
geomechanical and hydrogeological principles that govern seepage
in karst rock masses. Therefore, the model does not operate as an
inscrutable “black box”; rather, it serves as a powerful non-linear
regression tool that quantitatively captures and reinforces the long-
established qualitative understanding of karst seepage control. This
alignment between data-driven outcomes and physical principles
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TABLE 2 The proportion of greater deviations in the results.

BP ‘ GA-BP ’ ELM

GA-ELM  SVM | GA-SVM

2% 63% 58% 72% 53% 81%

significantly enhances the interpretability and credibility of our
model for engineering applications.

5.4 Benchmarking against prevalent
machine learning models

To rigorously evaluate the performance of the proposed GA-
optimized models, a comparative analysis was conducted against
three widely-used machine learning algorithms: RF, XGBoost,
and LightGBM. All models were trained and tested on the
identical dataset (an 80/20 split) described in Section 3.1. The
hyperparameters for all benchmark models were optimized via a
grid search to ensure a fair comparison. The performance metrics
on the independent test set are summarized in Table 3. The GA-
BP model demonstrates superior predictive accuracy, achieving the
highest R? and the lowest MSE and RMSE. This indicates that the
hybrid GA-BP approach excels at modeling the complex underlying
relationships in this specific regression task. Furthermore, for
engineering applications where a conservative design is paramount,
the GA-SVM model is particularly advantageous due to its highest
RPD value and its tendency to over-predict the curtain depth,
thereby reducing the risk of underseepage (He et al., 2025). While the
benchmark models (especially XGBoost) show strong performance,
this analysis confirms that our proposed GA-optimized models offer
distinct and valuable performance characteristics.

5.5 Recommendations for future research

Based on the findings and limitations of this study, several
promising avenues for future work are identified. Future research
should prioritize the development of physics-informed neural
networks (PINNs) or other mechanism-data hybrid models. By
embedding governing equations (e.g., Darcy’s law, principles of
flow in fractured media) into the architecture or loss function,
predictions would be not only data-driven but also physically
consistent, thereby enhancing interpretability and robustness in
data-sparse scenarios (Li et al., 2024; Chen et al., 2021).

Furthermore, the current model is static and does not account
for the dynamic evolution of karst systems. Future efforts should
incorporate time-series data and long-term monitoring results to
model the spatiotemporal evolution of seepage fields under the
influence of reservoir operation and chemical dissolution.

Finally, to address the limited generalizability inherent in
single-site studies, building large, multi-reservoir karst databases
is essential. Exploring transfer learning techniques will be key to
adapting models trained on large datasets to new karst regions
with site-specific geological conditions, significantly boosting the
engineering promotion value of the Al-aided design framework.
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TABLE 3 Performance comparison with RF, XGBoost, and LightGBM.

Metrics

10.3389/fmats.2025.1709826

GA-BP (our)

GA-SVM (our)

MSE 105.63 68.45 75.2 7.58 32.58
RMSE 10.28 8.27 8.67 0.07 0.44
RPD 1.25 1.55 1.48 0.3 1.82

6 Conclusion

1. Traditional algorithms, including BP, ELM, and SVM, have
demonstrated distinct advantages in predicting the bottom
boundary for seepage control in karst reservoir regions. The
SVM algorithm excelled in terms of accuracy and stability,
while the ELM algorithm exhibited a notable advantage in
speed. Although the BP algorithm demonstrated moderate
performance, it offered commendable interpretability.
The GA demonstrated significant optimization effects in
predicting the bottom boundary for seepage control in terms of
predictive accuracy, error reduction, and convergence speed.
The integration of the GA with these algorithms significantly
improved the optimization process, resulting in a more precise
and efficient predictive model. Notably, the optimization effect
on the BP algorithm was particularly remarkable; however,
its performance regarding the relative magnitude of error
dispersion was less pronounced.

3. When choosing GA-BP, GA-SVM, and GA-ELM algorithms
for predicting the bottom boundary for seepage control,
it is essential to consider the specific requirements of the
task, including accuracy, error dispersion, model training
speed, and engineering safety. The GA-BP algorithm offered
superior accuracy and reduced error dispersion, while the
GA-SVM  algorithm demonstrated improved prediction
reliability. Although the GA-ELM algorithm began from
a lower baseline, it showed notable improvements, which
makes it a viable option for scenarios requiring rapid
model deployment. The GA-SVM algorithm provided the
most reliable recommendations regarding the depth of
the impermeable curtain bottom boundary to enhance
engineering safety.

Data availability statement
The original contributions presented in the study are included in

the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

LZ: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Resources, Validation, Visualization,

Frontiers in Materials

14

Writing - original draft. ZT: Conceptualization, Formal Analysis,

Funding acquisition, Project administration, Supervision,

Validation, Writing - review and editing. RC: Conceptualization,
Software, Supervision, Validation, Writing - review and editing.
JW:  Conceptualization, Funding acquisition,

Validation,

review and editing. YZ: Funding acquisition, Investigation,

Investigation,
administration,

Project Supervision, Writing
Project administration, Supervision, Validation, Writing - review
and editing. HT: Funding acquisition, Investigation, Project
administration, Supervision, Writing - review and editing. BW:
Data curation, Visualization, Writing — review and editing. CP:
Conceptualization, Investigation, Supervision, Validation, Writing
- review and editing. XH: Data curation, Formal Analysis,
Investigation, Validation, Writing - review and editing. YZ:
Methodology, Validation, Conceptualization, Visualization, Writing
- review and editing.

Funding

The authors declare that financial support was received for the
research and/or publication of this article. This work was financially
supported by The Science and Technology Program Project of
Yunnan Provincial Water Resources Department (Project Name:
“Research on Anti-Seepage Measures for Reservoirs in Karst Areas”,
Acceptance Certificate No.: 2023-001).

Acknowledgements

The authors thank Zhibo Wu, Hailin Ran, Jinyao Zhang, Jinxin
Yang for the valuable suggestions, which significantly improved
this paper.

Conflict of interest

Author LZ was employed by Yunnan Institute of Water and
Hydropower Engineering Investigation and Design Co., Ltd.

Authors CP and XH were employed by CCC HongYu Water
Conservancy Engineering Co., LTD.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fmats.2025.1709826
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Zhang et al.

Generative Al statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

References

Abdi, Y., Momeni, E., and Armaghani, D. J. (2023). Elastic modulus estimation of
weak rock samples using random forest technique. Bull. Eng. Geol. Environ. 82 (5), 176.
doi:10.1007/s10064-023-03154-y

Abkemeier, T. J., and Stephenson, R. W. (2005). Remediation of a sinkhole induced
by quarrying. ASCE Geotech. Spec. Publ. 122, 605-614. doi:10.1061/40698(2003)55

Al-Fares, W. (2011). Contribution of the geophysical methods in characterizing
the water leakage in afamia B dam, Syria. . Appl. Geophys. 75, 464-471.
doi:10.1016/j.jappgeo.2011.07.014

Arandjelovi¢ (1976). Geophysics in the Karst. Special Edn. 17. Geozavod: Geophysical
Institute.

Chen, J., Yang, T, Zhang, D, Huang, H.,, and Yu, T. (2021). Deep learning
based classification of rock structure of tunnel face. Geosci. Front. 12 (1), 395-404.
doi:10.1016/j.gs£.2020.04.003

Chen, H., Wang, K., Zhao, M., Chen, Y., and He, Y. (2025). A CNN-LSTM-Attention
based seepage pressure prediction method for Earth and rock dams. Sci. Rep. 15 (1),
12960. doi:10.1038/541598-025-96936-1

Fang, Q., Du, J.-M,, Li, J.-Y,, Zhang, D.-L., and Cao, L.-Q. (2021). Settlement
characteristics of large-diameter shield excavation below existing subway in close
vicinity. J. Central South Univ. 28 (3), 882-897. d0i:10.1007/s11771-021-4628-7

Feng, S., Zhao, Y., Wang, Y., Wang, S., and Cao, R. (2020). A comprehensive approach
to karst identification and groutability evaluation - a case study of the dehou reservoir,
SW China. Eng. Geol. 269 (May), 105529. doi:10.1016/j.engge0.2020.105529

Fu, H.-Y., Zhao, Y.-Y,, Ding, H.-J,, Rao, Y.-K,, Yang, T., and Zhou, M.-Z. (2022). A
novel intelligent displacement prediction model of Karst tunnels. Sci. Rep. 12 (1), 16983.
doi:10.1038/541598-022-21333-x

Fu, B,, Pei, J. J., and Ji, H. (2024). Numerical simulation of three-dimensional seepage
field in a tailing pond under multiple operating conditions. Sci. Rep. 14 (1), 28027.
doi:10.1038/s41598-024-75988-9

Ge, Q.,, Sun, H,, Liu, Z., and Xu, W. (2023). A data-driven intelligent model for
landslide displacement prediction. Geol. J. 58 (6), 2211-2230. doi:10.1002/gj.4675

He, P, Chen, Y, Feng, J., Wang, G., and Jiang, Y. (2025). An approach to rapidly
evaluating rock mass quality in underground engineering based on multi-source
heterogeneous data. Rock Mech. Rock Eng. 58, 1295-1325. doi:10.1007/500603-024-
04185-x

Extreme
(1-3),

Huang, G.-B, Zhu, Q.-Y, and Siew,
machine: theory and applications.
doi:10.1016/j.neucom.2005.12.126

C.-K. (2006).
Neurocomputing 70

learning
489-501.

John, H. H. (1975). Adaptation in natural and artificial systems.

Li, P, Wang, E, Fan, L., Wang, H., and Ma, G. (2019). Analytical scrutiny of loosening
pressure on deep twin-tunnels in rock formations. Tunn. Undergr. Space Technol. 83
(January), 373-380. doi:10.1016/j.tust.2018.10.007

Li, S., Wang, X., Xu, Z., Mao, D., and Pan, D. (2021). Numerical investigation of
hydraulic tomography for mapping karst conduits and its connectivity. Eng. Geol. 281
(February), 105967. doi:10.1016/j.enggeo.2020.105967

Li, L., Liu, Z., Shen, J., Wang, E, Qi, W,, and Jeon, S. (2023). A LightGBM-Based
strategy to predict tunnel rockmass class from TBM construction data for building
control. Adv. Eng. Inf. 58 (58), 102130. doi:10.1016/j.a€1.2023.102130

Li, X., Chen, Z., Tang, L., Chen, C., Ling, J., Tao, Li., et al. (2024). Predicting rock mass
rating ahead of the tunnel face with bayesian estimation. Front. Earth Sci. 12, 1333117.
doi:10.3389/feart.2024.1333117

Frontiers in Materials

15

10.3389/fmats.2025.1709826

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Liang, W, Luo, S., Zhao, G., and Wu, H. (2020). Predicting hard rock pillar
stability using GBDT, XGBoost, and LightGBM algorithms. Mathematics 8 (5), 765.
doi:10.3390/math8050765

Liu, B., Wang, C,, Liu, Z., Xu, Z., Nie, L., Pang, Y., et al. (2021). Cascade surface
and borehole geophysical investigation for water leakage: a case study of the Dehou
Reservoir, China. Eng. Geol. 294, 106364. doi:10.1016/j.enggeo.2021.106364

Lugeon (1933). Barages at geologie. Paris: Dunod.

Milanovi¢, P. (2003). Prevention and remediation in Karst engineering. Sink. Eng.
Environ. Impacts Karst, 3-30. doi:10.1061/40698(2003) 1

Milanovi¢, P. (2018). Engineering karstology of dams and reservoirs. Belgrade: CRC
Press.

Riemer, W,, and Rer. Nat. (2015). “Investigation and treatment of problematic
foundations for storage dams: some experience” Springer International Publishing 6.
doi:10.1007/978-3-319-09060-3_138

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representationsby  back-propagating errors. Nature 323, 533-536.
doi:10.1038/323533a0

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). “Learning internal
representations by error propagation,” in Readings in cognitive science (Elsevier).
doi:10.1016/B978-1-4832-1446-7.50035-2

Shi, E, Liao, H., Wang, S., Omar, A., and Qu, E. (2025). Optimization of drilling rate
based on genetic algorithms and machine learning models. Geoenergy Sci. Eng. 247,
213747. doi:10.1016/j.geoen.2025.213747

Song, K.-I, Cho, G.-C., and Chang, S.-B. (2012). Identification, remediation, and
analysis of karst sinkholes in the longest railroad tunnel in South Korea. Eng. Geol.
135-136 (May), 92-105. doi:10.1016/j.enggeo.2012.02.018

Sumarac, V. (2008). “Application of geomembrane to prevent water seepage from
Ourkis Reservoir, Algeria,” in Paper presented at first congress of Serbian commitee for
large dams, Bajna Basta, Serbia.

“TVA-Tenneesse Valley Authority(1972). TVA-tenneesse valley authority technical
report, 16.

Vapnik, V. (1998). Statistical learning theory. Wiley.
Xiao, H., Cao, R., Wang, Y., Zhao, Y., and Sun, Y. (2024). Research on preprocessing

methods for monitoring drilling data. J. Hydraulic Eng. 55 (11), 1379-1390.
doi:10.13243/j.cnki.slxb.20230816

Xu, J., and Huang, S. (1996). Mechanism of burst mud and Spring water of the
dayaoshan tunnel. J. Railw. Eng. Soc. (02), 83-89. (In Chinese).

Yuan, D. (1991). Karst of China. Beijing: Geological publishing house.

Zhang, Y., Tian, Y., Ying, L., Wang, D., Tao, J., Yang, Y., et al. (2022). Machine learning
algorithm for estimating karst rocky desertification in a peak-cluster depression
Basin in southwest Guangxi, China. Sci. Rep. 12 (1), 19121. doi:10.1038/s41598-022-
21684-5

Zhao, L., Zhang, S., Deng, M., and Wang, X. (2021). Statistical analysis and
comparative study of multi-scale 2D and 3D shape features for unbound
granular geomaterials. Transp. Geotech. 26, 100377. doi:10.1016/j.trgeo.2020.
100377

Zhao, Y., Wang, E, Li, C,, Cao, Y,, and Tian, H. (2018). Study of the corrosion

characteristics of tunnel fissures in a karst area in southwest China. Geofluids 2018
(July), 1-19. doi:10.1155/2018/6234932

frontiersin.org


https://doi.org/10.3389/fmats.2025.1709826
https://doi.org/10.1007/s10064-023-03154-y
https://doi.org/10.1061/40698(2003)55
https://doi.org/10.1016/j.jappgeo.2011.07.014
https://doi.org/10.1016/j.gsf.2020.04.003
https://doi.org/10.1038/s41598-025-96936-1
https://doi.org/10.1007/s11771-021-4628-7
https://doi.org/10.1016/j.enggeo.2020.105529
https://doi.org/10.1038/s41598-022-21333-x
https://doi.org/10.1038/s41598-024-75988-9
https://doi.org/10.1002/gj.4675
https://doi.org/10.1007/s00603-024-04185-x
https://doi.org/10.1007/s00603-024-04185-x
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.tust.2018.10.007
https://doi.org/10.1016/j.enggeo.2020.105967
https://doi.org/10.1016/j.aei.2023.102130
https://doi.org/10.3389/feart.2024.1333117
https://doi.org/10.3390/math8050765
https://doi.org/10.1016/j.enggeo.2021.106364
https://doi.org/10.1061/40698(2003)1
https://doi.org/10.1007/978-3-319-09060-3_138
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/B978-1-4832-1446-7.50035-2
https://doi.org/10.1016/j.geoen.2025.213747
https://doi.org/10.1016/j.enggeo.2012.02.018
https://doi.org/10.13243/j.cnki.slxb.20230816
https://doi.org/10.1038/s41598-022-21684-5
https://doi.org/10.1038/s41598-022-21684-5
https://doi.org/10.1016/j.trgeo.2020.100377
https://doi.org/10.1016/j.trgeo.2020.100377
https://doi.org/10.1155/2018/6234932
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

	1 Introduction
	2 Site characterization
	2.1 Project description
	2.2 Geological settings
	2.3 Hydrogeological overview

	3 Methodology
	3.1 Data preparation
	3.2 Basic principles of the BP algorithm
	3.3 Basic principles of the SVM algorithm
	3.4 Basic principles of the ELM algorithm
	3.5 Basic principles of the GA-BP algorithm
	3.6 Basic principles of the GA-ELM algorithm
	3.7 Basic principles of the GA-SVM algorithm
	3.8 Principles of benchmark algorithms

	4 Results
	4.1 BP and GA-BP algorithms
	4.2 ELM and GA-ELM algorithms
	4.3 SVM and GA-SVM algorithms

	5 Discussions
	5.1 Comparative analysis of BP, SVM and ELM algorithms
	5.2 Comparative analysis of optimization with and without GA
	5.3 The comprehensive analysis of the studied algorithms
	5.4 Benchmarking against prevalent machine learning models
	5.5 Recommendations for future research

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

