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Introduction: The excellent backfilling performance and significant potential 
for waste resource utilization make controlled low-strength material 
(CLSM) an important technical alternative to traditional backfilling methods. 
The preparation of CLSMs using excavated soil not only enables local 
material sourcing but also promotes waste resource utilization and reduces 
backfilling costs.
Methods: In this study, a novel CLSM was developed by incorporating sand, 
cement, fly ash, high-efficiency plasticizer, and water into excavated soil. The 
engineering properties—including flowability, setting time, bleeding rate, and 
density—were evaluated, with a focus on strength characteristics and the 
establishment of a strength-age relationship model. Multiple characterization 
methods were used to elucidate the strength development mechanism 
from the perspectives of hydration product evolution and microstructural 
changes. A machine learning prediction model based on Newton‒Raphson-
Based Optimizer (NRBO)-Light Gradient Boosting Machine (LightGBM) was 
constructed to achieve high-precision prediction of the relationship between 
mix proportions and strength.
Results and discussion: Results show that the prepared CLSM exhibits 
excellent engineering performance: flowability of 165–257 mm ensures 
good self-compacting and self-levelling; setting time of 4.6–7.48 h 
meets rapid construction needs; bleeding rate (≤1.28%) and fresh density 
(1880–2005 kg/m3) meet engineering standards; and 28-day strength 
(1.35–2.69 MPa) is suitable for both trenchless and excavatable applications. 
The strength–age relationship fits a hyperbolic model with accuracy above 
0.98. Microstructural analysis reveals that hydration of cement and fly ash 
produces C-S-H and C-A-H gels, filling pores and densifying the structure. The 
NRBO-LightGBM model achieved R2 values of 0.995 and 0.966 for training and 
test sets, respectively, demonstrating high accuracy and stability. Furthermore, 
by utilizing excavated soil as a replacement for sand in the aggregate, each
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cubic metre of CLSM can recycle 328–600 kg of dry excavated soil. These 
findings provide theoretical and technical support for CLSM development using 
excavated soil.

KEYWORDS

controlled low-strength material (CLSM), excavated soil, strength mechanism, 
flowability, machine learning, hydration products 

1 Introduction

Backfilling is a crucial process in engineering construction. 
Traditional backfilling methods utilize primarily cohesive 
soil from engineering excavations for layered filling and 
mechanical compaction to enhance the mechanical properties and 
impermeability. However, this approach is time-consuming and 
labour-intensive, and it is difficult to ensure backfilling quality 
in space-constrained areas, which affects construction efficiency 
(Indraratna et al., 2005). In recent years, controlled low-strength 
materials (CLSMs) have emerged as an innovative solution for 
engineering backfilling (Do and Kim, 2016). Owing to their excellent 
flowability, CLSMs enable self-levelling and pump construction, 
making them particularly suitable for backfilling operations in 
confined spaces and complex structures. These materials can achieve 
uniform and dense filling effects without vibration, significantly 
improving backfilling quality and construction efficiency (Ling et al., 
2018; Zhu et al., 2022; Dalal et al., 2023). Furthermore, CLSMs can 
be sourced from a wide range of materials, and various solid wastes 
can be used for CLSM preparation after passing performance testing 
(Wang et al., 2023; Zhao et al., 2024b). Such exceptional backfilling 
performance, combined with the enormous potential for waste 
resource utilization, makes CLSMs important technical alternatives 
to traditional backfilling methods, with promising prospects for 
widespread application in future backfilling projects.

To date, some progress has been made in the preparation of 
CLSMs using various types of engineering excavated soils (ESs). 
Finney et al. (2008) were among the first to propose the technical 
approach of using native soil to replace traditional aggregates in 
CLSM production, successfully applying fine-grained native soil and 
clay in a CLSM preparation for pipeline backfilling. Sheen et al. 
(2013) further investigated the engineering properties of soil-based 
CLSMs with partial cement replacement by slag, expanding the 
application scope of native soil CLSMs while improving their 
engineering performance and environmental benefits. Kim et al. 
(2016) explored the technical feasibility of combining ES with 
fly ash in a CLSM and proposed a technical approach for the 
synergistic utilization of ES and industrial byproducts, enriching 
the application pathways for ES resource utilization. Hwang et al. 
(2017) pioneered water treatment sludge–fly ash–slag alkali-
activated CLSM technology, laying the foundation for the synergistic 
utilization of sludge and other solid wastes, with their research 
establishing mix design methods and performance evaluation 
systems that provide important references for subsequent studies. 
Qian et al. (2019) focused on evaluating the performance of excess 
ES in CLSMs, whereas Fauzi et al. (2021) employed response 
surface methodology to optimize CLSM mixtures containing waste 
paper ash, providing methodological support for multisource 
solid waste mix optimization. Liu et al. (2022) reviewed the 

current applications of incineration industrial byproducts as 
cementitious materials, identifying the synergistic feasibility of using 
different soil types and incineration byproducts. Zhu et al. (2022) 
comprehensively assessed the suitability of mixing excavated loess 
and gravel soil for CLSM construction through combined laboratory 
testing and field validation, providing localized CLSM solutions 
for infrastructure construction in loess regions and achieving 
local sourcing and utilization of soil resources. The cement–fly 
ash–sewage treatment sludge ternary system developed by Ho et al. 
(2022) provides an important technical reference for sludge resource 
utilization. Du et al. (2024) systematically explored the application 
potential of waste expansive soil in CLSMs, demonstrating that 
through appropriate mix design, waste expansive soil could 
be successfully prepared into a CLSM to meet engineering 
requirements, confirming the feasibility of waste expansive soil 
resource utilization and providing new approaches for solving 
expansive soil disposal problems. Zhao et al. (2024b); Zhao et al. 
(2024c) conducted a series of studies that addressed the technical 
challenges associated with incorporating large quantities of fine-
particle waste soil from shield tunnelling into CLSMs. Their 
research successfully developed waste soil-based CLSMs that met 
performance requirements utilizing both cement combined with fly 
ash and slag combined with fly ash as binders.

These studies indicate that through mix design and admixture 
regulation, CLSMs with high flowability and controllable strength 
can be fabricated, and various types of engineering ESs can be 
utilized in CLSM preparation to obtain excellent performance. 
These findings have significantly expanded the range of raw 
materials available for CLSMs, deepened the understanding 
of their performance mechanisms, and strongly promoted 
technological advancements in this field. However, current research 
still faces a series of challenges: many materials remain in the 
laboratory stage, and although technically feasible, the processes are 
relatively complex, and numerous technical barriers persist during 
the transition to practical engineering applications, hindering 
widespread adoption. In addition, research on the strength 
development mechanisms of CLSMs and the development of 
strength prediction methods is insufficient, which restricts the 
precise control and optimization of material properties.

In addition, the modification and stabilization of soil through 
the incorporation of additives provide valuable reference and 
guidance for this study. Chang et al. (2024) applied phosphogypsum 
(PG) in a composite stabilizer consisting of cement, lime, and slag 
powder to modify loess for use in road base layers and analysed 
its microstructural evolution using X-ray diffraction (XRD) and 
scanning electron microscopy (SEM). Zhang et al. (2019) utilized 
fly ash and cement to stabilize loess and conducted freeze‒thaw 
durability tests, frost heave tests and thaw weakening tests, and 
unconfined compressive strength tests to evaluate performance 
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TABLE 1  ES index properties.

Index Value

Particle composition

Sand (d > 0.075mm, %) 17.82

Silt (0.005 mm < d ≤ 0.075mm, %) 60.58

Clay (d ≤ 0.005mm, %) 21.6

Mineral composition

Primary mineral (%) 70.2

Clay mineral (%) 29.8

Chemical composition

SiO2 (%) 63.98

Al2O3 (%) 18.95

Fe2O3 (%) 5.80

K2O (%) 3.19

CaO (%) 3.08

MgO (%) 2.26

Na2O (%) 1.15

TiO2 (%) 0.95

Others (%) 0.62

Physical indices

Specific gravity 2.62

Plastic limit (%) 22.7

Liquid limit (%) 43.1

Plasticity index 20.4

Water absorption (%) 11.5

Acid-base property

pH 8.3

Soluble salt content

total 1.240

HCO3
−(g/kg) 0.586

Ca2+(g/kg) 0.209

SO4
2-(g/kg) 0.206

Na+(g/kg) 0.087

(Continued on the following page)

TABLE 1  (Continued) ES index properties.

Index Value

K+(g/kg) 0.080

Cl−(g/kg) 0.052

Mg2+(g/kg) 0.015

improvements under laboratory freeze‒thaw conditions. Through 
one-dimensional consolidation tests, direct shear tests, and 
unconfined compressive strength tests, Pu et al. (2020) investigated 
the strength, water stability, compressibility, and shear properties 
of cement-stabilized silt and further analysed its microstructural 
characteristics using SEM and XRD. Although the preparation 
of CLSM using soil differs from stabilized soil in terms of soil 
content and targeted properties, these related studies provide 
important theoretical references regarding reaction mechanisms 
for the present research.

Addressing the research status and limitations, this study aims 
to develop a practical, and easily scalable preparation technology 
for soil-based CLSMs. This method uses ordinary Portland cement 
(OPC) and fly ash as cementitious materials, fully exploits 
engineering ES as fine aggregates, and incorporates an appropriate 
amount of construction sand along with a superplasticizer to 
optimize performance. On this basis, research is conducted that 
focuses on material properties, mechanisms, and strength prediction 
models, specifically encompassing the following three aspects. First, 
the workability properties of CLSMs, including flowability, setting 
time, bleeding rate, and density, are evaluated, with emphasis on 
strength characteristics and the establishment of a strength–time 
relationship model to verify their engineering applicability. Second, 
multiple characterization methods are employed to elucidate the 
strength development mechanism of the material system from the 
perspectives of hydration product evolution and microstructural 
changes. Finally, a machine learning-based strength prediction 
model is constructed, and its prediction accuracy is assessed 
to achieve precise prediction of CLSM strength performance 
while minimizing experimental input, thereby providing scientific 
decision-making support for engineering practice. 

2 Materials and methods

2.1 Materials

2.1.1 Excavated soil
The soil samples used were obtained from the foundation 

pit excavation during the open-cut construction of Anxin Road 
Station on Changchun Metro Line 5. The sampling point was 
located at 125°14′22″ E, 43°48′25″ N. After collection, the soil 
samples were first subjected to impurity removal, eliminating non-
soil components such as construction debris and plant roots. 

Frontiers in Materials 03 frontiersin.org

https://doi.org/10.3389/fmats.2025.1673682
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Sun et al. 10.3389/fmats.2025.1673682

FIGURE 1
(A) XRD mineral phase analysis spectrum of ES; (B) particle size distribution curves of ES and sand.

Systematic testing was subsequently conducted to evaluate the 
physical properties and mineral composition of the soils, with the 
relevant data presented in Table 1; Figure 1A. The particle size 
distribution analysis results are shown in Figure 1B, which indicate 
that the mass proportion of fine particles smaller than 0.075 mm in 
the soil is 82.2%. According to geotechnical classification standards, 
this soil is classified as silty clay. Mineral composition analysis 
revealed that the content of primary minerals (such as quartz and 
feldspar) in the soil is 70.2%, while clay minerals account for 29.8%. 
Among the clay minerals, illite and montmorillonite mixed layers 
are predominant.

2.1.2 Cement and fly ash
This study employed Dinglu brand OPC (P.O., strength grade 

42.5) produced by Jilin Yatai Cement Co., Ltd. The fly ash used was 
laboratory-grade Class F fly ash, supplied by Zhengzhou Yuzhong 
Power Plant Fly Ash Development Company. Both materials comply 
with the relevant standard requirements of ASTM C150/C150M-
17 (2017) and ASTM C618-19 (2019), respectively. The primary 
chemical compositions of the materials are detailed in Table 2.

2.1.3 Sand
Natural medium sand conforming to the relevant standards for 

Grade II sand as specified in GB/T 14684-2022 (2022) was used in 
this study. Its chemical composition is presented in Table 2, and the 
particle size distribution is illustrated in Figure 1B, with a fineness 
modulus of 2.66. 

2.1.4 Superplasticizer
The water-reducing admixture used in this study was a 

liquid polycarboxylate-based superplasticizer produced by Hunan 
Zhongyan Building Materials Technology Co., Ltd., which exhibited 
excellent dispersion properties and water-reducing performance. 

2.1.5 Water
The water used in this study was ordinary tap water sourced from 

Changchun City, which meets the water requirements for concrete 
mixing and related experimental procedures. 

TABLE 2  Physical and chemical analyses of OPC, fly ash and sand.

Index Value

OPC Fly ash Sand

Physical indices

Specific gravity (g/cm3) 3.15 2.53 2.66

Mean particle size (µm) 20 20.5 -

Specific surface area (m2/g) 0.35 0.31 -

Chemical composition

SiO2 (%) 29.18 51.08 75.34

Al2O3 (%) 9.11 35.23 11.98

CaO (%) 51.43 3.24 1.58

Fe2O3 (%) 3.29 4.34 1.42

MgO (%) 1.49 0.56 0.59

K2O (%) 0.92 1.21 4.25

SO3 (%) 2.89 2.01 0.12

TiO2 (%) 0.56 1.46 0.15

Others 1.13 0.87 4.57

Loss on ignition (%) 3.98 2.8 0.15

2.2 Mix proportion and mixing

2.2.1 Mix proportion
Given the high water absorption capacity of the ES, this study 

employed the water-to-solid ratio (W/S) instead of the traditional 
water-to-binder ratio to control the water content of the material. 
Additionally, the binder-to-aggregate ratio (B/A), the proportion 
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TABLE 3  Test matrix for the experiments.

Mix ID W/S (%) B/A (%) C/B (%) S/A (%) Ingredient proportions (kg/m3)

ES Sand OPC Fly ash Water Superplasticizer

W25B26C5S6 25 26 50 60 493.6 740.4 160.4 160.4 388.7 6.42

W25B30C4S6 25 30 40 60 477.0 715.5 143.1 214.7 387.6 7.16

W25B30C5S5 25 30 50 50 607.0 607.0 182.1 182.1 394.5 7.28

W25B30C5S7 25 30 50 70 368.8 860.5 184.4 184.4 399.5 7.38

W25B30C6S6 25 30 60 60 478.2 717.4 215.2 143.5 388.6 7.17

W25B34C5S6 25 34 50 60 465.0 697.5 197.6 197.6 389.4 7.90

W30B26C4S6 30 26 40 60 464.9 697.4 120.9 181.3 439.4 6.04

W30B26C5S5 30 26 50 50 584.2 584.2 151.9 151.9 441.7 6.08

W30B26C5S7 30 26 50 70 362.4 845.6 157.0 157.0 456.6 6.28

W30B26C6S6 30 26 60 60 467.4 701.1 182.3 121.5 441.7 6.08

W30B30C4S5 30 30 40 50 564.6 564.6 135.5 203.2 440.4 6.77

W30B30C4S7 30 30 40 70 348.5 813.1 139.4 209.1 453.0 6.97

W30B30C5S6 30 30 50 60 450.5 675.7 168.9 168.9 439.2 6.76

W30B30C6S5 30 30 60 50 571.9 571.9 205.9 137.3 446.1 6.86

W30B30C6S7 30 30 60 70 346.7 809.0 208.0 138.7 450.7 6.93

W30B34C4S6 30 34 40 60 434.6 651.9 147.8 221.6 436.8 7.39

W30B26C5S7 30 34 50 50 548.9 548.9 186.6 186.6 441.4 7.47

W30B34C5S7 30 34 50 70 334.5 780.5 189.6 189.6 448.3 7.58

W30B34C6S6 30 34 60 60 439.2 658.7 224.0 149.3 441.4 7.47

W35B26C5S6 35 26 50 60 449.0 673.4 145.9 145.9 495.0 5.84

W35B30C4S6 35 30 40 60 427.0 640.5 128.1 192.2 485.7 6.41

W35B30C5S5 35 30 50 50 542.3 542.3 162.7 162.7 493.5 6.51

W35B30C5S7 35 30 50 70 331.3 773.1 165.7 165.7 502.5 6.63

W35B30C6S6 35 30 60 60 435.0 652.5 195.7 130.5 494.8 6.52

W35B34C5S6 35 34 50 60 418.5 627.8 177.9 177.9 490.7 7.12

of cement in the binder (C/B), and the proportion of sand in the 
aggregate (S/A) were considered to facilitate mix design. Response 
surface methodology, specifically, Box–Behnken design (BBD), was 
used to construct 25 mix proportions. Table 3 presents the design 
parameters for each mix proportion and the quantities of the CLSM 
components.

Each mix proportion was identified using an ID code composed 
of letters and numbers. For example, the ID code “W25B26C5S6” 
represents a mix proportion with a W/S ratio of 25%, B/A ratio 

of 26%, C/B ratio of 50%, and S/A ratio of 60%. In this code, 
the uppercase letters denote the initial of each variable, while the 
numbers indicate the corresponding values, with the percentage 
sign omitted. 

2.2.2 Mixing procedures
The ES and sand were thoroughly air-dried, after which their 

water content was determined. During batching, their inherent 
moisture was deducted to ensure an accurate value of W/S. To 
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guarantee high homogeneity of the mixture, the solid components 
(ES, sand, OPC, and fly ash) were first precisely weighed according to 
the mix proportions and added sequentially to the mixer. They were 
then thoroughly mixed under dry conditions for no less than 5 min. 
Subsequently, the accurately measured water and superplasticizer 
were slowly introduced into the mixer in the correct proportions, 
followed by wet mixing for no less than 4 min to achieve the desired 
uniformity. The preparation process of the CLSM mixture and the 
characterization tests are shown in Figure 2.

2.3 Test methods

2.3.1 Flowability measurement
In this study, the flowability was evaluated using the flow 

cylinder method specified in ASTM D6103-17 (2017). The testing 
apparatus consisted of a highly transparent acrylic cylinder with an 
inner diameter of 75 mm and a height of 150 mm, which was placed 
vertically on a horizontally levelled acrylic plate while ensuring a 
tight seal at the base. The freshly mixed paste was poured into 
the cylinder until full, after which the cylinder was lifted vertically 
to allow the paste to spread freely under gravity. Once the paste 
ceased flowing, the maximum spread diameter and the diameter 
perpendicular to it were measured. The arithmetic mean of these 
two values was taken as the flowability, thereby minimizing errors 
caused by uneven spreading. 

2.3.2 Setting time measurement
The setting time of CLSMs was determined according 

to ASTM C403-23 (2023). The test was conducted using a 
standard penetration resistance apparatus. Fresh CLSM was placed 
in cylindrical moulds and cured under standard conditions 
(temperature 20 °C ± 2 °C, relative humidity ≥95%). Testing 
began immediately after mixing, with measurements taken every 
30 min initially. As the material hardened and resistance increased 
rapidly, the testing interval was reduced to 15 min. During each 
test, a penetration needle was inserted vertically into the specimen 
surface at a constant rate to a depth of 25 ± 2 mm over 10 ± 
2 s. Multiple measurements were taken at different locations to 
avoid repeated testing at the same point. The setting time was 
determined when the penetration resistance first reached 2.74 MPa 
(Kim et al., 2016; Kuo et al., 2013). 

2.3.3 Bleeding rate measurement
The bleeding rate was measured in accordance with 

ASTM C940-22 (2022). In the testing procedure, 800 ± 10 mL 
of thoroughly mixed fresh CLSM was immediately placed in a 
transparent cylindrical mould and maintained under standard 
laboratory conditions (temperature 25 °C ± 2 °C, relative humidity 
≥50%) without vibration or disturbance. Timing began upon 
completion of moulding, with periodic observation and collection 
of bleed water from the specimen surface until bleeding 
essentially ceased or reached the 2-h termination time. The 
bleeding rate was calculated as the ratio of the volume of bleed 
water to the initial volume of the mixture. The final result 
was determined as the arithmetic mean of three parallel tests 
(Kim et al., 2016; Yan et al., 2014). 

2.3.4 Density measurement
To ensure the high precision and reliability of the density test 

results, the volume of fresh paste used for each test was not less 
than 800 mL (ASTM D6023-16, 2016). 

2.3.5 Unconfined compressive strength (UCS) 
measurement

Strength tests were conducted on cubic samples with dimensions 
of 70.7 mm × 70.7 mm × 70.7 mm. The paste was poured into the 
moulds in layers and vibrated for 10 s to eliminate air bubbles and 
ensure compaction and a smooth surface. After casting, the moulds 
were immediately placed in a curing chamber maintained at 20 °C 
± 2 °C and a relative humidity of ≥95%. After 24 h, the samples 
were carefully demoulded to avoid damage and then cured under 
standard conditions until the specified ages were reached.

A WHY 10-type compression testing machine with a loading 
rate of 0.2 kN/s was used to test the strength of the samples at the 
key ages of 3, 7, 14, and 28 days. All tests were conducted in strict 
accordance with the JGJ/T 70-2009 (2009) standard to ensure the 
accuracy and reliability of the data. 

2.3.6 Microstructural observations
Microstructural observations were conducted using a Hitachi 

Regulus 8100 cold field emission scanning electron microscope. The 
samples, with dimensions of 1.0 cm × 1.0 cm × 3.0 cm, were taken 
from the centre of the specimens with the same dimensions as those 
used for the UCS tests. After being cut, the samples frozen with 
liquid nitrogen and freeze-dried to preserve as much of the original 
microstructure as possible. Prior to observation, the samples were 
fractured along the longitudinal direction to obtain a fresh cross 
section, and observations were carried out at magnifications ranging 
from 500 to 50,000×. 

2.3.7 Composition analysis
A Phillips X’Pert 3040 X-ray diffractometer was used to analyse 

the mineral composition and crystal structure of each sample, while 
a Thermo Scientific Nicolet iS5 Fourier transform infrared (FTIR) 
spectrometer was used to characterize the functional groups and 
chemical structure. 

3 Results and discussion

3.1 Flowability

As a key parameter in evaluating CLSM performance, flowability 
has a decisive influence on the workability and filling effectiveness 
(Kaliyavaradhan et al., 2022). According to the ACI 229-13 (2013) 
standard, mixtures with a flow spread greater than 200 mm in 
the flow cylinder test are classified as having high flowability, 
whereas those with flow spreads between 150 mm and 200 mm 
are considered to have moderate flowability. In this study, the 
flowability for all mix proportions ranged from 165 to 257 mm, 
as shown in Figure 3A. All the mixtures met the minimum 
flowability requirement of 150 mm, and some even exceeded 
200 mm, reaching the high flowability standard. Such moderate 
to high flowability endows the CLSMs with excellent workability, 
enabling them to flow and fill complex and narrow spaces under 
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FIGURE 2
Mixing and preparation process and characterization tests.
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minimal external force, thereby eliminating the need for vibration 
and mechanical compaction.

The W/S ratio is a key parameter affecting the flow 
characteristics of a CLSM. Although a higher W/S ratio can 
significantly improve flowability, an excess of water often leads 
to severe bleeding, resulting in substantial ground settlement after 
filling and reducing both the density and overall performance of the 
backfill. In this study, by reasonably incorporating a high-efficiency 
polycarboxylate superplasticizer, ideal flowability was achieved at a 
relatively low W/S ratio (controlled within the range of 25%–35%). 
Moreover, CLSMs with lower W/S ratios exhibited a higher density 
and improved mechanical properties after hardening, providing 
more reliable technical support for engineering applications. 

3.2 Setting time

As shown in Figure 3B, the setting time of the developed CLSM 
ranges from 4.6 to 7.48 h, significantly lower than the limit of 36 h, 
demonstrating excellent rapid-setting performance. Results indicate 
that the setting time is influenced by multiple factors, primarily 
including W/S, binder content, cement content, and sand ratio. 
Generally, the setting time shows a positive correlation with the 
W/S and sand ratio, as increased water and sand content extend the 
setting time. Conversely, it exhibits a negative correlation with the 
binder and cement contents, where increases in these components 
reduce setting time. The mechanism lies in that increased water 
content dilutes the binding system, slowing hydration reaction rates; 
higher sand ratios reduce the water absorption of fine particles, 
increasing free water in the system, similarly delaying hydration 
progress. In contrast, increased binder and cement contents provide 
more reactive components for hydration reactions, particularly 
cement, whose early hydration reaction significantly accelerates the 
setting process. In conclusion, this material demonstrates excellent 
setting time performance, and effective control can be achieved 
through rational adjustment of component proportions. 

3.3 Bleeding

As shown in Figure 3B, the bleeding rate of the CLSM in this 
study ranges from 0.33% to 1.28%, significantly below the 5% limit, 
indicating good bleeding stability and resistance to segregation. The 
variation in bleeding rate is primarily influenced by mix proportion 
parameters. With increasing W/S, the relative water content in 
the system increases, leading to excess water during hydration 
and consequently higher bleeding rates. Conversely, increases in 
both B/A and C/B help reduce bleeding rates. Higher binder 
content increases water demand for hydration reactions, reducing 
free water in the system and weakening bleeding phenomena. 
Particularly in cement–fly ash systems, cement’s intense hydration 
reaction with water requires substantial water content, especially 
for tricalcium aluminate (C3A)’s initial hydration, which demands 
high water content and reacts rapidly. Fly ash, however, relies on 
calcium hydroxide (CH) produced from cement hydration as an 
activator for slow pozzolanic reactions, requiring relatively less 
water. Additionally, increasing S/A also helps reduce bleeding rate, as 

sand has lower water absorption than waste soil, reducing free water 
content in the system. 

3.4 Density

The ACI 229-13 (2013) standard clearly stipulates that the 
wet density of a qualified CLSM should be controlled within the 
range of 1,840–2,320 kg/m3, which is generally higher than that 
of most conventional compacted fills. According to Figure 3C, the 
wet densities of the CLSMs with various mix proportions ranged 
from 1,880 to 2,005 kg/m3, fully meeting the standard requirements. 
An appropriate density not only ensures the overall stability of the 
backfill, effectively resisting lateral deformation and settlement, but 
also endows that material with excellent self-compacting properties, 
enabling it to uniformly fill complex geometric spaces and avoid the 
voids and looseness commonly observed with traditional backfill 
materials, thereby enhancing the safety and reliability of backfilling 
construction.

Replacing sand with ES as an aggregate in CLSM leads to 
a reduction in the material’s density while effectively decreasing 
the consumption and dependence on natural sand. This approach 
enables the resource utilization of excavated waste soil. Each cubic 
metre of CLSM can incorporate 328–600 kg of dry ES, significantly 
reducing the need for offsite disposal and handling of waste soil and 
promoting the efficient use of waste resources. 

3.5 Unconfined compressive strength

As shown in Figure 4A, the 28-day UCSs ranged from 1.35 
to 2.69 MPa, fully meeting the requirements of the ACI 229-
13 (2013) standard (0.3–8.3 MPa). Among the samples, mixtures 
with UCS values not exceeding 2.1 MPa can be classified as 
excavatable CLSMs (Do et al., 2015), which are particularly suitable 
for temporary backfilling projects such as trenches and temporary 
support structures that require subsequent re-excavation. These 
materials provide sufficient bearing capacity while maintaining 
moderate excavatability, thereby significantly reducing energy 
consumption and costs in later construction stages. In contrast, 
mixtures with UCS values exceeding 2.1 MPa can be applied to 
permanent filling projects with higher strength requirements, such 
as foundation reinforcement and abutment backfill, offering more 
reliable long-term load-bearing capacity and structural stability. 
The wide range of strength distributions endows the developed 
CLSM system with excellent adaptability and flexibility, allowing for 
targeted mix adjustments according to the specific needs of different 
engineering scenarios and meeting the technical requirements 
of diverse applications, such as municipal pipeline installation, 
underground space backfilling, and subgrade treatment.

ACI 229 recommends using the 28-day UCS as the primary 
criterion for evaluating the excavability of CLSM. Generally, when 
the 28-day UCS is less than 2.1 MPa, the material is considered 
to have good excavability and can be removed using conventional 
mechanical equipment without the need for specialized breaking 
tools. If the UCS exceeds this threshold, the material becomes 
significantly harder, making excavation more challenging and failing 
to meet the ideal requirements for excavability. In this study, 
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FIGURE 3
(A) Flowability, (B) setting time and bleeding rate and (C) densities of samples with different mix proportions.
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FIGURE 4
(A) UCS of samples with different mix proportions at various ages; (B) statistical analysis of UCS at different curing ages; (C) strength‒time relationship;
(D) comparison of strength‒time relationships.

the developed CLSM can be tailored to be either excavatable or 
nonexcavatable by adjusting the mix proportion parameters, thereby 
flexibly accommodating different engineering application needs.

UCS tests were conducted on each mixture at four different 
curing ages (3, 7, 14, and 28 days), and the maximum, minimum, 
and average values at each age were statistically analysed, 
as shown in Figure 4B. The results indicate that the strength 
gradually increases with increasing curing time, but the rate of 

increase is staged. The strength increases rapidly within the first 
7 days, with the most significant improvement occurring in the first 
3 days. Statistical analysis revealed that the 7-day strength reached 
50.6%–69.5% of the 28-day strength, indicating that the CLSM 
possesses relatively high early-age bearing capacity and can meet 
the early strength requirements of certain engineering applications. 
As the curing time increases, the rate of strength gain gradually 
decreases, with the increase from 14 to 28 days tending to stabilize 
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and the late-stage growth being significantly slower than that in the 
early stage.

Fitting analysis of the relationship between CLSM strength and 
curing age was performed, and the hyperbolic model outperformed 
the other models, with coefficients of determination (R2 values) 
above 0.98, as shown in Figure 4C. The goodness of fit of this 
model is significantly better than that of the power and logarithmic 
models, making it an effective tool for predicting the CLSM strength 
development.

As shown in Figure 4D, the strength development over time 
of the developed CLSM is compared with that of other materials. 
The strength–time profile of the developed CLSM closely aligns 
with findings from previous studies (Dueramae et al., 2021; 
Ibrahim et al., 2022; Lim et al., 2017), which revealed similar 
evolution characteristics. Specifically, the strength increases rapidly 
during the early curing period and then gradually stabilizes, with the 
7-day strength exceeding 50% of the 28-day strength. This pattern is 
consistent with the hyperbolic model and clearly demonstrates the 
synergistic effects of cement hydration and the pozzolanic reaction 
of fly ash. In particular, early strength is primarily attributed to 
cement hydration, whereas the pozzolanic activity of fly ash becomes 
more pronounced in the later stages, resulting in a slower rate of 
strength gain.

Compared with the stabilized soil curve reported by Chang et al. 
(2024), CLSM results in markedly different strength–time 
characteristics. As a flowable backfill material, CLSM typically 
requires lower strength (generally ranging from 0.3 to 2.1 MPa) and 
rapid early strength development to meet construction schedule 
requirements. In contrast, stabilized soil—particularly when used 
in subgrade engineering—often demands higher strength levels 
(up to 3.0–5.0 MPa or more) to adequately support the loads from 
overlying structures. However, its strength development is relatively 
slow, necessitating a longer curing period to reach the design 
strength. These differences primarily stem from the distinct mix 
design philosophies and engineering application scenarios of the 
two materials. 

3.6 Strength development mechanism

Figure 5 presents SEM images of typical samples at different 
curing ages. With increasing curing time, the hydration product 
types become more diverse, and many needle-like ettringite, 
reticular and fibrous calcium silicate hydrate (C-S-H) gels are 
distributed throughout the microstructure, whereas soil and sand 
particles are difficult to distinguish within the field of view. As curing 
progresses, fly ash particles gradually lose their original regular 
morphology, indicating their ongoing participation in hydration 
reactions; however, partially hydrated or unreacted fly ash particles 
can be observed in some samples.

At the early curing stage (Figure 5A), the sample structure 
is relatively loose, with obvious cracks and pores. Preliminary 
hydration reactions have occurred in some regions, but the 
hydration products are not yet prominent. Unreacted or partially 
reacted fly ash particles are still observable. By day 7 (Figure 5B), 
the main hydration products of the cement have formed, with a large 
quantity of needle-like ettringite and granular, reticular, and fibrous 
gel substances generated. These gels interweave with each other, 

effectively binding soil and sand particles and filling pores, thereby 
promoting strength development. Compared to the initial reaction 
stage, the pores in the material become smaller and fewer in number, 
and the structure gradually becomes denser; the rapid formation 
of cementitious products also leads to a rapid increase in material 
strength. In the later stages (Figure 5C), the rate of hydration 
gradually slows, and various hydration products progressively fill 
the spaces previously occupied by water. Large amounts of reticular 
and fibrous gel substances interweave and adhere, connecting 
dispersed particles and their hydration products into a dense, three-
dimensional structure, which forms the basis of CLSM strength. 
However, owing to the slower generation of cementitious products, 
the strength increase rate decreases. This observation is consistent 
with the early findings of Salini et al. (2023), which indicated that 
the presence of fly ash delays the pozzolanic reaction in cement. 
After 28 days of curing (Figure 5D), the microstructure is highly 
dense, with the field of view almost entirely occupied by interwoven 
cementitious products, and the pores and cracks have completely 
disappeared. Although the amount of C-S-H gel may have decreased 
slightly due to evaporation or carbonation, the impact on material 
strength was limited, which is consistent with related research 
findings (Li et al., 2023; Maghomi et al., 2022).

In the CLSM system, the hydration rate of the cement is 
significantly faster than that of the fly ash. As a result, after 3 
days of curing, a substantial amount of unhydrated fly ash particles 
remains within the material, whereas the number of unreacted 
cement particles is relatively low. Furthermore, as the proportion of 
fly ash in the cementitious materials increases (i.e., as the C/B ratio 
decreases), the early strength decreases markedly, with a higher fly 
ash content leading to a greater reduction in strength.

As shown in Figures 5E,F, the SEM images correspond to 
samples with cement dosages (C/B) of 40% and 60%, respectively. 
The analysis reveals that at lower cement contents, the quantity 
of cementitious products is relatively limited, and these products 
predominantly exhibit a needle-like morphology with fewer 
reticular and fibrous structures. Additionally, unreacted or 
partially hydrated fly ash particles are observed, resulting in 
increased porosity and a relatively loose overall structure. As 
the cement content increases, the alkalinity of the system is 
enhanced, which further promotes the hydration of fly ash and 
leads to the formation of more abundant cementitious products. 
These products primarily form interlaced reticular and fibrous 
structures, significantly reducing porosity and improving the overall 
integrity and compactness of the samples, thereby enhancing their 
mechanical strength.

As shown in the XRD patterns in Figure 6A, in the cement–fly 
ash binder system, the dicalcium silicate and tricalcium silicate 
in the cement react with water to form C-S-H gel and calcium 
hydroxide (CH), whereas tricalcium aluminate and tetracalcium 
aluminoferrite rapidly generate calcium aluminate hydrate (C-A-H). 
In the early curing stage, the characteristic peak of CH is prominent 
in the XRD spectra, whereas the peaks corresponding to the C-S-H 
and C-A-H gels are not significant. The Class F low-calcium fly ash 
used in this study is a pozzolanic material that, although not self-
cementing, contains SiO2 and Al2O3, which can react with CH in 
alkaline environments to form additional C-S-H and C-A-H gels. 
With prolonged curing time, the content of CH gradually decreases, 
and its characteristic peak weakens or even disappears, while the 
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FIGURE 5
SEM images of typical samples: (A) 3 days, C/B = 50%; (B) 7 days, C/B = 50%; (C) 14 days, C/B = 50%; (D) 28 days, C/B = 50%; (E) 28 days, C/B = 40%;
(F) 28 days, C/B = 60%.

peaks of the C-S-H and C-A-H gels become more pronounced. 
Moreover, the diffraction peaks of dicalcium silicate and tricalcium 
silicate (indicated by the blue dashed lines) also gradually diminish 
as hydration progresses.

The hydrotalcite-type phase observed in the figure exhibits 
distinct diffraction characteristics, primarily originating from fly 
ash, with a small portion derived from cement. As the curing 
age increases, the intensity of its characteristic peaks gradually 
decreases, and peak broadening occurs. This phenomenon is 
attributed mainly to ion exchange between the hydrotalcite phase 
and other anions in the surrounding environment (especially CO3

2-) 
during the curing process. Such exchange and rearrangement 
disrupt the original periodic arrangement of the interlayer channels, 

thereby reducing the structural order of the crystals. Additionally, 
the accompanying carbonation process further leads to the 
weakening, broadening, and even splitting of the characteristic 
peaks. This inference is consistent with the subsequent FTIR 
test results.

As shown in the FTIR spectra in Figure 6B, characteristic 
absorption peaks appear at approximately 3,460 cm−1, 1,440 cm−1, 
1,005 cm−1, 880 cm−1, and 450 cm−1 for samples cured for different 
times. The specific analysis results are as follows. (1) The absorption 
peak at 3,460 cm−1 corresponds to structural water, physically 
adsorbed water, and the stretching vibration of hydroxyl (–OH) 
groups. With increasing curing time, the peak intensity increases, 
indicating the gradual transformation of –OH groups from free 
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FIGURE 6
(A) XRD patterns and (B) FTIR spectra of representative samples.

water to bound water, reflecting the ongoing hydration reaction. 
(2) The absorption peaks at 1,440 cm−1 and 880 cm−1 are attributed 
to the symmetric stretching and out-of-plane bending vibrations 
of CO3

2− in calcite, respectively. The calcite diffraction peaks in 
the XRD spectra indicate that carbonation occurred during curing 
and that the peak intensities increased with increasing curing time. 
(3) The absorption peak at 1,005 cm−1 is ascribed to the stretching 
vibration of Si–O bonds in the hydrated gel, and its intensity 
increases significantly with increasing age, indicating the continuous 
formation of gel products and serving as direct evidence of the 
ongoing hydration of active minerals. (4) The absorption peak 

at 450 cm−1 corresponds to the vibration modes of metal oxides, 
reflecting the increasing number of Ca–O, Si–O, and Al–O bonds, 
which further confirms the continuous development of amorphous 
C-S-H and C-A-H gel networks. 

3.7 Discussion of several issues

3.7.1 Challenges arising from the variability of ES
During large-scale excavation, soils from different regions 

and depths often exhibit significant variations in particle size 
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distribution, plasticity index, and organic matter content, resulting 
in a certain degree of variability in soil properties. When such 
soils are used in CLSM, this variability can lead to fluctuations 
in workability, strength development, and uniformity, making it 
challenging to ensure stable material performance. Consequently, 
the preparation and construction of CLSM become more complex 
in terms of mix design and onsite adjustments, posing challenges 
for quality control and potentially impacting the overall quality of 
the project.

To address the issue of soil variability, the following strategies 
can be adopted: screening, impurity removal, and homogenization 
of ESs to effectively reduce extreme differences in particle size 
distribution and organic matter content, thereby improving 
the uniformity and consistency of raw materials. Additionally, 
implementing zonal management based on the characteristics of 
soils from different regions and depths and developing specific 
CLSM mix designs for each soil type can help avoid mixing soils 
with significant performance differences and ensure the stability of 
material properties. 

3.7.2 Superplasticizer dosing for field 
implementation

In the experiments conducted in this study, the maximum 
recommended dosage of 2% provided by the supplier was selected 
under conditions of material uniformity, resulting in favourable 
outcomes. However, during onsite CLSM preparation, fluctuations 
in raw material properties and environmental conditions may 
necessitate adjustments to the dosage of the water reducer. This 
is essential for preventing poor workability because of insufficient 
dosage, as well as segregation and excessively prolonged setting 
times caused by excessive dosage.

A stepwise addition approach is recommended: initially, the 
water reducer is added at a lower dosage, and the workability of the 
mixture is observed; then, the dosage is gradually increased on the 
basis of actual performance until the desired consistency is achieved. 
This method helps to avoid adverse effects associated with excessive 
one-time addition. 

3.7.3 Potential impact of fine-grained soils on 
long-term shrinkage

Fine-grained soils have a pronounced influence on the 
long-term shrinkage behaviour of CLSM. Their higher water 
retention and plasticity can delay moisture evaporation and 
slow the rate of shrinkage development but may also increase 
the ultimate shrinkage and the risk of drying shrinkage. 
The fine particles contribute to improving the microstructure 
of the material and reducing early-age shrinkage; however, 
as curing progresses and moisture gradually dissipates, the 
shrinkage effects of fine-grained soils become more pronounced, 
potentially resulting in volumetric changes and the formation 
of microcracks. Therefore, the dosage of fine-grained soils 
should not be excessively high. Proper control of their content 
and optimization of the mix design are essential measures to 
mitigate long-term shrinkage risks in CLSM and to enhance its 
volumetric stability and durability. 

4 Machine learning-based strength 
prediction

4.1 Light gradient boosting machine 
(LightGBM) model

Light gradient boosting machine (LightGBM) is an efficient, 
distributed machine learning framework based on gradient boosting 
decision trees (GBDTs). Its core concept involves integrating 
multiple weak learners (typically decision trees) to iteratively 
optimize the loss function, thereby enhancing the overall predictive 
capability of the model (Ke et al., 2017).

LightGBM offers numerous advantages for predicting the 
strength of CLSMs. First, LightGBM possesses strong nonlinear 
modelling capabilities, enabling it to automatically capture 
complex feature interactions and nonlinear relationships between 
strength and factors such as raw material proportions and curing 
conditions, thus significantly improving prediction accuracy. 
Second, LightGBM is highly adaptable to the scale and type of 
features and efficiently manages high-dimensional and categorical 
variables without the need for extensive data preprocessing, making 
it suitable for the diverse material parameters involved in CLSM 
strength prediction. In addition, LightGBM is characterized by fast 
training speed and low resource consumption, which is particularly 
advantageous when applying large datasets, allowing for rapid model 
training and parameter tuning to meet the efficiency requirements 
of engineering practice. Furthermore, LightGBM incorporates 
built-in regularization mechanisms and pruning strategies to 
effectively prevent overfitting and enhance the generalizability of 
the model. Finally, LightGBM can determine the importance of 
each feature, helping engineers better understand the key factors 
influencing CLSM strength and providing a scientific basis for 
material proportioning and process optimization. In summary, 
LightGBM, with its efficiency, flexibility, and powerful nonlinear 
modelling capabilities, is highly suitable for predicting CLSM 
strength. It can not only improve prediction accuracy but also 
accelerate model development and deployment, providing robust 
data support for practical engineering applications. 

4.2 Newton‒Raphson-based optimizer 
(NRBO) method

The predictive performance of LightGBM largely depends on 
the setting of its hyperparameters, such as the learning rate, number 
of trees, maximum depth, number of leaves, and number of feature 
splits. A reasonable combination of parameters can significantly 
enhance the model’s fitting and generalization capabilities, 
whereas inappropriate parameter settings may lead to underfitting 
or overfitting. Therefore, optimizing the hyperparameters of 
LightGBM is crucial for improving the prediction accuracy 
of the model.

The Newton‒Raphson-based optimizer (NRBO) is a novel 
metaheuristic optimization algorithm inspired by the classical 
Newton–Raphson numerical iteration method. NRBO ingeniously 
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integrates the Newton‒Raphson search rule (NRSR) with the 
trap avoidance operator (TAO) and models and guides the 
search process through multiple sets of matrices, achieving an 
efficient balance between global and local searches and significantly 
enhancing the global exploration capability and convergence speed 
(Cheng et al., 2024; Li and Zhu, 2024).

NRBO differs significantly from mainstream optimization 
algorithms such as particle swarm optimization (PSO), genetic 
algorithms (GA), and grid search (GS) in terms of optimization 
mechanisms and application performance. NRBO is based on 
the Newton–Raphson iterative method, which fully utilizes 
both the gradient and second-order information of the 
objective function (Yousef et al., 2025). In contrast, the PSO 
and GA are population-based intelligent optimization methods 
that rely primarily on collective cooperation and stochastic 
search, making them suitable for handling complex, nonlinear, 
or nondifferentiable problems. GS is an exhaustive search method 
that sets grid points within the parameter space and traverses all 
possible parameter combinations; although it is simple and easy to 
implement, it becomes computationally intensive and inefficient in 
high-dimensional spaces.

In practical applications, the NRBO algorithm generally 
achieves faster convergence and higher solution accuracy because 
of its effective use of mathematical information from the 
objective function (Cheng et al., 2024). While PSO and the GA 
demonstrate superior global search capabilities and adaptability 
to complex problems, they may lag behind NRBO in terms of 
convergence speed and solution precision and are often sensitive 
to parameter settings. Although GS can guarantee finding the global 
optimum, its computational cost becomes extremely high when the 
parameter space is large or the dimensionality is high, thus limiting 
its practical application. On the basis of these considerations, NRBO 
was selected as the optimizer in this study to enhance the efficiency 
and accuracy of model optimization.

Applying NRBO to LightGBM hyperparameter optimization 
can fully leverage its advantages in global searching, local fine-
tuning, and trap avoidance, helping to obtain better parameter 
combinations and thus improving the accuracy and stability of 
LightGBM in prediction tasks such as CLSM strength.

The development process of the machine learning model 
is shown in Figure 7.

4.3 Dataset description

4.3.1 Input and output variables
In this study, the quantities of each component per cubic metre 

of the material system, including ES, sand, cement, fly ash, water, and 
superplasticizer, were used as the main input variables. In addition, 
the curing age, a key factor affecting the development of strength, 
was also incorporated into the dataset for analysis, with compressive 
strength as the output variable.

A complete dataset was constructed by integrating the quantities 
of the components and curing age with the corresponding 
compressive strength data. To further investigate the relationships 
between each variable and strength, the Pearson correlation 
coefficient was employed to quantitatively analyse the correlation 

between each variable and compressive strength (Zhao et al., 2024a), 
as shown in Figure 8.

In this figure, the colour intensity represents the strength of the 
correlation: red indicates a strong positive correlation, blue indicates 
a strong negative correlation, and neutral colours represent weak or 
no correlation. The correlation coefficient ranges from −1 to +1, with 
values close to ±1 indicating a strong correlation and values near 
0 indicating a weak correlation. The results of the analysis reveal 
that the curing age and UCS are significantly positively correlated, 
with a coefficient of 0.82, suggesting that the time factor plays a 
decisive role in the development of UCS, which is consistent with the 
time-dependent mechanism of cement hydration. The water content 
is moderately negatively correlated with the UCS (correlation 
coefficient: −0.30), indicating that excessive water reduces the UCS. 
Sand content, superplasticizer content, and cement content each 
display weak positive correlations with UCS, with coefficients of 
0.23, 0.22, and 0.20, respectively, suggesting that moderate increases 
in these components can enhance UCS, although the effect is 
limited. ES content is very weakly negatively correlated with UCS 
(correlation coefficient: −0.11), indicating a minor and slightly 
adverse effect. The fly ash content shows the weakest correlation, 
with a coefficient of only 0.017, which is almost negligible; this may 
be related to the insufficient pozzolanic activity of the fly ash at 
early stages. To ensure that the model fully explores the potential 
information in the data and enhances its scientific and engineering 
applicability, all relevant factors were incorporated as features during 
model construction to determine the composition of the dataset.

After the dataset was compiled, descriptive statistical analysis 
was conducted on each variable to reflect the distribution 
characteristics and dispersion of the data. These results 
are shown in Table 4. To ensure the scientific validity of model 
training and generalizability, the dataset was randomly divided into 
a training set and a test set, with the training set, used for model 
training and parameter optimization, accounting for 80% of the 
data and the test set, used for evaluating the predictive performance 
of the model, accounting for 20% of the data.

In addition, during data preprocessing, outliers and missing 
values were identified and addressed, and all variables were 
standardized to eliminate the impact of differing units on 
model training. 

4.3.2 Evaluation criteria
The following five metrics were used to evaluate the performance 

of the model: correlation coefficient (R2), mean square error (MSE), 
root mean square error (RMSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE). Their expressions are as 
follows (Jueyendah et al., 2021; Nguyen et al., 2022; Adel et al., 2022):

R2 = 1−
∑n
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FIGURE 7
Schematic of the model algorithm implementation process.

FIGURE 8
Heatmap of the correlation between the mix proportion parameters and strength.
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TABLE 4  Descriptive analysis of the parameters of the experimental dataset.

ES OPC Fly ash Sand Water Superplasticizer Curing age UCS

Count 116 116 116 116 116 116 116 116

Sum 52,856.53 79,420.93 19,811.02 19,799.01 51,380.31 792.20 1,508.00 160.74

Median 450.47 675.71 168.93 168.93 441.35 6.77 10.50 1.36

Minimum 331.35 542.31 120.89 121.52 387.57 5.84 3.00 0.43

Maximum 606.99 860.52 223.97 221.64 502.54 7.90 28.00 2.69

Range 275.64 318.21 103.08 100.12 114.97 2.07 25.00 2.26

Mean 455.66 684.66 170.78 170.68 442.93 6.83 13.00 1.39

Mode 450.47 675.71 168.93 168.93 439.21 6.77 3.00 1.24

Standard Deviation 73.57 83.44 25.65 24.97 33.32 0.50 9.51 0.55

Standard Error 6.83 7.75 2.38 2.32 3.09 0.05 0.88 0.05

Sample Variance 5,413.25 6,962.64 658.00 623.36 1,110.14 0.25 90.50 0.30

Kurtosis −0.48 −0.43 −0.59 −0.59 −0.56 −0.60 −1.11 −0.86

Skewness 0.19 0.30 0.10 0.10 −0.02 0.01 0.63 0.17

MAPE = 100
n
(

n

∑
i=1
|

ei

yi
|)

where ei is the residual error, whose calculation equation is ei = y′i −
yi; n is the number of samples; y′ is the predicted value; y is the actual 
value; and y is the mean value of all the actual values. 

4.4 Model parameter setting and 
optimization

The NRBO algorithm was employed to optimize the key 
parameters of the LightGBM model, including the number of 
leaves (num_leaves), learning rate (learning_rate), feature sampling 
ratio (feature_fraction), data subset sampling ratio (bagging_
fraction), and maximum tree depth (max_depth). The specific 
settings are as follows: the parameter dimension is 5, and the 
ranges of the five parameters are 1–100, 0.01–0.8, 0.1–1.0, 0.1–1.0, 
and 1–50, respectively. The number of iterations is 100. The 
fitness value is subsequently calculated, and the optimal values 
of the five parameters are determined. The fitness variation curve 
is shown in Figure 9A.

After optimization by the NRBO algorithm, the optimal 
hyperparameter combination for the LightGBM model was 
obtained as follows: the num_leaves is 98, the learning_rate 
is 0.7537, the feature_fraction is 0.9998, the bagging_fraction 
is 0.1785, and the max_depth is 5. The LightGBM model was 
retrained, and prediction analysis was conducted using this 
optimized parameter configuration. 

4.5 Performance evaluation and analysis of 
the NRBO-LightGBM model

The developed NRBO-LightGBM hybrid model was used 
for training and prediction analysis on the dataset, and the 
prediction results for both the training and test sets were 
evaluated. Figure 9B shows the comparison between the actual 
UCS values and the values predicted by the NRBO-LightGBM 
model, while Figure 9C presents the histogram distribution of the 
residuals.

The results indicate that the R2 value of best-fit line 
for the training set reached 0.995, with residuals mainly 
distributed within the range of [-0.1, 0.1], demonstrating 
excellent fitting performance and minimal prediction error. 
For the test set, the R2 value of the best-fit line is 0.966, 
and the residuals are primarily concentrated in the range 
of [-0.15, 0.25], indicating that the model also exhibits 
outstanding generalizability and low prediction error on 
unseen data.

As shown by the error metrics in Figure 10A, the 
MSE, RMSE, MAE, and MAPE for the training set 
are 0.002, 0.040, 0.033, and 2.66%, respectively; the 
corresponding values for the test set are 0.009, 0.097, 
0.074, and 6.92%, respectively. These metrics all demonstrate 
that the NRBO-LightGBM model exhibits high accuracy 
and stability in UCS prediction tasks, with prediction 
errors remaining at low levels for both the training 
and test sets, effectively meeting the requirements of 
practical engineering applications.
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FIGURE 9
Implementation effectiveness on the dataset of this study: (A) fitness variation curve of the NRBO algorithm on this study dataset; (B) predicted versus 
experimental values; (C) distribution histogram of the predicted residuals.

4.6 Further validation of generalization 
capability

For further evaluation and verification, the strength data 
of the CLSMs at 1, 3, 7, and 28 days for 27 different mix 
proportions, as detailed in Hwang et al. (2017), were collected. 
In their study, Hwang et al. (2017) utilized wastewater treatment 
sludge (WTS) as the fine aggregate, with ground granulated blast 
furnace slag (GGBFS) and fly ash serving as cementing materials 
and a NaOH solution as the activator. This methodology differs 
significantly from the present study, particularly in terms of the fine 
aggregate and mix proportions employed.

The developed NRBO-LightGBM model was applied to this 
dataset for training and testing. During this process, the optimal 
hyperparameters identified through NRBO optimization were as 
follows: num_leaves = 8, learning_rate = 0.2355, feature_fraction 
= 0.4021, bagging_fraction = 0.3384, and max_depth = 49. The 
performance of the model is illustrated in Figure 11.

The results show that the R2 value for the training set reached 
0.910, with residuals distributed mainly within the range of [−3, 
3], indicating excellent fitting performance and relatively small 
prediction errors. For the test set, the R2 value was 0.885, with 
residuals primarily concentrated within the range of [−5, 3]. 

As shown in Figure 10B, the MSE, RMSE, MAE, and MAPE for the 
training set were 1.212, 1.101, 0.905, and 23.91%, respectively, while 
the corresponding values for the test set were 2.757, 1.660, 1.263, and 
27.24%, respectively. These results indicate that the model’s errors 
are within an acceptable range and demonstrate good stability and 
strong generalization capability when tested on data from different 
sources and backgrounds, suggesting broad application potential. 

5 Conclusion

In this study, an easy-to-implement and widely applicable CLSM 
preparation process was developed, which innovatively utilizes 
engineering ES in combination with sand, cement, fly ash, and 
a superplasticizer to prepare CLSMs, thereby efficiently utilizing 
waste resources. The engineering properties of the developed 
CLSM were evaluated, the strength development mechanism was 
elucidated from the perspectives of hydration product evolution 
and microstructural changes, and a machine learning strength 
prediction model based on NRBO-LightGBM was established. The 
main conclusions are as follows:

The CLSM material developed in this study exhibits excellent 
workability: the flowability ranges from 165 to 257 mm, effectively
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FIGURE 10
Radar plot of performance metrics for training and test sets: (A) dataset of this study; (B) dataset from the literature.

FIGURE 11
Implementation effectiveness on the dataset from the literature: (A) fitness variation curve of the NRBO algorithm; (B) predicted versus experimental 
values; (C) distribution histogram of the predicted residuals.
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ensuring the material’s self-compacting and self-levelling properties. 
The setting time is controlled within 4.6–7.48 h, meeting the 
requirements for rapid construction. The bleeding rate is only 
0.33%–1.28%, which is significantly lower than the standard limit 
of 5%. The fresh density ranges from 1,880 to 2,005 kg/m3, in 
compliance with the ACI 229 standard for CLSM fresh density. These 
results indicate that the CLSM possesses outstanding workability.

The 28-day compressive strength of the CLSM ranges from 
1.35 to 2.69 MPa, meeting the requirements of the ACI 229-13 
standard. Among them, mixtures with a compressive strength 
below 2.1 MPa can be used as an excavatable CLSM. The strength 
development exhibits a distinct staged characteristic, with the 
7-day strength reaching 50.6%–69.5% of the 28-day strength, 
indicating good early-age strength development. Fitting analysis of 
the relationship between CLSM strength and curing age shows that 
the hyperbolic model achieves determination coefficients (R2) above 
0.98, demonstrating extremely high fitting accuracy for the strength 
development law.

The microstructure and hydration products of CLSMs undergo 
significant evolution at different curing ages. In the early curing 
stage, the structure is loose with numerous cracks and pores, and 
the formation of hydration products is limited. As the curing time 
increases, continuous hydration of the cement and fly ash generates 
large amounts of cementitious substances, which effectively fill 
the pores and bind the particles, significantly increasing the 
compactness and strength of the material. XRD and FTIR analyses 
confirmed the continuous increase in hydration products such as 
C-S-H and C-A-H gels, leading to a progressively denser structure. 
Although a higher fly ash content results in a lower early strength, 
its impact on the compactness and strength in the later stages is 
minimal. After 28 days, the CLSM exhibited a highly dense structure 
and significantly improved strength.

The NRBO-LightGBM model achieved an R2 value of 0.995 on 
the training set, with residuals concentrated in the range of [−0.1, 
0.1], indicating excellent fitting performance. For the test set, the 
R2 value was 0.966, with residuals in the range of [−0.15, 0.25], 
demonstrating outstanding generalizability. The MSE, RMSE, MAE, 
and MAPE values for the training set were 0.002, 0.040, 0.033, and 
2.66%, respectively, whereas those for the test set were 0.009, 0.097, 
0.074, and 6.92%, respectively. Overall, these results indicate that the 
model has high accuracy and stability for UCS prediction, effectively 
meeting the requirements of practical engineering applications.
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