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Concrete-filled steel tube (CFST) columns are widely applied in long-span 
bridges due to their high strength, ductility, and construction efficiency. 
However, in large-diameter CFST members, early-age hydration heat may 
induce excessive temperature rise and thermal cracking, threatening structural 
integrity. This study integrates in-situ measurements, multi-field finite element 
(FE) modeling, and Long Short-Term Memory (LSTM) neural networks to predict 
thermal behavior of CFST members. Two full-scale columns (2.1 m diameter) 
and several scaled specimens were tested to record hydration-induced 
temperature and strain evolution. A chemo-thermal-mechanical coupled FE 
model was developed and validated against experimental results. Parametric 
studies revealed the influence of water-to-cement ratio, cement dosage, 
hydration heat release, and CFST diameter on core temperature evolution. 
Furthermore, an LSTM network trained on FE-simulated datasets accurately 
predicted both temperature history and maximum core temperatures, with 
99.4% of predictions within 5% relative error. Compared with existing FE–AI 
hybrid approaches, the novelty of this study lies in the large-diameter CFST 
range (>2 m), the explicit coupling of chemo-thermal-mechanical fields, and 
the systematic parameterization of the LSTM training database. The proposed 
framework provides a reliable and efficient tool for design optimization and risk 
mitigation in large-scale bridge engineering.

KEYWORDS

CFST, large diameter, hydration, multi-field, neural network 

 1 Introduction

The inherent advantages, such as high strength, good ductility, and ease 
of construction, etc. (Li and Li, 2024). have promoted the application of 
concrete-filled steel tube (CFST) members in megastructures. Up to date, 
CFST hybrid arch bridges are regarded as an optimal solution for large-
span bridge construction, of which the main span can easily exceed 500 m.
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TABLE 1  Application of CFST in long span bridge.

Name CFST (diameter × thickness, mm) Span (m)

Wangcang East River Bridge 800 × 10 115

Laba Jin ditch large bridge 1,320 × 22 182.5

Hejiang Yangtze River bridge 1,320 × 34 530

Hejiang Yangtze River Highway Bridge 1,300 × 22 507

Pingnan third bridge 1,400 × 26 575

Since the 1990s, more than 500 CFST arch bridges has been 
constructed in China (see Table 1). Typically, the construction of 
Pingnan Third Bridge with a main span of 575 m was completed 
in 2020, becoming the largest span arch bridge through the world 
at that time (Zheng et al., 2022). To achieve the requirements 
of structural load-bearing capacity of arch bridges, the diameter 
of the arch rib section must also increase with their span length 
increasing, leading to the hydration temperature issues of the CFST 
arch ribs (DAI, 2022).

Generally, excessive hydration heat of concrete in early age 
will cause expansion and shrinkage after casting (Cai et al., 2023), 
which may lead to the separation of concrete from the steel 
tube and degradation of the synergy between them. Moreover, an 
increase in hydration heat can lead to excessive initial thermal stress 
(Zhang et al., 2023), which affects the structural safety of CFST 
members to some extent. Currently, many experts and scholars 
have focused on the research of the cracking behavior of concrete 
in CFST members caused by hydration heat. Zhou et al. (2022). 
Investigated the distribution and evolution law of temperature 
field during bridge operation of CFST arch bridges. Based on the 
principle of heat transfer theory and the finite element method, 
Sun et al. (Cavacece, 2025). proposed a calculation method for 
the temperature field of the arch rib section of a CFST arch 
bridge. Shi et al. (2020). Evaluated the hydration-temperature 
field of no shrinkage concrete in large-diameter CFST arch ribs. 
An equation was experimentally proposed to predict the heat of 
hydration at all locations in CFST of different diameters. Xiao et al. 
(2023). Studied the calculation method of the stress concentration 
factor for CFST circular hollow section by establishing finite 
element models with 36 different geometric parameters. Sun 
and Xie. (2019). Studied the hydration temperature changes of 
pumped concrete in large-diameter CFST components and its 
influence on mechanical properties such as concrete strength 
and elastic modulus. Xie et al. (2022). Established a hydration 
heat conduction model to study the temperature field of CFST 
components, and studied the temperature stress changes of CFST 
during the hydration heat release process by considering the 
early concrete creep through numerical methods. From the above 
research, it can be seen that hydration reaction will cause a sharp 
increase in the internal concrete temperature of CFST members, 
and hydration heat is the main cause of early-age concrete cracking 
in CFST members. However, there is little research on the early 
behavior of large-sized CFST components with diameters exceeding 
1.5 m, and there is also a lack of research on the relationship 

between CFST diameter, hydration heat temperature, and concrete 
cracking. In addition, there is a lack of research on CFST 
numerical simulation considering multi-field coupling, especially 
the coupling of concrete hydration heat, temperature field, and force
field.

In essence, in-situ measurement and finite element (FE) 
analysis are two kinds of conventional approaches on the 
investigation of structural behavior. With regard to the prediction 
on the hydration heat temperature and strain evolution of large-
diameter CFST members, traditional finite element modeling 
method is inefficient and its accuracy is dependent on the 
quality of the corresponding FE models. To date, with the rapid 
development of computer technology and artificial intelligence, 
machine-learning approaches has gained increasing attention 
due to the great performance on computational effort and 
been widely used on the analysis of structures. Duan et al. 
(2022). Accurately reflected the relationship between strain and 
acceleration and bridge displacement using long short-term 
memory (LSTM) networks. Huang et al. (2024). proposed a 
seasonally independent nonlinear model for predicting temperature 
and displacement of rigid frame bridges based on LSTM networks. 
In order to reduce the cost of fast and slow cycle experiments, 
Yazdanpanah et al. (Yazda et al., 2023). Used LSTM to predict 
the relationship between forces and deformations of the bridge 
and verified the high correlation between the predicted and 
measured values. The main girders of cable-stayed bridges produce 
large deflections under the influence of temperature, Yue et al. 
(2022). The parameters of the LSTM network were optimized to 
establish a temperature-deflection regression model with both 
accuracy and stability. Doroudi et al. (2024). Used LSTM to 
predict the structural damage of large span bridges, and the 
optimized and adjusted model became an effective bridge damage 
assessment method.

In this study, the objective is to propose a new kind of 
machine-learning method on the prediction of hydration heat 
temperature of CFST columns. Firstly, the temperature field 
of CFST columns with different diameters (0.2 m–2.1 m) was 
tested. Afterwards, the chemo-thermo-mechanical coupled model 
of CFST members was studied and implemented to establish 
the refined FE models of the tested columns based on the 
ABAQUS software. Furthermore, the LSTM neural networks was 
used as an effective method to predict the temperature field of 
CFST columns. 
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2 Long Short-Term Memory (LSTM)

Conventional artificial neural networks (ANNs) are a nonlinear 
data modeling technique inspired by the imitation of biological 
neural networks for processing various types of information. 
Generally, ANNs consist of three components: the input layer, the 
output layer, and hidden layers. Input parameters will be transmitted 
and analyzed through neurons, and ultimately a nonlinear result will 
be outputted through weighted connections, as Equation 1.

̂h = oa(Wx+ b) (1)

where x is vector for the input signals; W and b are the weights of 
the connections and biases, respectively; and oa(·) is the activation 
function to generate the prediction ̂h.

The limitations of conventional neural networks are also 
evident: while they can analyse relatively independent neurons, they 
struggle with problems that require dependency on previously input 
information. This is where recurrent neural networks (RNNs) come 
into play. In RNNs, neurons at a certain time t simultaneously 
receive the output from time t-1 and the current input xt, ultimately 
generating output ̂ht and passing it on to the same neuron at time
t + 1. The activity in recurrent neural networks unfolds as Equation 2:

̂ht = oa(Wxhxt +Whh
̂ht−1 + b) (2)

However, recurrent neural networks (RNNs) also have certain 
limitations. As dependence on information increases and the 
distance between prediction points expands, the issue of gradient 
vanishing tends to occur. Hence, there arises a need to utilize 
Long Short-Term Memory (LSTM) architecture to address this 
issue. The LSTM model comprises three distinct gates: the input 
gate it the output gate ot,and the forget gate ft. Upon receiving 
new information, the LSTM adds it to the original data, and the 
resulting sum ct becomes the new long-term assessment (cell state). 
Subsequently, the new short-term assessment (hidden state) ̂ht is 
outputted and participates in the subsequent simulation process. The 
relevant functions are as Equations 3–8:

ft = os(Wxfxt +Whf
̂ht−1 + b f) (3)

it = os(Wxixt +Whi
̂ht−1 + bi) (4)

ot = os(Wxoxt +Who
̂ht−1 + b0) (5)

̃ct = oh(Wxcxt +Whc
̂ht−1 + bc) (6)

and

ct = ft ⊙ ct−1 + it ⊙ ̃ct (7)

̂ht = ot ⊙ oh(ct) (8)

where os(·) and oh(·) represent the sigmoid and hyperbolic 
tangent functions, respectively, while ⊙ denotes the element-
wise multiplication. ̃ct signifies the activation of the long-term 
assessment. The same information and the hidden state from the 
previous time step t-1 are inputted into the three gates. 

3 In-situ measurements and 
multi-field numerical modeling

3.1 Experimental set-up and data recording

Two full-scale CFST column with a diameter of 2.1 m adopted in 
the construction of large-span arch bridges was taken for evaluation. 
The 2.1-m-diameter full-scale CFST columns were tested on-site to 
investigate the relationship between its dimensions during hydration 
and concrete temperature and cracking behavior (see Figure 1). 
Temperature variations and strain values during hydration were 
recorded through the test. In addition, eight scaled-down CFST 
specimens, each 0.6 m in height and made of the same material as the 
test specimen, were fabricated, with diameters ranging from 0.2 m to 
1.2 m, as shown in Figure 2. The dimensions and main materials of 
each specimen are summarized in Table 2.

The experiment utilized self-consolidating concrete (SCC) with 
a strength grade of C50, with average cube compressive strengths of 
53.6 MPa at 7 days and 62.5 MPa at 28 days. To capture temperature 
and strain variations as well as internal cracking, strain gauges with 
an accuracy of 1 were embedded in the specimens. Additionally, 
a temperature sensor with an accuracy of 0.2 °C was attached to 
the strain gauges. The sensors were placed 4.5 m below the joint to 
prevent edge effects, as shown in Figure 1. 

3.2 Coupling chemo-thermal-mechanical 
model

The basic computational framework is roughly as follows: 
concrete hydration reaction releases heat (chemical field), which 
generates and transfers heat, leading to the rising heat and 
temperature differences (temperature field) of concrete. The 
temperature difference, together with the confinement from the 
steel tube, leads to the generation of thermal stress (mechanical 
field), as illustrated in Figure 3. 

3.2.1 Subsubsection
The heat release from concrete hydration is influenced by its 

mix proportion and degree of hydration. Therein, the hydration 
(Jia et al., 2024) degree of concrete can be calculated as Equation 
9 (Sun et al., 2025):

α = αu exp[−( τ
te
)

β
] (9)

where te is the equivalent age; τ and β are the material coefficient 
determined by fitting the measured curve, with the value of 14.0 and 
0.94, respectively, and αu is the ultimate degree of hydration, which 
can be investigated as Equation 10:

αu =
1.031w/c

0.194+w/c
(10)

where w/c is the water-to-cement ratio.
Furthermore, the equivalent age te can be calculated as Equation 11:

te = ∫
t

0
exp[

Ea

R
( 1

273+Tr
− 1

273+Tc(t)
)]dt (11)

where Ea is the activation energy (41,841 J/mol); R is the gas constant 
(8.314J/(mol ·K)); Tr is the reference temperature (20 °C), and Tc(t)
is the concrete temperature at time t. 
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FIGURE 1
Instrument layout in 2.1 m-dia. CFST column.

FIGURE 2
CFST Specimens.

3.2.2 Thermal field
The hydration process of massive concrete will release a large 

amount of heat, leading to heat transfer. Through the heat transfer, 
the thermodynamic equilibrium requires that the heat absorbed 
equals the sum of the net external input heat and the heat of 
hydration, as Equation 12:

ρC ∂T
∂t
= ∇(κ0∇T) +

∂Q
∂t

(12)

where ρ, C and κ0 represent the density (kg/m3), volumetric 
heat capacity (J/(kg·°C)), and thermal conductivity (W/(m·°C)) of 
concrete, respectively (Zhou et al., 2025; Nguyen et al., 2019). ∇ is the 

divergence operator; and Q is the volumetric rate of heat generation 
due to cement hydration. Therein, the volumetric heat capacity 
can be determined considering the impact of mix proportion, 
temperature and hydration degree of concrete as Equation 13
(Deng et al., 2025):

C = 1
ρ
(Wc · α · (8.4Tc + 339) +Wc(1− α)Cc +WaCa +WwCw) (13)

where Wc, Wa and Ww are the quantities of cement, aggregate and 
water in each cube of concrete (kg/m3); Cc , Ca and Cw are the specific 
heat capacities of cement, aggregate and water respectively (J/kg °C), 
and Tc is concrete temperature (°C).

The thermal conductivity of concrete is calculated by the 
following Equation 14 (Dehwah and Yunping, 2025):

k(α) = ku(1.33− 0.33α) (14)

where ku is the thermal conductivity when fully hydrated (α =
1),taking the value 2.55 W/(m·°C). 

3.2.3 Mechanical field
The mechanical field adopted in the proposed approach 

employs the principle of small strain superposition, with 
the total strain tensor ε depicted in Figure 4 schematically. 
Specifically, the total strain tensor ε consists of: elastic strain 
εe, plastic strain εp, creep strain εc, shrinkage strain εsh and 
temperature strain εT. The total strain tensor can be expressed as
Equation 15:

ε = εe + εp + εc + εsh + εT (15)

In addition, the plasticity and ductility of concrete after 
cracking (εe + εp) can be simulated using the concrete damage 
plasticity (CDP) model, concrete creep behavior (εc) is simulated 
using the viscoelastic model, and concrete shrinkage (εsh) and 
temperature (εT) behavior are simulated using characteristic strain
models.
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TABLE 2  Details of CFST specimens.

Specimens Sizes (Unit: mm) Materials

Height Inside diameter Steel tube thickness Concrete Steel

A02

600

200

5

C50 Q345

B02

A04
400

B04

A08
800

B08

A12
1,200

B12

A21-L
— 2,100 32

B21-L

“-L” means that the length of the specimen is much larger than the diameter, and the heat dissipation on the concrete surface at both ends of the specimen can be ignored.

When using the CDP model to analyze the time-dependent 
damage of concrete, the stress tensor can be expressed as 
Equation 16:

σ = (1− d)σ = (1− d)ℂ(t):εe = (1− d)ℂ(t):(ε − εp − εc − εsh − εT)
(16)

where σ  is the effective stress tensor; d is the damage scalar, which 
can be referred to GB50010 (Ministry of Housing and Urban-
Rural Development of the People’s Republic of China MOHURD,
2010), and ℂ(t) is the fourth-order elastic stiffness tensor 
without damage.

Usually, the early mechanical properties of concrete are 
influenced by the hydration degree α. More specifically, the 
relationship between the tensile strength ft, compressive strength fc
and modulus of elasticity of concrete Ec and the degree of hydration 
α can be described as Equation 17 (Zhou et al., 2025):

ft(α)
ft(α = 1)

= (
α− α0
1− α0
)

m fc(α)
fc(α = 1)

= (
α− α0
1− α0
)

n Ec(α)
Ec(α = 1)

= (
α− α0
1− α0
)

p

(17)

 where α0 is the threshold value for the degree of hydration in 
controlling the development of mechanical properties, which is 
usually taken from 0.1 to 0.6. The values of m, n, p and α0 in P.II52.5R 
cement are 0.46, 0.84, 0.26 and 0.25, respectively (Zhou et al., 2025). 
Furthermore, ft(a = 1) , fc(a = 1) and Ec(a = 1) can be approximated 
by taking the tensile strength, compressive strength and modulus of 
elasticity of concrete for the 28-day age.

In order to facilitate the use of finite element software for 
concrete creep analysis, the Kevin chain element is used to compute 
the creep, which can be shown as Equation 18 (Schindler, 2002):

L(τμ) = −
lim

k→∞
(−kτμ)

kCk(kτμ)

(k− 1)!
(18)

where τμ is the discrete time for calculating the creep strain 
increment. Ck is the kth derivative of the creep degree function, 
when k is taken as 3, can satisfy the accuracy of L(τμ). 
The creep strain increment Δεc can be represented by the 
following Equation 19:

Δεc =
N

∑
μ=1
(1− βμ)(λμΔσ

1
Dμ
+ βμγn−2

μ )
n−1

(19)

To facilitate implementation in FE software, the creep 
compliance is often expressed by a Kelvin chain model, as 
shown in Equation 19. In this equation, λμ = τμ(1− βμ)/Δt, βμ =
exp(−Δt/τμ) and Dμ = 1/A(τμ)(1− λμ) are the fitted coefficients 
and retardation times of the 3 K units in the chain, respectively, 
which characterize the viscoelastic behavior of concrete at different 
time scales (Schindler, 2002).

The self-shrinkage strain of concrete is related to the degree of 
hydration as Equation 20 (Li, 2020):

εsh(t, tc) =
(t− tc)

f + (t− tc)
εshuI (20)

where I is the second-order identity tensor, f is a parameter 
considering the shape and size of the component (often related to 
the volume-to-surface ratio), εshu is the final value of the shrinkage 
strain, taken as 780 × 10−6.

Moreover, it is assumed that the thermal strain rate and 
temperature change of concrete satisfy the linear assumption, which 
is presented as Equation 21:

ε̇T = kTṪI (21)

where Ṫ is the rate of temperature change, and kT takes the value
1 × 10−5. 
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FIGURE 3
Illustration of “chemo-thermal-mechanical” fields of concrete.

FIGURE 4
Illustration of strain superposition principle.

3.3 Numerical simulation

After complex derivation of the coupling chemo-thermal-
mechanical model, the refined finite element (FE) models of CFST 
specimens were established using the ABAQUS software, as shown 
in Figure 5. The CDP model in ABAQUS was used to describe 
the ductile behavior of concrete, with an expansion angle of 38°, 
a viscosity coefficient of 0.01, and default values for the remaining 
parameters (Ministry of Housing and Urban-Rural Development of 
the People’s Republic of China MOHURD, 2010; Bažant and Jirásek, 
2018). Relevant parameters are summarized in Tables 3, 4.

In the modeling process, appropriate simplifications of initial 
conditions and boundary conditions were made to obtain an 

accurate and effective numerical solution. The boundary conditions 
of the CFST specimens consist of two parts: steel (C1) and concrete 
(C2), as shown in Figure 6.

The initial temperature fields of the steel tube and concrete at (t 
= 0) should satisfy the Equation 22:

T|t=0 = T0(x,y,z) (22)

Boundary C1: The temperature difference between the steel pipe 
surface and the ambient temperature results in heat convection, and 
their relationship is as Equation 23 (Sun and Xie, 2019):

qso = β(Tf −Tso) (23)
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FIGURE 5
Implementation of proposed numerical model in Abaqus/Standard.

TABLE 3  Values of material parameters.

Material ρ (kg/m3) C (J/kg·°C)

Concrete 2,490 980

Steel 7,850 480

TABLE 4  Values of concrete hydration parameters.

Parameters τ β Ea (J/mol) αu Qc (J·m3)

Value 14.0 0.94 41,841 0.703 1.67 × 108

In the equation, Tf represents the ambient temperature 
(°C); Tso represents the steel pipe surface temperature (°C); 
β represents the convective heat transfer coefficient of 
the steel pipe outer surface (kJ/(m2·h·°C)), determined by
Equation 24:

Roughsurface: β = 23.9+ 14.50v

Smoothsurface: β = 21.8+ 13.53v (24)

In the equation, v represents the wind speed (m/s). During 
the early hardening process of concrete, the heat loss due to long-
wave radiation is small and has little effect on heat exchange. 
Therefore, the long-wave radiation from the steel and concrete 
surfaces is ignored.

Boundary C2: For larger-sized CFST specimens (A21-L 
and B21-L), the end of the CFST is considered an adiabatic 
boundary, i.e. Equation 25:

∂T
∂n
|

Γ
= 0 (25)

where n represents the normal vector of the boundary.
The measured temperature changes of the scaled CFST 

specimens and the simulation results are shown in Figure 7. It can 
be observed that approximately 5.9 h after the concrete pouring, 
the peak temperatures of specimens A02 and B02 were 43.6 °C and 
42.7 °C, respectively; the peak temperatures of specimens A04 and 
B04 were 62.8 °C and 64.2 °C, respectively; the peak temperatures of 
specimens A08 and B08 were 79.9 °C and 76.2 °C, respectively; and 
the peak temperatures of specimens A12 and B12 were 85.5 °C and 
77.7 °C, respectively. For CFST specimens with a diameter exceeding 
0.8m, the peak temperatures were higher, indicating significant heat 
exchange between the concrete and the external steel surface. After 
20 h of pouring, the temperature gradually decreased and eventually 
approached the ambient temperature. The core temperature of CFST 
specimens with smaller diameters (<0.4 m) was significantly affected 
by the ambient temperature.

4 Temperature prediction based on 
LSTM network

To more effectively and efficiently train the LSTM neural 
network, this study has established the overall computational 
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FIGURE 6
Temperature boundary conditions of CFST specimens.

FIGURE 7
Surface and core concrete temperatures of scaled CFST specimens. (a) Specimens A02 and B02. (b) Specimens A04 and B04. (c) Specimens A08 and 
B08. (d) Specimens A12 and B12.

framework of the LSTM prediction model, which is 
presented in Figure 8. The framework consists of five functional 
modules, including (1) input layer; (2) hidden layer; (3) output 
layer; (4) network training, and (5) network prediction. The 
input layer is responsible for normalizing the raw data to achieve 
the network’s input requirements, and the hidden layer uses 
LSTM cells to build a single-layer recurrent neural network. The 
output layer provides the prediction results, and network training 
uses the Adam optimization algorithm to realize the network
prediction.

4.1 Data generation and database 
construction

To study the impact of w/c, cement dosage, heat release 
of cement, and outside diameter of members on the maximum 
temperature of concrete in the core area of CFST during casting, 500 
sets of input data were generated considering the above 4 parameters 
using the Monte Carlo sampling method within their respective 
value ranges, assuming that the parameters are independent with 
each other. The ranges of the parameters are listed in Table 5.
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FIGURE 8
Framework of the LSTM prediction model.

TABLE 5  Investigated ranges of input parameters.

Variables W/c Cement dosage
(kg/m3)

Heat release of cement
(J/kg)

Specimen diameter (mm)

Maximum 0.6 450 200,000 1,200

Minimum 0.42 300 450,000 200

Average 0.504 387.4 356,200 650

Standard deviation 0.065 55.8125 93,668.351 384.0573

For each set of input parameters, temperature variation 
curves of the core and surface of CFST members were 
calculated based on refined finite element (FE) models that 
consider coupled chemo-thermal-mechanical fields. After 
obtaining the initial output dataset, to ensure the accuracy 
of the training, it is necessary to standardize the initial data 
using Z-score normalization, which is a linear transformation 
method used to map the original data to a standard normal 
distribution. The standardization calculation method is presented as
Equation 26:

X =
x− μ

σ
(26)

where X is the standardized data, x is the original data, μ is the 
arithmetic mean of the data, and σ is the standard deviation of the 

data. In this way, all data are distributed around a mean of 0 and a 
standard deviation of 1, resulting in data with zero mean and unit 
standard deviation. 

4.2 Establishment of LSTM neural network

The adopted LSTM neural network in this study was established 
using MATLAB 2022b. The hyperparameters were determined 
through a trial-and-error procedure, in which different numbers 
of hidden units (100–300), dropout rates (0.2–0.6), batch sizes 
(50–200), and epochs (1,000–3,000) were tested. The final 
configuration (200 hidden units, dropout = 0.5, batch size = 125, 
and 2000 epochs) provided the best compromise between prediction 
accuracy and computational cost. The dataset consisting of 500 

Frontiers in Materials 09 frontiersin.org

https://doi.org/10.3389/fmats.2025.1672487
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Huang et al. 10.3389/fmats.2025.1672487

TABLE 6  Architecture of the LSTM.

Component Parameters Value

layers

numHiddenUnits 200

fullyConnectedLayer 50

dropoutLayer 0.5

options

trainingOptions Adam

maxEpochs 2000

miniBatchSize 125

InitialLearnRate 0.01

GradientThreshold 1

Shuffle every-epoch

generated samples was randomly divided into 70% training, 15% 
validation, and 15% testing subsets. Moreover, the parameters 
of hidden layers and options of the constructed LSTM network 
were listed in Table 6.

4.3 Results and discussion

This section presents the results of LSTM predictions compared 
with experimental data, followed by a discussion of their 
implications. Figure 9 shows the prediction results of the core 
concrete temperature curves of four CFST columns with different 
diameters. For each group, only the diameter varied while the 
other parameters remained the same. The results demonstrate that 
the established LSTM model closely matches the measured data, 
successfully capturing both the peak temperature and the overall 
trend of temperature evolution.

For smaller CFST specimens (diameters ≤ 400 mm), both 
experimental and predicted curves exhibit double-peak patterns, 
as illustrated in Figures 9A,B. This phenomenon is attributed to 
the slower hydration process and lower heat generation in smaller 
specimens, combined with the influence of ambient temperature 
(∼40 °C), which delayed heat release from the core concrete. For 
larger specimens (≥ 800 mm), shown in Figures 9C,D, hydration 
heat dominated, resulting in a single, sharp temperature peak. These 
findings confirm that the accuracy of the LSTM predictions is 
consistent across different specimen sizes, and the model effectively 
reflects size-dependent thermal behavior.

Considering that the maximum core temperature of CFST 
columns plays a significant role in practical engineering, thus the 
maximum temperature predicted by LSTM was also investigated and 
the results are shown in Figure 10. Figure 10 shows the distribution 
of relative errors in the maximum temperature prediction for 500 
sets of data. It can be observed that 99.4% of the data exhibit a 
relative error within 5%, and all maximum temperature relative 
errors remain below 5.5%. The computational error is acceptable, 
and can demonstrate the efficiency and accuracy of the established 
LSTM model in this study. The model demonstrates notable 

accuracy, particularly in forecasting the maximum temperature of 
the core concrete in the CFST members after casting, indicating 
its potential to streamline and enhance temperature prediction in 
CFST structures, thereby offering practical benefits to engineering 
applications.

To further validate the reliability of the established LSTM model, 
16 sets of randomly generated parameters within the specified range 
were adopted. The numerical simulation results using ABAQUS 
were compared with the predicted results adopting LSTM model. 
The results of the 16 test cases are shown in Figure 11. Assuming 
that the numerical simulation results are accurate enough to satisfy 
the practical engineering based on the validated FE models, it can 
be seen that the precision of the predicted maximum temperature 
using the LSTM model will also achieve engineering requirements.

Compared with previous studies on CFST thermal analysis (Sun 
et al., 2019; Xie et al., 2022), which relied solely on finite element 
simulations, the present study provides an additional data-driven 
approach capable of rapid and accurate prediction. The ability of the 
LSTM model to capture both the overall trend and local variations 
highlights its value as a complementary tool to FE simulations.

From an engineering perspective, the results imply that LSTM 
models can be effectively integrated into real-time monitoring 
and decision-making systems during the construction of large 
CFST bridge members. The rapid prediction of peak temperatures 
is particularly beneficial for preventing early-age cracking and 
ensuring long-term durability. 

5 Conclusion

CFST components have been increasingly adopted in the 
construction of large-span arch bridges. The early hydration heat of 
massive concrete after casting will affect the structural performance 
and durability of CFST members. Therefore, this research has 
investigated the temperature variance of two full-scale CFST 
specimens and several scaled specimens with different diameters 
experimentally. Besides, a multiple coupling chemo-thermal-
mechanical model was developed to describe the constitutive 
behavior of CFST members under the impact of hydration heat. 
In addition, the multiple coupling model can be implemented in the 
refined FE model to simulate the hydration process and calculate 
the response of CFST members. Considering the computational 
efficiency and model dependent of conventional FE methods, a more 
efficient approach was further proposed to predict the temperature 
variance curve and the maximum temperature of core concrete of 
CFST members based on the LSTM neural network model. The 
conclusions can be drawn as follows. 

1. With the increase of diameter of CFST columns, the hydration 
degree and peak temperature of the concrete in the core 
area will increase. The increase in ambient temperature will 
accelerate the hydration process of CFST members, further 
accelerating the early hydration heat reaction of concrete.

2. The temperature variance of the core concrete of CFST 
members calculated by the refined FE models based on 
multiple coupling chemo-thermal-mechanical model can 
achieve great agreement with the in-situ measured temperature 
data.
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FIGURE 9
Surface and core concrete temperatures of scaled CFST specimens. (a) 200. (b) 400mm (c) 800mm (d) 1200mm.

3. The temperature field of full-scale CFST members is 
significantly affected by hydration heat. In the early stage, the 
temperature at the centroid and the outer surface of concrete 
increases rapidly due to the hydration heat, which may lead to 
concrete cracking.

4. For the scaled CFST members, the influence of ambient 
temperature of concrete is more pronounced if the diameter 
of the members is below 0.4 m. When the diameter exceeds 
0.8 m, the heat release during early-age concrete hydration 
becomes notably significant. In addition, heat exchange 
resulting from boundary conditions at both ends of Concrete-
filled steel tube (CFST) members significantly influences the 
crack propagation of the core concrete.

5. By combining refined FE modeling with LSTM neural 
network prediction, the core concrete temperature of CFST 
members can be predicted effectively using LSTM model. 
The established LSTM model can provide a convenient 
and efficient approach for evaluating the temperature 
and mechanical behavior of the core concrete in CFST
members.

6. The LSTM model proposed in this study provides a reliable tool 
for predicting the hydration temperature of CFST members 
in large-span bridge construction. It can be integrated into 
real-time monitoring systems to optimize temperature control 
during the curing process. This approach helps mitigate the 
risk of early-age thermal cracking, ensuring better structural 
integrity and longevity.

Although the proposed multi-field FE model and LSTM 
predictions show strong agreement with experimental results, 
several limitations must be acknowledged. First, measurement 
uncertainty arises from sensor accuracy (±0.2 °C) and potential 
errors in sensor installation, which may locally affect the recorded 
temperature. Second, scaling effects exist between laboratory 
specimens (0.2–1.2 m in diameter) and full-scale CFST members 
(2.1 m in diameter); smaller specimens may dissipate heat more 
rapidly than larger ones. Third, in the FE simulations, boundary 
conditions were simplified by assuming adiabatic behavior at the 
specimen ends and using empirical convective coefficients, which 
may not perfectly represent real field conditions. Finally, variability 
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FIGURE 10
Histogram of relative errors.

FIGURE 11
Verification set results.

in material properties, such as cement composition and hydration 
kinetics, introduces additional uncertainty. These factors may partly 
explain the small discrepancies observed between experiments and 
predictions. Nonetheless, the consistency across different validation 
methods (Figures 9–11) suggests that the proposed framework 
remains reliable for engineering applications, provided that these 
limitations are carefully considered.

Future studies should focus on expanding the LSTM framework 
to include strain and crack predictions, integrating real-time 
monitoring data, and applying the model to extreme environmental 
conditions to further enhance its practical application in CFST 
bridge construction.
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