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Introduction: Accurately determining the bottom boundary of anti-seepage 
curtains is critical for ensuring the integrity and performance of this key 
engineered composite structure in karst reservoirs. This study leverages artificial 
intelligence (AI) to address this materials design challenge.
Methods: We developed hybrid models by integrating a Genetic Algorithm 
(GA) with Backpropagation (BP), Support Vector Machine (SVM), and Extreme 
Learning Machine (ELM) algorithms. These models were trained and validated 
using a comprehensive dataset from the Dehou Reservoir, incorporating critical 
material and hydrogeological properties of the karst rock mass. A comparative 
analysis with Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and 
Light Gradient Boosting Machine (LightGBM) was also conducted.
Results: The results demonstrated that GA optimization significantly enhanced 
predictive performance. The GA-BP model achieved superior accuracy (R2

= 0.98, MSE = 7.58). Furthermore, from an engineering safety perspective, 
the GA-SVM model provided the most reliable recommendations, frequently 
yielding conservative depth estimates. The comparative analysis validated the 
competitive advantage of the proposed hybrid models over other benchmark 
algorithms.
Discussion: This research underscores the potential of AI-driven approaches 
for the performance prediction and rational design of engineered geomaterial 
systems. The findings offer a powerful tool for infrastructure projects in complex 
geological settings, balancing predictive accuracy with critical engineering 
safety considerations.
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1 Introduction

Karstified rock masses, including carbonates, evaporites, and 
conglomerates with a carbonate matrix, are widely distributed 
around the world, covering more than 10% of the Earth’s surface 
(Milanović, 2018). Specifically, In China alone, karst landscapes 
occupy approximately 3.44 million km2, accounting for 28.14% of 
the national territory (Zhao et al., 2018; Li et al., 2019; Fang et al., 
2021). From a materials science perspective, these rock masses 
represent complex natural geomaterials characterized by intrinsic 
heterogeneity and anisotropy, primarily due to their multi-scale 
pore-fracture structures resulting from dissolution. The unique 
geological features of karst regions, such as caves, conduits, and 
fissures, which fundamentally alter the material’s permeability, 
present profound engineering challenges engineering challenges, 
including rocky desertification, ground instability, and water leakage 
(Xu and Huang, 1996; Milanović, 2003; Song et al., 2012; Feng et al., 
2020). In water conservancy projects, the inadequate sealing 
performance of this natural geomaterial leads to reservoir leakage 
and tunnel inrushes, posing significant risks to project integrity, 
safety, and economy. Therefore, research into karstified rock masses 
holds profound significance for the prudent construction and 
seamless operation of water conservancy and hydropower projects.

One of the most pressing issues faced in karst regions pertaining 
to such engineering projects is the leakage. This phenomenon 
significantly affects the impoundment of reservoirs and hydropower 
stations, which presents substantial threats to project integrity 
(TVA-Tennessee Valley Authority, 1972; Yuan, 1991; Liu et al., 
2021). To mitigate the negative influence of this issue, extensive 
research has been conducted, yielding various notable achievements. 
Currently, four primary methods are utilized to investigate the 
karst development in project sites: exploration (Lugeon, 1933), 
geophysical methods (Arandjelović, 1976; Zhao et al., 2021), 
numerical simulation (Li et al., 2021), and intelligent algorithms 
(Fu et al., 2022; Zhang et al., 2022; Xiao et al., 2024). Exploration 
is a precise yet costly traditional method that includes drilling 
and pitting. It reveals the actual conditions at the exploration 
site through in-situ sampling and testing. However, this method 
is often expensive. Conversely, geophysical methods can acquire 
continuous geological information and present data in 2D or 
even 3D formats (Al-Fares, 2011). Nonetheless, these methods 
typically require indirect interpretation of physical feedback results, 
which may not directly reflect geological conditions, and they 
often entail a degree of distortion. Numerical simulation offers 
the ability to model and predict seepage states (Fu et al., 2024), 
but such simulations are usually based on a series of assumptions. 
This leads to conditions that may differ from actual scenarios 
to some extent. Intelligent algorithms have emerged in recent 
years due to advancements in artificial intelligent technology 
(Chen et al., 2025). These algorithms can analyze and predict 
karst development based on statistical data and relevant materials 
without necessitating a thorough understanding of underlying 
geological principles. As geological data becomes increasingly 
abundant and algorithms improve, this approach has been widely 
utilized, resulting in numerous successful outcomes (Ge et al., 2023). 
However, the effectiveness of these algorithms is heavily dependent 
on data quality, and some researchers express concerns regarding 
their theoretical foundations, as the processes are predominantly 

mathematical rather than grounded in geological engineering 
theories. To address leakage issues resulting from karst development, 
targeted treatment measures are essential. The most common 
and critical measure is the construction of an anti-seepage grout 
curtain (Abkemeier and Stephenson, 2005; Riemer and Rer. Nat., 
2015), which functions as a large-scale engineered composite 
material. This composite system is formed by injecting grout (a 
designed material) into the pore-fracture network of the natural 
karst geomaterial, effectively creating a new, low-permeability 
barrier. Beyond this underground approach, other alternatives 
include surface alternatives, and coupled surface and underground 
approaches. The underground alternative can be established through 
methods such as grout curtains (Abkemeier and Stephenson, 2005; 
Riemer and Rer. Nat., 2015), cavern plugs, and cutoff walls. This 
approach is generally effective and economical for disconnecting 
horizontal leakage channels. Nevertheless, it is less effective for 
vertical leakage channels. Conversely, surface alternatives (Šumarac, 
2008) are designed to address vertical or surficial leakage but 
tend to be more costly. For many projects, a combination of 
treatments is necessary to achieve reliable anti-seepage results. 
Despite the availability of these methods, significant challenges 
persist. A primary challenge is reliably determining the bottom 
boundary of the impermeable curtain – a key parameter that defines 
the geometry, volume, and thus the cost and performance of this 
engineered composite material. Accurately predicting this boundary 
at a reasonable cost remains difficult.

To address this challenge, which is fundamentally a materials 
design optimization problem, this study employed a series of AI 
algorithms to predict and analyze the bottom boundary of the 
impermeable curtain using data derived from the boreholes at 
the Dehou Reservoir. A portion of the data was utilized to train 
the proposed algorithm for predictions, which was subsequently 
validated using the remaining data. We compiled and analyzed 
data from 217 boreholes along a 4,814 m long waterproof curtain 
and inputted it into the AI algorithms. This study analyzed 
the relationship between various impact factors and the bottom 
boundary of the waterproof curtain. The findings not only provide 
insights for predicting and delineating the bottom boundary of the 
waterproof curtain in karst regions but also serve as a valuable 
resource of data and algorithms for government policymakers and 
project engineers involved in related initiatives. 

2 Site characterization

2.1 Project description

The Dehou Reservoir Project (DRP) is situated on the Dehou 
River, the right headstream of the Panlong River in Wenshan 
Prefecture, Yunnan Province (104°-104.5°E, 23.5°-24°N). It is one of 
the largest-scale water conservancy projects in karst regions. This 
project has the largest grouting curtain system in the world, with 
a length of 4.84 km and a grouting drift length of 30.7 × 104 m, as 
illustrated in Figure 1.

The DRP mainly consists of a clay core rockfill dam with a height 
of 73.9 m and a crest length of 181.72 m, an anti-seepage curtain 
measuring 4,814 m within the dam site and reservoir area, a power 
station located behind the dam, and a water conveyance line. The 
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FIGURE 1
Study area.

DRP has a total capacity of 1.135 × 108 m3 and a design irrigation 
area of 92,800 mu (approximately 6,186.67 ha). The dam includes 
one spillway and one flood discharge tunnel, which facilitate flood 
control. The dam was completed in March 2019. It started storing 
water in March 2020, and the water level reached normal levels 
in September 2021. After a water storage test, the anti-seepage 
performance met the predetermined objectives. By the end of 2022, 
the project successfully passed the completion acceptance. It has 
supplied a total of 284 million cubic meters of water, including over 
100 million cubic meters for ecological purposes, and has generated 
more than 8 million kWh of electricity. 

2.2 Geological settings

The dam is located within a distinctive V-shaped valley along 
the Dehou River, characterized by a meandering river channel and a 
riverbed width of approximately 200 m. The height of both banks 
is approximately 130 m. They exhibit a gentle slope upwards on 
one side and a steep slope downwards on the other side, with 
inclinations ranging from 10° to 70°. The lithology in the study 
area mainly consists of Quaternary loose deposits (Q), basalt from 
the upper Permian Emeishan group (P2β), and siliceous rocks, 
siltstones, shales, and bauxites from the middle Permian Longtan 
group (P2l). It also includes limestones, siliceous limestones, and 
dolomitic limestones from the lower Permian (P1). Additionally, 
Permian Variscan basic intrusive rocks (βμ) and limestones from 

the upper (C3) and middle series of the Carboniferous system 
(C2), along with limestone, siliceous limestone, and siliceous rocks 
from the lower series of the Carboniferous system (C1) were 
also identified (Figure 2). Notably, the carbonate rocks of the 
Carboniferous system (C1, C2, C3) and Permian system (P1) exhibit 
significant karstification, which poses a substantial risk of leakage in 
the reservoir.

2.3 Hydrogeological overview

There are relatively impermeable strata, such as sandstone and 
mudstone between the Dehou River-Jiayi River block on the left 
bank of the reservoir area and the Mili River-Maguo River block on 
the right bank. Additionally, there is an underground watershed that 
is above the normal water storage level of the reservoir. Therefore, the 
potential for leakage from the reservoir to the low adjacent valleys of 
the Jiayi River and the Maguo River is relatively low. Underground 
watersheds were identified in sections C, D, and E of the Mili River-
Panlong River block in the reservoir area (Figure 2). Leakage in 
these sections primarily occurs in the form of fractures and solution 
gaps, resulting in limited leakage volume. A certain amount of 
leakage is permissible, which allows for the optimization of anti-
seepage treatment rather than its mandatory implementation. In 
section A of the Mili River, where non-carbonate rock is present, 
no leakage issues have been observed. Similarly, the underground 
watershed in section B of the Mili River is situated higher than 
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FIGURE 2
Geological and hydrogeological setting. (a) Engineering geological and hydrogeological map of the study area. (b) Engineering geological profile of the 
dam and its banks.
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the normal water level, thereby precluding any leakage concerns. 
However, significant karst leakage problems have been identified 
in section F of the Mili River-Panlong River block, as well as 
in the sections near the dam on both banks, including the dam 
foundation and surrounding areas. This leakage manifests in the 
form of karst pipelines and solution gaps, which necessitates the 
implementation of anti-seepage treatment. Therefore, the karst anti-
seepage system for Dehou Reservoir consists of the dam foundation, 
seepage sections surrounding the dam site, sections adjacent to the 
dam on both the left and right banks, and section F of the Mili River 
reservoir area (Figure 2).

The bottom seepage control boundary was preliminarily 
determined based on karst development patterns and exploration 
data. The lower limit elevations of the strong karst zone in the 
dam foundation and the surrounding seepage sections, as well as 
near the left and right banks of the dam, ranged from 1,216 m to 
1,240 m, 1,235 m to 1,265 m, and 1,200 m to 1,300 m. The lower 
limit elevation of the strong karst zone in section F of the Mili River 
reservoir area mostly ranged from 1,300 m to 1,350 m, and some 
local areas varied between 1,234 m and 1,280 m. There is a deep 
circulation zone characterized by intense karst development below a 
depth of 1,314 m. The lower limits of the strong karst zone in the dam 
foundation and the surrounding seepage sections, as well as near the 
left and right banks of the dam, were found to be 74–98 m lower 
than the riverbed elevation. Approximately 4 km downstream from 
the dam site, the Panlong River exposes T2f  sandstone and shale that 
extend about 2–2.5 km along the river. This restricts the potential of 
deeper karst development in the deep circulation zone adjacent to 
the dam site and reservoir banks.

Furthermore, the bottom seepage control boundary was finally 
established based on the following principles: 1) a depth of 
10 m below the lower limit of the strong karst zone, and 2) a 
permeability rate (q) of ≤5Lu in the dam site and surrounding 
seepage sections, while section F of the Mili River reservoir is 
defined by a permeability rate (q) of ≤10Lu. Accordingly, the depth 
of curtain grouting was defined as follows: for the dam foundation 
and surrounding seepage sections, the depth ranges from 153.5 to 
171.5 m; for the sections near the left bank of the dam, it ranges from 
122.5 to 162.5 m; for the sections near the right bank of the dam, 
it is between 65.7 and 171.5 m; and for section F of the Mili River 
reservoir area, the depth predominantly ranges from 12.5 to 87.5 m, 
with some local areas ranging from 107.5 to 122.5 m. 

3 Methodology

In this study, six algorithms were employed to predict the depth 
of the bottom boundary of the anti-seepage curtain, which serves as 
a critical factor for the waterproofing measures of the karst reservoir. 
Specifically, the GA algorithm was used to optimize the connection 
weights and threshold values of the BP, SVM, ELM algorithms 
to improve their stability and accuracy. The optimized algorithms 
were subsequently applied to predict the bottom boundary of the 
waterproofing curtain.

The calculation platform used for this research is specified 
as follows: 1) Operating system: Windows 10 Professional 
Edition (64bit); 2) Processor: 12th Gen Intel(R) Core (TM) 
i7-12700H@2.30 GHz; 3) Memory (RAM): 16.0 GB. 

3.1 Data preparation

Data were collected from 217 pilot holes along the reservoir’s 
anti-seepage curtain. These data were systematically organized and 
analyzed to extract various potentially relevant factors, including 
the depth of the anti-seepage curtain’s bottom boundary, the 
groundwater level depth, the permeability rate, lithology, the lower 
limit depth of the strong karst zone, the depth of the top boundary of 
the relatively impermeable layer, faults, karst cavities, karst fractures, 
and zones of solution-corroded rock debris. Five typical factors 
were selected for training the algorithm: depth of the strong karst 
zone lower limit, depth of the top boundary of the relatively 
impermeable layer, groundwater level depth, permeability rate, 
and lithology (see Figure 3). The selection of these five features 
is grounded in the fundamental principles governing permeation 
flow in karstified rock masses. They holistically describe the key 
aspects of the permeation system: the thickness of permeation 
domain is defined by the depth of the strong karst zone lower limit 
and the depth of the top boundary of the relatively impermeable 
layer; the intrinsic transport properties of the rock mass within 
this domain are characterized by the permeability rate, a direct 
measure of secondary permeability; and lithology, which influences 
the susceptibility to karstification; the driving force for seepage 
is represented by the groundwater level depth, which reflects the 
hydraulic head conditions. This feature set provides a complete and 
physically meaningful parameterization of the system for predicting 
the required depth of the anti-seepage curtain.

Furthermore, the dataset was divided into a training set and 
a testing set in a ratio of 8:2. This split ensured that the models 
were trained and optimized solely on the training data, while the 
testing set, which the models never encountered during training, 
was strictly reserved for the final evaluation. The training set was 
utilized to train the algorithm for predicting the depth of the 
bottom boundary of the anti-seepage curtain, while the testing set 
was employed to evaluate the algorithm’s generalization ability. The 
results reported in Section 4 (e.g., R2, MSE, and prediction errors) 
are all based on the predictions from this independent test set, 
thereby verifying the model’s practical utility and robustness. 

3.2 Basic principles of the BP algorithm

The BP algorithm that serves as a cornerstone in the field 
of artificial neural networks (Rumelhart et al., 1986) facilitates 
the optimization of predictive and classification performance by 
iteratively adjusting the network’s weights and biases to minimize 
output error. 

3.3 Basic principles of the SVM algorithm

The SVM is a supervised machine learning algorithm 
predominantly employed for classification and regression tasks
(Vapnik, 1998). It classifies the data into distinct categories by 
identifying a hyperplane in a high-dimensional space using a kernel 
function. The “support vectors” are the data points that lie closest 
to the decision boundary or hyperplane. Therefore, this algorithm 
shows high efficiency and robustness. 
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FIGURE 3
Data visualization graph.

3.4 Basic principles of the ELM algorithm

The ELM algorithm is one of the artificial neural network 
(ANN) algorithm (Huang et al., 2006) and is primarily utilized 
for supervised learning tasks. It is a single-layer feedforward 
network (SLFN), which means that information flows in a forward 
direction from the input nodes to the output nodes. In contrast 
to the traditional neural network training algorithms, The ELM 
algorithm randomly assigns the weights connecting the input layer 
to the hidden layer, which remain fixed during training. The 
weights connecting the hidden layer to the output layer are learned 
analytically in a single step. This unique approach results in rapid 
learning speed and high efficiency, particularly for large datasets. 

3.5 Basic principles of the GA-BP algorithm

The GA-BP algorithm is a hybrid model that integrates the 
GA with the BP Algorithm. The BP algorithm, proposed by 
Rumelhart and McClelland (Rumelhart et al., 1988), is a gradient-
based optimization algorithm aimed at minimizing the error 
between the predicted output of the network and the actual 
target output. However, it is prone to becoming trapped in local 
minima and exhibits slow convergence speed. The GA enhances 
this process by leveraging its global optimization capability, which 
is inspired by principles of natural selection and genetics (John, 
1975). The procedure of the GA-BP algorithm is illustrated
in Figure 4.
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FIGURE 4
GA-BP algorithm flowchart.

3.6 Basic principles of the GA-ELM 
algorithm

The GA-ELM algorithm combines the optimization capabilities 
of the GA with the rapid learning mechanism of the ELM 
algorithm. The procedure of the GA-ELM algorithm is depicted
in Figure 5.

3.7 Basic principles of the GA-SVM 
algorithm

The GA-SVM is a hybrid algorithm that combines the 
optimization capabilities of the GA with the classification efficacy 
of the SVM algorithm. The procedure of the GA-SVM algorithm is 
illustrated in Figure 6.

3.8 Principles of benchmark algorithms

To provide a comprehensive benchmark, three prevalent 
ensemble learning algorithms, Random Forest (RF), eXtreme 
Gradient Boosting (XGBoost), and Light Gradient Boosting 
Machine (LightGBM), were selected for comparison.

RF is an ensemble learning method that operates by constructing 
a multitude of decision trees at training time (Abdi et al., 2023). For 
regression tasks, the output is the mean prediction of the individual 
trees. RF introduces randomness by using bootstrapped datasets 
and random feature selection when splitting nodes, which enhances 
robustness and helps prevent overfitting.

XGBoost is an optimized distributed gradient boosting library 
designed to be highly efficient and scalable (Liang et al., 2020). 
It builds trees sequentially, where each new tree aims to correct 
the errors made by the previous ones. A key advantage is its 
incorporation of a regularization term in the loss function, which 
controls model complexity and further reduces overfitting.

LightGBM is a gradient boosting framework that uses tree-based 
learning algorithms (Li et al., 2023). It is designed for distributed 
computing and offers high efficiency with lower memory usage. 
Two innovative techniques it employs are Gradient-based One-Side 
Sampling (GOSS) and Exclusive Feature Bundling (EFB), which 
allow it to handle large-scale data much faster than many other 
algorithms. 

4 Results

4.1 BP and GA-BP algorithms

The BP algorithm demonstrates a notable divergence from the 
desirable output values when compared to the GA-BP algorithm 
(see Figures 7b,d). For instance, at sample number 14, the predicted 
value by the BP algorithm was approximately 152.73, whereas the 
actual desirable output value was 184. This resulted in an error 
of 31.27, which represents the largest error among the BP results 
(see Figure 7a). This finding indicated a lower level of predictive 
accuracy. In contrast, the GA-BP algorithm yielded a predicted 
value of approximately 175.71 for the same sample number, with 
an error of 8.29. While it is the largest error in the GA-BP 
results, this algorithm still indicated a superior level of prediction 
(see Figures 7c,f). The prediction error plot in Figure 7f generally 
revealed that the GA-BP algorithm has a lower prediction error 
compared to the BP algorithm. This suggested that the GA-BP 
algorithm is more effective in minimizing the error. Additionally, 
both algorithms displayed a similar pattern concerning the relative 
variation in error magnitudes for their respective results across 
different samples.

As depicted in Figure 7e, the GA-BP algorithm’s fitness value 
decreased from 22 to 7.9, signifying an enhancement in the quality 
of the solutions. This pattern underscores the genetic algorithm’s 
proficiency in navigating the solution space. The lower prediction 
error of the GA-BP algorithm indicates a stronger potential for 
generalizing to new, unseen data sets. However, this enhanced 
accuracy of the GA-BP algorithm is accompanied by increased 
computational complexity due to the optimization processes 
inherent in the genetic algorithm. The trajectory of the fitness 
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FIGURE 5
GA-ELM algorithm flowchart.

values of the GA-BP algorithm surpassed that of the BP algorithm, 
indicating a more effective optimization strategy. Notably, the GA-
BP’s fitness value decreased to 7.9 after 100 iterations, while the BP 
algorithm’s fitness value remained constant (see Figure 7e).

Furthermore, since the predicted values represent the distance 
from the ground surface to the bottom boundary of the impermeable 
curtain, a predicted value exceeding the actual value results in 
a design scheme that is safer but less economical. Conversely, 
a predicted value that is less than the actual value leads to a 
more economical scheme but increases safety risks. Therefore, for 
engineering projects, a deviation greater than the actual value is 
generally more acceptable. The proportion of greater deviations 
in the BP algorithm was 2%, while that in the GA-BP algorithm 
was 63%. This comparison suggests that the GA-BP algorithm 
provides more reliable recommendations regarding the depth of the 
impermeable curtain bottom boundary when compared to the BP 
algorithm. 

4.2 ELM and GA-ELM algorithms

The ELM algorithm exhibited a considerably greater divergence 
from the desired output values compared to the GA-ELM algorithm 
(see Figures 8b,d,f). For instance, at sample number 9, the predicted 
value generated by the ELM algorithm was approximately 261.23, 

whereas the desired output value was 168. This resulted in an error 
of 93.23, which is the largest in the ELM results (see Figure 8a). 
In contrast, the GA-BP algorithm aligns more closely with the 
desired values, and its largest error was approximately 29.38 (see 
Figures 8c,f). This indicates a similar optimization effect of the 
GA, which demonstrates better performance in terms of accuracy. 
The prediction error plot in Figure 8f revealed that the GA-ELM 
algorithm has a lower prediction error compared to the ELM 
algorithm. Notably, the error patterns of these two algorithms 
did not exhibit the same relative magnitude variations in their 
respective results for the corresponding samples as observed in 
the BP and GA-BP algorithms. This discrepancy can be attributed 
to the fact that the two algorithms used in this study did not 
employ entirely identical test sets. Nevertheless, it is evident that 
the optimization effectiveness of the GA remains significant across
different test sets.

As shown in Figure 8e, the GA-ELM algorithm’s fitness value 
decreased from 9.8 × 10−4 to 7.7 × 10−4, signifying an enhancement 
in the quality of the solutions. This pattern underscores the genetic 
algorithm’s proficiency in exploring the solution space. Moreover, 
the GA-ELM algorithm demonstrates a stronger generalization 
capacity. The trajectory of the fitness values of the GA-ELM 
algorithm surpassed that of the BP algorithm, indicating a more 
effective optimization strategy. The GA-BP’s fitness value decreased 
to 7.7 × 10−4 after 20 iterations, while the ELM algorithm’s fitness 
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FIGURE 6
GA-SVM algorithm flowchart.

value remained unchanged (see Figure 8e). Additionally, the GA-
ELM algorithm converged more rapidly compared to the GA-BP 
algorithm.

Furthermore, the results indicated that the proportion of larger 
deviations in the ELM algorithm is 58%, which is much higher 
than that in the BP algorithm. In contrast, the GA-ELM algorithm 
exhibited an even higher proportion of 72%. This suggests that 
the GA- ELM algorithm provides more reliable recommendations 
regarding the depth of the impervious curtain bottom boundary 
when compared to the ELM algorithm. 

4.3 SVM and GA-SVM algorithms

The SVM algorithm showed a more pronounced divergence 
from the desired output values than the GA-SVM algorithm (see 
Figures 9b,d,f). For instance, at sample number 15, the predicted 
value generated by the SVM algorithm was approximately 147.35, 
whereas the desired output value was 215. This resulted in an error 
of −67.65, which is the largest error observed in the SVM results (see 
Figure 9a). In contrast, the GA-BP algorithm aligned more closely 
with the desired values, and its largest error was approximately 
9.82 (see Figures 9c,f). This reveals the similar optimization effect 
of the GA algorithm, which demonstrates superior performance in 

terms of accuracy. The prediction error plot in Figure 9f revealed 
that the GA-SVM algorithm has a lower prediction error compared 
to the SVM algorithm. Notably, the error patterns of these two 
algorithms did not exhibit the same relative magnitude variations in 
their respective results for the corresponding samples as observed 
in the ELM and GA- ELM algorithms. This can be attributed to 
the fact that the two algorithms used in this study do not utilize 
completely identical test sets. Thus, it can be reaffirmed that the test 
set influences the pattern of relative error variation. Nonetheless, 
it is evident that the optimization effectiveness of the GA remains 
significant across different test sets.

As shown in Figure 9e, the GA-SVM algorithm’s fitness value 
decreased from 4.7 × 10−2 to 4.2 × 10−2, signifying an enhancement 
in the quality of the solutions. This further confirms the genetic 
algorithm’s proficiency in navigating the solution space and its 
stronger generalization capacity. The trajectory of the fitness values 
of the GA-SVM algorithm surpassed that of the BP algorithm, 
indicating a more effective optimization strategy. The GA-SVM’s 
fitness value decreased to 4.2 × 10−2 after 15 iterations, while the 
SVM algorithm’s fitness value remained unchanged (see Figure 9e). 
Compared to the GA-BP and GA-ELM algorithms, the GA-SVM 
algorithm exhibited the fastest convergence.

Finally, the results indicated that the proportion of greater 
deviations in the SVM algorithm was 53%, which is substantially 
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FIGURE 7
BP and GA-BP testing set prediction results: (a) BP testing set desirable output values and predicted values; (b) BP testing set predicted values and 
desirable prediction line; (c) GA-BP testing set desirable output values and predicted values; (d) GA-BP testing set predicted values and desirable 
prediction line; (e) GA-BP iteration graph; (f) BP and GA-BP prediction error.

FIGURE 8
ELM and GA- ELM testing set prediction results: (a) ELM testing set desirable output values and predicted values; (b) ELM testing set predicted values 
and desirable prediction line; (c) GA- ELM testing set desirable output values and predicted values; (d) GA- ELM testing set predicted values and 
desirable prediction line; (e) GA- ELM iteration graph; (f) ELM and GA- ELM prediction error.
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FIGURE 9
SVM and GA- SVM testing set prediction results: SVM and GA- SVM testing set prediction results: (a) SVM testing set desirable output values and 
predicted values; (b) BP testing set predicted values and desirable prediction line; (c) GA- SVM testing set desirable output values and predicted values;
(d) GA- SVM testing set predicted values and desirable prediction line; (e) GA- SVM iteration graph; (f) SVM and GA- SVM prediction error.

higher than that in the BP algorithm. In contrast, the GA-SVM 
algorithm exhibited an even higher proportion of 81%. Therefore, 
it can be concluded that the GA-SVM algorithm provides more 
reliable recommendations regarding the depth of the impervious 
curtain bottom boundary when compared to the SVM algorithm. 

5 Discussions

To assess the accuracy of predictions obtained through various 
methods, we utilized the R2 (see Equation 1) coefficient, Mean 
Squared Error (MSE) (see Equation 2), Root Mean Square Error 
(RMSE) (see Equation 3), and Residual Predictive Deviance 
(RPD) (see Equation 4) as metrics for precision evaluation. The R2

coefficient measures the degree of closeness between the model’s 
predicted values and the actual observed values. Its value ranges 
from 0 to 1. An R2 value closer to 1 indicates a better fit of the model 
to the data, which suggests that the differences between the model’s 
predicted values and the actual observed values are smaller. The MSE 
quantifies the difference between the model’s predicted values and 
the true values, where a smaller MSE indicates higher prediction 
accuracy of the model. The MSE amplifies larger errors through 
squared errors, which helps improve the prediction accuracy of the 
model. Similarly, a smaller RMSE value indicates higher prediction 
accuracy of the model. However, the RMSE, which is derived from 
the square root of these squared errors, is relatively less affected by 
outliers compared to MSE. The RPD assesses the relative magnitude 
of the dispersion of the model’s predicted values in relation to 

the actual observed values. A higher RPD value suggests that the 
dispersion of the predicted values is relatively smaller than that of the 
actual observed values, which generally indicates superior predictive 
performance of the model.

The R2 coefficient can be calculated using the following formula:

R2 = 1−
∑n

i=1
(yi − ̂yi)

2

∑n
i=1
(yi − y)2

(1)

where n is the number of samples, yi is the actual value of sample i, ̂yi
is the predicted value of sample i, y is the mean of the actual values.

The MSE can be calculated using the following formula:

MSE = 1
n

n

∑
i=1
(yi − ̂yi)

2 (2)

where the parameter definitions are consistent with those 
provided above.

The RMSE can be calculated using the following formula:

RMSE = √ 1
n

n

∑
i=1
(yi − ̂yi)

2 (3)

where the parameter definitions are consistent with those 
provided above.

RPD is a metric employed to evaluate model performance by 
comparing the consistency between actual and predicted values. 
RPD can be calculated using the following formula:

RPD =
SD(yi)

SD(yi − ̂yi)
(4)

where SD( ) is the standard deviation function. 
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TABLE 1  The algorithm evaluation metrics.

Metrics BP GA- BP ELM GA-ELM SVM GA-SVM

R2 0.9 0.98 0.87 0.89 0.94 0.94

MSE 196.89 7.58 448.44 48.87 147.98 32.58

RMSE 1.01 0.07 0.02 0.21 0.21 0.44

RPD 4.31 0.3 0.07 0.87 0.65 1.82

Bold type indicates the optimal performance of each indicator. The closer the R2 value is to 1, the higher the prediction accuracy is. Both the MSE, and RPD, indicators show that the larger the 
value, the higher the prediction accuracy. RMSE, indicates that the smaller the value, the higher the prediction accuracy.

5.1 Comparative analysis of BP, SVM and 
ELM algorithms

The results of the comparative analysis indicated that the BP 
algorithm exhibits a fluctuating prediction error. This observation 
suggests that while the BP algorithm can approximate the desired 
values, it may not consistently achieve high precision. This variability 
is further corroborated by the MSE value of 196.89 (see Table 1), 
which is notably higher than those of the SVM and ELM 
algorithms. The SVM algorithm, recognized for its efficacy in high-
dimensional spaces, exhibited a desirable output value of 250 and a 
predicted value of 200. The prediction results showed a more stable 
performance compared to BP, which is reflected in a lower MSE of 
147.98. The error chart for the SVM algorithm indicated a more 
consistent error margin, which is advantageous for applications 
requiring stable predictions. The high R2 value of 0.94 suggested that 
the SVM algorithm captures a significant portion of the variance, 
and its fast training speed resulting from random initialization of 
hidden layer weights further contributes to its performance. In 
contrast, the ELM algorithm, despite its speed, recorded the lowest 
R2 value of 0.87 among the three algorithms, indicating a less 
accurate model. The high MSE of 448.44 and the RMSE of 0.02 
suggested that while the average error is low, the variance in ELM 
algorithm predictions is considerable.

The SVM algorithm outperforms both BP and ELM algorithms in 
terms of R2 and MSE, indicating a superior fit to the data and lower 
average squared error. While the ELM algorithm is computationally 
efficient, it underperforms in predictive accuracy, as evidenced by the 
lower R2 and higher MSE. Despite its simplicity and broad applicability, 
BP demonstrated greater variability in prediction errors, which may 
render it unsuitable for applications requiring high precision. 

In summary, the SVM algorithm emerges as the optimal choice for 
tasks that require high accuracy and stability. Conversely, in scenarios 
where speed is paramount and a less accurate model is acceptable, the 
ELM algorithm may serve as a viable alternative. The BP algorithm, 
with its moderate performance, may be suitable for applications where 
model interpretability is an important consideration. 

5.2 Comparative analysis of optimization 
with and without GA

The integration of the GA with traditional machine 
learning models has garnered considerable interest due to its 

potential to enhance model performance through effective 
optimization (Shi et al., 2025). The GA-optimized BP (GA-
BP) model demonstrated a significant improvement over the 
standard BP model. Specifically, the R2 value increased from 0.9 
to 0.98 (see Table 1), indicating a more accurate representation 
of the variance in the data. The MSE dropped dramatically from 
196.89 to 7.58, suggesting a substantial reduction in the average 
squared difference between the actual and predicted values. 
This optimization not only enhanced the predictive accuracy 
of the model but also improved its generalization capability, as 
evidenced by the reduced error metrics. Similarly, the GA-SVM 
model demonstrated considerable improvement over the standard 
SVM. While the R2 value remained high at 0.94, the MSE was 
reduced from 147.98 to 32.58. This reduction indicates that GA 
optimization effectively fine-tuned the SVM model, resulting in 
more precise predictions. The RMSE decreased from 0.44 to 0.21, 
further emphasizing the enhanced accuracy of the model. The GA-
ELM model experienced a notable improvement in performance. 
The R2 value increased from 0.87 to 0.89—a modest but positive 
change. However, the most significant improvement was observed 
in the MSE, which dropped from 448.44 to 48.87. This substantial 
reduction in error indicates that GA optimization effectively refined 
the ELM model’s predictions, particularly in reducing the variance 
of the prediction errors.

Overall, the GA optimization process positively influenced all 
three algorithms, where GA-BP showed the most pronounced 
improvement in R2 and MSE. This result suggests that GA 
optimization is particularly effective in enhancing the performance 
of BP. This effectiveness may be due to the algorithm’s dependency 
on weight adjustment, which aligns well with GA’s optimization 
capabilities. For tasks requiring high accuracy and robustness, the 
GA-BP algorithm may be the preferred choice. Conversely, for 
applications where a balance between accuracy and computational 
efficiency is paramount, the GA-SVM algorithm could be more 
suitable. In scenarios where rapid model deployment is necessary, 
the GA-ELM algorithm may offer an effective compromise between 
speed and accuracy. 

5.3 The comprehensive analysis of the 
studied algorithms

The standard BP algorithm achieved an R2 of 0.9, indicating 
that it explains 90% of the variance in the data. The MSE for 
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this algorithm was 196.89, suggesting a relatively high prediction 
error. In contrast, the GA-BP algorithm demonstrated a substantial 
improvement in model accuracy, with an R2 of 0.98 and an MSE 
of 7.58. This enhancement can be attributed to GA’s ability to 
fine-tune the weights of the BP model, leading to a more precise 
representation of the data. The SVM algorithm had an R2 of 0.94 
and an MSE of 147.98. However, the GA-SVM model achieved 
an MSE of 32.58, while maintaining the same R2 value. This 
indicates that while GA optimization did not improve the model’s 
explanatory capability, it significantly reduced the prediction error. 
The ELM algorithm exhibited an R2 of 0.87 and an MSE of 448.44. 
The GA-ELM model improved these metrics to 0.89 and 48.87, 
respectively. The increase in R2 and the substantial reduction in MSE 
indicate that GA optimization enhanced the predictive accuracy 
of the ELM.

The RMSE values provide insights into the dispersion of the 
prediction errors. For the BP algorithm, the RMSE decreased 
from 1.01 to 0.07 with GA-BP (see Table 1). Similarly, the RMSE 
for the SVM reduced from 0.44 to 0.21 with GA-SVM, and 
for ELM, it reduced from 0.21 to 0.02 with GA-ELM. These 
reductions indicate that GA optimization not only improves 
accuracy but also reduces the variability of prediction errors across 
all models.

The iteration speed inferred from the fitness value plots 
indicated that the GA-BP and GA-SVM algorithms converge 
more rapidly than the GA-ELM algorithm. Specifically, the 
GA-BP and GA-SVM algorithms achieved optimal fitness 
values within 50 and 15 iterations, respectively, while the GA-
ELM algorithm required 25 iterations. This suggests that the 
complexity of the optimization scenarios varies across models, 
with BP and SVM algorithms benefiting more rapidly from GA 
optimization.

The integration of GA with these algorithms has demonstrated 
an enhancement in their predictive capabilities. The GA-BP 
algorithm achieved the highest R2 and the lowest MSE and RMSE, 
indicating superior accuracy and reduced error dispersion. While 
the GA-SVM algorithm did not show improvement in R2, it 
demonstrated a significant reduction in both the MSE and RMSE, 
indicating improved reliability in predictions. Although the GA-
ELM algorithm began from a lower baseline, it exhibited remarkable 
improvements. This makes it a viable option for scenarios requiring 
rapid model deployment.

From the perspective of guiding engineering design schemes, the 
GA-SVM algorithm can provide the most reliable recommendations 
regarding the depth of the impermeable curtain bottom boundary 
among the studied algorithms. In contrast, the BP algorithm 
presents the least favorable choice (see Table 2). The performance 
of the ELM and SVM algorithms is quite comparable, and this 
comparability aligns with that observed between the GA-ELM and 
GA-SVM algorithms. Furthermore, While the models presented in 
this study are data-driven, their predictive patterns and the identified 
feature importance are highly consistent with the fundamental 
geomechanical and hydrogeological principles that govern seepage 
in karst rock masses. Therefore, the model does not operate as an 
inscrutable “black box”; rather, it serves as a powerful non-linear 
regression tool that quantitatively captures and reinforces the long-
established qualitative understanding of karst seepage control. This 
alignment between data-driven outcomes and physical principles 

TABLE 2  The proportion of greater deviations in the results.

BP GA-BP ELM GA-ELM SVM GA-SVM

2% 63% 58% 72% 53% 81%

significantly enhances the interpretability and credibility of our 
model for engineering applications.

5.4 Benchmarking against prevalent 
machine learning models

To rigorously evaluate the performance of the proposed GA-
optimized models, a comparative analysis was conducted against 
three widely-used machine learning algorithms: RF, XGBoost, 
and LightGBM. All models were trained and tested on the 
identical dataset (an 80/20 split) described in Section 3.1. The 
hyperparameters for all benchmark models were optimized via a 
grid search to ensure a fair comparison. The performance metrics 
on the independent test set are summarized in Table 3. The GA-
BP model demonstrates superior predictive accuracy, achieving the 
highest R2 and the lowest MSE and RMSE. This indicates that the 
hybrid GA-BP approach excels at modeling the complex underlying 
relationships in this specific regression task. Furthermore, for 
engineering applications where a conservative design is paramount, 
the GA-SVM model is particularly advantageous due to its highest 
RPD value and its tendency to over-predict the curtain depth, 
thereby reducing the risk of underseepage (He et al., 2025). While the 
benchmark models (especially XGBoost) show strong performance, 
this analysis confirms that our proposed GA-optimized models offer 
distinct and valuable performance characteristics.

5.5 Recommendations for future research

Based on the findings and limitations of this study, several 
promising avenues for future work are identified. Future research 
should prioritize the development of physics-informed neural 
networks (PINNs) or other mechanism-data hybrid models. By 
embedding governing equations (e.g., Darcy’s law, principles of 
flow in fractured media) into the architecture or loss function, 
predictions would be not only data-driven but also physically 
consistent, thereby enhancing interpretability and robustness in 
data-sparse scenarios (Li et al., 2024; Chen et al., 2021).

Furthermore, the current model is static and does not account 
for the dynamic evolution of karst systems. Future efforts should 
incorporate time-series data and long-term monitoring results to 
model the spatiotemporal evolution of seepage fields under the 
influence of reservoir operation and chemical dissolution.

Finally, to address the limited generalizability inherent in 
single-site studies, building large, multi-reservoir karst databases 
is essential. Exploring transfer learning techniques will be key to 
adapting models trained on large datasets to new karst regions 
with site-specific geological conditions, significantly boosting the 
engineering promotion value of the AI-aided design framework. 

Frontiers in Materials 13 frontiersin.org

https://doi.org/10.3389/fmats.2025.1709826
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhang et al. 10.3389/fmats.2025.1709826

TABLE 3  Performance comparison with RF, XGBoost, and LightGBM.

Metrics RF XGBoost LightGBM GA-BP (our) GA-SVM (our)

R2 0.92 0.95 0.94 0.98 0.94

MSE 105.63 68.45 75.2 7.58 32.58

RMSE 10.28 8.27 8.67 0.07 0.44

RPD 1.25 1.55 1.48 0.3 1.82

6 Conclusion

1. Traditional algorithms, including BP, ELM, and SVM, have 
demonstrated distinct advantages in predicting the bottom 
boundary for seepage control in karst reservoir regions. The 
SVM algorithm excelled in terms of accuracy and stability, 
while the ELM algorithm exhibited a notable advantage in 
speed. Although the BP algorithm demonstrated moderate 
performance, it offered commendable interpretability.

2. The GA demonstrated significant optimization effects in 
predicting the bottom boundary for seepage control in terms of 
predictive accuracy, error reduction, and convergence speed. 
The integration of the GA with these algorithms significantly 
improved the optimization process, resulting in a more precise 
and efficient predictive model. Notably, the optimization effect 
on the BP algorithm was particularly remarkable; however, 
its performance regarding the relative magnitude of error 
dispersion was less pronounced.

3. When choosing GA-BP, GA-SVM, and GA-ELM algorithms 
for predicting the bottom boundary for seepage control, 
it is essential to consider the specific requirements of the 
task, including accuracy, error dispersion, model training 
speed, and engineering safety. The GA-BP algorithm offered 
superior accuracy and reduced error dispersion, while the 
GA-SVM algorithm demonstrated improved prediction 
reliability. Although the GA-ELM algorithm began from 
a lower baseline, it showed notable improvements, which 
makes it a viable option for scenarios requiring rapid 
model deployment. The GA-SVM algorithm provided the 
most reliable recommendations regarding the depth of 
the impermeable curtain bottom boundary to enhance 
engineering safety.
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