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Energy shortage is a significant challenge faced by humanity, and energy
conservation and carbon reduction are a common choice for global sustainable
development. Among them, improving the lightweight level of carrier tools
is a key way to promote global energy conservation and carbon reduction.
Low-ductility light alloys have been gradually applied in the lightweight
design of carrier tools due to their characteristics of high strength and low
density. However, due to the large differences in physical properties such as
melting points between low-ductility light alloys and high-strength steels, it
is difficult to achieve effective connection of multi-material vehicle bodies,
which limits the further promotion and application of low-ductility light alloy
materials. As a cold joining technology, the riveting process has become an
important means to support the mass application of low-ductility light alloy
materials. In traditional riveting processes, solid rivets improve the uniformity
of deformation by optimizing geometric and process parameters; blind rivets
enhance the practicality of single-sided operation by regulating mandrel tension
and deformation rate to suppress brittle fracture. New processes are constantly
innovated: for example, self-piercing riveting without pre-opening reduces
damage to the base material; pre-holed self-piercing riveting improves the
bearing capacity of multi-layer dissimilar materials; adhesive-riveted hybrid
joining has the advantages of strong bearing capacity and reliable connection;
friction self-piercing riveting realizes the dual strengthening of "mechanical
interlocking - solid-state joining” by softening materials through frictional
heat; electromagnetic riveting improves the uniform deformation of materials
through high strain rate dynamic loading. However, due to the low elongation
and high sensitivity of low-ductility light alloy materials, the joints are prone
to process-induced damage such as macroscopic cracks, which affect the
forming quality and mechanical properties of the joints. Thus, it is necessary
to deepen mechanism research, promote process optimization, expand the
path of performance improvement in various environments, and promote the
high-quality development of lightweight carrier tools.

carrier tools, low-ductility light alloys, riveting process, lightweight, connection
performance, process optimization
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1 Introduction

Carrier tools such as cars, aircraft, and rail transit vehicles
are major sources of greenhouse gas emissions, and the task
of energy conservation and emissions reduction has become
increasingly urgent. In response, countries worldwide are enacting
increasingly stringent emission regulations. For instance, the
European Union’s Euro 6 standard aims to limit the average CO,
emissions from new passenger cars to no more than 60 g/km by
2030 (Jarvikivi, 2021); the U.S. Environmental Protection Agency
has established new standards for pollutants such as nitrogen
oxides (NOx); and China has established a multi-dimensional
policy framework to promote low-carbon industrial transformation,
creating institutional synergies to achieve its “dual carbon” goals
(Shen et al., 2025). Enhancing lightweighting levels is a key means
of achieving energy conservation and emissions reduction in carrier
tools, and the use of lightweight materials is an important pathway
for promoting the lightweighting development of carrier tools
(Anonymous, 2023; Weiqi et al., 2023; Yilmaz et al., 2017). Figure 1
shows the recent trends in the development of multi-material
body structures. As shown in the figure, the use of lightweight
metal materials combined with high-strength steel has become
the mainstream material selection approach for vehicle body
lightweighting. Among these, die-cast aluminum alloys, magnesium
alloys, and titanium alloys—three types of low-ductility lightweight
metal materials—are most widely used in combination with high-
strength steel. However, the significant differences in physical
properties, such as melting points, between high-strength steel
and low-ductility lightweight metal materials pose challenges
for traditional spot welding processes in achieving effective
bonding, thereby introducing new concerns regarding the service
performance of carrier tools.

To overcome the inherent shortcomings of traditional spot
welding processes in connecting high-strength steel and low-
ductility lightweight alloy materials, riveting offers an ideal
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alternative solution. As a mechanical joining method, riveting
eliminates the need for high-temperature processes involved in
welding, thereby fundamentally avoiding issues such as heat-affected
zone embrittlement, grain coarsening, and the formation of brittle
intermetallic compounds. This enhances joint toughness and is
particularly suitable for material combinations with significant
differences in thermal-physical properties, such as aluminum/steel
and aluminum/titanium (Heidrich et al., 2021; Kim et al., 2019). In
recent years, riveting technology for lightweight alloy connections
has seen significant development: Solid rivet riveting forms rigid
connections through traditional forging processes, offering strong
static load-bearing capacity and addressing reliability issues in
high-strength applications for lightweight connections (Grimm and
Drossel, 2019; Mucha, 2014; Vorderbriiggen et al., 2022); Core-
pulling riveting enables single-side installation through its structural
design, offering convenient operation and suitability for enclosed or
narrow spaces, thereby improving connection efficiency in complex
structures (Penalva et al., 2025; Tao et al., 2025; Tao et al., 2024);
Self-piercing riveting (SPR) eliminates the need for pre-drilling
holes, directly pressing into the sheet to form a lock, simplifying
the process and enabling automation, thereby overcoming the
efficiency bottleneck of traditional riveting requiring pre-drilling
(Cacko, 2008; Danyo, 2014; Stephens, 2014; Zhao et al., 2022);
Pre-holed self-piercing riveting guides deformation through precise
pre-drilled holes, reducing resistance and enhancing adaptability
to high-hardness, high-thickness materials, while lowering the
risk of cracking associated with conventional self-piercing riveting
(Liu et al, 2024; Wang et al., 2025c); Riv-bonding connection
combine adhesive bonding with mechanical locking, enhancing
overall performance through stress dispersion, offering excellent
sealing and fatigue resistance, and addressing the performance
shortcomings of single-mode connections (Gémez et al., 2007;
Yang et al, 2025; Zhao et al, 2023); Friction self-piercing
riveting (F-SPR) utilizes friction-generated heat to soften materials,
simultaneously achieving stamping locking and interface bonding,
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FIGURE 1
The trend toward vehicle lightweighting in recent years (Ying et al., 2024).
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TABLE 1 Connection methods for light alloy materials.

Riveting method

Advantage

Disadvantage

10.3389/fmats.2025.1686963

Application in
transport vehicles

Picture

Solid rivet riveting

High strength and reliability
Excellent sealing, vibration
resistance

Requires operation on both
sides,difficult to disassemble,
heavy weight

Aircraft main beams, wing
beams, bulkheads; ship keels,
ribs, bulkheads

Blind Rivet Riveting

Single-sided operation,
convenient connection, high
efficiency

Non-removable, limited
load-bearing capacity

Instrument panel brackets, seat
rails, luggage racks, window
frames

Self-piercing riveting

Low energy consumption, easy
to automate, environmentally
friendly

Riveting equipment is
cumbersome and complex, and
cannot be used for single-sided

riveting

Vehicle body, battery pack
housing, thin steel plate and
aluminum connection

Pre-holed self-piercing riveting

Improve accuracy and
consistency, Reduce restrictions
on material performance

Increases process costs, sensitive
to pre-drilled hole accuracy

Connection between the aircraft
fuselage frame and skin

Riv-bonding connection

High load-bearing and fatigue
resistance, peel resistance and
impact resistance

High manufacturing costs and
lead times, and difficulties in
maintenance

White body, doors, engine hood,
battery pack housing, wing
structure

Friction self-piercing riveting

High-strength steel has good
connection performance,
reduces forming force

Generates heat-affected zones,
equipment is complex and
expensive

Body frame, chassis cross
members and longitudinal
members, battery pack shell
frame

Electromagnetic riveting

No heat-affected zone, low static
load, high repeatability

Expensive equipment, loud
noise, and electromagnetic
interference

Aerospace composite materials,
heat-sensitive material
components

making it suitable for connecting dissimilar materials and reducing
brittle cracking during cold stamping (Ma et al., 2017; Xian et al,,
2019). Electromagnetic riveting utilizes electromagnetic pulse force
to drive rivets into high-speed forming, promoting plastic flow
at high strain rates, resulting in superior forming quality and
addressing the forming deficiencies of low-plasticity lightweight
alloys (Cui et al., 2022; Jin et al., 2025; Jin et al., 2024). Table 1 below
summarizes the connection methods for lightweight alloy materials.
Different riveting technologies have distinct application scenarios
and forming effects, so the appropriate method should be selected
based on the properties of the connected components in practical
applications.

Additionally, carrier tools are subjected to a wide range of
complex vibration loads during actual operation, causing fasteners
such as bolts and rivets to experience fatigue failure and loosening
under severe impact and alternating loads (Li et al., 2021; Wang et al.,
2024a), which significantly compromises the structural integrity and
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safety of riveted joints (Ding et al., 2024; Wang et al., 2024e). To
address this issue, numerical simulation technology demonstrates
significant advantages. It enables the visualization and assessment of
structural dynamic response processes (Liang et al., 2022; Tang et al.,
2017; Xu et al, 2020; Zhu et al.,, 2022), optimization of riveting
process parameters, prediction of joint performance, and evaluation
of structural dynamic response. The specific techniques include:
establishing a dynamic model (Robert et al., 2020) to effectively
simulate the transient response and load transfer of rivets and
connection interfaces in riveted structures under strong impact and
alternating loads; modal analysis technology (Wang et al., 2024b)
to reveal the natural vibration characteristics of riveted structures,
identify resonance risk points, and lay the foundation for fatigue
analysis; Discrete element method (Shi et al., 2017; Zhao et al,,
2020) provides an in-depth analysis of rivet micro-contact, particle
wear, and potential loosening mechanisms; extended finite element
method (Chen et al.,, 2024a; Wang and Chen, 2020; Wang et al.,
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2022) accurately predicts the initiation location of cracks around
rivet holes, fatigue propagation paths, and final failure modes. These
methods enhance the confidence in predicting riveting reliability
and effectively identify areas prone to failure, providing theoretical
basis and data support for optimizing riveting point layout and
joint design. Furthermore, response surface methodology (RSM)
(Chai et al, 2020; Guo Q. et al,, 2019; Lu et al.,, 2016; Qi et al,,
2025) is used to construct more efficient mathematical surrogate
models, reducing optimization costs; while multi-objective genetic
algorithms (Adade et al, 2024; Bonah et al, 2019) effectively
explore complex design spaces to identify optimal process parameter
combinations. These two optimization techniques significantly
advance the efficient and reliable application of riveting in
lightweight structures.

This paper aims to systematically review the research progress
on low-ductility lightweight alloys for carrier tools and riveting
processes. By analyzing the limitations of traditional riveting
technologies and the innovative breakthroughs of new processes,
it reveals the applicability patterns of different riveting methods
in the connection of low-ductility lightweight alloys, providing
theoretical references and technical pathways for addressing
connection challenges in actual engineering applications. The
paper is structured as follows: Chapter 2 discusses the current
status and challenges of low-ductility lightweight alloys; Chapter
3 introduces the characteristics and applications of traditional
riveting technologies; Chapter 4 focuses on the technical principles
and research findings of new riveting processes; and Chapter
5 summarizes the current research progress and outlines future
development directions.

2 Current status and challenges of
lowl—ductility light alloys in carrier
tools

Currently, the main low-ductility light alloys used in carrier
tools are die-cast aluminum alloys, magnesium alloys, and titanium
alloys. Due to their different characteristics, the application in carrier
tools also differ. The following is an analysis of the current status of
these three low-ductility light alloys.

Die-cast aluminum alloys offer a moderate tensile strength,
coupled with relatively low material costs, abundant raw materials,
and high recyclability, making them widely used in industries
such as automotive, aviation, and aerospace (Casarotto et al., 2012;
Dong et al, 2025). For example, in 2021, the Tesla Model Y
became the first vehicle to adopt large-scale one-piece die-cast
aluminum alloy, significantly enhancing the vehicle’s lightweight
design. Subsequently, Chinese automotive companies such as NIO,
Xpeng, and Xiaomi began to develop die-casting technology and
successively launched steel/die-cast aluminum alloy hybrid body
products, driving the rapid development of die-cast aluminum
alloy in vehicle bodies, as shown in Figure 2. In the aerospace
field, die-cast aluminum alloys are primarily used in the structural
components of spacecraft rocket fuel tanks, spacecraft fuselages,
and large pressurized cabins of manned spacecraft (Li et al., 2023).
However, die-cast aluminum alloys are prone to porosity defects
and thermal cracking tendencies during production (Réger et al.,
2023). For example, Cao et al. (2024) found that casting process
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parameters significantly influence the evolution of porosity defects,
reducing material mechanical properties and sealing performance.
Additionally, traditional die-cast aluminum alloys requiring heat
treatment exhibit high welding defect rates due to internal gas
pores, while non-heat-treated types show some improvement but
still lag behind other materials in welding characteristics. In practical
applications, vibrational environments can easily lead to connection
issues (Pang et al., 2019), and such defects may exacerbate stress
concentration and the risk of fatigue crack initiation (Chen et al.,
2020). Furthermore, die-cast aluminum alloys have relatively low
elongation, and during riveting processes, their surfaces are prone
to developing “serrated” macro-cracks (as shown in Figure 3), which
can impair the service characteristics of transport vehicles.

Magnesium alloys are the lightest engineering metals, offering
significant weight reduction benefits and excellent damping
properties (Qin et al, 2015), making them highly attractive in
industries such as aerospace and automotive (Chen et al., 2024b;
Liu B. et al.,, 2023; Wang et al., 2024f). Figure 4 below illustrates
some applications of magnesium alloys. Additionally, magnesium
alloys, due to their low melting point and excellent fluidity, can
be processed using die-casting techniques to extend mold lifespan
and reduce production costs. Breakthroughs in super die-casting
technologies like Teslas Giga-Casting have further driven their
widespread adoption in large automotive structural components
(Tian et al., 2023). In the automotive sector, magnesium alloys are
primarily used in components such as seat frames and instrument
panel brackets. Research by the Bo team (Zhan et al., 2025) indicates
that magnesium alloys reduce the weight of these automotive
components by 25%-30%. In the aerospace sector, magnesium
alloys are used in critical components of aircraft, spacecraft, and
satellites (Yang et al., 2024). The G04 magnesium alloy has been
successfully applied to the electrical cabinets of the manned
spacecraft, reducing weight by approximately 13 kg (Bai et al.,
2023); In the rail transit sector, magnesium alloys are primarily
used in structural components such as luggage racks inside high-
speed trains, enhancing their lightweight design and facilitating
installation and maintenance (Zhang]. et al, 2023). Although
magnesium alloys have achieved some level of application across
various fields, their high cost remains a significant barrier to
large-scale adoption; their low elongation rate also leads to severe
process-induced damage during connection processes, necessitating
the exploration of more effective application methods.

Titanium alloys, as lightweight high-strength materials, have
a density ranging from 4.5 to 4.6 g/cm’, combining ultra-high
tensile strength with excellent corrosion resistance, significantly
reducing maintenance requirements, and are widely used in carrier
tools. In the aerospace industry, it is used to manufacture aircraft
engine blades, turbine disks (Peters et al., 2003; Singh et al., 2017),
and other components. Titanium alloy landing gear components
can reduce weight by approximately 15%-35% compared to steel
components while withstanding significant impact (Singh et al.,
2017); In the space industry, satellite mounts utilize its high
strength and resistance to space environment corrosion to ensure
long-term stable operation (Borba et al., 2018); in the marine
industry, high-performance propellers are made of titanium alloy,
effectively resisting seawater corrosion and improving propulsion
efficiency (Ma et al., 2025). As shown in Figure 5, some applications
of titanium alloy. However, the practical application of titanium
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FIGURE 2
Typical steel/die-cast aluminum alloy hybrid bodies in China and abroad.
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FIGURE 3
Surface process-induced damage caused by die casting aluminum alloy.
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alloys also faces the following challenges: Difficulty in connecting
dissimilar materials. Chen et al. studied laser welding of titanium
alloys with nickel-based Inconel 718 alloys, requiring precise
control of heat input and laser deflection to suppress brittle
phases and defects (Chen et al., 2011). Extremely high cost, which
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can be more than 10 times that of aluminum alloys, greatly
limiting its large-scale application (Liu et al., 2020). Processing
difficulties, requiring specialized equipment and complex processes.
For example, manufacturing high-strength thin-walled titanium
tubes necessitates special techniques such as the step-cooling

05 frontiersin.org


https://doi.org/10.3389/fmats.2025.1686963
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Du et al.

10.3389/fmats.2025.1686963

qmpele’

o

fac‘;\

&E
[

FIGURE 5

Applications of titanium alloys in various fields.
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spinning method developed by Xie et al. (2026). Recent research
is addressing these challenges through surface modification (e.g.,
the dual-layer TiO,/PDMS superhydrophobic coating developed
by Ma et al., which significantly enhances corrosion resistance to
99.88%) (Ma et al., 2025) and deep cryogenic treatment (e.g., Liu
et al. demonstrated that it can refine grain size, increase dislocation
density, and reduce stress corrosion sensitivity) (Liu et al., 2025).
However, cost control and process simplification remain the primary
factors limiting its broader application.

The aforementioned three types of low-ductility lightweight
alloys, with their excellent lightweight potential and specific
properties, are increasingly being used in critical components of
carrier tools. However, the inherent challenges in manufacturing,
usage, or cost significantly increase the difficulty of assembling and
connecting structural components and applying them on a large
scale. Traditional connection processes such as spot welding often
yield poor results or are cost-prohibitive when applied to these
materials. Therefore, exploring and developing efficient and reliable
connection technologies suitable for low-ductility lightweight alloy
materials, particularly the innovation and optimization of riveting
processes, has become a critical step and one of the most pressing
issues to address in driving their broader application.

3 Normal riveting technology
3.1 Solid rivet riveting

Solid rivet riveting is a classic joining process. The process is as
follows: first, the sheets are fixed between the blank holder and the
die of the installation tool (Step I); then, the punch drives the rivet
through the connecting plates (Steps II and IIT); the material of the
lower sheet is pressed into the circumferential groove of the rivet
(Step IV), thereby fastening the connected parts together, as shown
in Figure 6 (for solid self-piercing riveting) (Felix et al., 2023). This
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process is widely used in fields such as aerospace and automotive
manufacturing. Its core lies in controlling the uniformity of rivet
deformation to avoid cracking of low-ductility materials.

Solid rivets play the dual role of punching tools and fasteners
during the joining process, which puts extremely high requirements
on the strength and ductility of the rivets. Optimizing process
parameters is a key means to improve product performance, and
methods of experimental verification, numerical simulation and
algorithm optimization are often used. In algorithm optimization,
spectral analysis techniques such as near-infrared, Raman and
hyperspectral, combined with chemometric algorithms such as
partial least squares, synergetic interval partial least squares, genetic
algorithm-partial least squares, and ant colony optimization-partial
least squares, have realized rapid qualitative and quantitative
analysis of food components, quality and pollutants. Their ideas
of variable selection and model optimization provide a reference
for the experimental verification of material joining process
parameters (Arslan et al.,, 2019; Arslan et al., 2018; Bonah et al,
2019; GuoZ.M. et al., 2019; Hu et al, 2017; Khulal et al.,
2016; Kutsanedzie et al., 2018; Li et al., 2019; Qin et al., 2019;
Sun et al, 2018; Sun et al, 2017; Tang et al,, 2021; Zhou et al,,
2020; Zhou et al., 2019). Numerical simulation methods such as
computational fluid dynamics, discrete element method and CFD-
DEM coupling have shown high precision in simulating equipment
flow field characteristics, material separation and transportation
processes, and their simulation methods for multi-physics field
coupling and dynamic processes can provide reference for the
numerical simulation of riveting processes (El-Emam et al., 2023;
Fordjour et al., 2020; Jiang et al., 2017; Liu J. P. et al., 2023; Shi et al.,
2019; Tang et al, 2017; Xu et al, 2016; L.Z.Xu et al, 2020;
Yuan et al.,, 2023; Zhu et al., 2022).

To achieve reliable connection, regarding the collaborative
optimization of material selection and geometric design, Grimm
and Drossel (2019) aimed at the problems of insufficient locking
and rivet fracture when traditional rivets connect high-strength
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FIGURE 6
Flow chart of solid rivet riveting process (Felix et al., 2023).

materials, and clarified the influence laws of geometric parameters
such as rivet shank taper and head thickness, through numerical
simulation and experimental validation methods, the influence of
parameters such as the rivet shank taper and head height on the
interlock value was clarified. Ping et al. (2025) focused on the
optimization of process parameters for dissimilar material joining,
and adopted the solid rivet resistance riveting welding process to join
aluminum/steel dissimilar materials, thereby successfully avoiding
the formation of brittle intermetallic compounds. To further
improve the performance of solid rivet joints, Xu and Wang (2021)
proposed an integrated multi-objective optimization framework of
“material-structure-process-performance,” and optimized the solid
rivet connection of magnesium/aluminum composite structures
combined with methods such as Taguchi, which verified the
effectiveness of this method in the optimization of connection
parameters for low-ductility light alloys.

Factors such as different material and thickness combinations
have a significant impact on the connection performance of
joints. Jacek (2013) systematically studied the connection ability
of solid rivets to low-ductility materials through single-lap shear
tests and single-edge tearing tests. The results showed that the
type of sheet material is the most critical factor affecting joint
strength, and the greater the thickness, the more significant
the influence of material type. Samuel and Olaf (2010) deeply
analyzed the installation process of solid rivets in T351 aluminum
alloy components and the influence of the clearance fit between
rivets and holes, clamping length and extrusion strength on
residual stress and contact force through FEM simulation
modeling. The high agreement between the simulation results
and experiments, including the forming geometry of the rivet
head and the force-displacement curve, verified that the model
can effectively predict the mechanical properties of joints,
providing a quantitative tool for the optimization of riveting
process parameters for low-ductility aluminum alloys used in
aerospace.

For the solid rivet connection of large carrier tool structures such
as antenna reflectors and vehicle body frames, deformation caused
by positioning deviation is a core problem. Ni et al. (2017) measured
the coordinates of key points of positioning deviation, simulated
the deformation under different rivet upsetting directions and
assembly sequences, and optimized the process parameters through
virtual plane calculation, which significantly reduced the riveting
dimensional error of large aluminum components and solved the
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problem of assembly accuracy caused by poor plastic deformation
ability of low-ductility materials. In addition, Wang et al. (2019)
determined the constitutive parameters for predicting the dynamic
behavior and failure of riveted joints through material testing
and modeling, providing a theoretical basis for the performance
prediction of solid rivet connections under impact loads of
carrier tools.

3.2 Forming process simulation and
validation

Blind rivet riveting (also known as blind riveting) utilizes the
special structure of blind rivets and is suitable for single-sided
operation scenarios. The riveting process includes three consecutive
stages: bulge formation, lock ring engagement and valve stem
fracture, so as to realize the connection of workpieces, as shown
in Figure 7b (Min et al, 2015b). This process is operationally
convenient; however, when used with low-ductility materials,
careful control of the expansion force is essential to prevent material
brittle fracture.

Regarding the fatigue damage problem during the joining
process, Li et al. (2016) pointed out that the damage of CFRP
during installation is mainly matrix extrusion crushing, while the
aluminum alloy side is prone to plastic deformation of the hole wall.
Interference fit can significantly improve the bearing strength of
CFRP/Al single-lap blind riveted joints during the installation stage.
Zhao et al. (2021) found through finite element analysis that the
shear bearing capacity of stainless steel blind riveted connections
increases linearly with the number of rivets, and plastic bending
is prone to occur due to the low elastic limit of the material. It
is suggested that the group rivet effect coeflicient can be ignored
in design, providing a reference for the structural design of blind
riveting for low-ductility light alloys. The SPH-FEM coupling model
of Wang et al. (2018) revealed the energy conversion law in Mg/Al
blind riveting. The frictional heat generated by torque accounts for
the dominant part of the total energy consumption, the maximum
temperature on the Mg side is slightly higher than that on the Al
side, and the interface interlocking formed by material flow is the
key guarantee for joint strength. In the Al-Mg blind riveted joints
on the hull, the Mg side undergoes uniform corrosion due to the
alkaline crevice environment, while the Al side experiences crevice
and galvanic corrosion, which puts forward special requirements
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(a) Riveting equipment diagram (b) Flow chart of blind rivet riveting process (Min et al., 2015b).

for the protection of magnesium alloy-aluminum alloy joints in
shipborne carrier tools (Li et al., 2018).

Process parameters are important factors affecting connection
quality, so optimizing process parameters is an important way to
achieve efficient connection. Wang G. et al. (2024) found through
finite element simulation that when the hole diameter increases,
the protruding dimensions of the mandrel and lock ring increase,
and the contact stress between the sleeve and the mandrel as well
as the connecting plate increases; when the interlayer thickness
increases, the contact stress first increases and then stabilizes, while
the contact stress between the lock ring and the sleeve first increases
and then decreases. In addition, the influence of sleeve geometric
parameters cannot be ignored. Feng et al. (2024) studied that two
key geometric parameters of the sleeve will change the shape of the
blind end and the distribution of the bearing area, thereby affecting
the damage degree of CFRP. Reasonable design can reduce material
crushing and improve joint integrity. Aiming at the problem of
simulation accuracy caused by the gradient hardness distribution of
blind rivets, Tao et al. (2024) proposed a hardness-based Johnson-
Cook constitutive model. By introducing a hardness compensation
term, the stress prediction error was significantly reduced, which can
accurately simulate the bulge forming process of A286 superalloy
blind rivets. Their subsequent research also found that the strain
gradient in the bulge area after riveting will drive grain refinement
and increase in dislocation density, among which the contribution
of dislocation strengthening to yield strength reaches 53.3%-57.3%,
providing a theoretical basis for the performance control of low-
ductility light alloys after riveting (Tao et al., 2025). Bothiraj et al.
(2023) used Taguchi method and ANOVA analysis and found that
the strength of friction stir blind riveted joints is comprehensively
affected by rivet material, diameter, sheet combination and spindle
speed. Among them, rivet material has the greatest influence; within
a certain range, the strength increases with the increase of spindle
speed, but when the speed is too high, the strength decreases due to
overheating.

The process innovation of blind rivets is constantly
developing, and the connection performance has made significant
breakthroughs through continuous optimization and innovation of
blind riveting processes. The new single-step blind riveting method
developed by Min et al. (2015a) makes the maximum tensile load
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of the joint 20% higher than that of traditional blind riveting
and 11% higher than that of friction stir blind riveting, which
is suitable for dissimilar connections between magnesium alloys
and aluminum alloys. Subsequent research on AA6111/AA6022
joints showed that the maximum tensile load of friction stir blind
riveting increases slightly with the increase of feed rate, and the
joint failure presents a “shear-tearing” composite mode. Micro-
hardness tests show that the stir zone has a hardness peak due to
strain hardening (Min et al., 2014). The pre-holed friction stir blind
riveting (FSBR-pH) process developed by Ali et al. (2022) solves
the applicability problem of traditional processes in pre-drilled
components by optimizing stirring parameters, and is suitable
for the connection of magnesium and aluminum alloys in hard-
to-reach areas such as aircraft cabins. Lu et al. (2023) provided
a performance prediction tool for the hybrid connection of low-
ductility light alloys and composites through numerical simulation
methods. In terms of quality monitoring, the two methods proposed
by Penalva et al. (2025), manufacturing chain analysis and deep
learning image recognition, have a prediction accuracy of over
0.9 for the installation quality of blind rivets, providing technical
means for defect detection in automated production. In special
working condition applications, the flow drilling riveting process
proposed by Zhang K. et al. (2022) predicts penetration force
and torque through a thermal-mechanical coupling model, with
a temperature prediction error <4%, providing ideas for parameter
optimization of titanium alloy blind riveting in high-temperature
environments.

4 Novel riveting technology
4.1 Self-piercing riveting process

4.1.1 Process principle and flow

Self-piercing riveting (SPR) is an efficient cold joining
technology, which is suitable for connecting dissimilar materials.
As shown in Figure 8b, it is divided into four different steps: (1)
Clamping, where two sheets are pressed against the die by a blank
holder; (2) Piercing, where the upper sheet is split into two parts
by a semi-tubular rivet driven by the punch; (3) Flaring, where the
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FIGURE 8
(a) Self-piercing riveting equipment (b) Flow chart of self-piercing riveting process.

rivet tail starts to spread into the lower sheet, causing interlocking ~ mentioned by Wang et al. (2024a) in their optimization of aluminum
deformation between the two sheets; (4) Release, where the punch  alloy blind riveting process parameters, steel rivets with an 8-12 pum

retracts and releases (Du et al., 2021a). thick zinc-nickel alloy coating have 5-10 times the corrosion

resistance of traditional zinc-plated coatings and can achieve no red
4-1-_2 }.(ey _inﬂuenCing factors and process rust for more than 1,000 h in neutral salt spray tests. For the SPR
optimization joining of high-hardness materials such as AA7075-T6, Lun et al.

The die structure is a primary factor influencing the formation (2025) found in their comparison of the effects of different dies

quality, and its structural parameters directly affect material flow,  ,, AA5052 joints that an ALO,-TiO, ceramic-based coating can

interlock formation and cracking risk of low-ductility materials.
Process parameters directly affect the homogeneity of the joint’s

reduce the friction coeflicient between the rivet and the base material
from 0.35 to 0.18, decrease the piercing force by 15%-20%, and
avoid scratches on the base material surface. In adhesive-riveted
hybrid joints, Liu et al. (2024) pointed out in their study on the
effect of pre-holing on self-piercing adhesive-riveted joints that

microstructure by governing material flow behavior, which in turn
determines its mechanical properties.

In addition to die and process parameters, the material selection
and surface coating of rivets are also key factors affecting the quality phosphate conversion coatings enhance mechanical interlocking
of SPR joints, as both directly determine the joint’s load-bearing

. ) ) 7 ) o with adhesives through their porous structure, which can increase
capacity, corrosion resistance, and compatibility with dissimilar

the interfacial shear strength by 20%-30% and optimize the overall
performance of the joint.

Huang et al. (2024) studied dissimilar joints and found that the
die type and size significantly affect the material distribution and
forming quality of the lower sheet; increasing the rivet height will

base materials. For the joining of low-ductility light alloys, rivet
materials must balance strength matching and galvanic corrosion
avoidance: for aluminum-based multi-material joints, aluminum
alloy rivets (such as AA5052-O and AA6061-T6) with thermal
expansion coefficients similar to those of the base materials are
often used. As noted by Zhang H. et al. (2024) in their study on
the adaptation of spherical dies to low-ductility materials, AA6061-
T6 can reach a tensile strength of 310-340 MPa after solution and
aging treatment, ensuring load-bearing capacity while maintaining
a certain degree of ductility, which can effectively avoid brittle

significantly improve the interlock amount and effective thickness;
the filling state of the die groove directly determines the expansion
degree of the rivet. Lun et al. (2025) compared the effects of flat,
convex and spherical dies on AA5052 joints. The flat die can obtain
the maximum interlock value and optimal mechanical properties,

fracture during the piercing process. When joining high-hardness but the rivet head height is higher, resulting in slightly inferior

materials, Wang et al. (2024c) pointed out in their analysis of forming quality to the convex die; the spherical die has poor

the rivet hardness matching requirements for different stacking forming quality and mechanical properties due to limited material
combinations that high-strength steel rivets (such as boron steel ~ flow. However, Zhang Z. et al. (2024) pointed out that a spherical
B1500HS and martensitic stainless steel 17-4 PH) can achieve a  di€ is more suitable for low-ductility materials. When parameters
yield strength exceeding 1,200 MPa after quenching and tempering 3¢ appropriately set, it can avoid sheet cracking and form a high-
treatment, preventing rivet shank deformation during piercing. For  strength interlock. The key lies in the fact that a moderate strain rate
CFRP/aluminum hybrid joints, Zhang et al. (2020) found in their ~ Pprevents the initiation of micro-cracks caused by uneven plastic flow

research on pre-holed self-piercing riveting that titanium alloy rivets ~ in low-ductility materials.

have a small galvanic potential difference with CFRP, which can The matching between the die and the rivet is also crucial to
avoid interface corrosion, and their high specific strength helps  the forming quality of the joint. Silvayeh et al. (2024) found that
reduce the additional weight of the structure. although the offset between the rivet and the die will change the

Surface coatings further improve the durability and process  symmetry of the joint, as long as the interlock amount is sufficient,
adaptability of rivets: SPR joints in automotive chassis or marine  the impact on shear strength is limited. The reshaped self-piercing
carrier tools are prone to contact with corrosive media. As  riveting proposed by Wu et al. (2025) realizes secondary flaring by
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optimizing the die structure, which improves the shear strength and
solves the bottom defect problem of traditional SPR. In addition,
Wang et al. (2024a) pointed out that different stacking combinations
need to be matched with rivets and dies of specific hardness.
Wang C. et al. (2023) proposed that T6/T7 heat treatment reduces
cracks by reducing the yield strength for the connection of die-cast
aluminum alloys and high-strength steels, significantly improving
the energy absorption of joints. Ying et al. (2021) confirmed that
thermal self-piercing riveting can significantly improve connectivity
after increasing the riveting temperature, and the load angle and
speed have a significant impact on mechanical properties.

4.1.3 Joint performance characterization

The quality of die design ultimately needs to be verified by
joint performance. In terms of static mechanical properties, the
multiple nonlinear regression model established by Chen et al
(2022) for various aluminum alloys shows that the joint failure
load and maximum riveting force are mainly affected by the
interaction between sheet thickness and rivet hardness, and the
model prediction error is small, providing a quantitative basis
for parameter optimization. The friction self-piercing riveting
developed by Li et al. (2024) achieves crack-free connection through
die design control; the D2 die, due to the synergistic effect of
mechanical interlocking and solid-state bonding, has a single-lap
shear strength of 11.57 kN. Duan et al. (2023) found that the smaller
the edge riveting distance, the lower the maximum shear load
and energy absorption, and the joint strength based on the upper
sheet is better.

In terms of dynamic and corrosion performance, Du et al.
(2021b) compared and found that aluminum-steel SPR joints exhibit
a higher peak force under dynamic loading compared to quasi-static
loading, yet with lower energy absorption. This indicates a reduction
in the material’s plastic deformation capacity at high loading rates,
where the accumulation of microscopic damage more readily leads
to brittle failure. Chen et al. (2025) found in AZ31/PEEK dissimilar
joints that the early corrosion current density of SPR joints is
higher than that of friction stir spot welded joints, but the residual
strength after immersion is twice that of the latter, and the long-
term stability of the mechanical interlock structure is better. The
equivalent simplified model established by Duan et al. (2023) can
accurately simulate the collision response of steel-aluminum hybrid
beams, and found that increasing the load angle is prone to cause
beam instability, and at this time, rivet failure has a significant impact
on energy absorption. Zhang et al. (2025a) studied the influence
of axial compression on 5083 aluminum alloy joints, showing that
60-80 kN compression can improve section parameters but increase
the risk of rivet cracks.

4.1.4 Existing problems and future directions

SPR, through the optimization of die parameters and regulation
of joint performance, exhibits excellent adaptability to dissimilar
materials and stability under complex working conditions—these
merits have made it a crucial technical means in the manufacturing
of lightweight transportation vehicles. In current mechanism
research, although numerical simulation can analyze forming stress,
strain, and impact response, it lacks investigation into the influence
of microscopic damage. Future efforts should focus on three key
directions: first, advancing the intelligent design of dies and rivets;
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second, conducting morphology research under the multi-field
coupling mechanism; and third, establishing a multi-scale numerical
simulation platform to provide support for the technical application
under various working conditions.

4.2 Pre-holed self-piercing riveting

4.2.1 Process principle and flow

Pre-holed self-piercing riveting (PH-SPR) builds on the
conventional SPR process by incorporating a pre-hole step. By
optimizing the hole diameter to guide material flow, it enhances
the quality of the interlock structure. A hole with a specific diameter
is pre-processed on the sheet to be connected, and then a self-
piercing rivet is used to rivet the sheet through the pre-holed
hole. A mechanical interlock structure is formed through the
plastic deformation of the rivet and the sheet, thereby realizing the
connection of dissimilar or similar materials. The specific process
is shown in Figure 9.

4.2.2 Key influencing factors and process
optimization

This process is particularly suitable for joining multi-layer
dissimilar materials. Wang et al. (2024b) studied the influence
of process parameters on the performance of PH-SPR joints and
showed that increasing the sheet thickness improves the peak load;
when the hole diameter increases, the peak load of 1.6 mm steel
sheets decreases faster than that of 1.2 mm steel sheets. This indicates
that an excessively large aperture may lead to an insufficient interlock
structure, creating stress concentration points at the interface which
can become initiation sites for fatigue cracks.

Under dynamic loading conditions, the strain rate effect makes
the shear peak load increase linearly with the loading speed; the
combination of 1.2 mm steel sheets and 5.5 mm hole diameter
is more significantly affected by the loading speed, and the
peak loads of shear, peel and cross-tension joints all increase
with the speed, among which the cross-tension joints have a
larger increase (Wang et al., 2025a).

4.2.3 Joint performance characterization

To evaluate its joining effectiveness, researchers have conducted
in-depth analyses of the mechanical properties and durability of PH-
SPR joints. Zhang et al. (2020) found in the connection research of
carbon fiber reinforced polymer laminates and pure titanium sheets
that PH-SPR can reduce the strength loss of rivets and enhance
the hardening effect of titanium sheets; when the failure mode is
rivet pull-out, the strength is significantly higher than that of CFRP
layer tearing, and the interlock length is the key factor determining
joint strength.

Under extreme working conditions coupling corrosive
environments and dynamic loads, the performance of PH-SPR
joints degrades significantly. For example, in a neutral salt spray test
simulating the marine atmospheric environment (e.g., 5% NaCl
solution, sprayed at 35 °C), steel-aluminum dissimilar material
joints undergo severe galvanic corrosion due to the galvanic effect,
and the aluminum plate is rapidly corroded as the anode (Wang et al.,
2025b). Corrosion products accumulate at the riveting interface to
generate expansion stress, and the corrosion pit itself, as a stress
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Flow chart of pre-holed self-piercing riveting process (Zhang et al., 2020).

concentration point, greatly accelerates the initiation of fatigue
cracks. Wang et al. (2025¢) conducted experiments in a salt spray
corrosion environment and showed that the peak force of PH-SPR
joints without adhesive bonding decreased by 27.4% after 720 h
of corrosion, while the combination of electrophoretic coating
and adhesive bonding can basically offset the corrosion impact;
even if corroded, the peak force of PH-SPR-adhesive joints is still
much higher than that of uncorroded PH-SPR. In terms of fatigue
performance, increasing the hole diameter will shorten the fatigue
life, while increasing the sheet thickness can extend the life. Studies
have shown that the fatigue life of J16-5.5 joints with 1.6 mm
steel sheets and 5.5 mm hole diameter under 5.0 kN load is 5.3
times, 7.8 times and 3.98 times that of J12-5.5, J12-6.0 and J16-6.0
respectively. Stress concentration and fretting wear are the main
causes of fatigue fracture (Wang et al., 2025a).

4.2.4 Existing problems and future directions

In summary, PH-SPR adopts a joining mode that first uses pre-
drilled holes for guidance followed by self-piercing riveting. This
mode can effectively improve the interlocking uniformity and load-
bearing capacity of joints for high-hardness, high-thickness, and
multi-layer dissimilar materials. In current mechanism research,
however, there is still a lack of investigation into two key
aspects: first, the relationship among pre-hole size, strain rate, and
strength under dynamic loads; second, the law of corrosion-fatigue
coupled damage. For future work, efforts should focus on four
directions: establishing a global process optimization model based
on intelligent algorithms; conducting in situ research on dynamic-
corrosion coupled damage; developing an integrated simulation
tool for “process-performance-lifespan;” and promoting large-scale
application by combining low-cost surface treatment technologies.

4.3 Adhesive-riveted hybrid joining process

4.3.1 Process principle and flow

The adhesive-rivet hybrid joining process is an innovative
riveting technology that combines adhesive bonding with
mechanical riveting to fully leverage the advantages of both joining
methods. As shown in Figure 10a, the process is as follows: (1)
Surface treatment: remove oil stains on the base material, polish and
clean debris on the material surface; (2) Applying adhesive layer:
evenly apply the adhesive on the lower surface of the sheet; (3)
Performing SPR connection: at this stage, the upper sheet and the
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adhesive layer are split into two parts by the semi-tubular rivet
driven by the punch, and the rivet tail finally spreads into the
lower sheet, causing interlocking deformation between the two
sheets; (4) Curing: put all Riv-Bonding joints into an oven to cure
the adhesive layer; (5) Cutting joints: all joints are cut along the
center line of the rivet points; (6) Finally, quality evaluation is
carried out (Du et al., 2025).

4.3.2 Key influencing factors and process
optimization

Rivet riveting is prone to local stress concentration, and adhesive
bonding will have reduced connection performance in high-
temperature or impact environments. The adhesive-riveted hybrid
joining process combines adhesives with riveting technology, giving
full play to the advantages of both joining methods. Adhesives can
alleviate local stress concentration during rivet piercing, while rivets
make up for the performance shortcomings of adhesives under
high-temperature or impact conditions.

For adhesive-riveted hybrid joints, rivet material design must
balance adhesive compatibility and load synergy. Epoxy adhesives
(common in automotive/aerospace) are sensitive to acidic oxides,
so rivets with neutral surfaces are preferred over rust-prone
carbon steel. As Alpendre et al. (2025) showed, 304 stainless
steel rivets paired with epoxy adhesives have a 2.5-times longer
fatigue life under 10° cycles. For high-strength scenarios like white
body doors, Du et al. (2025) proposed gradient hardness rivets to
resist compression and adapt to adhesive shrinkage, avoiding stress
concentration.

Surface coatings further optimize the adhesive-rivet synergy.
Liu et al. (2024) noted in their pre-holing studies that
polytetrafluoroethylene coatings reduce adhesive buildup on rivet
shanks during piercing, narrowing the fluctuation range of joint
shear strength and ensuring process stability. In hygrothermal
environments, silane coatings enhance the bonding between rivets
and adhesives by repelling moisture, effectively reducing interfacial
peeling and maintaining higher energy absorption capacity after
aging. For hybrid joints of carbon fiber-reinforced polymer (CFRP)
and light alloys, Zhang H. et al. (2023) highlighted that nano-
ceramic coatings (such as TiO,) on rivets minimize CFRP fiber
abrasion during piercing, significantly reducing the strength loss
of the CFRP layer, which is crucial for preserving the structural
integrity of CFRP in lightweight applications.

In terms of rivet layout, Cui et al. (2020) studied CFRP/Al
electromagnetic adhesive-riveted joints and found that the shear
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strength of joints with 4 rivets in a square array layout is the highest
with less weight gain, because a reasonable layout can optimize
the adhesive layer thickness distribution and enhance the anti-peel
torque. Regarding the interaction between the adhesive layer and
the rivet, Du et al. (2025) pointed out through steel-aluminum
joint experiments that the position of adhesive layer defects has a
significant impact on forming quality and mechanical properties,
while the influence of defect area ratio is small.

In addition, Liu et al. (2024) proposed that the pre-holing
process can improve the performance of self-piercing adhesive-
riveted joints; when the pre-holed diameter of the upper sheet
is 3 mm, the peak force and energy absorption of the joint are
increased by 12.79% and 35.71% respectively compared with non-
holed joints. The reason is that the adhesive flows into the rivet
cavity through the hole, increasing the bonding area and mechanical
interlocking effect.

4.3.3 Joint performance characterization
Rivets of

adhesives under extreme conditions such as high temperature,

make up for the performance deficiencies
low temperature, and impact. Specifically, when the ambient
temperature exceeds the glass transition temperature of the
structural adhesive, the adhesive layer will soften, causing its
modulus and strength to drop sharply (Zhang H. et al., 2023). In
severe cold environments (e.g., —40 °C), the adhesive layer becomes
brittle, and its impact resistance deteriorates. At this time, the
mechanically interlocked riveting points become the main load
transfer path, ensuring that the joint still has a certain residual
strength after the adhesive fails. Alpendre et al. (2025) studied high-
strength steel sheets and showed that when double-drill riveting is
combined with adhesive bonding, regardless of whether riveting
is performed before or after adhesive curing, the shear and peel
strength of hybrid joints are significantly higher than those of single
adhesive or riveted joints. Sadowski et al. (2011) further confirmed
through aluminum sheet experiments that the tensile strength of
adhesive-riveted hybrid joints is not only higher than that of single
adhesive or riveted joints, but also their energy absorption capacity
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is significantly improved due to the synergy of the two joining
mechanisms. Jiang et al. (2021) studied Al/steel structures and
showed that the peak load of joints combining electromagnetic self-
piercing riveting and adhesive bonding is 177.3% higher than that of
single riveted joints, and the energy absorption is 360.0% and 47.9%
higher than that of single riveting and adhesive bonding respectively;
the failure process presents a progressive mode of first adhesive layer
failure and then rivet bearing, this staged failure behavior originates
from the microscale synergistic deformation between the adhesive
layer and the mechanical interlock interface, which delays crack
propagation. Ibrahim and Cronin (2022) also tested aluminum
alloy joints and showed that the strength of adhesive-riveted hybrid
joints with 1-2 mm thick sheets is close to that of single adhesive
joints, while the energy absorption is 53.5% higher than that of
single self-piercing riveting, taking into account lightweight and
fatigue resistance, which is suitable for carrier tool body structures.
At the same time, the joint performance of the adhesive-riveted
hybrid joining process is affected by various process parameters.
The research on numerical simulation and failure mechanism
provides a theoretical basis for process optimization. Gomez et al.
(2007) established a mechanical model of adhesive-riveted single-
lap joints using Bond-Graph technology, and accurately reproduced
the experimental curves through 4 characteristic parameters,
providing a simplified method for predicting joint stiffness and
strength. Presse et al. (2021) proposed a stress-based fatigue life
calculation method for aluminum-high-strength steel hybrid joints,
and realized the quantitative evaluation of fatigue performance
combined with the material S-N curve. In terms of failure
mechanism, Zhang J. et al. (2023) studied Al/CFRP adhesive-riveted
joints and showed that the failure process is divided into three
stages: the failure proceeds through a sequence of initial adhesive-
rivet load-sharing, progressive adhesive fracture, and final load-
bearing by the rivet alone; temperature has a significant impact on
strength, and hygrothermal aging mainly affects the elongation at
break. For the connection of CFRP and light alloys, the HH-BR
process proposed by Su et al. (2024), which combines pre-holed
adhesive bonding and self-piercing riveting, improves the interlock
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value between the rivet and the sheet, and the joint strength and
energy absorption are better than traditional processes; the failure
mode is mainly rivet bending and fiber tearing, reducing brittle
fracture caused by insufficient material ductility. The high-speed
load experiment by Wen et al. (2024) showed that the peak load
of aluminum alloy electromagnetic self-piercing adhesive-riveted
joints increases with the speed under dynamic loading, and the
rivet remains connected to aluminum when failing, avoiding overall
disintegration, which is suitable for the safety design of carrier tools.

4.3.4 Existing problems and future directions

The adhesive-rivet hybrid joining process enables adhesives
to disperse the local stress caused by rivet piercing, while rivets
make up for the performance shortcomings of adhesives under high
temperatures and impact loads—this combination can significantly
improve the service life and performance of joints. However,
the stress transfer path of adhesive-rivet synergy under dynamic
loads, as well as the interfacial hydrolysis of adhesives and the
degradation mechanism of joint mechanical interlocking, have not
yet been clarified. Moreover, numerical simulations ignore the
nonlinear behavior of adhesives, making it difficult to predict
performance in extreme environments. Future efforts should focus
on three aspects: first, developing high-temperature and moisture-
heat resistant adhesives; second, establishing a multi-field coupling
simulation model; and third, introducing machine vision to achieve
real-time monitoring of adhesive layer defects.

4.4 Friction self-piercing riveting

4.4.1 Process principle and flow

Friction Self-Piercing Riveting (F-SPR) is a new solid-state
joining technology integrating traditional self-piercing riveting and
friction stir processing. As shown in Figure 11c (Ma et al., 2017),
the rivet rotates at high speed to contact the surface of the material
to be connected, and the local material is softened by frictional
heat, which improves the plasticity of low-ductility light alloys;
then, under the pressure of the punch, the rivet pierces the upper
material and forms a mechanical lock with the lower material;
the friction stir effect promotes dynamic recrystallization at the
contact surface, forming a solid-state metallurgical bond, and finally
realizing the dual strengthening of mechanical interlocking and
solid-state joining.

Compared with traditional self-piercing riveting, F-SPR reduces
material deformation resistance through frictional heat, which can
significantly reduce tool force and avoid brittle fracture of low-
ductility materials (Ma et al., 2021).

4.4.2 Key influencing factors and process
optimization

Key process parameters, such as frictional heat input and axial
pressure, collectively determine the thermo-mechanical cycle in
the joining zone, which in turn governs the extent of dynamic
recrystallization and the evolution of the microstructure.

Liu et al. (2016) studied the connection of AA7075-T6 and
AZ31B and found that higher rotation speed and slower punch
speed can reduce axial force and torque, but reduce the interlock
amount between the rivet and the material; at the same time, high
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rotation speed promotes local flow of aluminum and magnesium
alloys, forming an aluminum layer wrapping the rivet legs. Yang et al.
(2022a) used a flat die to connect AA6061-T6 and AZ31B and found
that increasing the feed rate reduces frictional heat input, leading to
an increase in riveting force, thereby increasing the bottom thickness
and interlock amount of the joint, but reducing the material heat-
affected zone. In addition, Zhang B. et al. (2024) adjusted the
geometry of the stir zone through the design of annular bosses
by customizing the rivet structure, increasing the joint strength by
6.9%-11.1%.

4.4.3 Joint performance characterization

Ma et al. (2022) compared F-SPR and SPR joints of AA5182 and
found that the former has significantly higher lap shear strength
and fatigue life due to the existence of solid-state joining. The
underlying reason is that the frictional heat promotes dynamic
recrystallization in the interfacial region, resulting in a refined grain
structure that enhances the joint’s strength and toughness. Li et al.
(2022) investigated F-SPR joints between CFRP and AZ31B and
found that the fatigue performance under high load was superior
to that of resistance spot welding. This enhancement is attributed
to the metallurgically bonded zone formed by friction stirring,
which effectively suppresses crack propagation. Yuan et al. (2025)
further confirmed through fatigue analysis of 2060-T8 aluminum
alloy joints that the failure mode under high load is rivet shear +local
fracture of the lower material, while under low load, it is the fracture
of the lower material at the rivet tip. Stress concentration and fretting
wear are key factors. Joint failure is related to the matching of
“mechanical interlock strength - solid-state joining strength - local
material performance” For example, in adhesive-riveted hybrid F-
SPR, adhesives reduce the mechanical interlock amount through
lubrication, but after baking and curing, they can promote the
precipitation of strengthening phases in the heat-affected zone of
aluminum alloys, making the shear strength of joints significantly
higher than that of pure F-SPR (Yang et al., 2022b).

F-SPR also performs well in the connection of dissimilar low-
ductility light alloys. The single-sided F-SPR process developed by
Xian et al. (2019) reduces the frictional heat of the lower material
through a two-stage feeding method, significantly improving the
shear strength and transverse tensile strength of AA6061-T6
joints respectively. As an important single-sided connection variant
of F-SPR, Single-Sided Friction Self-Piercing Riveting (SSFR) is
specifically designed for enclosed or hard-to-reach areas (e.g.,
aircraft cabins, closed automotive chassis components), addressing
the applicability limitations of traditional double-sided F-SPR.
It achieves the full process of “frictional softening - piercing
- interlocking” with only single-sided force application through
optimized tooling structures and process strategies. Zhang Z. et al.
(2024) increased the shear strength of AA7075-T6/DP590 dissimilar
joints by 6.9%-11.1% compared to conventional single-sided F-
SPR by designing annular boss structures in SSFR to regulate
the stir zone geometry, while reducing the risk of brittle phase
formation at the interface. In terms of process mechanism, Bingxin
etal. (2023) revealed via thermo-mechanical coupling simulation
that the single-end dynamic loading of SSFR concentrates the
material strain rate in the riveting region, promoting dynamic
recrystallization of low-ductility AZ31B magnesium alloy and
refining its grain size to 1-2 pm, thereby improving joint fatigue
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life. Ma et al. (2017) verified SSFR’s applicability in aluminum
alloy/composite connections in early feasibility studies, resolving
insufficient interlocking caused by single-sided operation by
adjusting the matching relationship between rivet rotation speed
and axial pressure. Recent research has further focused on extreme
service conditions: Yuan et al. (2025) showed that after 720 h of
salt spray corrosion, the residual shear strength of SSFR joints
remains above 65% of the base material, outperforming traditional
double-sided F-SPR. For process parameter optimization, Yu et al.
(2025) optimized SSFRs rotation speed (1,500-2,500 r/min)
and feed rate (2-5mm/s) using response surface methodology,
establishing a quantitative model between joint strength and process
parameters to support large-scale applications. In addition, the
ratio of mechanical interlocking and solid-state joining can be
quantitatively controlled by optimizing process parameters through
numerical simulation, providing accurate guidance for engineering
applications (Ma et al., 2020).

The microstructure directly affects the performance of F-SPR
joints. Low-ductility materials undergo dynamic recrystallization
under the action of frictional heat and mechanical force. For
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example, an ultra-fine grain structure is formed at the AZ31B
magnesium alloy joint, which significantly improves the hardness;
in AA7075-T6 joints, the aluminum captured in the rivet cavity
forms a solid-state joining zone with the lower aluminum sheet
through dynamic recrystallization, whose yield strength reaches
75% of the base material and elongation exceeds that of the base
material (Ma et al., 2022). In the connection of dissimilar materials,
a composite joining layer is easily formed at the interface, and
the influence of interface products on joining strength needs to
be regulated through parameter optimization (Shan et al., 2023).
The threaded rivet FSRW by Zhang P. et al. (2022) increases the
shear and transverse tensile strength of joints by 65% and 170%
respectively compared with friction stir spot welding. Therefore,
regarding the influence of process parameters on joint forming
quality and performance.

4.4.4 Existing problems and future directions
F-SPR has broken through the technical bottleneck in joining

low-ductility lightweight alloys via the synergistic regulation of

thermal-mechanical-metallurgical effects. Its characteristics of high
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joining efficiency and strong material adaptability have made it
one of the key joining technologies for lightweight structures of
transportation vehicles. Although current research has clarified
the strength-enhancing effect of DRX, it has not yet defined the
relationship between grain size, dislocation density, and solid-
state joining strength. Numerical simulation fails to quantify
the thermal-mechanical-metallurgical coupling effect, making it
difficult to predict the evolution of interfacial products. Future
research should, first, establish a correlation model between
frictional heat and microstructure by integrating technologies such
as EBSD; second, optimize joint performance through rivet surface
coating; third, develop a multi-field coupling simulation platform;
and finally, advance equipment miniaturization to reduce mass
production costs.

4.5 Electromagnetic riveting

4.5.1 Process principle and flow

Electromagnetic Riveting (EMR) is an advanced process
for material joining based on the principle of electromagnetic
induction. It generates instantaneous impact force through the
electromagnetic repulsion between the coil and the driver plate to
plasticize the rivet, thereby completing the connection, as shown
in Figure 12b. Its unique dynamic loading characteristics make it
show significant advantages in the joining of low-ductility light
alloy materials, and it has become one of the key technologies for
the assembly of lightweight structures of carrier tools (Cao and
Zuo, 2020).

4.5.2 Key influencing factors and process
optimization

Compared with traditional riveting processes, the core
advantages of EMR are reflected in two aspects: microstructure
regulation and mechanical property improvement. The core process
characteristic of high-strain-rate dynamic loading significantly
influences the material’s plastic deformation mechanism and
microstructural evolution.
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electromagnetic repulsion force based on circuit, electromagnetism
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and dynamics theories, which can calculate parameters such as
current, impact force and rivet deformation, providing a basis
for process parameter optimization. Aiming at the low energy
conversion efficiency of traditional induction electromagnetic
riveting, Hu et al. (2025) applied a new reluctance electromagnetic
riveting (REMR), which can achieve higher energy conversion
efficiency at low voltage; when riveting 2A10 aluminum alloy
rivets, the voltage is lower than that of the traditional process,
the efficiency is increased by 156%, and the adiabatic shear
band is narrower. In terms of expanding the connection of
dissimilar materials, Jin et al. (2025) applied the flat electromagnetic
self-piercing riveting process and used new semi-solid rivets,
reducing the CFRP damage in the connection of carbon
fiber reinforced plastics and 5052 aluminum alloys through
rivet shank upsetting and secondary expansion of rivet legs,
with the peak load increased by 18.3%. The construction
of theoretical models has further improved the application
basis of EMR. Zhang et al. (2019) constructed an interference
fit model based on stress wave theory and thick-walled cylinder
theory, comprehensively considering parameters such as material
properties, geometric dimensions and riveting force, predicted the
residual stress distribution, and provided scientific guidance for
process design.

4.5.3 Joint performance characterization

Study on 2A10 and 6082 aluminum alloys revealed that the
grain deformation in the shear zone of the EMR-driven head is
more severe, and the interference distribution is more uniform.
This homogeneous microscopic deformation is attributed to more
sufficient dislocation slip and grain refinement under the high-
energy impact, thereby enhancing the fatigue performance of the
joint (Dong et al., 2019). Wang Y. et al. (2023) found in the riveting
of TB2 titanium alloy that the interference amount of EMR joints is
not only larger than that of hot riveting but also more uniform; the
deformation of the driver head and rivet shank is more significant,
and the hardness is higher; at the same time, the mechanical
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properties of the joint are not reduced, which can effectively replace
the hot riveting process.

For titanium alloy rivets, EMR can realize efficient joining of
hard-to-deform materials at room temperature; the average relative
interference amount of multi-layer structures reaches 2.5%-3.0%,
the shear load of the rivet tail reaches 9.9 kN, and the pull-out
load reaches 12.5 kN (Zhang et al., 2018). In terms of mechanical
properties, the fatigue resistance of EMR joints is particularly
prominent. Under shear load, the fatigue life of EMR joints is 1-3
times that of conventional pressure riveted joints, and the fatigue
crack growth zone is wider under low cycle stress Li et al. (2017);
Jiang et al. (2019) found that when using an 80° special rivet die,
the pull-out fatigue life of EMR joints is significantly higher than
that of flat dies, because the special die limits the radial flow of the
rivet head material and increases the interference fit strength. In
the connection of Al/high-strength steel DP590 dissimilar materials,
there are two fatigue failure modes for electromagnetic high-speed
nailed joints; with 253 MPa as the critical stress, the rivet shank
fractures under high stress, and the rivet head fractures under low
stress (Jiang et al., 2022). In addition, prefabricated cracks have a
special impact on the performance of EMR joints; the shear bearing
capacity of 2A10 aluminum alloy rivet joints with prefabricated
cracks is slightly higher than that of joints without cracks, but
the failure displacement of joints without cracks is larger, and the
vibration reduction effect is better (Zhang et al., 2025b).

4.54 Existing problems and future directions

In summary, electromagnetic riveting, by virtue of the dynamic
loading characteristics of instantaneous high strain rate, can
not only promote more uniform plastic deformation of low-
ductility light alloys during joining but also improve the overall
performance of joints by regulating the material microstructure.
The deep integration of numerical simulation technology and
electromagnetic riveting provides precise guidance for process
parameter optimization. This technical synergy not only expands
the application boundary of electromagnetic riveting in lightweight
structures of carrier tools but also provides a solid guarantee for
connection reliability under complex working conditions.

5 Conclusion

This section is not mandatory but can be added to the
manuscript if the discussion is unusually long or complex.

Driven by the global “dual carbon” goals and strict emission
regulations, lightweight of carrier tools has become the core
direction of industry development. Low-ductility light alloys, with
high specific strength and low density, are key to achieving
material lightweight. However, in actual connection applications,
traditional fusion welding technology is difficult to meet the joining
requirements of dissimilar materials and low-ductility materials due
to problems such as brittle phase formation, thermal deformation
and galvanic corrosion caused by high temperature. Riveting, as an
efficient cold joining technology, has become an important solution.

This paper systematically reviews the research progress
of riveting processes for low-ductility light alloys. In terms
of traditional technologies: solid rivet riveting improves the
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deformation uniformity and connection reliability of low-
ductility materials through the collaborative optimization of
rivet geometric parameters and process parameters; blind rivet
riveting effectively suppresses material brittle fracture by regulating
the balance between mandrel tension and deformation rate,
expanding the application of single-sided operation scenarios.
In terms of new joining processes: self-piercing riveting (SPR)
reduces material damage by virtue of the pre-opening-free
characteristic, and die optimization further improves interlock
quality and joint performance; pre-holed self-piercing riveting
(PH-SPR) significantly enhances the bearing capacity of multi-
layer dissimilar material joints by optimizing the mechanical
interlock structure through preset hole diameters; adhesive-riveted
hybrid joining greatly improves the static load strength, fatigue life
and environmental adaptability of joints by using the synergistic
effect of adhesives and rivets; friction self-piercing riveting (E-
SPR) realizes the dual strengthening of “mechanical interlocking
- solid-state joining” by softening materials through frictional heat
and promoting dynamic recrystallization, effectively solving the
cracking problem of low-ductility alloys; electromagnetic riveting
(EMR) promotes uniform plastic deformation of materials through
high strain rate dynamic loading, showing unique advantages in
the joining of hard-to-deform materials such as titanium alloys. In
conclusion, the riveting process is undergoing an evolution from
traditional parameter optimization towards innovative mechanisms
that integrate thermal energy and high-energy fields, thereby
enhancing joint reliability.

However, numerous unresolved challenges and technical
bottlenecks persist in both traditional and novel riveting processes
for low-ductility light alloys: at the material level, uneven plastic
flow is prone to cause local stress concentration and crack initiation,
and the influence mechanism of residual stress on long-term
service performance is not clear; at the process level, parameter
optimization of new processes (such as F-SPR) mostly relies on
experimental trial and error, lacking accurate control models
for thermal-force-metallurgy multi-field coupling; in terms of
performance evaluation, research on the performance degradation
law of joints under complex working conditions (corrosion, impact,
fatigue, high temperature) is insufficient, and the prediction
accuracy of unique brittle failure modes of low-ductility materials
is limited; at the engineering application level, problems such as
galvanic corrosion protection of dissimilar materials, cost-benefit
balance of new processes and adaptability to large-scale production
need to be solved urgently.

To overcome the application bottlenecks of low-ductility
lightweight alloy riveting in the future, research must transition
from an “empirical trial-and-error” approach to a “model-driven”
paradigm. Breakthroughs should be pursued along the following
key pathways: First, to overcome the limitation of relying on
experimental methods for process parameter optimization due to
the lack of precise theoretical foundations, an intelligent riveting
system based on digital twins and machine learning should be
developed. By integrating multi-physics simulations and data-
driven algorithms, real-time prediction and adaptive control of
process parameters can be achieved, fundamentally enhancing the
consistency of forming quality. Second, to tackle the challenge
of synergizing mechanical, corrosion, and fatigue properties in
joints of dissimilar materials, multi-functional hybrid processes
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such as adhesive-riveting and electromagnetic-friction techniques
should be explored. Through the use of smart rivets and integrated
structural-functional design, the joint load-bearing capacity and
durability can be synergistically improved. Regarding the issue
of inaccurate service performance prediction of joints under
complex working conditions, full lifecycle performance evaluation,
reliability management, and online monitoring technologies should
be adopted. These approaches will enable accurate prediction of
joint lifespan, providing a scientific basis for the safe operation and
maintenance of transport vehicles. The coordinated advancement
of these pathways will significantly enhance the ability of riveting
technology to support the high-quality, lightweight development of
transport vehicles.
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