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Introduction: The excellent backfilling performance and significant potential
for waste resource utilization make controlled low-strength material
(CLSM) an important technical alternative to traditional backfilling methods.
The preparation of CLSMs using excavated soil not only enables local
material sourcing but also promotes waste resource utilization and reduces
backfilling costs.

Methods: In this study, a novel CLSM was developed by incorporating sand,
cement, fly ash, high-efficiency plasticizer, and water into excavated soil. The
engineering properties—including flowability, setting time, bleeding rate, and
density—were evaluated, with a focus on strength characteristics and the
establishment of a strength-age relationship model. Multiple characterization
methods were used to elucidate the strength development mechanism
from the perspectives of hydration product evolution and microstructural
changes. A machine learning prediction model based on Newton-Raphson-
Based Optimizer (NRBO)-Light Gradient Boosting Machine (LightGBM) was
constructed to achieve high-precision prediction of the relationship between
mix proportions and strength.

Results and discussion: Results show that the prepared CLSM exhibits
excellent engineering performance: flowability of 165-257 mm ensures
good self-compacting and self-levelling; setting time of 4.6-748h
meets rapid construction needs; bleeding rate (<1.28%) and fresh density
(1880-2005 kg/m®) meet engineering standards; and 28-day strength
(1.35-2.69 MPa) is suitable for both trenchless and excavatable applications.
The strength—age relationship fits a hyperbolic model with accuracy above
0.98. Microstructural analysis reveals that hydration of cement and fly ash
produces C-S-H and C-A-H gels, filling pores and densifying the structure. The
NRBO-LightGBM model achieved R? values of 0.995 and 0.966 for training and
test sets, respectively, demonstrating high accuracy and stability. Furthermore,
by utilizing excavated soil as a replacement for sand in the aggregate, each
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cubic metre of CLSM can recycle 328-600 kg of dry excavated soil. These
findings provide theoretical and technical support for CLSM development using

excavated soil.

controlled

low-strength material

(CLSM), excavated soil, strength mechanism,

flowability, machine learning, hydration products

1 Introduction

Backfilling is a crucial process in engineering construction.
backfilling methods
soil from engineering excavations for layered filling and

Traditional utilize primarily cohesive
mechanical compaction to enhance the mechanical properties and
impermeability. However, this approach is time-consuming and
labour-intensive, and it is difficult to ensure backfilling quality
in space-constrained areas, which affects construction efficiency
(Indraratna et al., 2005). In recent years, controlled low-strength
materials (CLSMs) have emerged as an innovative solution for
engineering backfilling (Do and Kim, 2016). Owing to their excellent
flowability, CLSMs enable self-levelling and pump construction,
making them particularly suitable for backfilling operations in
confined spaces and complex structures. These materials can achieve
uniform and dense filling effects without vibration, significantly
improving backfilling quality and construction efficiency (Ling et al.,
2018; Zhu et al., 2022; Dalal et al., 2023). Furthermore, CLSMs can
be sourced from a wide range of materials, and various solid wastes
can be used for CLSM preparation after passing performance testing
(Wang et al., 2023; Zhao et al., 2024b). Such exceptional backfilling
performance, combined with the enormous potential for waste
resource utilization, makes CLSMs important technical alternatives
to traditional backfilling methods, with promising prospects for
widespread application in future backfilling projects.

To date, some progress has been made in the preparation of
CLSMs using various types of engineering excavated soils (ESs).
Finney et al. (2008) were among the first to propose the technical
approach of using native soil to replace traditional aggregates in
CLSM production, successfully applying fine-grained native soil and
clay in a CLSM preparation for pipeline backfilling. Sheen et al.
(2013) further investigated the engineering properties of soil-based
CLSMs with partial cement replacement by slag, expanding the
application scope of native soil CLSMs while improving their
engineering performance and environmental benefits. Kim et al.
(2016) explored the technical feasibility of combining ES with
fly ash in a CLSM and proposed a technical approach for the
synergistic utilization of ES and industrial byproducts, enriching
the application pathways for ES resource utilization. Hwang et al.
(2017) pioneered water treatment sludge-fly ash-slag alkali-
activated CLSM technology, laying the foundation for the synergistic
utilization of sludge and other solid wastes, with their research
establishing mix design methods and performance evaluation
systems that provide important references for subsequent studies.
Qian et al. (2019) focused on evaluating the performance of excess
ES in CLSMs, whereas Fauzi et al. (2021) employed response
surface methodology to optimize CLSM mixtures containing waste
paper ash, providing methodological support for multisource
solid waste mix optimization. Liu et al. (2022) reviewed the
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current applications of incineration industrial byproducts as
cementitious materials, identifying the synergistic feasibility of using
different soil types and incineration byproducts. Zhu et al. (2022)
comprehensively assessed the suitability of mixing excavated loess
and gravel soil for CLSM construction through combined laboratory
testing and field validation, providing localized CLSM solutions
for infrastructure construction in loess regions and achieving
local sourcing and utilization of soil resources. The cement-fly
ash-sewage treatment sludge ternary system developed by Ho et al.
(2022) provides an important technical reference for sludge resource
utilization. Du et al. (2024) systematically explored the application
potential of waste expansive soil in CLSMs, demonstrating that
through appropriate mix design, waste expansive soil could
be successfully prepared into a CLSM to meet engineering
requirements, confirming the feasibility of waste expansive soil
resource utilization and providing new approaches for solving
expansive soil disposal problems. Zhao et al. (2024b); Zhao et al.
(2024c) conducted a series of studies that addressed the technical
challenges associated with incorporating large quantities of fine-
particle waste soil from shield tunnelling into CLSMs. Their
research successfully developed waste soil-based CLSMs that met
performance requirements utilizing both cement combined with fly
ash and slag combined with fly ash as binders.

These studies indicate that through mix design and admixture
regulation, CLSMs with high flowability and controllable strength
can be fabricated, and various types of engineering ESs can be
utilized in CLSM preparation to obtain excellent performance.
These findings have significantly expanded the range of raw
materials available for CLSMs, deepened the understanding
of their performance mechanisms, and strongly promoted
technological advancements in this field. However, current research
still faces a series of challenges: many materials remain in the
laboratory stage, and although technically feasible, the processes are
relatively complex, and numerous technical barriers persist during
the transition to practical engineering applications, hindering
widespread adoption. In addition, research on the strength
development mechanisms of CLSMs and the development of
strength prediction methods is insufficient, which restricts the
precise control and optimization of material properties.

In addition, the modification and stabilization of soil through
the incorporation of additives provide valuable reference and
guidance for this study. Chang et al. (2024) applied phosphogypsum
(PG) in a composite stabilizer consisting of cement, lime, and slag
powder to modify loess for use in road base layers and analysed
its microstructural evolution using X-ray diffraction (XRD) and
scanning electron microscopy (SEM). Zhang et al. (2019) utilized
fly ash and cement to stabilize loess and conducted freeze-thaw
durability tests, frost heave tests and thaw weakening tests, and
unconfined compressive strength tests to evaluate performance
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TABLE 1 (Continued) ES index properties.

Index Value Index ‘ Value ‘
Particle composition K*(g/kg) 0.080
Sand (d > 0.075mm, %) 17.82 Cl (g/kg) 0.052
Silt (0.005 mm < d < 0.075mm, %) 60.58 Mg* (g/kg) 0.015
Clay (d < 0.005mm, %) 21.6
Mineral composition
improvements under laboratory freeze-thaw conditions. Through
Primary mineral (%) 702 one-dimensional consolidation tests, direct shear tests, and
. unconfined compressive strength tests, Pu et al. (2020) investigated
Clay mineral (%) 29.8 . s R
the strength, water stability, compressibility, and shear properties
Chemical composition of cement-stabilized silt and further analysed its microstructural
characteristics using SEM and XRD. Although the preparation
810, (%) 6398 of CLSM using soil differs from stabilized soil in terms of soil
ALO, (%) 18.95 Fontent and targ?ted properties, these. related .studles pro‘\rlde
important theoretical references regarding reaction mechanisms
Fe, 05 (%) 5.80 for the present research.
Addressing the research status and limitations, this study aims
K0 (%) 319 to develop a practical, and easily scalable preparation technology
Ca0 (%) 308 for soil-based CLSMs. This method uses ordinary Portland cement
(OPC) and fly ash as cementitious materials, fully exploits
MgO (%) 2.26 engineering ES as fine aggregates, and incorporates an appropriate
amount of construction sand along with a superplasticizer to
Na,O (%) 115 optimize performance. On this basis, research is conducted that
TiO, (%) 0.95 focuses on material properties, mechanisms, and strength prediction
models, specifically encompassing the following three aspects. First,
Others (%) 0.62 the workability properties of CLSMs, including flowability, setting
- time, bleeding rate, and density, are evaluated, with emphasis on
P IIETES strength characteristics and the establishment of a strength-time
Specific gravity 262 relationship model to verify their engineering applicability. Second,
multiple characterization methods are employed to elucidate the
Plastic limit (%) 227 strength development mechanism of the material system from the
perspectives of hydration product evolution and microstructural
i i i i 00 . . . . . .
Liquid limit (%) 431 changes. Finally, a machine learning-based strength prediction
Plasticity index 204 model is constructed, and its prediction accuracy is assessed
to achieve precise prediction of CLSM strength performance
Water absorption (%) 115 while minimizing experimental input, thereby providing scientific
. decision-making support for engineering practice.
Acid-base property
pH 8.3
T 2 Materials and methods
total 1240 2.1 Materials
HCO, (g/ke) 038 2.1.1 Excavated soil
Ca*(g/kg) 0.209 The soil samples used were obtained from the foundation
pit excavation during the open-cut construction of Anxin Road
50,7 (g/kg) 0.206 Station on Changchun Metro Line 5. The sampling point was
located at 125°14'22" E, 43°48'25" N. After collection, the soil
Na'(g/kg) 0.087 samples were first subjected to impurity removal, eliminating non-

(Continued on the following page)

Frontiers in Materials

03

soil components such as construction debris and plant roots.
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(A) XRD mineral phase analysis spectrum of ES; (B) particle size distribution curves of ES and sand.

Systematic testing was subsequently conducted to evaluate the
physical properties and mineral composition of the soils, with the
relevant data presented in Table I; Figure 1A. The particle size
distribution analysis results are shown in Figure 1B, which indicate
that the mass proportion of fine particles smaller than 0.075 mm in
the soil is 82.2%. According to geotechnical classification standards,
this soil is classified as silty clay. Mineral composition analysis
revealed that the content of primary minerals (such as quartz and
feldspar) in the soil is 70.2%, while clay minerals account for 29.8%.
Among the clay minerals, illite and montmorillonite mixed layers
are predominant.

2.1.2 Cement and fly ash

This study employed Dinglu brand OPC (P.O., strength grade
42.5) produced by Jilin Yatai Cement Co., Ltd. The fly ash used was
laboratory-grade Class F fly ash, supplied by Zhengzhou Yuzhong
Power Plant Fly Ash Development Company. Both materials comply
with the relevant standard requirements of ASTM C150/C150M-
17 (2017) and ASTM C618-19 (2019), respectively. The primary
chemical compositions of the materials are detailed in Table 2.

2.1.3 Sand

Natural medium sand conforming to the relevant standards for
Grade II sand as specified in GB/T 14684-2022 (2022) was used in
this study. Its chemical composition is presented in Table 2, and the
particle size distribution is illustrated in Figure 1B, with a fineness
modulus of 2.66.

2.1.4 Superplasticizer

The water-reducing admixture used in this study was a
liquid polycarboxylate-based superplasticizer produced by Hunan
Zhongyan Building Materials Technology Co., Ltd., which exhibited
excellent dispersion properties and water-reducing performance.

2.1.5 Water

The water used in this study was ordinary tap water sourced from
Changchun City, which meets the water requirements for concrete
mixing and related experimental procedures.
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TABLE 2 Physical and chemical analyses of OPC, fly ash and sand.

OPC Fly ash Sand ‘
Physical indices
Specific gravity (g/cm?) 3.15 2.53 2.66
Mean particle size (um) 20 20.5 -
Specific surface area (m?/, 2) 0.35 0.31 -
Chemical composition
SiO, (%) 29.18 51.08 75.34
Al O5 (%) 9.11 35.23 11.98
CaO (%) 5143 3.24 1.58
Fe,0, (%) 329 434 1.42
MgO (%) 1.49 0.56 0.59
K,O (%) 0.92 1.21 4.25
SO; (%) 2.89 2.01 0.12
TiO, (%) 0.56 1.46 0.15
Others 1.13 0.87 4.57
Loss on ignition (%) 3.98 2.8 0.15

2.2 Mix proportion and mixing

2.2.1 Mix proportion

Given the high water absorption capacity of the ES, this study
employed the water-to-solid ratio (W/S) instead of the traditional
water-to-binder ratio to control the water content of the material.
Additionally, the binder-to-aggregate ratio (B/A), the proportion
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TABLE 3 Test matrix for the experiments.

Mix ID W/S (%) B/A(%) C/B(%) S/A(%) | Ingredient proportions (kg/m>)
ES ‘ Sand ‘ OPC ‘ Fly ash ‘ Superplasticizer

W25B26C586 | 25 26 50 60 4936 | 7404 160.4 160.4 388.7 6.42
W25B30C4S6 | 25 30 40 60 4770 | 7155 143.1 2147 387.6 7.16
W25B30C585 | 25 30 50 50 607.0 | 607.0 182.1 182.1 394.5 7.28
W25B30C587 | 25 30 50 70 3688 | 860.5 184.4 184.4 399.5 7.38
W25B30C656 | 25 30 60 60 4782 | 7174 215.2 1435 388.6 7.17
W25B34C586 | 25 34 50 60 4650 | 697.5 197.6 197.6 389.4 7.90
W30B26C4S6 | 30 2 40 60 4649 | 697.4 120.9 181.3 439.4 6.04
W30B26C585 | 30 26 50 50 584.2 | 584.2 151.9 151.9 441.7 6.08
W30B26C557 | 30 2 50 70 3624 | 8456 157.0 157.0 456.6 6.28
W30B26C656 | 30 26 60 60 4674 7011 182.3 1215 4417 6.08
W30B30C4S5 | 30 30 40 50 5646 | 564.6 1355 203.2 440.4 6.77
W30B30C4S7 | 30 30 40 70 3485 | 813.1 139.4 209.1 453.0 6.97
W30B30C556 30 30 50 60 450.5 | 675.7 168.9 168.9 439.2 6.76
W30B30C6S5 | 30 30 60 50 571.9 | 571.9 205.9 137.3 446.1 6.86
W30B30C6S7 | 30 30 60 70 3467 | 809.0 208.0 138.7 450.7 6.93
W30B34C4S6 30 34 40 60 4346 | 6519 147.8 216 436.8 7.39
W30B26C557 | 30 34 50 50 5489 | 548.9 186.6 186.6 441.4 7.47
W30B34C557 | 30 34 50 70 3345 | 780.5 189.6 189.6 4483 7.58
W30B34C656 | 30 34 60 60 4392 | 6587 224.0 149.3 441.4 7.47
W35B26C556 | 35 26 50 60 4490 | 6734 145.9 145.9 495.0 5.84
W35B30C4S6 | 35 30 40 60 4270 | 6405 128.1 1922 485.7 6.41
W35B30C585 | 35 30 50 50 5423 | 5423 162.7 162.7 493.5 651
W35B30C587 | 35 30 50 70 3313 7731 165.7 165.7 502.5 6.63
W35B30C656 | 35 30 60 60 4350 | 6525 195.7 130.5 494.8 6.52
W35B34C556 | 35 34 50 60 4185 | 627.8 177.9 177.9 490.7 7.12

of cement in the binder (C/B), and the proportion of sand in the  of 26%, C/B ratio of 50%, and S/A ratio of 60%. In this code,

aggregate (S/A) were considered to facilitate mix design. Response
surface methodology, specifically, Box-Behnken design (BBD), was
used to construct 25 mix proportions. Table 3 presents the design
parameters for each mix proportion and the quantities of the CLSM
components.

Each mix proportion was identified using an ID code composed
of letters and numbers. For example, the ID code “W25B26C5S6”
represents a mix proportion with a W/S ratio of 25%, B/A ratio
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the uppercase letters denote the initial of each variable, while the
numbers indicate the corresponding values, with the percentage
sign omitted.

2.2.2 Mixing procedures

The ES and sand were thoroughly air-dried, after which their
water content was determined. During batching, their inherent
moisture was deducted to ensure an accurate value of W/S. To

frontiersin.org


https://doi.org/10.3389/fmats.2025.1673682
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Sun et al.

guarantee high homogeneity of the mixture, the solid components
(ES, sand, OPC, and fly ash) were first precisely weighed according to
the mix proportions and added sequentially to the mixer. They were
then thoroughly mixed under dry conditions for no less than 5 min.
Subsequently, the accurately measured water and superplasticizer
were slowly introduced into the mixer in the correct proportions,
followed by wet mixing for no less than 4 min to achieve the desired
uniformity. The preparation process of the CLSM mixture and the
characterization tests are shown in Figure 2.

2.3 Test methods

2.3.1 Flowability measurement

In this study, the flowability was evaluated using the flow
cylinder method specified in ASTM D6103-17 (2017). The testing
apparatus consisted of a highly transparent acrylic cylinder with an
inner diameter of 75 mm and a height of 150 mm, which was placed
vertically on a horizontally levelled acrylic plate while ensuring a
tight seal at the base. The freshly mixed paste was poured into
the cylinder until full, after which the cylinder was lifted vertically
to allow the paste to spread freely under gravity. Once the paste
ceased flowing, the maximum spread diameter and the diameter
perpendicular to it were measured. The arithmetic mean of these
two values was taken as the flowability, thereby minimizing errors
caused by uneven spreading.

2.3.2 Setting time measurement

The setting time of CLSMs was determined according
to ASTM C403-23 (2023). The test was conducted using a
standard penetration resistance apparatus. Fresh CLSM was placed
in cylindrical moulds and cured under standard conditions
(temperature 20°C + 2°C, relative humidity >95%). Testing
began immediately after mixing, with measurements taken every
30 min initially. As the material hardened and resistance increased
rapidly, the testing interval was reduced to 15 min. During each
test, a penetration needle was inserted vertically into the specimen
surface at a constant rate to a depth of 25 + 2 mm over 10 +
2's. Multiple measurements were taken at different locations to
avoid repeated testing at the same point. The setting time was
determined when the penetration resistance first reached 2.74 MPa
(Kim et al., 2016; Kuo et al., 2013).

2.3.3 Bleeding rate measurement

The bleeding rate was measured in accordance with
ASTM C940-22 (2022). In the testing procedure, 800 + 10 mL
of thoroughly mixed fresh CLSM was immediately placed in a
transparent cylindrical mould and maintained under standard
laboratory conditions (temperature 25 °C + 2 °C, relative humidity
>50%) without vibration or disturbance. Timing began upon
completion of moulding, with periodic observation and collection
of bleed water from the specimen surface until bleeding
essentially ceased or reached the 2-h termination time. The
bleeding rate was calculated as the ratio of the volume of bleed
water to the initial volume of the mixture. The final result
was determined as the arithmetic mean of three parallel tests
(Kim et al., 2016; Yan et al., 2014).
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2.3.4 Density measurement

To ensure the high precision and reliability of the density test
results, the volume of fresh paste used for each test was not less
than 800 mL (ASTM D6023-16, 2016).

2.3.5 Unconfined compressive strength (UCS)
Mmeasurement

Strength tests were conducted on cubic samples with dimensions
of 70.7 mm x 70.7 mm x 70.7 mm. The paste was poured into the
moulds in layers and vibrated for 10 s to eliminate air bubbles and
ensure compaction and a smooth surface. After casting, the moulds
were immediately placed in a curing chamber maintained at 20 °C
+ 2°C and a relative humidity of 295%. After 24 h, the samples
were carefully demoulded to avoid damage and then cured under
standard conditions until the specified ages were reached.

A WHY 10-type compression testing machine with a loading
rate of 0.2 kN/s was used to test the strength of the samples at the
key ages of 3, 7, 14, and 28 days. All tests were conducted in strict
accordance with the JGJ/T 70-2009 (2009) standard to ensure the
accuracy and reliability of the data.

2.3.6 Microstructural observations

Microstructural observations were conducted using a Hitachi
Regulus 8100 cold field emission scanning electron microscope. The
samples, with dimensions of 1.0 cm x 1.0 cm x 3.0 cm, were taken
from the centre of the specimens with the same dimensions as those
used for the UCS tests. After being cut, the samples frozen with
liquid nitrogen and freeze-dried to preserve as much of the original
microstructure as possible. Prior to observation, the samples were
fractured along the longitudinal direction to obtain a fresh cross
section, and observations were carried out at magnifications ranging
from 500 to 50,000x.

2.3.7 Composition analysis

A Phillips X’Pert 3040 X-ray diffractometer was used to analyse
the mineral composition and crystal structure of each sample, while
a Thermo Scientific Nicolet iS5 Fourier transform infrared (FTIR)
spectrometer was used to characterize the functional groups and
chemical structure.

3 Results and discussion

3.1 Flowability

Asakey parameter in evaluating CLSM performance, flowability
has a decisive influence on the workability and filling effectiveness
(Kaliyavaradhan et al., 2022). According to the ACI 229-13 (2013)
standard, mixtures with a flow spread greater than 200 mm in
the flow cylinder test are classified as having high flowability,
whereas those with flow spreads between 150 mm and 200 mm
are considered to have moderate flowability. In this study, the
flowability for all mix proportions ranged from 165 to 257 mm,
as shown in Figure 3A. All the mixtures met the minimum
flowability requirement of 150 mm, and some even exceeded
200 mm, reaching the high flowability standard. Such moderate
to high flowability endows the CLSMs with excellent workability,
enabling them to flow and fill complex and narrow spaces under
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FIGURE 2
Mixing and preparation process and characterization tests.
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minimal external force, thereby eliminating the need for vibration
and mechanical compaction.

The W/S ratio is a key parameter affecting the flow
characteristics of a CLSM. Although a higher W/S ratio can
significantly improve flowability, an excess of water often leads
to severe bleeding, resulting in substantial ground settlement after
filling and reducing both the density and overall performance of the
backfill. In this study, by reasonably incorporating a high-efficiency
polycarboxylate superplasticizer, ideal flowability was achieved at a
relatively low W/S ratio (controlled within the range of 25%-35%).
Moreover, CLSMs with lower W/S ratios exhibited a higher density
and improved mechanical properties after hardening, providing
more reliable technical support for engineering applications.

3.2 Setting time

As shown in Figure 3B, the setting time of the developed CLSM
ranges from 4.6 to 7.48 h, significantly lower than the limit of 36 h,
demonstrating excellent rapid-setting performance. Results indicate
that the setting time is influenced by multiple factors, primarily
including W/S, binder content, cement content, and sand ratio.
Generally, the setting time shows a positive correlation with the
W/S and sand ratio, as increased water and sand content extend the
setting time. Conversely, it exhibits a negative correlation with the
binder and cement contents, where increases in these components
reduce setting time. The mechanism lies in that increased water
content dilutes the binding system, slowing hydration reaction rates;
higher sand ratios reduce the water absorption of fine particles,
increasing free water in the system, similarly delaying hydration
progress. In contrast, increased binder and cement contents provide
more reactive components for hydration reactions, particularly
cement, whose early hydration reaction significantly accelerates the
setting process. In conclusion, this material demonstrates excellent
setting time performance, and effective control can be achieved
through rational adjustment of component proportions.

3.3 Bleeding

As shown in Figure 3B, the bleeding rate of the CLSM in this
study ranges from 0.33% to 1.28%, significantly below the 5% limit,
indicating good bleeding stability and resistance to segregation. The
variation in bleeding rate is primarily influenced by mix proportion
parameters. With increasing W/S, the relative water content in
the system increases, leading to excess water during hydration
and consequently higher bleeding rates. Conversely, increases in
both B/A and C/B help reduce bleeding rates. Higher binder
content increases water demand for hydration reactions, reducing
free water in the system and weakening bleeding phenomena.
Particularly in cement—fly ash systems, cement’s intense hydration
reaction with water requires substantial water content, especially
for tricalcium aluminate (C;A)’s initial hydration, which demands
high water content and reacts rapidly. Fly ash, however, relies on
calcium hydroxide (CH) produced from cement hydration as an
activator for slow pozzolanic reactions, requiring relatively less
water. Additionally, increasing S/A also helps reduce bleeding rate, as
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sand has lower water absorption than waste soil, reducing free water
content in the system.

3.4 Density

The ACI 229-13 (2013) standard clearly stipulates that the
wet density of a qualified CLSM should be controlled within the
range of 1,840-2,320 kg/m’, which is generally higher than that
of most conventional compacted fills. According to Figure 3C, the
wet densities of the CLSMs with various mix proportions ranged
from 1,880 to 2,005 kg/m?, fully meeting the standard requirements.
An appropriate density not only ensures the overall stability of the
backfill, effectively resisting lateral deformation and settlement, but
also endows that material with excellent self-compacting properties,
enabling it to uniformly fill complex geometric spaces and avoid the
voids and looseness commonly observed with traditional backfill
materials, thereby enhancing the safety and reliability of backfilling
construction.

Replacing sand with ES as an aggregate in CLSM leads to
a reduction in the material’s density while effectively decreasing
the consumption and dependence on natural sand. This approach
enables the resource utilization of excavated waste soil. Each cubic
metre of CLSM can incorporate 328-600 kg of dry ES, significantly
reducing the need for offsite disposal and handling of waste soil and
promoting the efficient use of waste resources.

3.5 Unconfined compressive strength

As shown in Figure 4A, the 28-day UCSs ranged from 1.35
to 2.69 MPa, fully meeting the requirements of the ACI229-
13 (2013) standard (0.3-8.3 MPa). Among the samples, mixtures
with UCS values not exceeding 2.1 MPa can be classified as
excavatable CLSMs (Do et al., 2015), which are particularly suitable
for temporary backfilling projects such as trenches and temporary
support structures that require subsequent re-excavation. These
materials provide sufficient bearing capacity while maintaining
moderate excavatability, thereby significantly reducing energy
consumption and costs in later construction stages. In contrast,
mixtures with UCS values exceeding 2.1 MPa can be applied to
permanent filling projects with higher strength requirements, such
as foundation reinforcement and abutment backfill, offering more
reliable long-term load-bearing capacity and structural stability.
The wide range of strength distributions endows the developed
CLSM system with excellent adaptability and flexibility, allowing for
targeted mix adjustments according to the specific needs of different
engineering scenarios and meeting the technical requirements
of diverse applications, such as municipal pipeline installation,
underground space backfilling, and subgrade treatment.

ACI 229 recommends using the 28-day UCS as the primary
criterion for evaluating the excavability of CLSM. Generally, when
the 28-day UCS is less than 2.1 MPa, the material is considered
to have good excavability and can be removed using conventional
mechanical equipment without the need for specialized breaking
tools. If the UCS exceeds this threshold, the material becomes
significantly harder, making excavation more challenging and failing
to meet the ideal requirements for excavability. In this study,
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(A) Flowability, (B) setting time and bleeding rate and (C) densities of samples with different mix proportions.
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(A) UCS of samples with different mix proportions at various ages; (B) statistical analysis of UCS at different curing ages; (C) strength-time relationship;
(D) comparison of strength-time relationships.

the developed CLSM can be tailored to be either excavatable or
nonexcavatable by adjusting the mix proportion parameters, thereby
flexibly accommodating different engineering application needs.
UCS tests were conducted on each mixture at four different
curing ages (3, 7, 14, and 28 days), and the maximum, minimum,
and average values at each age were statistically analysed,
as shown in Figure 4B. The results indicate that the strength
gradually increases with increasing curing time, but the rate of
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increase is staged. The strength increases rapidly within the first
7 days, with the most significant improvement occurring in the first
3 days. Statistical analysis revealed that the 7-day strength reached
50.6%-69.5% of the 28-day strength, indicating that the CLSM
possesses relatively high early-age bearing capacity and can meet
the early strength requirements of certain engineering applications.
As the curing time increases, the rate of strength gain gradually
decreases, with the increase from 14 to 28 days tending to stabilize
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and the late-stage growth being significantly slower than that in the
early stage.

Fitting analysis of the relationship between CLSM strength and
curing age was performed, and the hyperbolic model outperformed
the other models, with coefficients of determination (R? values)
above 0.98, as shown in Figure 4C. The goodness of fit of this
model is significantly better than that of the power and logarithmic
models, making it an effective tool for predicting the CLSM strength
development.

As shown in Figure 4D, the strength development over time
of the developed CLSM is compared with that of other materials.
The strength-time profile of the developed CLSM closely aligns
with findings from previous studies (Dueramae et al., 2021;
Ibrahim et al., 2022; Lim et al., 2017), which revealed similar
evolution characteristics. Specifically, the strength increases rapidly
during the early curing period and then gradually stabilizes, with the
7-day strength exceeding 50% of the 28-day strength. This pattern is
consistent with the hyperbolic model and clearly demonstrates the
synergistic effects of cement hydration and the pozzolanic reaction
of fly ash. In particular, early strength is primarily attributed to
cement hydration, whereas the pozzolanic activity of fly ash becomes
more pronounced in the later stages, resulting in a slower rate of
strength gain.

Compared with the stabilized soil curve reported by Chang et al.
(2024), CLSM results in markedly different strength-time
characteristics. As a flowable backfill material, CLSM typically
requires lower strength (generally ranging from 0.3 to 2.1 MPa) and
rapid early strength development to meet construction schedule
requirements. In contrast, stabilized soil—particularly when used
in subgrade engineering—often demands higher strength levels
(up to 3.0-5.0 MPa or more) to adequately support the loads from
overlying structures. However, its strength development is relatively
slow, necessitating a longer curing period to reach the design
strength. These differences primarily stem from the distinct mix
design philosophies and engineering application scenarios of the
two materials.

3.6 Strength development mechanism

Figure 5 presents SEM images of typical samples at different
curing ages. With increasing curing time, the hydration product
types become more diverse, and many needle-like ettringite,
reticular and fibrous calcium silicate hydrate (C-S-H) gels are
distributed throughout the microstructure, whereas soil and sand
particles are difficult to distinguish within the field of view. As curing
progresses, fly ash particles gradually lose their original regular
morphology, indicating their ongoing participation in hydration
reactions; however, partially hydrated or unreacted fly ash particles
can be observed in some samples.

At the early curing stage (Figure 5A), the sample structure
is relatively loose, with obvious cracks and pores. Preliminary
hydration reactions have occurred in some regions, but the
hydration products are not yet prominent. Unreacted or partially
reacted fly ash particles are still observable. By day 7 (Figure 5B),
the main hydration products of the cement have formed, with a large
quantity of needle-like ettringite and granular, reticular, and fibrous
gel substances generated. These gels interweave with each other,
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effectively binding soil and sand particles and filling pores, thereby
promoting strength development. Compared to the initial reaction
stage, the pores in the material become smaller and fewer in number,
and the structure gradually becomes denser; the rapid formation
of cementitious products also leads to a rapid increase in material
strength. In the later stages (Figure 5C), the rate of hydration
gradually slows, and various hydration products progressively fill
the spaces previously occupied by water. Large amounts of reticular
and fibrous gel substances interweave and adhere, connecting
dispersed particles and their hydration products into a dense, three-
dimensional structure, which forms the basis of CLSM strength.
However, owing to the slower generation of cementitious products,
the strength increase rate decreases. This observation is consistent
with the early findings of Salini et al. (2023), which indicated that
the presence of fly ash delays the pozzolanic reaction in cement.
After 28 days of curing (Figure 5D), the microstructure is highly
dense, with the field of view almost entirely occupied by interwoven
cementitious products, and the pores and cracks have completely
disappeared. Although the amount of C-S-H gel may have decreased
slightly due to evaporation or carbonation, the impact on material
strength was limited, which is consistent with related research
findings (Li et al., 2023; Maghomi et al., 2022).

In the CLSM system, the hydration rate of the cement is
significantly faster than that of the fly ash. As a result, after 3
days of curing, a substantial amount of unhydrated fly ash particles
remains within the material, whereas the number of unreacted
cement particles is relatively low. Furthermore, as the proportion of
fly ash in the cementitious materials increases (i.e., as the C/B ratio
decreases), the early strength decreases markedly, with a higher fly
ash content leading to a greater reduction in strength.

As shown in Figures 5E,F, the SEM images correspond to
samples with cement dosages (C/B) of 40% and 60%, respectively.
The analysis reveals that at lower cement contents, the quantity
of cementitious products is relatively limited, and these products
predominantly exhibit a needle-like morphology with fewer
reticular and fibrous structures. Additionally, unreacted or
partially hydrated fly ash particles are observed, resulting in
increased porosity and a relatively loose overall structure. As
the cement content increases, the alkalinity of the system is
enhanced, which further promotes the hydration of fly ash and
leads to the formation of more abundant cementitious products.
These products primarily form interlaced reticular and fibrous
structures, significantly reducing porosity and improving the overall
integrity and compactness of the samples, thereby enhancing their
mechanical strength.

As shown in the XRD patterns in Figure 6A, in the cement-fly
ash binder system, the dicalcium silicate and tricalcium silicate
in the cement react with water to form C-S-H gel and calcium
hydroxide (CH), whereas tricalcium aluminate and tetracalcium
aluminoferrite rapidly generate calcium aluminate hydrate (C-A-H).
In the early curing stage, the characteristic peak of CH is prominent
in the XRD spectra, whereas the peaks corresponding to the C-S-H
and C-A-H gels are not significant. The Class F low-calcium fly ash
used in this study is a pozzolanic material that, although not self-
cementing, contains SiO, and Al,O;, which can react with CH in
alkaline environments to form additional C-S-H and C-A-H gels.
With prolonged curing time, the content of CH gradually decreases,
and its characteristic peak weakens or even disappears, while the
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FIGURE 5

(F) 28 days, C/B = 60%.

SEM images of typical samples: (A) 3 days, C/B = 50%; (B) 7 days, C/B = 50%; (C) 14 days, C/B = 50%; (D) 28 days, C/B = 50%; (E) 28 days, C/B = 40%;

peaks of the C-S-H and C-A-H gels become more pronounced.
Moreover, the diffraction peaks of dicalcium silicate and tricalcium
silicate (indicated by the blue dashed lines) also gradually diminish
as hydration progresses.

The hydrotalcite-type phase observed in the figure exhibits
distinct diffraction characteristics, primarily originating from fly
ash, with a small portion derived from cement. As the curing
age increases, the intensity of its characteristic peaks gradually
decreases, and peak broadening occurs. This phenomenon is
attributed mainly to ion exchange between the hydrotalcite phase
and other anions in the surrounding environment (especially CO;>")
during the curing process. Such exchange and rearrangement
disrupt the original periodic arrangement of the interlayer channels,
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thereby reducing the structural order of the crystals. Additionally,
the accompanying carbonation process further leads to the
weakening, broadening, and even splitting of the characteristic
peaks. This inference is consistent with the subsequent FTIR
test results.

As shown in the FTIR spectra in Figure 6B, characteristic
absorption peaks appear at approximately 3,460 cm™', 1,440 cm ™!,
1,005 cm™!, 880 cm™!, and 450 cm™! for samples cured for different
times. The specific analysis results are as follows. (1) The absorption
peak at 3,460 cm™ corresponds to structural water, physically
adsorbed water, and the stretching vibration of hydroxyl (-OH)
groups. With increasing curing time, the peak intensity increases,
indicating the gradual transformation of ~-OH groups from free
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FIGURE 6
(A) XRD patterns and (B) FTIR spectra of representative samples.

water to bound water, reflecting the ongoing hydration reaction.
(2) The absorption peaks at 1,440 cm™" and 880 cm™" are attributed
to the symmetric stretching and out-of-plane bending vibrations
of CO;%" in calcite, respectively. The calcite diffraction peaks in
the XRD spectra indicate that carbonation occurred during curing
and that the peak intensities increased with increasing curing time.
(3) The absorption peak at 1,005 cm ™ is ascribed to the stretching
vibration of Si-O bonds in the hydrated gel, and its intensity
increases significantly with increasing age, indicating the continuous
formation of gel products and serving as direct evidence of the
ongoing hydration of active minerals. (4) The absorption peak
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at 450 cm™! corresponds to the vibration modes of metal oxides,
reflecting the increasing number of Ca-0, Si-O, and Al-O bonds,
which further confirms the continuous development of amorphous
C-S-H and C-A-H gel networks.

3.7 Discussion of several issues
3.7.1 Challenges arising from the variability of ES

During large-scale excavation, soils from different regions
and depths often exhibit significant variations in particle size
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distribution, plasticity index, and organic matter content, resulting
in a certain degree of variability in soil properties. When such
soils are used in CLSM, this variability can lead to fluctuations
in workability, strength development, and uniformity, making it
challenging to ensure stable material performance. Consequently,
the preparation and construction of CLSM become more complex
in terms of mix design and onsite adjustments, posing challenges
for quality control and potentially impacting the overall quality of
the project.

To address the issue of soil variability, the following strategies
can be adopted: screening, impurity removal, and homogenization
of ESs to effectively reduce extreme differences in particle size
distribution and organic matter content, thereby improving
the uniformity and consistency of raw materials. Additionally,
implementing zonal management based on the characteristics of
soils from different regions and depths and developing specific
CLSM mix designs for each soil type can help avoid mixing soils
with significant performance differences and ensure the stability of
material properties.

3.7.2 Superplasticizer dosing for field
implementation

In the experiments conducted in this study, the maximum
recommended dosage of 2% provided by the supplier was selected
under conditions of material uniformity, resulting in favourable
outcomes. However, during onsite CLSM preparation, fluctuations
in raw material properties and environmental conditions may
necessitate adjustments to the dosage of the water reducer. This
is essential for preventing poor workability because of insufficient
dosage, as well as segregation and excessively prolonged setting
times caused by excessive dosage.

A stepwise addition approach is recommended: initially, the
water reducer is added at a lower dosage, and the workability of the
mixture is observed; then, the dosage is gradually increased on the
basis of actual performance until the desired consistency is achieved.
This method helps to avoid adverse effects associated with excessive
one-time addition.

3.7.3 Potential impact of fine-grained soils on
long-term shrinkage

Fine-grained soils have a pronounced influence on the
long-term shrinkage behaviour of CLSM. Their higher water
retention and plasticity can delay moisture evaporation and
slow the rate of shrinkage development but may also increase
the ultimate shrinkage and the risk of drying shrinkage.
The fine particles contribute to improving the microstructure
of the material and reducing early-age shrinkage; however,
as curing progresses and moisture gradually dissipates, the
shrinkage effects of fine-grained soils become more pronounced,
potentially resulting in volumetric changes and the formation
of microcracks. Therefore, the dosage of fine-grained soils
should not be excessively high. Proper control of their content
and optimization of the mix design are essential measures to
mitigate long-term shrinkage risks in CLSM and to enhance its
volumetric stability and durability.
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4 Machine learning-based strength
prediction

4.1 Light gradient boosting machine
(LightGBM) model

Light gradient boosting machine (LightGBM) is an efficient,
distributed machine learning framework based on gradient boosting
decision trees (GBDTs). Its core concept involves integrating
multiple weak learners (typically decision trees) to iteratively
optimize the loss function, thereby enhancing the overall predictive
capability of the model (Ke et al., 2017).

LightGBM offers numerous advantages for predicting the
strength of CLSMs. First, LightGBM possesses strong nonlinear
modelling capabilities, enabling it to automatically capture
complex feature interactions and nonlinear relationships between
strength and factors such as raw material proportions and curing
conditions, thus significantly improving prediction accuracy.
Second, LightGBM is highly adaptable to the scale and type of
features and efficiently manages high-dimensional and categorical
variables without the need for extensive data preprocessing, making
it suitable for the diverse material parameters involved in CLSM
strength prediction. In addition, LightGBM is characterized by fast
training speed and low resource consumption, which is particularly
advantageous when applying large datasets, allowing for rapid model
training and parameter tuning to meet the efficiency requirements
of engineering practice. Furthermore, LightGBM incorporates
built-in regularization mechanisms and pruning strategies to
effectively prevent overfitting and enhance the generalizability of
the model. Finally, LightGBM can determine the importance of
each feature, helping engineers better understand the key factors
influencing CLSM strength and providing a scientific basis for
material proportioning and process optimization. In summary,
LightGBM, with its efficiency, flexibility, and powerful nonlinear
modelling capabilities, is highly suitable for predicting CLSM
strength. It can not only improve prediction accuracy but also
accelerate model development and deployment, providing robust
data support for practical engineering applications.

4.2 Newton-Raphson-based optimizer
(NRBO) method

The predictive performance of LightGBM largely depends on
the setting of its hyperparameters, such as the learning rate, number
of trees, maximum depth, number of leaves, and number of feature
splits. A reasonable combination of parameters can significantly
enhance the model’s fitting and generalization capabilities,
whereas inappropriate parameter settings may lead to underfitting
or overfitting. Therefore, optimizing the hyperparameters of
LightGBM is crucial for improving the prediction accuracy
of the model.

The Newton-Raphson-based optimizer (NRBO) is a novel
metaheuristic optimization algorithm inspired by the classical
Newton-Raphson numerical iteration method. NRBO ingeniously
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integrates the Newton-Raphson search rule (NRSR) with the
trap avoidance operator (TAO) and models and guides the
search process through multiple sets of matrices, achieving an
efficient balance between global and local searches and significantly
enhancing the global exploration capability and convergence speed
(Cheng et al., 2024; Li and Zhu, 2024).

NRBO differs significantly from mainstream optimization
algorithms such as particle swarm optimization (PSO), genetic
algorithms (GA), and grid search (GS) in terms of optimization
mechanisms and application performance. NRBO is based on
the Newton-Raphson iterative method, which fully utilizes
both the gradient and second-order information of the
objective function (Yousef et al, 2025). In contrast, the PSO
and GA are population-based intelligent optimization methods
that rely primarily on collective cooperation and stochastic
search, making them suitable for handling complex, nonlinear,
or nondifferentiable problems. GS is an exhaustive search method
that sets grid points within the parameter space and traverses all
possible parameter combinations; although it is simple and easy to
implement, it becomes computationally intensive and inefficient in
high-dimensional spaces.

In practical applications, the NRBO algorithm generally
achieves faster convergence and higher solution accuracy because
of its effective use of mathematical information from the
objective function (Cheng et al., 2024). While PSO and the GA
demonstrate superior global search capabilities and adaptability
to complex problems, they may lag behind NRBO in terms of
convergence speed and solution precision and are often sensitive
to parameter settings. Although GS can guarantee finding the global
optimum, its computational cost becomes extremely high when the
parameter space is large or the dimensionality is high, thus limiting
its practical application. On the basis of these considerations, NRBO
was selected as the optimizer in this study to enhance the efficiency
and accuracy of model optimization.

Applying NRBO to LightGBM hyperparameter optimization
can fully leverage its advantages in global searching, local fine-
tuning, and trap avoidance, helping to obtain better parameter
combinations and thus improving the accuracy and stability of
LightGBM in prediction tasks such as CLSM strength.

The development process of the machine learning model
is shown in Figure 7.

4.3 Dataset description

4.3.1 Input and output variables

In this study, the quantities of each component per cubic metre
of the material system, including ES, sand, cement, fly ash, water, and
superplasticizer, were used as the main input variables. In addition,
the curing age, a key factor affecting the development of strength,
was also incorporated into the dataset for analysis, with compressive
strength as the output variable.

A complete dataset was constructed by integrating the quantities
of the components and curing age with the corresponding
compressive strength data. To further investigate the relationships
between each variable and strength, the Pearson correlation
coefficient was employed to quantitatively analyse the correlation
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between each variable and compressive strength (Zhao et al., 2024a),
as shown in Figure 8.

In this figure, the colour intensity represents the strength of the
correlation: red indicates a strong positive correlation, blue indicates
a strong negative correlation, and neutral colours represent weak or
no correlation. The correlation coefficient ranges from —1 to +1, with
values close to *1 indicating a strong correlation and values near
0 indicating a weak correlation. The results of the analysis reveal
that the curing age and UCS are significantly positively correlated,
with a coefficient of 0.82, suggesting that the time factor plays a
decisive role in the development of UCS, which is consistent with the
time-dependent mechanism of cement hydration. The water content
is moderately negatively correlated with the UCS (correlation
coeflicient: —0.30), indicating that excessive water reduces the UCS.
Sand content, superplasticizer content, and cement content each
display weak positive correlations with UCS, with coefficients of
0.23, 0.22, and 0.20, respectively, suggesting that moderate increases
in these components can enhance UCS, although the effect is
limited. ES content is very weakly negatively correlated with UCS
(correlation coefficient: —0.11), indicating a minor and slightly
adverse effect. The fly ash content shows the weakest correlation,
with a coefficient of only 0.017, which is almost negligible; this may
be related to the insufficient pozzolanic activity of the fly ash at
early stages. To ensure that the model fully explores the potential
information in the data and enhances its scientific and engineering
applicability, all relevant factors were incorporated as features during
model construction to determine the composition of the dataset.

After the dataset was compiled, descriptive statistical analysis
was conducted on each variable to reflect the distribution
data. These
are shown in Table 4. To ensure the scientific validity of model

characteristics and dispersion of the results
training and generalizability, the dataset was randomly divided into
a training set and a test set, with the training set, used for model
training and parameter optimization, accounting for 80% of the
data and the test set, used for evaluating the predictive performance
of the model, accounting for 20% of the data.

In addition, during data preprocessing, outliers and missing
values were identified and addressed, and all variables were
standardized to eliminate the impact of differing units on
model training.

4.3.2 Evaluation criteria

The following five metrics were used to evaluate the performance
of the model: correlation coefficient (R?), mean square error (MSE),
root mean square error (RMSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE). Their expressions are as
follows (Jueyendah et al., 2021; Nguyen et al., 2022; Adel et al., 2022):

L
Z?Zl()’i_)_’)z

2

MSE =

2
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n
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TABLE 4 Descriptive analysis of the parameters of the experimental dataset.

10.3389/fmats.2025.1673682

ES OPC Fly ash Sand Water Superplasticizer Curing age

Count 116 116 116 116 116 116 116 116
Sum 52,856.53 79,420.93 19,811.02 19,799.01 51,380.31 792.20 1,508.00 160.74
Median 450.47 675.71 168.93 168.93 441.35 6.77 10.50 1.36
Minimum 331.35 542.31 120.89 121.52 387.57 5.84 3.00 0.43
Maximum 606.99 860.52 223.97 221.64 502.54 7.90 28.00 2.69
Range 275.64 318.21 103.08 100.12 114.97 2.07 25.00 2.26
Mean 455.66 684.66 170.78 170.68 442.93 6.83 13.00 1.39
Mode 450.47 675.71 168.93 168.93 439.21 6.77 3.00 1.24
Standard Deviation 73.57 83.44 25.65 24.97 33.32 0.50 9.51 0.55
Standard Error 6.83 7.75 2.38 2.32 3.09 0.05 0.88 0.05
Sample Variance 5,413.25 6,962.64 658.00 623.36 1,110.14 0.25 90.50 0.30
Kurtosis -0.48 -0.43 -0.59 -0.59 -0.56 -0.60 -1.11 -0.86
Skewness 0.19 0.30 0.10 0.10 -0.02 0.01 0.63 0.17

€

n
MAPE = @(z il
n Vi

i=1

)

where ¢; is the residual error, whose calculation equation is e; = ! —
y;; nis the number of samples; y' is the predicted value; y is the actual
value; and y is the mean value of all the actual values.

4.4 Model parameter setting and
optimization

The NRBO algorithm was employed to optimize the key
parameters of the LightGBM model, including the number of
leaves (num_leaves), learning rate (learning_rate), feature sampling
ratio (feature_fraction), data subset sampling ratio (bagging
fraction), and maximum tree depth (max_depth). The specific
settings are as follows: the parameter dimension is 5, and the
ranges of the five parameters are 1-100, 0.01-0.8, 0.1-1.0, 0.1-1.0,
and 1-50, respectively. The number of iterations is 100. The
fitness value is subsequently calculated, and the optimal values
of the five parameters are determined. The fitness variation curve
is shown in Figure 9A.

After optimization by the NRBO algorithm, the optimal
hyperparameter combination for the LightGBM model was
obtained as follows: the num_leaves is 98, the learning rate
is 0.7537, the feature_fraction is 0.9998, the bagging fraction
is 0.1785, and the max_depth is 5. The LightGBM model was
retrained, and prediction analysis was conducted using this
optimized parameter configuration.
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4.5 Performance evaluation and analysis of
the NRBO-LightGBM model

The developed NRBO-LightGBM hybrid model was used
for training and prediction analysis on the dataset, and the
prediction results for both the training and test sets were
evaluated. Figure 9B shows the comparison between the actual
UCS values and the values predicted by the NRBO-LightGBM
model, while Figure 9C presents the histogram distribution of the
residuals.

The results indicate that the R* value of best-fit line
for the training set reached 0.995, with residuals mainly
distributed within the range of [-0.1, 0.1], demonstrating
excellent fitting performance and minimal prediction error.
For the test set, the R® value of the best-fit line is 0.966,
and the residuals are primarily concentrated in the range
of [-0.15, 0.25], indicating that the model also exhibits

outstanding generalizability and low prediction error on
unseen data.

As shown by the error metrics in Figure 10A, the
MSE, RMSE, MAE, and MAPE for the training set
are 0.002, 0.040, 0.033, and 2.66%, respectively; the
corresponding values for the test set are 0.009, 0.097,

0.074, and 6.92%, respectively. These metrics all demonstrate
that the NRBO-LightGBM model exhibits
and stability in UCS prediction tasks,
remaining  at for both
test the
practical engineering applications.

high accuracy
with  prediction
the
requirements

errors low levels training

and sets, effectively ~meeting of
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Implementation effectiveness on the dataset of this study: (A) fitness variation curve of the NRBO algorithm on this study dataset; (B) predicted versus
experimental values; (C) distribution histogram of the predicted residuals.

4.6 Further validation of generalization
capability

For further evaluation and verification, the strength data
of the CLSMs at 1, 3, 7, and 28days for 27 different mix
proportions, as detailed in Hwang et al. (2017), were collected.
In their study, Hwang et al. (2017) utilized wastewater treatment
sludge (WTS) as the fine aggregate, with ground granulated blast
furnace slag (GGBFS) and fly ash serving as cementing materials
and a NaOH solution as the activator. This methodology differs
significantly from the present study, particularly in terms of the fine
aggregate and mix proportions employed.

The developed NRBO-LightGBM model was applied to this
dataset for training and testing. During this process, the optimal
hyperparameters identified through NRBO optimization were as
follows: num_leaves = 8, learning_rate = 0.2355, feature_fraction
= 0.4021, bagging fraction = 0.3384, and max_depth = 49. The
performance of the model is illustrated in Figure 11.

The results show that the R? value for the training set reached
0.910, with residuals distributed mainly within the range of [-3,
3], indicating excellent fitting performance and relatively small
prediction errors. For the test set, the R? value was 0.885, with
residuals primarily concentrated within the range of [-5, 3].
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As shown in Figure 10B, the MSE, RMSE, MAE, and MAPE for the
training set were 1.212, 1.101, 0.905, and 23.91%, respectively, while
the corresponding values for the test set were 2.757, 1.660, 1.263, and
27.24%, respectively. These results indicate that the model’s errors
are within an acceptable range and demonstrate good stability and
strong generalization capability when tested on data from different
sources and backgrounds, suggesting broad application potential.

5 Conclusion

In this study, an easy-to-implement and widely applicable CLSM
preparation process was developed, which innovatively utilizes
engineering ES in combination with sand, cement, fly ash, and
a superplasticizer to prepare CLSMs, thereby efficiently utilizing
waste resources. The engineering properties of the developed
CLSM were evaluated, the strength development mechanism was
elucidated from the perspectives of hydration product evolution
and microstructural changes, and a machine learning strength
prediction model based on NRBO-LightGBM was established. The
main conclusions are as follows:

The CLSM material developed in this study exhibits excellent
workability: the flowability ranges from 165 to 257 mm, effectively
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ensuring the material’s self-compacting and self-levelling properties.
The setting time is controlled within 4.6-7.48 h, meeting the
requirements for rapid construction. The bleeding rate is only
0.33%-1.28%, which is significantly lower than the standard limit
of 5%. The fresh density ranges from 1,880 to 2,005 kg/m3 , in
compliance with the ACI 229 standard for CLSM fresh density. These
results indicate that the CLSM possesses outstanding workability.

The 28-day compressive strength of the CLSM ranges from
1.35 to 2.69 MPa, meeting the requirements of the ACI 229-13
standard. Among them, mixtures with a compressive strength
below 2.1 MPa can be used as an excavatable CLSM. The strength
development exhibits a distinct staged characteristic, with the
7-day strength reaching 50.6%-69.5% of the 28-day strength,
indicating good early-age strength development. Fitting analysis of
the relationship between CLSM strength and curing age shows that
the hyperbolic model achieves determination coefficients (R?) above
0.98, demonstrating extremely high fitting accuracy for the strength
development law.

The microstructure and hydration products of CLSMs undergo
significant evolution at different curing ages. In the early curing
stage, the structure is loose with numerous cracks and pores, and
the formation of hydration products is limited. As the curing time
increases, continuous hydration of the cement and fly ash generates
large amounts of cementitious substances, which effectively fill
the pores and bind the particles, significantly increasing the
compactness and strength of the material. XRD and FTIR analyses
confirmed the continuous increase in hydration products such as
C-S-H and C-A-H gels, leading to a progressively denser structure.
Although a higher fly ash content results in a lower early strength,
its impact on the compactness and strength in the later stages is
minimal. After 28 days, the CLSM exhibited a highly dense structure
and significantly improved strength.

The NRBO-LightGBM model achieved an R* value of 0.995 on
the training set, with residuals concentrated in the range of [-0.1,
0.1], indicating excellent fitting performance. For the test set, the
R? value was 0.966, with residuals in the range of [-0.15, 0.25],
demonstrating outstanding generalizability. The MSE, RMSE, MAE,
and MAPE values for the training set were 0.002, 0.040, 0.033, and
2.66%, respectively, whereas those for the test set were 0.009, 0.097,
0.074, and 6.92%, respectively. Overall, these results indicate that the
model has high accuracy and stability for UCS prediction, effectively
meeting the requirements of practical engineering applications.
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