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The global push for sustainability has sped up the shift from petroleum-
based polymers to green polymer nanocomposites (GPNCs). These materials
combine bio-based or biodegradable polymers with nanoscale reinforcements
to boost performance and lessen environmental impact. This review discusses
synthesis methods, structure—property relationships, and industrial uses of
GPNCs. Natural polymers like starch, cellulose, chitosan, and alginate, along
with bioplastics such as PLA, PHA, PBS, and PCL, offer biodegradability but
have limited mechanical strength. This issue can be significantly addressed
by adding nanofillers, like nanoclays, CNCs, nanofibers, biochar, and carbon
materials. For example, the addition of nanofillers increased the modulus
by (60-70)%, while surface-functionalized nanofillers enhanced interfacial
bonding, and hybrid fillers blend stiffness with flexibility, resulting in a
200% increase in elongation at break. Some metal nanoparticles offer
antimicrobial properties in which cell viability went down to less than
10% upon addition of nanofillers, or photocatalytic benefits, achieving
100% photocatalytic efficiency, with safety carefully evaluated. Advances in
fabrication methods, including solution casting, melt compounding, in situ
polymerization, electrospinning, and 3D printing, improve scalability and
nanofiller distribution. Including nanofillers boosts mechanical and thermal
properties for high-performance packaging. GPNCs are increasingly important
in sectors: in packaging, for improved film strength; in automotive and
aerospace, for lightweight designs; in construction, for coatings and structural
parts; in water treatment, via enhanced membranes; and in biomedical
devices, due to biocompatibility. GPNCs promote sustainability by utilizing
waste, reducing energy use, and enabling recyclability or biodegradability,
supporting circular economy goals. They meet regulatory defmands like
the European Green Deal and EPR. Challenges include higher costs of
bio-polymers and nanofillers, processing complexity, need for standardized
testing, and toxicity concerns for certain nanomaterials. Despite these,
green nanocomposites blend innovation and environmental responsibility,
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crucial for a sustainable future, with ongoing research promising broader

industrial adoption.

biodegradable polymers,

applications

1 Introduction

The urgent global environmental crisis is largely driven by
petroleum-based plastics like polyethylene and polypropylene.
These strong, durable, and inexpensive materials are non-
renewable and non-biodegradable, taking centuries to decompose.
Their use contributes to landfill expansion, water pollution,
and greenhouse gas emissions, highlighting the need for
sustainable alternatives (Jain, 2017; Singh and Walker, 2024;
Arrieta et al., 2014).

Global production of plastics has exceeded 400 million metric
tons every year and is estimated to reach 600 million metric tons by
2050 (Mahajan et al., 2023). Improper plastic disposal contaminates
the environment, harms wildlife, and contributes to microplastic
pollution. Burning plastic releases toxic chemicals, worsening air
pollution and health risks like cancer and respiratory issues.
Traditional recycling is costly and energy-intensive, complicating
the treatment of mixed plastics and reducing its eco-friendliness
(Kumar et al., 2020; Royer et al., 2018).

In a bid to address these limitations, green polymer
nanocomposites (GPNCs) have been labeled as an optimistic
solution that embodies material innovation coupled with
environmental stewardship. GPNCs are hybrid composites made
of biodegradable or bio-based polymer matrices reinforced by
eco-friendly nanofillers (Harun-Ur-Rashid et al., 2023). These
products are designed to match or exceed conventional plastics
while lowering environmental impact. The use of nanofillers
in bio-based matrices enhances their mechanical strength,
thermal resistance, barrier properties, antimicrobial effects, and
UV stability, making them suitable for packaging, automotive,
aerospace, construction, biomedical, and water treatment
applications (Harun-Ur-Rashid et al., 2023; Sunday et al., 2012;
Saha, 2023; Hopewell et al., 2009).

GPNCs are
starch,

materials  like
(PLA),
polyhydroxyalkanoates (PHAs), polybutylene succinate (PBS), and
polycaprolactone (PCL). While eco-friendly, some may lack the

made from biodegradable

cellulose, chitosan, alginatepolylactic acid

strength for demanding applications. To enhance performance,
nanofillers such as nanoclays, cellulose nanocrystals, biochar,
carbon nanotubes, zinc oxide, titanium dioxide, and silver are
added, improving strength along with gas barrier, antimicrobial,
and photocatalytic properties (Mahajan et al.,, 2023; Harun-Ur-
Rashid et al., 2023; Sunday et al., 2012; Saha, 2023; Bhawani et al.,
2018). The high surface area and strong interfacial adhesion
of nanoscale fillers enable significant property improvements
at low loadings, allowing for reduced matrix use and the
creation of lighter, high-performance polymer nanocomposites.
Advanced processing techniques like solution casting, melt
compounding, and 3D printing allow precise control over nanofiller
mixing and properties for targeted applications (Igbal et al,
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2024). GPNCs are increasingly important in various industries.
Starch or PLA-based nanocomposites with nanoclays strengthen
packaging and improve moisture barriers. In automotive and
aerospace, they create lightweight parts that reduce fuel use
and emissions. In construction, GPNCs aid green building
through coatings and insulation. They enhance filtration in
water treatment and are biocompatible, making them suitable for
tissue engineering, wound care, and drug delivery in biomedical
applications (Avolio et al, 2018; Malucelli and Kausar, 2022;
Reddy et al., 2013).

GPNCs support environmental and regulatory goals by utilizing
recycled agricultural and industrial waste, such as rice husk ash,
lignin, fly ash, or waste glass powder, fostering a circular economy.
Their biodegradable or recyclable properties reduce landfill use.
They also align with sustainability initiatives like the European
Green Deal, Extended Producer Responsibility (EPR), and the
United Nations Sustainable Development Goals (SDGs) for cleaner
production practices (Mohanty et al., 2002; Rujnic Havstad and
Pilipovi¢, 2017).
their GPNCs  face
commercialization. Bio-based polymers and high-performance

Despite potential, challenges in
nanofillers are often more expensive than traditional plastics.
Achieving uniform dispersion and effective bonding demands
advanced processing technologies. Current biodegradability,
toxicity, and durability testing methods are still being developed,
hindering material comparisons and regulatory approvals.
Additionally, some nanomaterials, like metal oxides and carbon
nanotubes, pose toxicity and environmental persistence concerns,
necessitating comprehensive life cycle assessments and risk analyses
(Saha, 2023; Ramakoti et al., 2023).

This review explores green polymer nanocomposites (GPNCs)
fundamental components, diverse preparation techniques, and a
wide array of applications across various industries. It provides a
detailed analysis of the environmental benefits these innovative
materials offer, while also addressing their limitations. By
synthesizing insights from materials science, nanotechnology, and
sustainability studies, the review illustrates how GPNCs leverage
renewable resources, such as biodegradable polymers and bio-
based nanofillers, to significantly reduce the ecological footprint
associated with conventional polymer products. Furthermore, it
highlights recent breakthroughs in the field, outlining the persistent
challenges that researchers and manufacturers face, as well as the
promising future research directions that could lead to enhanced
performance and wider adoption. This review serves as a crucial
resource for guiding academic inquiries and informing industrial
practices aimed at fostering a circular and sustainable materials

economy.
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Green Polymer Matrices
Natural Polymers
* Starch
i ¢ Cellulose
* Chitosan

Bio-based synthetic Polymer

. « PLA
x « PAHs
FIGURE 1

Green polymer nanocomposites components.

2 Components of green polymer
nanocomposites

A green polymer nanocomposite mainly consists of a green
polymer matrix and a sustainable nanofiller. An overview of
these components is presented in Figure 1, followed by a detailed
explanation in Sections 2.1 and 2.2.

2.1 Green polymer matrices

2.1.1 Natural polymers: biodegradable, abundant,
renewable

Natural polymers are popular for green nanocomposites
because theyre biodegradable, renewable, and eco-friendly.
life,
provide a sustainable alternative to petroleum plastics. Their

Sourced from plants, marine and microbes, they
use helps tackle plastic pollution, resource depletion, and
waste problems (Rosli et al., 2021).

One of the most studied natural polymers is starch, a
thermoplastic polysaccharide from wheat, potatoes, and corn, is an
affordable, biodegradable matrix for biocomposites. However, its
brittleness and sensitivity to water limit its mechanical performance,
necessitating modification or blending with other materials for
improved durability and resistance (Demirbas, 2007).

Cellulose, the most abundant natural polymer of the Earth,
is a linear plant biomass-derived polysaccharide. It is more
resistant to mechanical stress, stiffness, and chemicals. It is
biodegradable and renewable, but its crystallinity and limited
solubility in common solvents make it challenging to process.
Nevertheless, cellulose derivatives and nanocellulose materials
such as cellulose nanocrystals (CNCs) or nanofibers (CNFs)
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are increasingly being utilized as reinforcement for green
polymer matrices (Mohanty et al., 2000).

Chitosan, derived from deacetylated chitin in crustacean
shells, is biocompatible and antimicrobial, making it valuable
in medicine and food packaging. However, its poor mechanical
properties and water sensitivity require reinforcement or
blending with other biodegradable polymers for enhanced
performance (Pillai et al., 2009).

Alginate, a polysaccharide derived from the brown seaweed,
is hydrophilic, gelling-forming, and biocompatible. Alginate is
becoming more and more relevant to environmental and biomedical
disciplines, especially drug delivery and wastewater treatment. As
with chitosan and starch, alginate’s mechanical limitations have to
be addressed by preparing composite materials (Rehm, 2009).

Though they have inherent disadvantages in the native state,
such as poor mechanical toughness or sensitivity to moisture, these
biopolymers are still a valuable foundation for green material design
in an environmentally friendly way. With the incorporation of
reinforcing nanofillers, their properties are significantly upgraded,
which renders them suitable for high-performance and industrially

relevant green polymer nanocomposites.

2.1.2 Bio-based synthetic polymers: derived from
renewable sources, tunable properties

Synthetic biopolymers are valuable for green composite
construction due to their flexibility and renewable origins.
Engineered for specific properties, common types include
polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polybutylene
PLA, made
from lactic acid via carbohydrate fermentation, is transparent

succinate (PBS), and polycaprolactone (PCL).
and compostable but has issues with brittleness and barrier

properties, often needing reinforcement for high-performance use
(Pielichowska, 2022; Mahajan et al., 2023).
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FIGURE 2
Structure of nanoclay.

PHAs, particularly polyhydroxybutyrate (PHB), are produced
via microbial fermentation with microbes like Cupriavidus necator
and Pseudomonas spp. They exhibit mechanical properties similar
to polypropylene and are fully degradable, making them suitable
for medical and packaging uses. However, high production costs
hinder mass commercialization (Chen, 2003; Sudesh et al., 2000).
Advances in bacterial strain optimization, substrate selection, and
fermentation efficiency remain under investigation to maximize
economic feasibility (Mahajan et al., 2023).

PBS, which is produced from succinic acid and 1,4-butanediol,
offers a fair balance between flexibility, biodegradability, and
heat stability. Its inherent crystallinity of about 35% and break
elongation make it highly suitable for food packaging applications,
especially when nanofillers such as clays or cellulose nanocrystals
are incorporated as reinforcement (Wong and Shanks, 2009; Heydari
and Eghbalifam, 2022). Similarly, PCL, a biocompatible semi-
crystalline aliphatic polyester, with its low melting point, slow
degradation rate, and good miscibility with other polymers, is
used in biomedical applications such as drug delivery and tissue
engineering scaffolds (Hartley et al., 2022).

Nanocomposite technology can overcome the limitations
of bio-based polymers, such as low mechanical strength and
water sensitivity. By integrating nanoparticles (e.g., nanoclays,
metal oxides), these materials gain enhanced thermal stability,
barrier properties, and antimicrobial effectiveness, enabling
innovative applications in packaging, construction, electronics,
and medicine (Bari et al., 2016). In response to the worldwide
transformation to a circular economy, bio-based synthetic polymers
are critical in reducing dependence on fossil resources, greenhouse
gas emissions, and the environmental compatibility of polymeric
materials.

2.2 Sustainable nanofillers

2.2.1 Nanoclays

Nanoclays are powerful materials, layered aluminosilicates
(Figure 2), that have been developed and utilized in numerous
industrial applications (Undabeytia et al, 2021). They occur
naturally in freshwater and can be synthesized. The tetrahedral
silicate and octahedral aluminate arrangement allows for ion
trapping, imparting unique mechanical, thermal, structural, barrier,
and morphological properties (Jacquet et al., 2018).
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A biodegradable and eco-friendly polymer is combined
with nanoclay to produce polymer-nanoclay nanocomposites
that possess stability, UV
diffusional barrier, and mechanical robustness (Kumar et al., 2022;

remarkable thermal resistance,
Korukonda et al., 2024). Layered silicates are hydrophilic, making
their interaction with polymer chains difficult. To enhance nanoclay
hydrophobicity and form polymer nanocomposites, methods such
as melt mixing, Sol-Gel, in situ polymerization, and solutions with
surfactants or organic molecules are used (Rafiee and Shahzadi,
2019; Li et al., 2004; Polverejan et al., 2000).

Halloysite clay nanotubes was used as a natural reinforcement
for polymers. Using methods like in situ polymerization and solution
casting, they found that a 5% addition of halloysite enhanced
composite adhesivity, increased polymer strength by 30%-70%, and
introduced functions such as self-healing, antimicrobial properties,
and flame retardance (Lvov and Abdullayev, 2013). Halloysite clay
nanotubes were incorporated as a nanofiller into a polymer, and
the resulting nanocomposite was used as sustained drug release
and effective drug encapsulation due to the improvement in tensile
strength, and elasticity (Liu et al., 2014). In another study, it was
found that the addition of 7% of halloysite clay nanotubes to the
polymer matrix improves the thermal stability, tensile strength, and
elasticity (Gaaz et al., 2017).

An in situ polymerization process was used to create polymer
nanoclay nanocomposites. Functionalized clay with tosyl groups
was used to enhance the thermal stability of poly(2-ethyl-
2-oxazoline)/clay nanocomposites (Ozkose et al., 2017). In
another study fluorinated methacrylate/clay nanocomposite was
synthesized and found that the they exhibits higher thermal
stability, surface properties, and hydrophobicity, which are suitable
for many applications, such as lithium batteries, fuel cells,
and in automotive, textile, aerospace, and electronic, that use
fluoropolymers (Karamane et al., 2017).

Intercalated polyaniline-clay nanocomposite (PANC) was
synthesized using supercritical CO, in a high-pressure reactor.
It exhibits high conductivity and excellent thermal, mechanical,
barrier, and anticorrosive properties, making it suitable for various
applications (Abdelraheem et al., 2018).

A composite using bentonite clay as an adsorbent and Moringa
oleifera as a coagulant was developed to remove heavy metals from
water, demonstrating effective removal of cadmium, chromium,
and lead (Ravikumar and Janardhanan, 2020). The solution
intercalation method was developed to synthesize polymer/clay-
based composites. The composite was found to display not only
better thermal insulation, but also it be an eco-friendly insulator for
the construction industry (Ghyati et al., 2022).

The
nanocomposites is their biodegradability, despite enhancements

main challenge with green polymer nanoclay
from low nanofiller loading. However, they are used in tissue
engineering, drug delivery, wound healing, and eco-friendly

materials like packaging and membranes (Kausar et al., 2022b).

2.2.2 Cellulose nanocrystals/nanofibers

Cellulose is an abundant, renewable, and sustainable
polymer, prized for its thermal stability, mechanical strength,
biocompatibility, lightweight nature, eco-friendliness, and
affordability (Jiwanti et al., 2022; Klemm et al., 2005). Nanocellulose

(NC) consists of three types: cellulose nanocrystal (CNC), cellulose
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nanofiber (CNF), and bacterial nanocellulose (BNC) (Kumar et al.,
2020). CNCs are highly crystalline, needle-shaped, with an
average diameter of 3-35nm, and a length of 100-1000 nm.
CNFs wrapped up cellulose fibers, contain amorphous and
crystalline forms, are flexible, and have a 10-100 nm diameter.
BNCs have twisted ribbon-like fibers, with average diameters of
20-100 nm, lengths in micrometers, and are secreted by aerobic
bacteria (Kumar et al., 2020). They possess significant properties
like transparency, low thermal expansion coefficient, settled
reinforcing potential, stability, and extraordinary Young’s modulus
(Kim et al., 2015; Moon et al., 2011).

Extracting nanocellulose (NC) from natural resources is
challenging due to strong hydrogen bonds in cellulose. It
requires a multi-stage approach involving mechanical methods,
chemical treatments, and processes like mechanical cleansing,
disruption of water-soaked pulp with liquid nitrogen, and
homogenization (Bhatnagar and Sain, 2005).

Kondo et al. (2014) developed a rapid novel method to break
down the natural cellulose to cellulose nanofibers (CNF) via
aqueous counter collision using only water without any chemical
treatment, and they concluded that this method can also be
applied to other polymeric materials with hierarchical structure
(Kondo etal., 2014). CNC with a lower critical solution temperature
(LCST) polymer in a poly (vinyl acetate) (PVAc) matrix showed a
significant modulus increase, creating a versatile nanocomposite for
biomedicine (Cudjoe et al., 2017).

The electrospinning method efficiently prepares CNC and
CNE. Alvarado etal. created CNC-CNF with an antimicrobial
agent, leading to improved thermal and mechanical properties
for food packaging (Alvarado et al., 2018). Dutta et al. fabricated
and characterized poly(e-caprolactone)/cellulose nanocrystals-
nanofibers derived from rice husk. The resulting nanocomposite
showed that it can be a good replacement as a biomaterial for
tissue engineering (Dutta et al, 2019). CNC and CNF were
developed through electrospinning with cellulose acetate to evaluate
their efficiency for the removal of methylene blue (MB). The
adsorption capacity was found to be 50% by 1000 ppm of MB
initial concentration, a double adsorption capacity compared to
cellulose acetate (Khatri et al., 2024).

Different natural and microbial resources have been
demonstrated to extract CNC and CNE such as oil palm
trunk (Lamaming et al.,, 2015), tomato peels (Jiang and Hsieh,
2015), chili leftovers (Nagalakshmaiah et al, 2016), sugarcane
bagasse (El Achaby et al, 2017), sugar monomers converted
to NC by the enzymes and proteins of bacteria (Moniri et al.,
2017), wood and hemp biomass (Beluns et al, 2021), and
lignocellulosic biomass (Saeed Qureshi et al., 2024).

In other research, CNC and CNF were developed with other
materials for different applications. Hosseinpour et al. implemented
multilayer membranes with CNC to enhance the performance of
direct methanol fuel cells (Hosseinpour et al., 2019) different flexible
functional groups were used on cellulose and CNC, then used to
produce intelligent electronics (Zhao D. et al., 2021), dye adsorption
(Rana, 2023), and CNC and CNF were maintained to enhance the
recovery of crude oil (Rana et al., 2024).

The melt processing method, which is mostly applied for
polymer-based CNCs, is a green method with no solvent needed
(Dufresne, 2017; Ansar et al., 2024). Zhou et al. used the melt
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processing method to incorporate CNFs and corn starch to prepare
a polymer-based CNF composite. The results showed that the
composite gained better mechanical properties (Zhou et al., 2021).

A. A. Singh etal. developed a green approach for the
preparation of polylactic acid and CNFs. They used an aqueous
solvent of polyethylene oxide at the functionalization of CNFs,
followed by extrusion with the solvent to get a significant
enhancement in mechanical and chemical properties for different
applications (Singh et al., 2020).

Many factors can affect the efficiency of utilization of CNC and
CNF in different applications, such as charge distribution, ionic
strength, rheology, nanocellulose shape, surface functionalization
approach, additives, and post-treatment procedures, etc. (Ranaetal.,
2024). CNC and CNF have extraordinary applications in the
industry, but still lack specific surface characterization, structural
homogeneity, high preparation-functionalization costs, and need
enhancement in adsorption capacity (Rana et al., 2024).

2.2.3 Carbon nanomaterials

Carbon materials, consisting of carbon atoms, are utilized in
various technical fields due to their low density and high thermal
conductivity. Naturally, carbon is found as coal and graphite in large
quantities and as diamond in smaller amounts. Synthetic forms
include cokes, carbon black, carbon fibers, and synthetic graphite.
The discovery of the C60 molecule (fullerene) notably enhanced
interest in carbon science (Khan et al., 2016).

In conjunction with the rapid development in nanoscience,
has
(Kawamoto et al., 2017). Nanocarbon materials, such as fullerene,

a huge interest emerged in nanocarbon materials

nanodiamond, graphene, graphite, and carbon nanotubes
(CNTs), have been tested for numerous industrial, medical, and
pharmaceutical applications due to their extraordinary mechanical,
physical, chemical, and electrical properties (Jiwanti et al., 2022).
Polymer-based carbon nanomaterials nanocomposites show
superior enhancement in aspect ratio, thermal stability, flexibility,
thermal conductivity, surface area, thermo-physical properties,
tensile strength, tensile modulus, and mechanical properties (Zhang
and Park, 2018; Shah et al., 2015; Zhang et al., 2018; Tarfaoui et al.,
2016). They were prepared by different procedures for various
applications according to the type of nanocarbon and the polymer,
such as ball milling, shear mixing, ultrasonication, extrusion, roll
milling, calendaring, etc. (Abbasi et al., 2019). Y. Li and Ye discussed
the enhancement of using polymer-based nanocarbon in lithium
batteries; the flexibility of the polymer avoids the assembly of
electrode materials, the nanocarbon framework offers a highly
conductive medium of charge/discharge process for lithium ions,
the polymer conductivity is considered a coating material of
cathode or anode, and it is considered a protecting material of the
battery (Li and Ye, 2018). Al-Saleh reviewed that using nanocarbon
fillers in polymer composites significantly reduces the energy loss
in energy storage systems due to the continuous conductivity
framework in the polymer-based nanocarbon materials (Al-Saleh,
2019). Lucefio Sanchez et al. used functionalized graphene oxide
(GO) to be a powerful material in thermoelectric devices, solar
energy tools, and flexible electronics (Lucefio Sanchez et al., 2018).
Other applications, which are based on the superior properties
of polymer-based nanocarbons, were conducted, such as epoxy

resins (Giovannelli et al., 2017), electronic devices (Zhang and Park,
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2018), electric tools (Zhang and Park, 2018), antenna technology
(Trukhanov et al, 2022), fire alarm applications (Xia et al,
2022), supercapacitors (Ding et al., 2019), aerospace applications
(Kausar et al., 2023), organic solar cells (Gayathri Mohan et al.,
2024), etc.

Extremely toxic and hazardous substances are used in modifying
and preparing carbon nanomaterials. These include concentrated
sulfuric and nitric acids, hydrazine, and organic solvents like DMF
and NMP in chemical processes. Additionally, flammable or toxic
gases such as methane, hydrogen, carbon monoxide, and ammonia,
along with metal catalysts like nickel and cobalt, are used in
physical methods.

Carbon nanomaterials can be synthesized using green methods.
One study synthesized carbon nanoparticles from tomato extract,
precipitated and calcined at 60 °C under atmospheric pressure,
the lowest reported temperature, advancing greener methods
(Arizaga et al, 2022). Another created fluorescent nitrogen-
enriched carbon nanoparticles (N-CNPs) from seaweed extract
and ethylene diamine via hydrothermal treatment at 160 °C for
12.0h (Singh et al, 2022). In addition, developing eco-friendly
approaches to get the carbon nanomaterials and combine them
with the polymers is a great challenge (Kawamoto et al., 2017).
The green preparation of carboxymethyl cellulose (CMC) in
a dispersion of graphene oxide (GO)/carbon nanotube (CNT)
complexes to produce nanocomposite films significantly enhanced
the Young’s modulus and the tensile strength due to the strong
n-n surface interactions between CNTs and CMC polymer (Son
and Park, 2018). X. Zhao etal. used tannic acid, which is eco-
friendly, as a reducer in the synthesis of polyaniline/reduced
graphite oxide (Zhao et al., 2019). Green polymer-nanocarbon
nanocomposites have been synthesized in a green approach to be
applied as supercapacitors (Kausar et al., 2022a). Mirzapour et al.
developed a green and easy method to prepare epoxy/carbon-
based nanoparticles nanocomposites. They did not use any
harmful surfactants or solvents, and the resulting polymer-based
nanocarbon nanocomposite gained a higher toughness, tensile
strength, and modulus (Mirzapour et al., 2024).

Some drawbacks should be studied in the future. The
agglomeration of nanocarbon materials among the layers occurs
because of the resulting high surface area, which may weaken the
connection between the nanocarbon materials and the polymer.
Moreover, inadequate exfoliation and dispersion of graphite reduce
its effectiveness as a filler and lead to tiny graphene sheets sliding
past one another under applied loads in lightweight materials
(Velmurugan et al., 2023; Lligadas et al., 2013; Tang et al., 2012).

2.2.4 Metal/metal oxide NPs

Polymer-based metals and metal oxides nanofillers have
superior biocompatibility, low aggregation, and better dispersion
compared to other polymer-based materials due to the great
strength, toughness, and electrical conductivity (Khan et al., 2016).
The insertion of metals, such as Ag, Ti, Si, Al, Zr, etc., or metal
oxides such as TiO,, ZnO, and ZrO,, not only enhances the
physical, mechanical, and chemical properties but also exhibits
extra benefits like antimicrobial functions, drug-delivery carriers,
and photocatalytic properties (Wang and Sun, 2021; Ding et al.,
2019; Yadav et al., 2019; Melinte et al., 2019).
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Different challenges arise with the use of metals and/or
metal oxides as impeded or filler materials, including their
metallurgical, chemical, environmental toxicity, and thermal
properties (Rajendran et al, 2023). Green-synthesized ZnO-
polymer was evaluated as a supercapacitor (Chakraborty et al.,
2020). Cu-doped ZnO-based polymer nanocomposite was prepared
via a novel green method, and then the prepared nanocomposite was
evaluated in its efficiency as an antioxidant, antimicrobial, and anti-
inflammatory material (Al-Rajhi et al., 2022). Yao et al. discussed
the main approaches for the synthesis of polymer-based metal/metal
oxide materials, and then they illustrated their green method,
polymer surface buckling-enabled exfoliation (PSBEE). Their
method is cost-effective, simple, and eco-friendly (Yao et al., 2024).

Many metals and/or metal oxides were examined as polymer-
metal/metal oxide-based nanocomposites for different purposes.
Silver-based polymer was developed for antimicrobial coating for
biomedical applications in different forms, such as hydrogels,
multilayer structures, thin films, fibers, etc. (Dhiman et al., 2019).
Copper-decorated graphene was used to improve the fireproof
effectiveness of epoxy resin. The research showed that using Cu*"
gives a better efficiency due to its higher ability to oxidize carbon
monoxide to carbon dioxide (Ye et al, 2019). TiO,-polymer was
prepared, and its photoactivity was evaluated (Sadowski et al., 2019).
For wound healing, silver was introduced to a natural polymer,
such as polysaccharides, due to its availability and antimicrobial
effects (Rahimi et al., 2020). The cold press method was developed
to prepare the sugar palm fiber (SPF) hybrid with polyester (PET)
yarn-reinforced epoxy composite, with the addition of magnesium
hydroxide (Mg(OH),) at different doses. The results showed that
the higher the Mg(OH), dose, the higher the fire retardant
of the composite, and the other evaluated physical properties
results confirmed that the prepared magnesium oxide polymer
is suitable for other applications, such as the aerospace industry,
automotive tools, and building products (Suriani et al., 2021).
Thin-film nanocomposites and thin-film membranes were prepared
by the vapor-phase interfacial polymerization method by using
TiO, nanoparticles as nanofillers to remove heavy metal ions from
aqueous solutions (Karki and Ingole, 2022).

Polymer-based-metal/metal  oxide nanocomposites have
a great interest due to their wide applications in all fields.
However, challenges related to these nanocomposites, such
as long-term stability, cytotoxicity, and immune response,
which require systematic enhancement studies in the synthesis
approaches, functionalization of the surface, and biocompatibility
evaluation (Harun-Ur-Rashid et al., 2025).

3 Fabrication techniques for GPNCs

Different methods are used to prepare GPNCs. Figure 3
summarizes fabrication techniques, with detailed descriptions in the
following sections.

3.1 Solution casting

The solution casting method operates based on Stokes' law.
In this approach, the polymer and prepolymer are uniformly
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mixed and dissolved in a suitable solvent. The polymer, serving
as the matrix phase, dissolves readily in the chosen solvent, while
the nanoparticles are dispersed either in the same solvent or a
separate one. Ultimately, both components are combined to form
a homogeneous mixture. It is one of the most commonly used
methods in our research on mixed matrix membranes for water
treatment (Abu-Zurayk et al, 2025b; Abu-Zurayk et al., 2025a;
Abu-Zurayk et al., 2024; Alnairat et al., 2021).

Solution casting is a technique for fabricating polymer blends
by dissolving polymers in a solvent, then casting films and removing
the solvent through drying. This method is suitable for small-scale
production and depends on solvent selection and its interaction with
the polymers. In composite membranes, micro-stirring or ultrasonic
treatment is often used to ensure uniform dispersion of polymer
composites and nanomaterials in the solution (Rehghunadhan et al.,
2024; Deshmukh et al., 2023). The resulting films are then dried in
a hot-air oven for 12-24 h or more, depending on the composition.
As the solvent evaporates, thin composite membranes are formed,
consisting of a polymer matrix integrated with nanomaterials
(Rhim et al.,, 2006). Alternatively, the phase inversion technique can
be used to transform the casting solution into a solid membrane
(Reuvers and Smolders, 1987). It is one of the most widely employed
methods for fabricating porous polymer membranes with well-
defined structural morphology (Marchese et al., 2003).

3.1.1 Lab-friendly

Solution casting of polymers can be made more lab-friendly
and environmentally sustainable by using bio-based polymers
(Pielichowska et al., 2024). Selecting polymers from renewable
sources like cellulose or starch, and using greener solvents
such as water or low-toxicity alternatives, significantly improves
the process. Implementing solvent recovery and reuse further
minimizes waste and promotes sustainability (Cai et al., 2025).
Adopting sustainable processing techniques (Gupta et al., 2022)
and enhancing biodegradability through the incorporation of
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biodegradable additives (Cai et al., 2025) or the use of biodegradable
composites (Cai et al., 2025) further supports this green approach.
Overall, this strategy focuses on utilizing renewable materials,
reducing hazardous substances, and improving the end-of-life
performance of polymer products (Pielichowska et al., 2024).

3.1.2 Good dispersion

Solution casting is an effective method for achieving
uniform dispersion of polymers and nanoparticles by ensuring
a homogeneous distribution of all components in the final film
or material. This method begins with selecting a suitable solvent
capable of dissolving both the polymer and the nanoparticles
(Jouault et al., 2014; Kim et al., 2021; Senthilkumar et al., 2018;
Deshmukh et al,
distribution. Various mixing techniques, such as magnetic

2023) a step critical to achieving uniform

stirring, ultrasonication, or high-shear mixing, are employed to
disperse nanoparticles thoroughly within the polymer solution
(Senthilkumar et al, 2018; Wypych, 2016). Co-dissolving the
components in a single solvent, especially when coupled with
controlled precipitation and drying, further improves the dispersion
quality (Jouault et al., 2014). The method enhances homogeneous
mixing and reduces nanoparticle aggregation during film formation,
especially when drying conditions are carefully controlled
(Jouault et al., 2014; Senthilkumar et al., 2018; Deshmukh et al.,
2023). Additional strategies, such as polymer adsorption onto
nanoparticle surfaces, introduce steric stabilization that further
prevents aggregation (Kim et al, 2021). In general, when each
step of solution preparation, mixing, casting, and drying is
carefully adjusted, solution casting becomes an effective technique
for manufacturing well-dispersed, high-performance polymer
nanoparticle composites.

Effective fiber dispersion polymer
is also essential for achieving good interfacial bonding,
which significantly enhances
of composites. This dispersion is

within a matrix

the mechanical performance

influenced by factors
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fiber Whether  short
processing  conditions  like  pressure and  temperature
(Pickering et al., 2016; Semlali Aouragh Hassani et al., 2019).

such as length. or long, and

3.1.3 Limited scalability

Solution casting is a practical and widely used technique for
preparing polymer-based materials at the laboratory scale, where
specific control over composition and nanoparticle dispersion
is essential. Despite its advantages in lab-scale research settings,
this method faces major obstacles when scaled up. It depends
on large amounts of solvent, which require advanced and costly
recovery systems to minimize waste and emissions (Griffin et al.,
2022; Felton, 2013; Rehghunadhan et al., 2024). The evaporation
process is inherently slow, limiting rates of production and
extending processing durations (Rehghunadhan et al., 2024). As
the production scale increases, achieving consistent film quality
becomes more challenging, with a higher risk of defects like cracking
or uneven thickness (Griffin et al., 2022; Rehghunadhan et al.,
2024; Yao et al., 2019; Abdelhamed et al., 2025). Additionally, the
use of hazardous or volatile solvents introduces environmental
concerns and strict regulatory requirements that complicate
industrial implementation (Griffin et al., 2022; Felton, 2013;
Rehghunadhan et al., 2024; Hendeniya et al., 2023). Lastly, because
solution casting is a batch-based technique, it does not readily
align with the continuous, automated processes typically favored
in large-scale manufacturing environments.

In summary, solution casting is a common technique for
lab-scale synthesis of GPNCs, offering simplicity and uniform
dispersion of bio-based polymers and nanomaterials. However,
its scalability is hindered by high solvent use, slow processing
rates, and environmental concerns, highlighting the need for
for sustainable

greener, more effective fabrication methods

nanocomposites.

3.2 Melt compounding

Melt compounding, also known as melt blending, is a
straightforward and commonly applied technique in polymer
synthesis, particularly effective for integrating nanomaterials into
a viscous polymer melt (Kausar, 2021a). Its advantages include
preventing filler re-aggregation, eliminating the need for chemical
surface modifications, and enabling immediate filler dispersion.
This eco-friendly method is suitable for large-scale production
of polymer nanocomposites and integrates well into industrial
processes (Kausar, 2021a; Diez-Pascual, 2022).

Melt compounding is an eco-friendly and cost-effective method
for creating composites from insoluble thermoplastic polymers.
Polymer pellets are melted and mixed with additives under shear
forces for uniform dispersion, then cooled to solidify. This widely
used approach is effective for adding functional fillers to a
viscous polymer matrix (Kausar, 2021a; Ali Z. et al., 2024). This
technique is considered green because it uses molten polymers
and nanofillers instead of toxic solvents, minimizing volatile
organic compounds (VOCs) and making it suitable for eco-
friendly, industrial-scale production (Tanahashi, 2010; Li et al., 2010;
Bhawal et al., 2019).
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3.2.1 Industrial scalability

Melt compounding is widely recognized as the most industrially
scalable method for producing polymer nanocomposites, providing
a cost-effective and environmentally friendly route for large-
scale manufacturing. Its continuous processing capability and lack
of solvents make it especially attractive to industry, ensuring
compatibility with existing extrusion and compounding equipment.
Although challenges occur at high filler loadings, where increased
melt viscosity complicates processing (Khan et al., 2020), these
issues can be addressed through careful adjustment of twin-
screw parameters, optimized screw design, or the addition of
compatibilizers. Importantly, the scalability of melt compounding
makes it the preferred method for creating polymer nanocomposites
that aim to improve multifunctional properties without sacrificing
mechanical performance (Alvaredo-Atienza et al., 2020).

3.2.2 Limited dispersion

Getting appropriate nanofiller dispersion and minimizing
thermal degradation through processing continues to be challenging
in melt compounding. Various approaches, including surface
modification of nanofillers and reactive melt mixing, are being
investigated to enhance the scalability and performance of melt-
compounded green polymer nanocomposites (Vidakis et al.,
2024; Tran et al, 2025; Sessini et al., 2020). Moreover, the
intense shear forces generated during melt compounding promote
uniform dispersion of nanofillers within the polymer matrix,
effectively fragmenting agglomerates into well-distributed, smaller
domains (Wang et al., 2020; Meng et al., 2014; Darwish et al.,
2022; Bachs-Herrera et al., 2021; 2021;
Brandenburg et al, 2017). One of the advantages of melt

Prataviera et al,

compounding enables in-situ nanoparticle synthesis, which can
enhance the dispersion and properties of the final nanocomposite
(Vidakis et al., 2024; Cailloux et al., 2019).

3.3 In situ polymerization

In situ polymerization is a synthesis method in polymer
chemistry conducted within the polymerization mixture, resulting
in polymer nanocomposites with nanoparticles. It generates
unstable oligomers for various applications and consists of an
initiation step followed by polymerization reactions, forming a
hybrid structure of polymer chains integrated with nanoparticles
(Talreja, 2023). This was applied (Abu-Dalo et al, 2023),
using interfacial polymerization to create ultra-thin, defect-free
selective layers, improving membrane performance for water
treatment.

3.3.1 Superior nanoparticle dispersion

In situ polymerization disperses nanomaterials in a liquid
monomer with an initiator or catalyst to form nanocomposites.
Low molecular weight monomers disperse via sonication, then
polymerization is triggered by heat or organic initiators through
chain transfer, radical, anionic, or ring-opening metathesis
processes in the nanomaterial layers. This allows small monomers
to intercalate, resulting in high nanomaterial loading, dispersibility,
and compatibility. Filtering produces a nanocomposite with attached
polymer molecules, enabling the creation of diverse nanostructures
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with high quality and improved chemical properties (Manopriya
and Hareesh, 2021; Gao, 2012).

3.3.2 Enhanced interfacial adhesion

Nanoparticles generated in situ tend to nucleate on the growing
polymer chains, resulting in strong adhesion and a high degree of
compatibility between the filler and the matrix by promoting direct
interactions. This improvement results from covalent grafting of
polymer chains onto fillers, formation of interfacial crystallization
zones for mechanical interlocking, and the development of chemical
bonds that strengthen the polymer-filler interface (Ning et al., 2012;
Dingetal., 2004; Tan et al., 2020; Chen et al., 2020; Bailly et al., 2010).

3.3.3 Health and environmental concerns

While in situ polymerization can yield nanocomposites
with enhanced uniformity and strong interfacial bonding, the
monomers involved are often hazardous chemicals that can be
toxic, volatile, and environmentally persistent (Zotti et al., 2022).
Furthermore, complete polymerization is rarely achieved, leaving
residual unreacted monomers in the final product that may leach
out during use or disposal. These residual monomers, including
styrene, acrylonitrile, and vinyl chloride, are known for their
carcinogenic, mutagenic, and ecotoxic effects, posing serious health
and environmental risks (Lithner et al., 2011; Araujo et al., 2002).
Such issues not only hinder the environmental sustainability of
the process but also pose challenges for regulatory approval and
large-scale implementation application.

3.4 Advanced methods

3.4.1 Electrospinning

Electrospinning is a technique that uses a high-voltage electric
field to produce ultrafine fibers from a polymer solution or
melt. This broad definition encompasses the diverse range of
submicron-diameter fibers typically generated through the process
(Subbiah et al., 2005). A polymer is dissolved in a volatile solvent
and extruded from a syringe at a steady rate. An electrostatic
force causes charge separation within the liquid, resulting in
a charged polymer droplet forming at the tip of the needle
(Subbiah et al., 2005; Xue et al, 2019). Electrospun nanofiber
membranes offer key advantages such as high porosity, tunable
pore size, and extremely fine fiber diameters, making them
a promising platform for innovative developments in medical
protective equipment (Vitchuli et al., 2011). Recently, an increasing
number of biomedical products made from electrospun nanofibers
have received approval for clinical use (Li et al., 2019). The
combination of high surface area and controllable porosity makes
these mats ideal for tissue engineering (Jiang et al, 2015),
controlled drug release (Luraghi et al., 2021), and high-efficiency air
filtration (Arefin et al., 2021).

3.4.2 3D printing

Polymer 3D printing represents an emerging technology that
is rapidly transitioning from research to industrial applications,
especially in the medical sector. This manufacturing approach
offers distinct advantages, including cost-effective production
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of functional components with customizable properties and
capabilities (Arefin et al., 2021).

3D printing enables the fabrication of highly customized
and functional structures by allowing the integration of complex
geometries and internal architectures that are challenging to
produce using conventional manufacturing techniques (Liu and
Wang, 2020; Ligon et al, 2017; Anwajler et al., 2024; Forward
and Kim, 2023; Pugliese et al., 2021). This technology supports
the use of multiple materials within a single build, enabling the
creation of components with tailored mechanical properties, such
as graded stiffness or flexibility (Liu and Wang, 2020; Ligon et al.,
2017; Pugliese et al, 2021; Bandyopadhyay and Heer, 2018).
Moreover, functional additives like sensors or catalysts can be
directly embedded into the polymer matrix during the printing
process, expanding the application range of printed materials across
advanced fields such as smart devices and responsive systems (Liu
and Wang, 2020; Rossi et al., 2017; Ambrosi and Pumera, 2018; Islam
and Zeng, 2024).

3D printing offers a powerful approach for achieving precise
filler distribution in polymer composites by enabling controlled
deposition of both the polymer matrix and filler materials
(Arora et al, 2024; Bernagozzi et al., 2024; Rooney et al,
2024; Markandan and Lai, 2023; Xu W. et al., 2021). Advanced
techniques like material extrusion, vat polymerization, and powder
bed fusion enable selective placement of materials at micro-
and nanoscale resolutions. Design strategies such as hierarchical
material distribution optimize component placement to enhance
mechanical and functional performance (Arefin et al., 2021;
Xu W. et al, 2021). Additionally, the properties of the printing
materials, such as ink or filament viscosity, droplet velocity in inkjet
printing, and substrate surface energy, significantly influence filler
dispersion (Bekas et al., 2019). Post-processing methods, including
post-curing, sintering, and surface treatments, can also be employed
to refine filler alignment and distribution (Arora et al, 2024;
Bekas et al., 2019; Banica et al., 2024).

4 Enhanced properties of GPNCs

Green Polymer Nanocomposites (GPNCs) provide an important
combination that enhances material’s functionality, innovation, and
its environmental protective ability (Kausar, 2021b). Incorporating
nanomaterials like cellulose nanocrystals, graphene oxide, or metal
oxides into bio-based polymers allows GPNCs to outperform
conventional biopolymers (Musa et al., 2025). These enhancements
improve material characteristics such as mechanical durability,
thermal stability, barrier resistance, and functional responsiveness,
all while maintaining biodegradability (Zhang et al., 2019). For
example, incorporation with nanofillers not only increases tensile
stiffness and strength but also enhance toughness, stability, and
resistance, thereby expanding the applications of sustainable
polymers (Jagadeesh et al., 2021). Beyond structural reinforcement,
GPNCs exhibit multi-functionality, setting them as promising
materials for next-generation technologies (Losetty et al., 2025).
Also it owns many advanced properties such as antimicrobial
activity, photocatalytic activity, UV protection, and electrical
conduction, GPNCs play an efficient role in smart packaging,
biomedical devices and bioremediation (Singh et al., 2025). At
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the same time, GPNCs contribute in reducing environmental
impacts through improving gas and vapor barrier properties copper
(Peretz Damari et al., 2019; Alsoud et al., 2024), enhancing thermal
degradation thresholds (Guan et al., 2018), and lowering energy
processing hallmarks (Liu and Yabu, 2024). These collaborative
enhancements spot GPNCs' role in bridging high-performance
material design with the urgent demand for eco-conscious industrial
practices, signaling their pivotal role in advancing the circular bio-
economy (Clement et al., 2025).

4.1 Mechanical properties

(GPNCs) a
transformative class of materials in which nanoscale reinforcements
are distributed within bio-based polymer or biodegradable
mechanical

Green polymer nanocomposites represent

matrices to  significantly behavior

(Velmurugan et al., 2023). Embedding of nanofillers such as

improve

carbon-based nanomaterials, nanoclays, or cellulose nanocrystals
(CNCs), will enhance material’s load-bearing capacity through
increasing interfacial surface area and mechanical interconnection
(Rashid et al., 2024). Polymer chain mobility restriction, and stress
transfer facilitation due to these nanofillers will result in enhancing
tensile strength and stiffness (Chan et al., 2021). For instance,
Improvement for more than 22.3% and 64.17%, was achieved in
tensile strength and modulus respectively for 1 wt% CNC-reinforced
PLA compared to neat PLA (Trivedi and Gupta, 2025).

Stiffness enhancement is particularly obvious when using high-
aspect-ratio fibers or layered silicates in glass fiber reinforced
(GFRP) (Daud et al, 2009). These
nanofillers create interconnected networks uniformly distribute

composites fabrication
stress throughout the matrix (Lin et al., 2019)

In a study using montmorillonite (MMT) with potato starch,
to produce nanocomposite film used in food packaging and drug
delivery systems it exhibited more than double the elastic modulus,
and indicate effective reinforcement at minimal nanofiller loadings
(Oleyaei et al, 2016). Furthermore, surface functionalization
of nanofillers, such as grafting with compatible groups, boost
interfacial adhesion, which amplifies mechanical integrity
(Kumar et al., 2025). Another study developed biodegradable
polymer blend (PLA-co-polyester) nanocomposites using carvacrol
as an antimicrobial agent and nanoclay as a filler. Four blown film
samples were created: BF (no fillers), BF-C (5wt% carvacrol), BF-D
(5wt% nanoclay), and BF-C-D (5wt% of both). This hybrid loading
improved mechanical properties, resulting in increases of up to
+70% in elastic modulus and +200% in elongation at break, as
shown in Figure 4 (Scaffaro et al., 2020).

Toughness, a critical property for impact resistance, is also
significantly improved in GPNCs (Zhang et al., 2024; Cui et al.,
2022). Polymers like PLA are fragile in nature, the addition of
flexible nanofillers such as cellulose nanofibers or graphene oxide
(GO) provide energy dissipation mechanisms that prevent crack
propagation (Musa et al., 2025). These fillers act as crack preventers,
which increase the energy required for fracture. Moreover, hybrid
nanofillers, combining organics and inorganics, have been shown to
enhance both stiffness and toughness (Mousavi et al., 2022).

GPNCs are mechanically improved not only in tensile or
impact strength but also extended to fatigue resistance and
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(a) Elastic modulus (E), (b) tensile strength (TS), and (c) elongation at
break (EB) of each the four samples investigated (Scaffaro et al., 2020).

dimensional stability (Zhang et al., 2024; Mukhopadhyay and
Mishra, 2024). Under frequent loading or long-term mechanical
stress, nanocomposites show infiltration reduction and durability
enhancement due to nanofiller’s restriction effect on polymer chain
movement (Das et al., 2021). This makes GPNCs ideal for use in long
lasting goods, medical implants, and structural applications where
longevity is essential (Kumar et al., 2024).

GPNC:s offer a promising alternative to conventional composites
by enhancing mechanical properties. With careful design of
nanofiller morphology, concentration, and interfacial compatibility,
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FIGURE 5
DSC curves of composite and nanocomposites (Krystyjan et al., 2021).

they can meet mechanical demands while ensuring biodegradability
and environmental compliance (Kumar et al., 2024).

4.2 Thermal properties

A remarkable improvement of GPNCs thermal behavior
achieved by nanofiller incorporation, which changes the heat flow
and degradation kinetics of the polymer matrix (Sahu et al., 2023).
One of the most noticeable enhancements is the increment in
thermal degradation temperature (Feng et al., 2014). Graphene,
carbon nanotubes (CNTs), and nanoclays as examples on nanofillers
act as thermal barriers that obstruct the movement of degradation
byproducts, thereby delaying the decomposition emerging (Kausar,
2020). Also cold crystallization of PLA reinforced with exfoliated
montmorillonite (MMT) has been delayed to a higher temperature
compared with the one of pure PLA (Piekarska et al., 2015).
Nanofillers nucleating ability is the reason behind the cold-
crystallization behavior of the hybrid nanocomposites, this prove
that materials thermal stability has been improved when using
exfoliated MMT (Piekarska et al., 2015; Cailloux et al., 2016), also
the polymer matrix properties (mechanical, barrier, thermal stability
and flame retardancy) can be considerably enhanced by well-
exfoliation and well-dispersion of 2D single- or few-layer nanosheets
(Cailloux et al., 2016). Formation of tortuous diffusion pathways
within the polymer is one reason behind the thermal resistance of
GPNCs matrix (Wei et al., 2021; Wang et al., 2022). These pathways
obstruct volatile degradation products from escaping, thereby
increasing thermal stability (Borucka et al., 2019). In addition,
fillers well-dispersion will improve char formation during thermal
decomposition, which contributes to flame retardancy and heat
shielding (Wang Z. et al., 2023). This is mainly valuable for packaging
and electronic casing applications where thermal protection is
essential (Wang Z. et al., 2023; Wang X. et al., 2023; Wei et al., 2021).

A study on the green synthesis of new bionanocomposites
made of starch, chitosan, and graphene oxide (GO) found that GO
influences the thermal resistance of the composite films. However,
this effect is only significant at the highest GO concentration as seen
in Figure 5 (Krystyjan et al., 2021).
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Nanofillers improve the thermal conductivity of GPNCs. Adding
conductive materials like graphene or CNTs enhances the thermal
transport of bio-based polymers (Liu et al., 2024). This allows
GPNCs to be engineered either for insulation or for efficient heat
dissipation depending on the application—ranging from thermal
packaging to heat sinks in green electronics (Chen et al., 2025).

Thermal dimensional stability is another critical attribute
enhanced in GPNCs. Reinforced composites exhibit lower
coefficients of thermal expansion, minimizing deformation
under temperature fluctuations (Madhu, 2025). This is vital in
applications such as automotive interiors or outdoor construction
materials where temperature variability is significant (Madhu, 2025;
Eliza et al, 2025). Ultimately, the improved thermal behavior
of GPNCs contributes to their performance and safety in high-
temperature environments (Eliza et al., 2025). Through nanofiller
selection and processing techniques, it is possible to finely tune
thermal degradation profiles and thermal conductivity, ensuring the
composites can meet the rigorous demands of modern sustainable
industries (Musa et al., 2025; Jagadeesh et al., 2021).

4.3 Barrier properties

GPNCs provide significant advances in barrier properties,
particularly in the reduction of gases and vapors permeability
through polymer films (Losetty et al, 2025). The insertion of
nanofillers like nanoclays, layered silicates, and graphene oxide
creates a highly tortuous pathway that disrupts the diffusion of
small gas molecules like oxygen, carbon dioxide, and water vapor
(Kumar et al., 2025). This is known as the tortuosity effect, and
it plays a central role in enhancing packaging materials barrier
performance (Edo et al., 2025).

The incorporation of nanoparticles (silver, zinc oxide, and
titanium dioxide) with Nano-films composed from biocompatible
biopolymers like chitosan, cellulose, and alginate often form a
protective, semipermeable barrier that regulates both moisture
and gas exchange, slows respiration rates, and reduces microbial
growth on product surfaces (Janeni and Adassooriya, 2021). In food
packaging, regulation of moisture and gas exchange are major factors
affecting shelf life (Sharma et al., 2025).
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CNCs
matrices have reduced moisture vapor transmission by forming

Likewise, integrated into chitosan or cellulose
hydrogen-bonded networks that restrict molecular mobility.
These features make GPNCs promising alternatives to synthetic
multilayer films (Marquis et al., 2011).

behind barrier

improvement through enhancing polymer crystallinity, which

Induction of nanofiller nucleation stands

leads to denser polymer structure, thus reducing free volume
and molecular transport (Singha and Hedenqvist, 2020). GPNCs
maintain their barrier integrity even under mechanical stress
(Tripathi et al., 2020). Under flexing, conventional films will form
microcracks unlike nanocomposites which exhibit resilience due
to nanofiller’s reinforcing effect, which prevent crack propagation
and preserve film continuity (Hassan et al, 2021; Das et al,
2021; Zanoaga and Tanasa, 2016). This is critical for flexible
packaging, wearable electronics, food industries and other dynamic
applications (Kausar, 2020; Liu et al., 2019).

In conclusion, GPNCs provide multifunctional barrier solutions
that utilize both physical and chemical mechanisms to block gas
and vapor transmission. These improvements come in accordance
with global efforts to reduce food waste and material use, providing
sustainable high-performance alternatives in all sectors such as
agriculture, healthcare, and others.

4.4 Functional properties

GPNCs are distinguished by their structural performance and
also by their ability to exhibit advanced functional properties
(Barbaros et al., 2022; Wu et al., 2022). One of those functions is
their antimicrobial activity, which is applicable in food packaging,
medical devices, and wound healing applications (Deng et al., 2022;
Shineh et al., 2023). Biopolymers incorporated with nanoparticles
like silver (Ag), copper oxide (CuO) or zinc oxide (ZnO)
exhibit bactericidal effects through microbial cell wall disruption
and reactive oxygen species generation (Guan et al, 2021;
Vieira et al., 2022; Abuamr et al., 2024) anaerobic. For instance,
Chitosan/ZnO nanocomposites have strong inhibition activity
against both Gram-positive and Gram-negative bacteria (Ali S. et al.,
2024; Youssef and El-Sayed, 2018; Alkhrissat and Matarneh, 2025).
Furthermore, a CS-functionalized iron (II) oxide nanocomposite
(CS/FeO NC) was synthesized using Sida acuta leaf extract
through a simple, eco-friendly green chemistry method. The
nanocomposite demonstrated notable bactericidal activity against
pathogens such as Escherichia coli, B. subtilis, and Staphylococcus
aureus (Figure 6) (Bharathi et al., 2022).

UV shielding is another functional property acquired
through the inclusion of nanofillers such as TiO,, GO, or ZnO
(Muzata et al., 2023; Cazan et al.,, 2021). Incorporation of NPs
with polymers have shown an outstanding photostability especially
UV stabilization effect via different mechanisms like absorption,
reflection, scattering, and radicals scavenging, which prevent
the polymer’s photodegradation and enhance its application
in various fields, particularly in packaging, which result in
extending the functional lifespan of products exposed to sunlight
(Anwer et al., 2024). Poly (lactic acid) (PLA) is considered the
most promising biobased substitute for fossil-derived polymers
due to its good thermomechanical properties, biocompatibility,
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compostability, and renewability (Morais et al., 2024; Bikiaris et al.,
2023). Incorporation of PLA with Graphene oxide has shown
significant UV-blocking capability while maintaining transparency,
an ideal property for cosmetic and pharmaceutical packaging
(Bikiaris et al., 2023).

Embedding of conductive nanofillers like carbon nanotubes
or graphene in GPNCs will enhance their electrical conductivity
(Salari et al., 2023; Kausar and Taherian, 2019; Bilisik and Akter,
2022). These nanofillers create conductive networks within the
polymer, enabling its applications in sensors, flexible electronics,
and antistatic packaging (Lin et al., 2023; Shahid et al., 2025).
The percolation threshold of these systems is often low, allowing
for high conductivity without affecting their mechanical or
environmental performance (Munawar and Schubert, 2021;
Marsden et al., 2018).

Photocatalytic degradation is another promising property of
GPNCs, which is considered as a powerful and sustainable
method for environmental pollutants elimination, especially organic
contaminants in both water and air (Gamelas et al, 2023).
This process involves the light excitation (UV or visible) of a
semiconductor photocatalyst (TiO,, ZnO, etc.) which results in
the generation of electron-hole pairs (Tuama et al., 2024). The
reaction of these charge carriers with oxygen and water molecules
will form reactive oxygen species (ROS) like (hydroxyl radicals
(«OH) and superoxide anions («O,~)), which begin the oxidative
degradation of pollutants into nontoxic end-products such as CO,
and H,O (Mohd and Khan, 2024). Green polymer nanocomposites
integrated with nanofillers (e.g., TiO,, ZnO, g-C;N,, or doped metal
oxides...) chosen based on their high surface area, light absorption
capacity, and photocatalytic efficiency (Mahesh et al, 2025).
The synergy between the polymer matrix and the photocatalyst
is key to enhance GPNCs performance (Gaddam et al., 2020;
Li et al., 2025), TiO, nanoparticles have remarkable photocatalytic
activity; they break down organic pollutants under both UV and
visible light (Amin et al., 2025).

The incorporation of functional groups (e.g., amine or hydroxyl
groups from the polymer) can further enhance the adsorption
of target molecules, providing a dual-function system where
pollutants are both captured and degraded efficiently (Song et al.,
2024). For instance, magnesium aluminide layered double
hydroxide (MgAl LDH)- Chitosan/Serpentine nanocomposites
have demonstrated as a promising, cost-effective and sustainable
adsorbent for degradation of Methylene blue (MB) as a
cationic dye and pharmaceutical residues from industrial water
(Gamal et al., 2025).

5 Industrial applications
5.1 Packaging

When food is not consumed immediately after production, it
must be protected in a package that serves several functions, such
as protecting the food from dirt or dust, oxygen, light, pathogenic
microorganisms, and moisture. The packaging must also be safe
during conditions of use, cheap, light, inert, easy to dispose of
or reuse, able to withstand different conditions during processing,
storage, and transport (Duncan, 2011). Food packaging includes
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(Bharathi et al., 2022).

everything that surrounds or holds food, including boxes, bags,
straws, plates, cups, and wraps (Hussaini et al., 2025). The shelf
life of fruits and vegetables is short due to molding and decay
during transportation and storage, leading to spoilage. Current food
packaging trends focus on extending shelf life to improve food
quality and safety.

Common polymers for food packaging include polypropylene
(PP), polyethylene (HDPE, LDPE), polyethylene terephthalate
(PET), polystyrene (PS), and polyvinyl chloride (PVC). However,
these materials have drawbacks, such as gas permeability and non-
biodegradability (Duncan, 2011).

To meet the demand for environmental safety, research is
focused on biodegradable food packaging materials. While these
eco-friendly green polymers support ecosystem health, they
typically have poor barrier and mechanical properties, leading
to a short shelf life. However, studies show that incorporating
additives and fillers can enhance these characteristics, improving
the packaging’s overall performance (El-Sayed and Youssef,
2023; Tabassum et al., 2024). Due to their instinctive eco-
friendliness, biodegradable green polymer reinforced composites
have become increasingly popular and have a lower carbon
footprint. Some examples of natural and biodegradable polymers
matrix used for packaging are cellulose, starch, chitosan, collagen,
gelatin, and xanthan gum, and Poly (lactic acid) (El-Sayed and
Youssef, 2023; Bikiaris et al., 2023).

Poly (lactic acid) (PLA), the most commonly used biopolymer
in comparison with other biopolymers, due to its easy processability
and rigidity. It is a thermoplastic biopolymer produced by
fermentation of different foods rich in carbohydrates, such as corn,
potato, sugar beet, or sugar cane (Bikiaris et al., 2023; Robledo-
Ortiz et al., 2019).

Another
petroleum-based polymers is Nanocellulose (NC). Nanocellulose
is prepared by breaking down cellulose fibers to less than 100 nm

highly promising alternative biopolymer for

in diameter, with length in micrometer. It is a highly promising
biopolymer due to its superior mechanical properties (strength
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2-3 GPa), low density (1.6 gcm™), high specific surface area
(200-300 m?g™"), biodegradability, renewability, eco-friendliness,
nontoxicity, and low thermal expansion coefficient (1 ppm K™)
(Trache et al., 2020; Xu T. et al., 2021). Different structures of NC
have been used in food packaging applications, such as cellulose
nanocrystals (CNC), cellulose nanofibrils (CNFBs), and bacterial
nanocellulose (BNC) (Bikiaris et al., 2023). Currently, different
research has investigated NC as a reinforcing agent for various
biopolymers, such as PLA, for the preparation of GPNCs.

Nanoclay is vital in the packaging industry for enhancing the
mechanical properties of biopolymer-based materials. When added
to injection-grade poly(lactic acid) (PLA), 1.44P, 1.34 MN, and
Cloisite 15A nanoclays improved tensile and flexural modulus.
Notably, 5wt% of 1.44P nanoclay significantly increased impact
strength compared to the other nanoclays and pure PLA (Robledo-
Ortiz et al., 2019).

Trifol et al. (2016) reduced the oxygen transmission rate by
up to 90% using nanoclay (Cloisite C30B) and nanocellulose in a
Poly (lactic acid) matrix. Their PLA/CNF/C30B nanocomposite
also lowered water vapor transmission by 76% and enhanced
thermomechanical resistance compared to standard PLA films,
resulting in better protection and extended shelf life for
packaged goods (Trifol et al., 2016).

Hasan et al. (2024) developed chitosan nanoparticle-based bio-
nanocomposite films with different concentrations of butterfly pea
extract (0%, 5%, 10%, and 15%) for sustainable packaging. The
addition of 15% anthocyanin enhanced UV barrier properties
and antioxidant activity but slightly increased water vapor
permeability, with minimal change in water uptake compared to
pure chitosan (Hasan et al., 2024).

Faraj et al. (2022) explored the gas barrier properties
of polylactide/cellulose nanocrystals (CNC) nanocomposites,
examining concentrations ranging from 5 to 50 wt%. They found
that modifying CNC with various functionalities enhances the
interaction with PLA, resulting in improved homogeneity and
dispersibility. All PLA/CNC combinations displayed superior
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oxygen transmission compared to pure PLA, showing no significant
preference for the modified or unmodified CNC. This research
opens up promising possibilities for advancing materials with
enhanced barrier properties (Faraj et al., 2022).

A study examined the incorporation of surfactant-modified
cellulose nanocrystals (s-CNC) and silver (Ag) nanoparticles into
a polylactic acid (PLA) matrix. The addition of Ag nanoparticles
significantly improved the antibacterial properties of the ternary
PLA/s-CNC + Ag nanocomposite compared to the PLA/s-CNC
composite. This enhancement makes the system suitable for food
packaging and sanitary applications that require a sustained
antibacterial effect (Fortunati et al., 2012).

Other researchers have studied the influence of Nanocellulose
ratio on the barrier properties, they found that cellulose
(CNCs)
barrier properties. While cellulose nanofibers (CNFs) provided

nanospheres, nanocrystals significantly ~ enhanced
the highest mechanical strength, achieving a 350% increase
in Youngs modulus due to their higher aspect ratio and

percolating network (Islam et al., 2025).

5.2 Automotive and aerospace

Green biopolymer nanocomposites are popular in automotive
and aerospace for their sustainability and performance. They serve
as lightweight alternatives to plastics, reducing vehicle weight
and emissions while improving fuel efficiency. In automotive
applications, these materials are used in dashboards, door panels,
body panels, and chassis components. Biopolymers like polylactic
acid (PLA) and Polybutylene succinate (PBS) are notable for their
biodegradability and compatibility, and they can be enhanced with
nanofillers for better performance (Bouzouita, 2016).

The interior car door panel serves as an interface between the
interior of the car and the inner workings of the door. Incorporating
kenaf fiber into PLA bio reinforced composite can absorb
higher maximum von-Mises stress (214.13 MPa) if compared to
acrylonitrile butadiene styrene (ABS) (211.26 MPa) car door panel.
Also, it shows lower maximum total deformation (12.012 mm) if
compared to ABS (42.501 mm) (Fatchurrohman et al., 2021).

In aerospace applications, materials must offer high thermal
stability, lightweight properties, and excellent mechanical strength.
Polymer nanocomposites reinforced with nanofillers like nanotubes,
nanoclay, or graphene meet these needs effectively.

As sustainability becomes a priority, the aerospace industry
is developing eco-friendly materials, including those for aircraft
interiors that require strong barrier properties and thermal
resistance.

The polymer structure significantly affects mechanical and
thermal performance. The arrangement of long polymer chains
determines whether they are flexible and transparent or strong
and stiff, allowing for customized components with specific
characteristic (Alami et al., 2023).

Some performance of biopolymers such as thermal and
hydrolysis resistance, ductility, impact strength and crystallization
rate have to be improved to compete with conventionally used
polymers in automotive applications (Arjmandi et al., 2017). PLA
properties like thermal stability, stiffness, rigidity, and crystallization
for automotive applications have been enhanced using various

Frontiers in Materials

14

10.3389/fmats.2025.1701086

nanofillers. Foaming technology enables lightweight parts for
automotive and aerospace use. Long chain branching (LCB) of
PLA, achieved with multifunctional chain extenders, reduces weight
by 30%, improving fuel efficiency. LCB-PLAs show increased
viscosity, shear sensitivity, and longer relaxation times compared to
linear PLA (Giammaria et al., 2024).

5.3 Construction

Construction materials are vital in the building industry,
utilizing natural resources like clay, wood, and rocks, as well
as synthetic materials such as concrete and steel. Biopolymers
and their nanocomposites are crucial for sustainability, as they
reduce carbon emissions and waste. Biopolymer coatings enhance
durability by protecting against moisture, UV radiation, oxygen,
and microbial growth, supporting eco-friendly construction
practices (Rezi¢ Mestrovic et al., 2025).

Wood and engineered wood materials are popular in
construction for their durability and lower environmental impact,
but their flammability and susceptibility to insects and mold limit
exterior use. Biopolymers are increasingly recognized as effective
coatings to enhance these materials due to their compatibility
with wood (Patachia and Croitoru, 2016).

Biopolymer-based coatings effectively protect wood from
environmental conditions. They can be directly applied or
formed through chemical reactions, using materials like chitin,
chitosan, proteins, PLA, and polyurethane (Patachia and
Croitoru, 2016; Song et al., 2020).

While there is considerable research on biopolymers, their
application and limitations as building cladding materials remain
under-explored. Cladding protects buildings from weather
conditions, helping to preserve structural integrity (Nazrun et al.,
2024). Polylactic acid (PLA), polyhydroxyalkanoates (PHAs),
Starch based polymers (SBP), cellulose based polymers (CBP),
polyhydroxybutyrate (PHB), polybutylene adipate terephthalate
(PBAT), polybutylene succinate (PBS), and polycaprolactone (PCL)
are all biopolymers currently used in cladding for outer building. The
limitation of those polymer opens the door for the nanocomposite
application for the enhancement of performance properties in
cladding (Nazrun et al., 2024; Farah et al., 2016; Naser et al., 2021).

PLA is a strong biopolymer with a tensile strength of 50-70 MPa,
but its brittleness can be improved by blending it with materials like
PBAT, PBS, or PCL, or by adding nanofillers (Farah et al., 2016;
Nofar et al., 2019). The hydrogen bonding within the CBP chain
enhances its tensile strength to 305 MPa, exceeding that of other
biopolymers (Eichhorn and Young, 2001). The high tensile strength
makes them a potential choice to be used as additives with other
biopolymers for mechanical property enhancement, can improve
the general toughness, adaptability, and other desirable properties
of diverse biopolymers (Nazrun et al., 2024).

Poly (butylene adipate-co-terephthalate) (PBAT) is a polyester
biopolymer commonly used in construction materials due to its high
elongation at break. However, its slow biodegradation is a drawback.
Researchers have addressed this by incorporating starch into the
PBAT matrix with up to 1% organoclay to improve tensile modulus
and strength (Ghafari, 2025).
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All biopolymers are biodegradable and compost at different rates
depending on their types and environmental conditions, such as
temperature. For example, PLA takes about 1 year to compost at
20 °C but only around 3 months at 25 °C (Rudnik and Briassoulis,
2011). Instead of degradation, some polymers can be mechanically
recycled and gain a new life such as PBS and PBAT (McKeown and
Jones, 2020).

5.4 Water treatment

Water desalination treatment is considered an alternative source
for fresh water in some areas of the world. Which somehow provides
water of good quality for daily life use, commercial use, and
agriculture irrigation to try to fill the need for an alternative fresh
water source (Lew et al., 2014).

Membrane treatment methods are cost-effective and require
less maintenance and fewer chemicals than traditional techniques
like ion-exchange and filtration. However, fouling remains a
challenge, causing reduced flux and shorter membrane lifespans.
Eco-friendly biopolymers such as cellulose acetate, chitosan, and
alginate offer sustainable alternatives to toxic chemicals due to their
biodegradability and low cost. Cellulose acetate is derived from
plant cellulose and can be sourced from materials like wood pulp
and cotton linters Cellulose acetate (CA) has several drawbacks,
including low mechanical strength, poor long-term stability, and
susceptibility to hydrolysis in a pH range of 4-6. It also has a
low oxidation temperature of 30 °C and is brittle, shrinking after
drying (Khaparde, 2017; Khaparde, 2017). Addressing these issues
is crucial for improving flux and membrane efficiency. Introducing
nanoparticles into the membrane’s polymer matrix can enhance its
surface properties and performance.

Freshwater scarcity, driven by population growth and industrial
pollution, is a global issue. Desalination technologies like reverse
osmosis (RO) efficiently convert saline water to fresh water
using semi-permeable membranes. Cellulose acetate (CA) and
nanofiltration (NF) membranes are effective for desalinating
seawater and wastewater. CA membranes are valued for their
low cost, biodegradability, and chlorine tolerance, but need
enhancements in mechanical strength and salt rejection to compete
with thin film composite membranes (Islam et al., 2023).

Heidari et al. (2023) used graphene oxide (GO) with
poly(amidoamine) (PAMAM) dendrimers for the modification
of cellulose acetate polymer. Using 1.00 wt% was sufficient for
the improvement of membrane porosity (74%), antifouling (88%),
reversible fouling ratio (45.71%), salt rejection (98.40% for Na,SO,),
(52% for NaCl), (57% for MgCl,), addition of the GO and PAMAM
filler enhance the permeability and rejection compared with neat
cellulose acetate membrane (Heidari et al., 2023).

El-Noss et al. (2020) enhanced cellulose acetate forward
osmosis membranes with ZnO nanoparticles, resulting in increased
hydrophilicity (47.6° + 2° contact angle vs. 63.85° + 2° for neat
CA) and improved salt rejection (99.5% for Na+, 100% for Cl-,
99.6% for Mg2+). The nanocomposite also showed a 23% increase
in surface area and 20% in pore volume, leading to a 37% rise in
water flux (El-Noss et al., 2020).

Chitosan’s amino groups make it effective for adsorbing
and dyes, while tannic acid enhances this

metal ions
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capacity. Recent studies show that graphene/chitosan/magnetite
(Gr/CS/Fe;0,) nanocomposites remove dyes more efficiently
than chitosan/magnetite (CS/Fe;O,) alone, achieving 100%
photocatalytic efficiency in eliminating rhodamine B in 40 min,
bromothymol blue in 60 min, methylene blue in 80 min, and
methyl orange in 100 min (Maruthupandy et al, 2020). In
another study, chitosan/tannic acid modified biopolymer showed
up to 92.15 mg/g adsorption capacity of lead ion. Congo red
and methylene blue dye were removed from solution using
tannic acid acidified and carboxylated chitosan nanofibers. The
removal capacity for Congo red was 589 mg/g, and it was
633 mg/g for methylene blue dye (ZhaoS. et al., 2021). Chitin
whisker/Ag;PO,
photocatalytic degradation activity of rhodamine B (RhB) compared

nanoparticles composite showed enhanced
to Ag;PO, due to the enhancement of visible-light absorption
and an increase in active sites for adsorption (Zhang and Liu,
2017). Sodium alginate/ZnO photocatalytic nanocomposite was
used to study the potential of ZnO in Triclosan (TCS)compound
degradation. TCS compound is used in personal care products,
found in the environment at low concentrations and it is difficult
to degrade by conventional water treatment processes the free ZnO
and Sodium alginate/ZnO nanocomposite showed high efficiency
of TCS degradation (greater than 90%) using free and immobilized
catalyst in only 20 min of reaction.

5.5 Biomedical applications

GPNCs can also be used in medical applications, such
as Scaffolds for tissue engineering, wound dressing, and drug
delivery systems. In a recent study (Grande-Tovar et al., 2023),
prepared a hybrid GPNC based on polycaprolactone (PCL) and
polylactic acid (PLA) incorporated with zinc oxide nanoparticles
(ZnO-NPs) and tea tree essential oil (TTEO). The developed
PCL/PLA/ZnO-NPs/Gly/TTEO membranes showed a promising
potential application in tissue engineering, due to increased
and accelerated resorption and the absence of an aggressive
inflammatory response based on subdermal implantation in
Wistar rats.

In another study, a PLA/ZnO nanocomposite was developed for
bone implants, where ZnO enhanced the antibacterial properties
of the nanocomposite. The mechanical fatigue test showed that the
nanocomposite had a higher storage modulus and withstands up to
3600 cycles, compared to neat PLA, which failed after an average of
1768 cycles (Nonato et al., 2022).

Biopolymer-based drug delivery systems use various routes
like oral, ophthalmic, transdermal, nasal, and vaginal for targeted,
sustained release. Chitosan is a key material in biomedical
applications such as drug delivery, bone and tissue regeneration, and
wound healing (Desai et al., 2023).

Biopolymers, such as alginate, chitosan, cellulose, collagen, and
hyaluronic acid, are frequently used in wound healing materials,
which accelerate the rate of cell proliferation and tissue regeneration
activity and improve the rate of wound healing (Jaiswal and
Sherje, 2024).

Biopolymers provide advantages in biomedical implants due to
their complex structures, degradability, and biocompatibility. They
replace damaged body parts like in the heart and bones while
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avoiding issues like immune rejection and harmful byproducts
associated with traditional materials (Rebelo et al., 2017).

PLA-PGA copolymers are used in orthopedic implants and
cartilage scaffolds. They serve as compression-molded plates
or screws for fractures and bone defects. Their adjustable
degradation rates and biocompatibility make them preferable to
pure PLA or PGA (Rebelo et al., 2017).

6 Sustainability and environmental
benefits

6.1 Waste-derived nanocomposites reduce
landfill and add value

The use of traditional polymers in industry has raised
environmental concerns (Aysa and Shalan, 2022). In response,
polymer nanocomposites from renewable sources have emerged as
a viable solution for environmental sustainability, gaining attention
in the past 2 decades due to urgent environmental concerns and the
limited supply of fossil resources (Avella et al., 2009).

A key benefit of renewable-source polymer composites,
compared to those from synthetic origins, is their potential to
mitigate the environmental impact of plastic waste (Bari et al,
2016). These
advancement by integrating ecological responsibility with cost-

materials promote sustainable technological
effectiveness (Sinha Ray and Bousmina, 2006).

Notably, using agricultural waste and by-products in polymer
composite synthesis has gained significant interest (Sinha Ray and
Bousmina, 2006). These biopolymer blends, derived from natural
sources, offer advantages like affordability, abundant availability,
biodegradability, and ease of processing, making them ideal for
the sustainable production of advanced polymer nanocomposites
(Sinha Ray and Bousmina, 2006). For instance, Kaushik et al. (EI-
Sayed and Youssef, 2023) demonstrated the fabrication of green
nanocomposites from agro-waste cellulose fibers and natural
polymers. Their study reported superior mechanical and thermal
properties, with the highest tensile modulus (~220 MPa) and yield
strength at 15% fiber content.

In addition to environmental benefits, bio-based composites
support economic growth, particularly in rural and agricultural
regions of developing countries. By creating non-food commercial
applications for underutilized biomass, they add value to the
farming sector (Kaushik et al., 2010). The adoption of biopolymer
composites is also driven by their renewable nature and growing
global environmental awareness (Majeed et al., 2012).

Green nanocomposites from biodegradable polymers are
promising for food packaging, providing barriers against
contaminants while preserving food quality. Those reinforced
with nanoclays like montmorillonite (MMT) offer excellent
gas barrier performance, durability, and environmental safety
(Diacono et al., 2019; Ammala et al., 2011; Kumanayaka et al.,
2010; Shah and Paul, 2006; Qin et al., 2003; Zhong et al., 2007).
These materials are also non-toxic and suitable for direct food
contact, enhancing their appeal for packaging. Compared to
conventional synthetic materials, bio-based polymers offer greater
sustainability, recyclability, and cost-efficiency (Choudalakis and

Gotsis, 2009; Nguyen et al., 2023).
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In summary, waste-derived nanofillers address environmental
and economic challenges by transforming agricultural waste into
biodegradable composites, reducing landfill use and emissions while
supporting rural development.

6.2 Biodegradability or recyclability
supports circular economy

In recent years, biodegradable polymers derived from renewable
resources have garnered increasing attention from both academic
researchers and industry professionals (Fomin and Guzeev,
2001). These materials provide an eco-friendly alternative to
conventional petrochemical-based plastics, aligning with global
goals of environmental conservation and economic sustainability.
Advances in biodegradable polymer technology contribute
to preserving fossil fuel reserves, enabling complete material
breakdown, minimizing waste, improving compostability, and
lowering CO, emissions—all of which are vital in addressing
climate change (Mohanty et al., 2003).

Green polymers are considered environmentally friendly
because of their biodegradability, recyclability, and other sustainable
properties renewability. Biodegradation refers to the breakdown
of a polymer’s chemical structure into non-toxic byproducts that
benefit the environment. In contrast, conventional polymers and
composites offer limited degradation capabilities (Iranpour Anaraki
and Poursalehi, 2015; Kausar, 2016d; Kausar and Hussain, 2013;
Kausar, 2016¢; Kausar, 2016a). Green polymers, however, exhibit
unique degradation behaviors that distinguish them from their
synthetic counterparts (Kausar, 2017b; Kausar and Ur Rahman,
2016; Kausar, 2016b; Kausar, 2015).

These  biodegradable be
directly from nature—such as polyhydroxybutyrate (PHB),

materials  can sourced
polyhydroxyalkanoates (PHA), polylactic acid (PLA), cellulose,
starch, and lignin—or synthetically produced from compounds
like polyolefins, poly(vinyl alcohol), and specific polyesters,
provided they meet criteria for renewability and biodegradability
2017a; 2014).

incorporated into green nanocomposites, which are increasingly

(Kausar, Kausar, Such materials are often
viewed as the future of sustainable materials (Dicker et al,
2014). Furthermore, integrating agricultural by-products and
waste materials into composite production enhances both
environmental benefits and the economic development of rural
communities (Avella et al., 2009).

Polylactic acid (PLA) is a widely cited example of a
biodegradable polymer produced from fermented plant starch.
Under suitable environmental or composting conditions, PLA
breaks down into carbon dioxide, water, and methane within
a period ranging from a few months to 2 years. Technological
advancements have significantly enhanced PLAs mechanical
performance, expanding its application in both structural and
packaging sectors (Costa et al., 2023).

Polysaccharide-based bioplastics, made from starch, cellulose,
and alginate, present promising renewable alternatives to
petroleum-based plastics. While they offer environmental benefits,
their commercial viability is influenced by raw material costs,
processing efficiency, market demand, and scalability (Hossain et al.,

2024). Starch is ideal for large-scale production of bioplastics
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because it is affordable and widely available. In contrast, while
cellulose is abundant, it involves more complex and costly
processing methods (Hossain et al., 2024).

It is worth mentioning that biopolymers do not have to
fully degrade during use; their performance can be customized
through reinforcement, blending, and surface protection. This
flexibility makes them suitable for applications mentioned earlier
like lightweight automotive interiors, aerospace non-structural
or temporary components, and construction materials such as
insulation, composites, and disposable formworks, all while
maintaining sustainability at the end of their lifecycle.

Recyclability, beyond just biodegradability, is vital in prolonging
the lifespan of green composites. Mechanical and chemical recycling
methods enable the recovery and reuse of polymer materials,
significantly cutting down on energy consumption and raw material
use. One study explored recycling polylactic acid (PLA) and
PLA-based natural fiber-reinforced composites (NFRCs) using
a conical twin screw extrusion (CTSE) process for up to six
cycles. The recycled materials, containing 90% PLA and either
basalt fibers (BFs) or halloysite nanotubes (HNTs), were injection-
molded into standard test specimens for impact and tensile
analysis. Recycling caused discoloration and increased crystallinity
in PLA. Impact strength remained stable through six cycles,
but tensile properties declined for PLA/BF NFRCs after three
cycles, likely due to fiber length reduction. SEM analysis showed
decreased fiber length and poor interfacial adhesion with recycling
(Finnerty et al, 2023). Another study produced 3D printing
filaments from hemp hurd fibre-reinforced PLA composites. Hemp
microfibres were used to create composites with 20-40 wt% fibre
for fused deposition modelling. Tensile testing showed Young’s
modulus increased with fibre content, reaching 7.1 GPa at 40 wt%,
doubling that of neat PLA. Tensile strength only improved at
20 wt%, increasing by 8%. Fibre addition significantly enhanced
thermo-mechanical properties. Recycled filaments were tested,
showing they retained comparable mechanical properties and
printability after three cycles (Beg et al., 2024). Moreover, an
alginate biopolymer composites were filled waste from the food
industry like seagrass, apple pomace, and lignocellulosic side
streams from brewing. The composite processed via extrusion,
producing a stiff, high-performing material with a Young’s modulus
of 4GPa and tensile strength of 103 MPa—surpassing some
traditional plastics. Lignocellulosic fillers reduced shrinkage by
28% and density by 7% without sacrificing stiffness. Additionally,
the materials were recyclable up to four times without losing
mechanical integrity when the plasticizer was reintroduced into the
formulation (Rech et al., 2023).

Achieving complete recyclability is still difficult. Certain
biodegradable polymers might break down too early during
recycling or generate microplastics if not processed correctly. It is
crucial to balance the rate of biodegradation with recyclability to
preserve material quality and promote environmental advantages.
Incorporating nanostructured reinforcements can enhance this
balance by increasing durability during use and ensuring that the
material biodegrades under controlled conditions.

Altogether, the
recyclability, and renewability in green polymers and composites

combined qualities of biodegradability,

form the cornerstone of a circular economy. These materials not only
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reduce dependence on finite resources but also facilitate a closed-
loop system that promotes sustainable production and responsible
consumption.

6.3 Positive life cycle assessment (LCA)
outcomes

Life cycle assessment (LCA) is crucial for evaluating the
environmental benefits of biopolymer nanocomposites (PNCs), as
it analyzes impacts and resource use from raw material extraction
to disposal or recycling (Finnveden et al., 2009). This method,
when applied rigorously, prevents misleading conclusions and
supports sustainable material choices. Notably, nine of the fifteen
reviewed LCA studies focus on biobased plastics, generally viewed
as more environmentally friendly than petroleum-derived ones. For
example, Pietrini et al. compared the LCA of poly(hydroxybutyrate)
(PHB) and polypropylene (PP) nanocomposites, both reinforced
with organo-modified clays, for use in CRT monitor housings
and automotive panels (Pietrini et al, 2007). Using previously
established methodologies (Roes et al., 2007), they observed that
PHB’s higher density and lower Youngs modulus necessitate
more material per unit application. The lower resource inputs
for PHB synthesis make it more environmentally preferable to
PP from cradle-to-factory gate and perform better in cradle-to-
grave assessments for CRT applications. However, these findings are
limited by insufficient industrial-scale data on PHB production.

This review evaluates the environmental performance of
polymer nanocomposites (PNCs) made from bioplastics and
recycled plastics, providing insights to support sustainable material
development and processing methods.

7 Challenges and limitations
7.1 Economic challenges

A key obstacle to the broad commercialization of green
biopolymers is their higher production costs relative to petroleum-
based plastics. Producing bioplastics can be two to four times
more expensive than synthetic plastics, mainly because of the
cheaper, well-established infrastructure for petroleum refining
versus renewable biomass processing (Kumari et al., 2023). For
instance, polyhydroxyalkanoates (PHA) offer excellent barrier
properties compared to other biopolymers, but their high
manufacturing costs limit their use (Lamberti et al., 2020). Similarly,
bacterial cellulose (BC), which requires only mild purification
steps and does not depend on plant biomass, is still limited in
production due to costly nutrient-rich substrates and low yields
(Westlake et al., 2023). Although these costs hinder scaling beyond
labs, growing market interest is expected to drive industrial growth,
technological advances, and economies of scale, eventually lowering
costs. Over time, performance and sustainability benefits might
outweigh expense considerations, especially when biopolymers
can effectively compete with traditional plastics in packaging and
other sectors (Westlake et al., 2023).

The scalability of nanomaterials remains a major challenge,
as industrial manufacturing faces hurdles from initial design to
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large-scale deployment, including concerns about reproducibility,
safety, and environmental impact (Hachhach et al., 2025). While
some nanomaterials like carbon nanotubes (CNTs) provide excellent
strength, low weight, and a high aspect ratio—making them
appealing for advanced uses—their high production costs and
complex processing limit their widespread adoption (Rashid et al.,
2024). At the same time, developing cost-effective and reliable
methods for large-scale biogenic synthesis, such as for silver
nanoparticles, is crucial to support broader industrial use (Gacem
and Abd-Elsalam, 2022).

7.2 Technical challenges

The development of nanomaterials depends on manufacturing
methods that are reliable, reproducible, and scalable, supported
by thorough research data, with a focus on creating cost-effective
and consistent synthetic processes (Bi et al, 2025). However,
many traditional synthesis methods lack precise control over
experimental conditions, which often results in nanoparticles with
varied sizes and notable batch-to-batch differences (Niculescu et al.,
2021). Additionally, ensuring uniform nanoparticle dispersion
within polymer matrices is essential for optimal performance.
Yet, scaling from laboratory to industrial production while
maintaining this uniformity and consistent properties remains
challenging, with persistent reproducibility problems in large-scale
manufacturing (Rahman et al., 2025).

7.3 Health and environmental concerns

The production and handling of nanomaterials pose potential
health and environmental risks, as workers may be exposed during
post-synthesis tasks like opening reaction chambers, drying, powder
handling, or cleaning equipment, which can release nanoparticles
into the air or waste streams (2018). These particles can enter the
human body through inhalation, ingestion, or skin contact, then
travel via the bloodstream to various organs, where they might
interact with biological and chemical systems at the molecular level,
though these interactions are still not fully understood in complex
human biology (Fond and Meyer, 2007). Some nanomaterials, such
as carbon nanotubes (CNTs), are particularly concerning due to
their similarity to asbestos, indicating a significant potential for
human toxicity (Awasthi and Sharma, 2022). Additionally, the
increased production scale heightens the risk of environmental
release, with nanoparticle persistence and reactivity possibly
disrupting ecosystems, underscoring the urgent need for thorough
toxicological and ecotoxicological evaluations.

8 Conclusion and future perspectives

Green polymer nanocomposites (GPNCs) are emerging as
innovative materials that blend sustainability with advanced
functionalities. They reduce reliance on fossil-based polymers and
enhance biodegradability or recyclability, making them suitable
for packaging, automotive, construction, water treatment, and
biomedical applications. Incorporating eco-friendly nanofillers like
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cellulose nanocrystals, biochar, nanoclays, and specific metal
oxides further boosts their mechanical, thermal, and barrier
performances, while also adding features such as antimicrobial
effects and UV protection. These advancements position GPNCs as
crucial materials for fostering a circular economy and decreasing
carbon footprints in various sectors. Despite significant progress,
several obstacles still hinder the large-scale implementation of
GPNCs. First, standardization issues arise because there are no
universal protocols for assessing biodegradability, nanotoxicity,
and environmental effects in practical settings. Second, there is
a lack of durability and performance data. Long-term studies on
degradation and stability remain limited, especially for use in
harsh environments. Another concern involves regulatory and safety
issues. Clear guidelines for safe handling, disposal, and certification
of nano-enabled green composites are still missing.

To speed up the transition of GPNCs from research to
industry, it is crucial to focus on strategies like reducing costs
and enhancing scalability. Developing cost-effective methods for
synthesizing bio-based polymers and waste-derived nanofillers
and implementing energy-efficient processing techniques is
needed. Moreover, advanced fabrication techniques should be
employed, leveraging optimization of 3D printing, electrospinning,
and Al-based design to achieve precise control over material
properties and performance. For multifunctionality, GPNCs should
incorporate features like self-healing, antimicrobial, UV-blocking,
or energy-harvesting capabilities aimed at high-value applications.
Additionally, integrating GPNCs within the circular economy
involves promoting closed-loop recycling, renewable energy-
powered manufacturing, and valorizing agricultural and industrial
byproducts. Lastly, establishing robust policy and regulatory
frameworks is vital, including the development of international
standards, support for green certifications, and comprehensive risk
assessments for human health and the environment.

Through ongoing innovation, collaborative multidisciplinary
efforts, and strong policy support, GPNCs can transition
from promising laboratory materials to large-scale industrial
solutions that balance performance with sustainability. These
advancements will play a crucial role in shaping the future of
green manufacturing, fostering a low-carbon, resource-efficient
economy where materials innovation drives both environmental
responsibility and economic growth.
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