:' frontiers | Frontiers in Materials

‘ @ Check for updates

OPEN ACCESS

Jue Li,
Chonggqing Jiaotong University, China

Wensheng Wang,

Jilin University, China

Qinglin Guo,

Hebei University of Engineering, China

Kouchen Xiao,
xiaokouchen_jkct@163.com

03 September 2025
15 September 2025
08 October 2025

20 October 2025

Xiao K, Zhang H, Wei S, Zhu C, He J, Zhu S
and Yang X (2025) Prediction of compressive
strength of high-performance concrete based
on multiple machine learning models.

Front. Mater. 12:1698248.

doi: 10.3389/fmats.2025.1698248

© 2025 Xiao, Zhang, Wei, Zhu, He, Zhu and
Yang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Materials

Original Research
08 October 2025
10.3389/fmats.2025.1698248

Prediction of compressive
strength of high-performance
concrete based on multiple
machine learning models

Kouchen Xiao'*, Hongjian Zhang?, Sijia Wei?, Chuanxin Zhu?,
Jingtong He?, Shuai Zhu? and Xiaohan Yang?

'Architectural and Civil Engineering, Jinken College of Technology, Nanjing, Jiangsu, China, ?College
of Civil Engineering and Architecture, Xinjiang University, Urumgi, Xinjiang, China

High-performance concrete (HPC) exhibits excellent comprehensive
performance and is widely applied in tunnel engineering, large-span bridges,
and special engineering projects. With the advancement of technology, HPC
is moving towards green and sustainable development by incorporating
industrial solid waste as a supplementary cementitious material. This study
constructs machine learning models (individual and ensemble learners) to
predict the compressive strength of HPC. The database employed in this study
includes eight parameters (including cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, fine aggregate, age), with a total of 1,030 data
samples. This study evaluates the performance of the constructed models using
the coefficient of determination (R?), mean absolute error (MAE), and root mean
square error (RMSE), and validates the models using k-fold cross-validation (k =
10). The results indicate that the Decision Tree (DT) model has the best predictive
performance among individual learners, while the Harris Hawks Optimization-
XGBoost (HHO-XGB) model has the best performance among ensemble
learners. The ensemble learning further improves the predictive performance of
individual learners: compared with the best individual learner (DT), R? increases
from 0.91 to 0.94 (Random Forest (RF)) and 0.95 (HHO-XGB); MAE decreases
from 2.72 MPa to 2.69 MPa (RF) and 2.51 MPa (HHO-XGB); RMSE decreases from
5.01 MPa to 4.01 MPa (RF) and 3.57 MPa (HHO-XGB), respectively. In addition,
the constructed models have been validated for robustness through k-fold
cross-validation. The superior predictive accuracy of the HHO-XGB model can
provide a more reliable basis for optimizing mix designs, thereby enhancing
structural safety and reducing material cost overruns in critical applications like
tunnel linings and marine structures.

high-performance concrete, compressive strength, individual learner, ensemble learner,
k-fold cross-validation
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1 Introduction

High-performance concrete (HPC) is the main engineering
material in major engineering projects widely used in large-
span bridges, important transportation engineering, underground
engineering, and tunnel engineering, among other major projects
(Rodriguez de Sensale et al., 2016; Dong et al., 2023; Li et al., 2023;
Wang J. et al., 2024; Zhou et al., 2024). HPC is prepared by mixing
cementitious materials, granular aggregates (or just aggregates),
water, and, when required, admixtures, all in specific proportions.
Cementitious materials are one of the important components of
HPC. The commonly used cementitious material is Portland cement.
The production of Portland cement consumes large amounts of
energy and generates significant carbon dioxide emissions, and its
carbon dioxide emissions account for 5%-7% of total anthropogenic
emissions (Bajpayee et al., 2020; Biricik et al., 2021; Miller et al.,
2021; International Energy Agency, 2023). At present, the annual
output of Portland cement is 4 billion tons. Some scholars predict
that the output of Portland cement will reach 6 billion tons by 2060
(Samimi et al., 2017). Because of the importance attached to climate
change and environmental protection, all countries have formulated
strict emission standards. In order to reduce the dependence on
Portland cement in HPC and reduce the emission of harmful gases,
alternatives to Portland cement should be actively explored to reduce
energy consumption and pollution while ensuring engineering
performance (Amin et al., 2019; Batista et al., 2019; Taji et al,
2019; Tang et al., 2019; Li et al., 2021; 2024; Wang et al., 2025). At
present, industrial solid wastes such as fly ash and blast furnace slag,
as well as supplementary cementitious materials such as lime, are
commonly used to replace Portland cement, which also increases
the reuse rate of industrial waste (Lothenbach et al., 2011; Juenger
and Siddique, 2015; Kirgiz, 2015; Du et al., 2021; Sevim et al., 2021;
Zhang et al., 2021; Nagaraju et al., 2023).

The compressive strength (CS) test of HPC is usually to
cure the HPC sample prepared with a certain mix proportion
for a period of time, and then test its CS. The test process
is complex and time-consuming. To enhance the efficiency of
experiments, many studies have developed predictive models as
effective alternatives. Early research mainly relied on empirical
and statistical methods. For example, Bhanja and Sengupta (2002)
established a mathematical model of CS by performing statistical
analysis based on intensity ratios from more than 300 tests. This
method, while groundbreaking, often struggles to capture the
complex nonlinearities and interactions between mixing ratios and
intensities, especially when incorporating complex materials such as
industrial solid waste. Mechanistic studies of HPC further validate
the complex nature of these relationships. Studies have shown that
the incorporation of industrial solid wastes such as fly ash and slag
significantly alters the hydration kinetics and early properties of
concrete (Li et al., 2020; Wu et al., 2021). These studies show that
CS in HPC is influenced by a number of interdependent factors,
making it difficult to predict using simple linear relationships or
regression models.

To address this challenge, machine learning models have
attracted the attention of many scholars due to their ability to learn
complex nonlinear relationships from data. For example, Peng and
Unluer (2022) successfully applied machine learning techniques
to predict the mechanical properties of geopolymer HPC, while
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Farooq et al. (2021) found that ensemble models such as random
forests can significantly reduce prediction errors. At the same
time, recent studies have constantly optimized and enhanced these
machine learning models. For example, Xie et al. (2025) proposed
an enhanced Bayesian Gaussian process regression method and
optimized the kernel function, resulting in excellent prediction
performance. In summary, although traditional empirical models
provide a foundation, they have certain limitations in dealing
with complexity. The results of mechanistic research emphasize the
necessity of using advanced model technologies. Although machine
learning offers an effective solution, selecting and constructing
the most suitable model remains an issue that requires attention.
Therefore, this study aims to systematically construct and evaluate
individual models and ensemble learning models to achieve accurate
prediction of the CS of HPC containing industrial solid waste.

Therefore, this study focuses on predicting the compressive
strength of high-performance industrial solid waste mixed concrete.
Specifically, it constructs multiple machine learning models to
achieve accurate prediction of CS, and further compares and
selects suitable models to provide research references for similar
prediction studies. This study aims to evaluate the predictive
performance of individual learners (including Decision Tree (DT)
model, Support Vector Machine (SVM) model, and Artificial Neural
Network (ANN) model) and ensemble learners (including Random
Forest (RF) model and Harris Hawks Optimization-XGBoost
(HHO-XGB) model). Additionally, it assesses the predictive
performance of tree-based models (DT model) and network-based
models (SVM model and ANN model) among individual learners.
Ultimately, the research results provide a new model reference for
accurately predicting the compressive strength of high-performance
concrete blended with industrial solid waste, while also offering a
model selection approach for predictive research using machine
learning methods.

2 HPC compressive strength database
and performance evaluation

2.1 HPC compressive strength database

The CS data of HPC using industrial waste comes from the CS
field of HPC in UC Irvine machine learning library (Lichman, 2013).
The CS database of HPC comprises 1,030 data points, including
CS, cement, fine aggregate, coarse aggregate, blast furnace slag,
fly ash, water, superplasticizer, and HPC age. The quantitative
statistical information of various parameters in the database is
displayed in Table 1.

2.2 Performance evaluation of prediction
model

To ensure the scientific rigor and practical value in engineering
of the model presented in this research, the database adopted in this
study is split into a training dataset and a testing dataset. Specifically,
the training dataset is employed to develop the predictive model,
while the testing dataset is used to verify its reliability. The
training dataset contains 721 random data points, accounting for
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TABLE 1 Statistics of HPC parameters.

10.3389/fmats.2025.1698248

Parameter Symbol Median

Cement N, 102 153.35 192 272.9 350 425 540 281.17 104.51
Blast furnace slag N, 0 0 0 22 143 192 359.4 73.9 86.28

Fly ash N; 0 0 0 0 118.3 141.3 200.10 54.19 64
Water N, 121.8 154.60 164.9 185 192 203.5 247 181.57 21.35
Superplasticizer N, 0 0 0 6.4 10.2 12.25 322 6.20 5.97
Coarse aggregate Ny 801 852.1 932 968 1,029.4 1,077.45 1,145 972.92 77.75
Fine aggregate N, 594 663.15 730.4 779.5 824 882.2 992.60 773.58 80.18
Age Ny 1 3.00 7 28 56 100 365 45.66 63.17
Compressive strength Ny 2.33 14.2 23.7 34.45 46.2 58.9 82.6 35.82 16.71

The unit of compressive strength is MPa; the units of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate are all kg/m’; the unit of HPC age is day. D10
represents the 10th percentile, and D25, D75, and D90 represent the 25th, 75th, and 90th percentiles, respectively.

70% of the total database, while the remaining 309 data points
constitute the testing dataset. Additionally, this paper will employ
the following statistical evaluation metrics to measure the model’s
predictive performance, including the correlation coefficient (R?),
mean absolute error (MAE), and root mean square error (RMSE)
(Xie et al., 2025b; Wang et al., 2024b; Wang et al., 2025), with the
relevant expressions being:

R2_ 1 z:;l(y“_yl’)z

=l S
Y .-
1 n
MAE = ;;|ya—yp| ©)
RMSE = (3)

where y, is the measured value, y, is the predicted value, y is the
mean value of the y,, and # is the sample number.

To further confirm the generalization ability of the proposed
model, k-fold cross-validation will be employed to assess the model’s
performance. Although the above-mentioned random division of
the dataset for model validation has enhanced the evidence for
model reliability, the evaluation results will still be affected by
the data division method, and the lack of randomness may affect
the stability of the model’s evaluation. k-fold cross-validation can
more thoroughly reflect the model’s performance across subsets
with different data distributions by randomly splitting the dataset
into k subsets of comparable size. Here, k-1 subsets function as
the training set, while the remaining single subset works as the
testing set; this approach can more comprehensively capture how the
model performs on such varied data subsets, thereby being closer
to the model’s actual performance in real-world scenarios. Kohavi’s
(1995) study of cross-validation yielded reliable variance when using
10-fold for validation. Therefore, this study chooses 10-fold cross-
validation, divides the training dataset into 10 subsets of consistent
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size, establishes a multivariate distribution model on 9 subsets each
time, and uses the remaining subset for the verification of the
model’s prediction performance, repeats 10 times, and finally uses
the average value as the evaluation value of the model’s prediction
performance.

3 Methodology

Currently, machine learning methods have been widely adopted
in a range of scientific disciplines. Machine learning, based on
data-driven characteristics, breaks through the shortcomings
of traditional methods that rely on manually designed logic
and simplified assumptions, and has strong adaptability and
generalization ability. In the field of materials science, this
technology is usually applied to predict and interpret the
characteristics of materials. This study focuses on the prediction
of CS of HPC mixed with industrial solid waste, and conducts
research on it using various machine learning methods. Meanwhile,
the machine learning methods used in this study include individual
learners and ensemble learners. Individual learners include the
DT model, the SVM model, and the ANN model, while ensemble
learners include the RF model and the HHO-XGB model.

3.1 Decision tree model

The decision tree model simulates the logic of human step-
by-step decision-making, breaking down complex problems into
simple judgment problems one by one. The final analysis and
solution process resembles an inverted tree, hence the model’s
name. The DT model is a relatively intuitive model in machine
learning methods, and its application is also quite extensive
(Karbassi et al., 2014; Ahmad et al., 2022). The DT mainly consists
of four basic structures: root node, internal node, branch, and leaf
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node. The root node is the input node, the internal nodes are
connected to the branches, and the leaf nodes are the final output
nodes. Therefore, based on the above explanation, the core goal of
DT models—whether they are dealing with classification tasks or
regression tasks—is to use specific functions between internal nodes
to make the split sub-datasets have higher “purity”; that is, to make
the data in the subsets belong to the same category or have more
concentrated values as much as possible.

In this study, since no classification is required for the dataset
when predicting the CS of HPC, this prediction task is defined as
a regression task. In the context of predicting the CS of HPC, the
model splits the dataset based on eight input variables. The model
determines the optimal split point for each variable by optimizing a
splitting criterion, which minimizes the error between the predicted
values and the measured CS values. Finally, each sub-dataset is
continuously split and partitioned until a tree capable of predicting
the target variable is formed.

3.2 Support vector machine model

The support vector machine model is based on statistical
learning theory. Cortes and Vapnik (1995) first proposed the concept
of “support vector” and first used it in 1995. This model was
originally employed to address linear classification problems; with
the gradual deepening of research, it has been able to map low-
dimensional nonlinear data into a high-dimensional space through
the introduction of kernel functions, thus enabling the linear
separability of data within this high-dimensional space. At the same
time, with further improvements made by Vapnik et al. (1996), the
support vector regression model—a regression-oriented branch of
SVM—was proposed, which expanded the model’s application from
solving classification problems to addressing regression problems.
This study predicts the CS of HPC based on its mix proportion, and
this prediction task belongs to regression. The process of using SVM
model to solve regression tasks is as follows.

Firstly, for the SVM model, the core objective of addressing
both classification and regression problems is to find hyperplanes.
However, for regression problems, an insensitive loss function needs
to be defined before that. The specific formula is as follows:

0 =) -yl <o

4)
| f(x;) — y;| — € otherwise.

L(flx;) = y;) =

where ¢ is called error tolerance and it is the core parameter of the
insensitive loss function.

The hyperplane optimization step is to fit as many sample
data points as possible within the ¢ interval band; additionally, to
avoid overfitting, it is necessary to keep the regression function as
simple as possible to reduce model complexity. This dual objective is
formulated by the following formula:

1 c .
min | +C} (§+§) (5)
i=1
yi—(p-xi+tq)<e+§,
subjecttoq (p-x;+q) -y, <e+&, (6)
&=0,E =0
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where 7 is the total number of samples, p is the weight vector, g is the
bias term, &; and & are the relaxation variables, and C is the penalty
parameter.

As the prediction of CA of HPC is a nonlinear problem, it
is necessary to introduce a kernel function to transform the low-
dimensional nonlinear relationship into a high-dimensional linear
relationship. The kernel function is:

K('xi’xj) = ¢(x;)- ¢(xj) (7)

The above steps involve multiple variables and the solution
is complex, so it can be transformed into a dual problem
for solving:

max—3 33" (5,-87) () K (x%)-

i=1j=1

e (8;+87)+) y,(8,-67) (8)
i=1 i=1
" (8;-87) =0,
subject to Z’:l( ) €]
0<4,6 <C

Finally, by solving the dual problem, the strength prediction
formula is derived as follows:

f) =) (8,- 67 )K(xx;) +q (10)
i=1

3.3 Artificial neural network model

The development of artificial neural network models is based
on the study of information processing in the human brain,
by simulating the collaborative cooperation between neurons in
the human brain during information processing to construct
models. The ANN model is primarily composed of the input
layer, the hidden layer, and the output layer, with neurons linking
these three layers. The overall framework of ANN models is
relatively easy to understand. After the model is constructed,
various problems can be solved via a simple “input-output” process.
However, in the process of model construction, it is necessary to
reasonably determine the number of hidden layers and neurons
based on the complexity of the problem. It is worth noting
that for the research on HPC in this study, a single hidden
layer can effectively predict the CS (Orbani¢ and Fajdiga, 2003).
In addition, activation functions are also key components of
ANN models. Most real-world problems are nonlinear problems,
and activation functions introduce nonlinear relationships by
establishing connections between the input and output of neurons,
thereby equipping ANN models with the ability to handle
nonlinear problems (Nguyen et al., 2020). For this study, the
Sigmoid function serves as the model’s activation function. Figure 1
illustrates a typical single-hidden-layer neural network structure,
where X, X, ..
parameter.

., X, are input parameters and Y is the output

This study uses the Bayesian regularization algorithm to
construct the model during the ANN model training process.
This method utilizes Bayes' theorem to update weights and
simultaneously estimates regularization parameters, which can
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Forward Propagation

Back Propagation |

FIGURE 1
Single hidden layer of the ANN model.

effectively control the complexity of the neural network and
reduce the risk of overfitting (MacKay, 1992; Dan Foresee and
Hagan, 1997; Wang C. et al., 2024).

3.4 Random forest model

Random Forest stands as a frequently applied ensemble
learning model within the field of machine learning, and its
fundamental structure is composed of multiple decision trees. The
RF model exhibits advantages such as stable performance and
strong generalization ability, making it widely used in various
classification and regression tasks; it has thus received extensive
attention in the field of civil engineering materials (Han et al., 2019;
Zhang et al., 2019). In the RF model, “forest” refers to the overall
framework composed of multiple decision trees, while “random” is
embodied in two aspects: random sampling and random selection
of features (Farooq et al., 2021). According to the research in this
paper, the model construction is divided into the following steps:

1. Each tree randomly samples two-thirds of the data from the
original database with replacement for training—this subset is
referred to as bagged data. The unselected out-of-bag data can
be used for model evaluation.

When splitting each node of a tree, the algorithm randomly
selects features from the original features for optimal node
splitting. For regression tasks, one-third of the original features
are generally selected as a random feature subset to achieve this
optimal splitting (Breiman, 2001; Hastie et al., 2009).

3. Each tree grows independently based on the aforementioned
random samples and random features until the leaf nodes reach
a sufficiently high level of purity or the number of samples in a
node is reduced to 1.

Finally, in the context of regression tasks, the ultimate
prediction result is derived by taking the average of the
predicted values from all individual trees.
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FIGURE 2
Flowchart of HHO algorithm parameter optimization.

3.5 XGBoost model combined with HHO
algorithm

Extreme Gradient Boosting (XGBoost) also functions as an
ensemble learning model built on the foundation of decision
trees. Unlike the RF model, which is based on the Bagging
framework, XGBoost is based on the Boosting framework (Chen
and Guestrin, 2016; Bentéjac et al., 2021). The XGBoost model
adopts an iterative approach to train weak learners and ultimately
integrates them into a strong learner. The specific idea is as
follows: the first tree in the model directly fits the true values
of the samples; subsequently, the second tree fits the prediction
error of the first tree, and each subsequent new tree fits the
cumulative error of all previous trees to minimize the cumulative
error. Finally, the prediction results of all trees are linearly
weighted and summed to complete the prediction of the target
parameters.

In addition, unlike random forests, which rely on tree
diversity to control overfitting and usually do not constrain tree
growth, XGBoost relies on parameters such as regularization
parameters, learning rate, and tree structure parameters to control
overfitting. Therefore, this study introduces the harris hawks
optimization (HHO) algorithm to optimize the aforementioned
parameters, further the of the
XGBoost model.

The HHO algorithm is a metaheuristic algorithm that

enhancing performance

optimizes model parameters by simulating the hunting behavior
of Harris hawk swarms. It involves two key phases:a global
exploration stage and a local exploitation stage (Heidari et al.,
2019). This algorithm can automatically search for the optimal
parameter combination within a preset parameter range, thereby
overcoming the drawbacks of traditional parameter tuning
methods (Moayedi et al., 2021; Song et al, 2021). The detailed
optimization process for the HHO algorithm is depicted
in Figure 2.
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TABLE 2 Test of prediction model with testing data set.

Prediction model R? ’ MAE (MPa) RMSE (MPa)

DT-Model 0.91 2.72 5.01
SVM-Model 0.91 3.49 5.02
ANN-Model 0.90 3.89 5.24

RF-Model 0.94 2.69 4.01

HHO-XGB-Model 0.95 2.51 3.57

4 Analysis of model results

Based on the analysis conducted on the dataset and the overview
of the selected machine learning models in the prior chapters,
this chapter will conduct a detailed analysis of the predictive
performance of different learners with respect to the CS of HPC.
This comprises a comparative analysis between measured and
predicted CS values, an analysis of prediction errors from the
models, and a k-fold cross-validation analysis performed on the
models. Meanwhile, based on the results of the aforementioned
analysis, this chapter will further compare the performance of
different learners—specifically, performance comparisons between
individual learners, between ensemble learners, and between
individual learners and ensemble learners.

4.1 Analysis of model prediction results

This study uses individual learner-based models—including the
DT model, SVM model, and ANN model—as well as ensemble
learner-based models, namely, the RF model and HHO-XGB model,
to predict the CS of HPC mixed with industrial waste. Among these
steps, the 1,030 data points in the dataset were randomly divided into
a training set (721 data points) and a testing set (309 data points).
The constructed machine learning models can be evaluated using
the R%, MAE, and RMSE. The evaluation of model performance
using the testing dataset is presented in Table 2. Figure 2 presents the
relationship between the predicted and measured values of different
models; in addition, the models’ training results and testing results
are also shown in Figure 2.

From Figure 3, it can be seen that subplots (a), (b), and (c)
correspond to the individual learners, while subplots (d) and (e)
correspond to the ensemble learners. Among the individual learners,
the DT model has better predictive performance, with an R* of
0.93 for the training set and 0.91 for the testing set. According to
Table 2, the DT model also has an MAE of 2.72 MPa and an RMSE
of 5.01 MPa, indicating high prediction accuracy among individual
learners. The performance of the SVM model is slightly lower than
that of the DT model. However, among the individual learners,
both models show a certain degree of decrease in R? values after
testing on the testing set. Although the ANN model has relatively
weak predictive performance compared to the other two individual
learners, the changes in its various indicators are negligible after
validation on the testing set, which demonstrates a certain degree of
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robustness. In the ensemble learners, the HHO-XGB model exhibits
superior predictive performance, with an R? of 0.95 for both the
training set and the testing set. Similarly, according to Table 2,
the HHO-XGB model has an MAE of 2.51 MPa and an RMSE of
3.57 MPa, respectively. This model exhibits robustness and high
prediction accuracy.

In addition, the prediction performance of ensemble learners
based on decision trees—including the RF model and the HHO-
XGB model—is superior to that of individual learners. Among these
ensemble learners, compared to the best-performing individual
learner, the R? of the training set increases from 0.93 to 0.95 (for the
RF model) and 0.95 (for the HHO-XGB model) respectively, while
the R? of the testing set increases from 0.91 to 0.94 (for the random
forest model) and 0.95 (for the HHO-XGB model) respectively.
The ensemble learners show a strong correlation between predicted
and measured values in predicting the target parameter, indicating
that the ensemble learning strategy effectively enhances predictive
performance.

4.2 Analysis of model prediction error

The prediction error of each learning model was analyzed and
validated using the testing set, and the error distribution plot
is shown in Figure 4. Table 3 also presents the error distribution
statistics of the testing set for different models.

From Table 3 and Figure 4, it can be seen that among the
constructed individual learning models for predicting the CS of
HPC, the DT model exhibits the largest prediction errors, with a
maximum value of 38.22 MPa and a minimum value of —33.00 MPa.
The standard deviation of errors for the SVM model is similar to
that of the DT model: these two models show consistency in the
degree of error dispersion during the prediction process, except that
the DT model has larger values in terms of extreme errors. Among
the individual learners used in this study, the ANN model shows a
relatively narrow distribution of prediction errors, with a maximum
prediction error of 20.01 MPa and a minimum of -19.39 MPa.
However, the standard deviation of this model’s errors is 5.24 MPa,
and the prediction error data is relatively scattered.

Compared with individual learners, the error distributions of
ensemble learners are more stable. Although the RF model still
contains a small number of extreme values, most of its error
values are more concentrated than those of individual learners.
Specifically, 50% of the error data of this model falls within the
range of —1.49 MPa-2.50 MPa, with small data fluctuations. The
HHO-XGB model further reduces error fluctuations and minimizes
the occurrence of extreme error values. As shown in Figure 4e,
the error distribution plot of this model has the smallest peak-
to-valley amplitude, and the positive and negative errors exhibit
gentle fluctuations without violent variations. Among the predictive
models constructed in this paper, this model demonstrates excellent
stability and prediction accuracy.

4.3 Cross validation analysis

To ensure the scientific rationality and engineering practicality
of the models constructed in this study, it is necessary to evaluate
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their predictive accuracy. Furthermore, to maintain engineering
practicality and simulate the randomness and complexity of actual
engineering data, it is necessary to further test the models’ predictive

Frontiers in Materials

performance by adjusting the division of the training dataset.
At this stage, the 10-fold cross-validation method mentioned
previously is employed. Specifically, the dataset is randomly split
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into 10 subsets, among which 9 subsets are employed to train
the CS prediction model, and the remaining single subset is
applied for the validation of the model and the calculation of
statistical indicators. Subsequently, the above steps are repeated
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10 times, and the average values of the statistical indicators
are taken as the final validation results. Finally, the 10-fold

cross-validation results of the prediction models are illustrated
in Figure 5.
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TABLE 3 Error statistics of prediction model testing data set (MPa).

10.3389/fmats.2025.1698248

Prediction model Median
DT-Model -33.00 -3.05 -1.52 0.02 1.50 422 38.22 0.28 5,01
SVM-Model -2235 -5.01 -2.76 -0.06 2.50 523 33.04 0.01 5.03
ANN-Model -19.39 -5.90 -2.80 0.17 2.98 6.53 20.01 0.22 5.24
RF-Model -30.64 -327 ~1.49 0.28 2.50 4.68 24.32 041 4.00
HHO-XGB-Model -20.29 -3.79 -1.66 0.36 1.92 3.80 16.20 0.20 3.57

D10 represents the 10th percentile, and D25, D75, and D90 represent the 25th, 75th, and 90th percentiles, respectively.

When conducting 10-fold cross-validation, the indicators
R?, MAE, and RMSE are used for evaluation. From Figure 5,
it can be observed that all constructed models exhibit good
performance: although the MAE and RMSE results of 10-fold
cross-validation exhibit fluctuations, the prediction accuracy of the
models remains relatively high. From Figures 5a,b, the maximum
R? value of the prediction models is 0.96, the minimum R?
value is 0.87, and their average R? values are 0.92, 0.92, 0.91,
0.87, 0.95, and 0.95, respectively. From Figures 5¢,d, the MAE of
the prediction models ranges from 2.15 to 4.30 MPa, with their
average MAE values being 2.66, 3.36, 3.85, 2.73, and 2.54 MPa,
respectively. From Figures 5e,f, the RMSE of the prediction models
ranges from 3.11 to 5.73 MPa, and their average RMSE values are
4.55, 4.57, 5.07, 3.86, and 3.62 MPa, respectively. Through 10-fold
cross-validation analysis, it is found that the established models
exhibit robustness, thus verifying the accuracy and effectiveness
of the prediction models. It is worth noting that, consistent
with the analysis results in the first two sections of this chapter,
although the prediction models constructed in this study all
exhibit good predictive performance, individual learners exhibit
a certain degree of fluctuations when predicting the CS of HPC,
while ensemble learners show a certain degree of stability. Among
them, the HHO-XGB model has the highest prediction accuracy
and excellent stability, performing well among all the constructed
prediction models.

5 Discuss

As shown in Tables 2, 3, compared with the individual learners
constructed in this study, the ensemble learners exhibit more
accurate prediction results and more robust prediction performance.
As shown in Figures 4, 5, by integrating multiple independent
individual learning models, the ensemble learners effectively reduce
the impact of random factors such as training data sampling bias and
noise interference, thereby significantly enhancing the prediction
performance of the models. Specifically, the DT model is one of
the better-performing individual learners used in this study, and it
still exhibits significant extreme prediction errors and considerable
fluctuations during training and testing. In contrast, ensemble
learners based on decision trees, including the RF model (adopting
the Bagging strategy) and the HHO-XGB model (adopting the
Boosting strategy), all optimize prediction errors and prediction
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stability to varying degrees. Compared to the DT model's MAE
(2.72 MPa) and RMSE (5.01 MPa), the MAE of the two ensemble
learners is reduced to 2.69 MPa and 2.51 MPa, respectively, while
their RMSE is reduced to 4.01 MPa and 3.57 MPa, respectively.

In summary, integrating the constructed individual learners
through Bagging and Boosting methods effectively improves the
predictive performance of the models. The HHO-XGB model,
optimized by the HHO algorithm, exhibits better prediction
accuracy and stability.

6 Conclusion

This study focuses on the CS of HPC mixed with industrial
solid waste. By adopting machine learning methods, this study
classifies the used machine learning models into individual
learners and ensemble learners, which are applied to model and
analyze the CS data of HPC. The following main conclusions
are drawn:

1. The choice of algorithm fundamentally affects model
performance. In individual learners, the DT model exhibits
strong predictive capabilities, with the model’s R? being 0.91,
MAE being 2.72 MPa, and RMSE being 5.01 MPa. The SVM
model and the ANN model show relatively lower performance.
This hierarchy underscores that algorithm selection is crucial,
even within the same category. Additionally, the success
of the HHO-XGB model demonstrates that metaheuristic
optimization can successfully fine-tune ensemble models,
further enhancing model prediction and
stability.

. Compared with individual learners, ensemble learners

accuracy

adopting the Bagging and Boosting methods effectively
improve prediction accuracy and stability. Specifically,
compared to the best-performing individual learner (the
DT model), its R? increases from 0.91 to 0.94 (for the RF
model) and 0.95 (for the HHO-XGB model), respectively;
its MAE decreases from 2.72 MPa to 2.69 MPa (for the RF
model) and 2.51 MPa (for the HHO-XGB model), respectively;
and its RMSE decreases from 5.01 MPa to 4.01 MPa (for
the RF model) and 3.57 MPa (for the HHO-XGB model),
respectively.

. The established prediction models were subjected to k-fold
cross-validation, and these models exhibit good robustness
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and effectiveness. In the constructed model, the HHO-XGB
model exhibits global optimal performance, which provides an
effective data-driven solution for predicting the CS of HPC,
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contributing to more efficient and sustainable use of industrial
solid waste and cost savings in construction projects such as
tunnels and marine structures.
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