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Concrete-filled steel tube (CFST) columns are widely applied in long-span
bridges due to their high strength, ductility, and construction efficiency.
However, in large-diameter CFST members, early-age hydration heat may
induce excessive temperature rise and thermal cracking, threatening structural
integrity. This study integrates in-situ measurements, multi-field finite element
(FE) modeling, and Long Short-Term Memory (LSTM) neural networks to predict
thermal behavior of CFST members. Two full-scale columns (2.1 m diameter)
and several scaled specimens were tested to record hydration-induced
temperature and strain evolution. A chemo-thermal-mechanical coupled FE
model was developed and validated against experimental results. Parametric
studies revealed the influence of water-to-cement ratio, cement dosage,
hydration heat release, and CFST diameter on core temperature evolution.
Furthermore, an LSTM network trained on FE-simulated datasets accurately
predicted both temperature history and maximum core temperatures, with
99.4% of predictions within 5% relative error. Compared with existing FE-AI
hybrid approaches, the novelty of this study lies in the large-diameter CFST
range (>2 m), the explicit coupling of chemo-thermal-mechanical fields, and
the systematic parameterization of the LSTM training database. The proposed
framework provides a reliable and efficient tool for design optimization and risk
mitigation in large-scale bridge engineering.

CFST, large diameter, hydration, multi-field, neural network

1 Introduction

The inherent advantages, such as high strength, good ductility, and ease
of construction, etc. (Li and Li, 2024). have promoted the application of
concrete-filled steel tube (CFST) members in megastructures. Up to date,
CFST hybrid arch bridges are regarded as an optimal solution for large-
span bridge construction, of which the main span can easily exceed 500 m.
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TABLE 1 Application of CFST in long span bridge.

10.3389/fmats.2025.1672487

CFST (diameter x thickness, mm)

‘Wangcang East River Bridge 800 x 10 115
Laba Jin ditch large bridge 1,320 x 22 182.5
Hejiang Yangtze River bridge 1,320 x 34 530
Hejiang Yangtze River Highway Bridge 1,300 x 22 507
Pingnan third bridge 1,400 x 26 575

Since the 1990s, more than 500 CFST arch bridges has been
constructed in China (see Table 1). Typically, the construction of
Pingnan Third Bridge with a main span of 575 m was completed
in 2020, becoming the largest span arch bridge through the world
at that time (Zheng et al., 2022). To achieve the requirements
of structural load-bearing capacity of arch bridges, the diameter
of the arch rib section must also increase with their span length
increasing, leading to the hydration temperature issues of the CEST
arch ribs (DAL 2022).

Generally, excessive hydration heat of concrete in early age
will cause expansion and shrinkage after casting (Cai et al., 2023),
which may lead to the separation of concrete from the steel
tube and degradation of the synergy between them. Moreover, an
increase in hydration heat can lead to excessive initial thermal stress
(Zhang et al., 2023), which affects the structural safety of CEST
members to some extent. Currently, many experts and scholars
have focused on the research of the cracking behavior of concrete
in CFST members caused by hydration heat. Zhou et al. (2022).
Investigated the distribution and evolution law of temperature
field during bridge operation of CFST arch bridges. Based on the
principle of heat transfer theory and the finite element method,
Sun etal. (Cavacece, 2025). proposed a calculation method for
the temperature field of the arch rib section of a CFST arch
bridge. Shi et al. (2020). Evaluated the hydration-temperature
field of no shrinkage concrete in large-diameter CEST arch ribs.
An equation was experimentally proposed to predict the heat of
hydration at all locations in CFST of different diameters. Xiao et al.
(2023). Studied the calculation method of the stress concentration
factor for CFST circular hollow section by establishing finite
element models with 36 different geometric parameters. Sun
and Xie. (2019). Studied the hydration temperature changes of
pumped concrete in large-diameter CFST components and its
influence on mechanical properties such as concrete strength
and elastic modulus. Xie et al. (2022). Established a hydration
heat conduction model to study the temperature field of CFST
components, and studied the temperature stress changes of CFST
during the hydration heat release process by considering the
early concrete creep through numerical methods. From the above
research, it can be seen that hydration reaction will cause a sharp
increase in the internal concrete temperature of CFST members,
and hydration heat is the main cause of early-age concrete cracking
in CFST members. However, there is little research on the early
behavior of large-sized CFST components with diameters exceeding
1.5m, and there is also a lack of research on the relationship
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between CFST diameter, hydration heat temperature, and concrete
cracking. In addition, there is a lack of research on CFST
numerical simulation considering multi-field coupling, especially
the coupling of concrete hydration heat, temperature field, and force
field.

In essence, in-situ measurement and finite element (FE)
analysis are two kinds of conventional approaches on the
investigation of structural behavior. With regard to the prediction
on the hydration heat temperature and strain evolution of large-
diameter CFST members, traditional finite element modeling
method is inefficient and its accuracy is dependent on the
quality of the corresponding FE models. To date, with the rapid
development of computer technology and artificial intelligence,
machine-learning approaches has gained increasing attention
due to the great performance on computational effort and
been widely used on the analysis of structures. Duan et al
(2022). Accurately reflected the relationship between strain and
acceleration and bridge displacement using long short-term
memory (LSTM) networks. Huang et al. (2024). proposed a
seasonally independent nonlinear model for predicting temperature
and displacement of rigid frame bridges based on LSTM networks.
In order to reduce the cost of fast and slow cycle experiments,
Yazdanpanah etal. (Yazda et al., 2023). Used LSTM to predict
the relationship between forces and deformations of the bridge
and verified the high correlation between the predicted and
measured values. The main girders of cable-stayed bridges produce
large deflections under the influence of temperature, Yue et al.
(2022). The parameters of the LSTM network were optimized to
establish a temperature-deflection regression model with both
accuracy and stability. Doroudi et al. (2024). Used LSTM to
predict the structural damage of large span bridges, and the
optimized and adjusted model became an effective bridge damage
assessment method.

In this study, the objective is to propose a new kind of
machine-learning method on the prediction of hydration heat
temperature of CFST columns. Firstly, the temperature field
of CFST columns with different diameters (0.2 m-2.1 m) was
tested. Afterwards, the chemo-thermo-mechanical coupled model
of CFST members was studied and implemented to establish
the refined FE models of the tested columns based on the
ABAQUS software. Furthermore, the LSTM neural networks was
used as an effective method to predict the temperature field of
CFST columns.
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2 Long Short-Term Memory (LSTM)

Conventional artificial neural networks (ANNS) are a nonlinear
data modeling technique inspired by the imitation of biological
neural networks for processing various types of information.
Generally, ANNs consist of three components: the input layer, the
output layer, and hidden layers. Input parameters will be transmitted
and analyzed through neurons, and ultimately a nonlinear result will
be outputted through weighted connections, as Equation 1.

h=o0,(Wx+Db) (1)
where x is vector for the input signals; W and b are the weights of
the connections and biases, respectively; and o,(-) is the activation
function to generate the prediction h.

The limitations of conventional neural networks are also
evident: while they can analyse relatively independent neurons, they
struggle with problems that require dependency on previously input
information. This is where recurrent neural networks (RNNs) come
into play. In RNNSs, neurons at a certain time t simultaneously
receive the output from time t-1 and the current input x,, ultimately
generating output ﬁt and passing it on to the same neuron at time
t+ 1. The activity in recurrent neural networks unfolds as Equation 2:

w.

X

fzt = ou( B X+ WhhﬁH + b) (2)

However, recurrent neural networks (RNNs) also have certain
limitations. As dependence on information increases and the
distance between prediction points expands, the issue of gradient
vanishing tends to occur. Hence, there arises a need to utilize
Long Short-Term Memory (LSTM) architecture to address this
issue. The LSTM model comprises three distinct gates: the input
gate i, the output gate o,,and the forget gate f,. Upon receiving
new information, the LSTM adds it to the original data, and the
resulting sum ¢, becomes the new long-term assessment (cell state).
Subsequently, the new short-term assessment (hidden state) h, is
outputted and participates in the subsequent simulation process. The
relevant functions are as Equations 3-8:

fo=0( W, + Wyghy +by) 3)
iy = 0(Wex, + Wiihy  +b,) (4)
0, = aS(onxt + WhoﬁH + bo) (5)
& =0,(Wex, + Wy hy  +b,) (6)
and
¢ =f,0¢_+i,0F (7)
h=0,00,(c,) (8)

where o,(-) and o0,(-) represent the sigmoid and hyperbolic
tangent functions, respectively, while ® denotes the element-
wise multiplication. ¢, signifies the activation of the long-term
assessment. The same information and the hidden state from the
previous time step t-1 are inputted into the three gates.
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3 In-situ measurements and
multi-field numerical modeling

3.1 Experimental set-up and data recording

Two full-scale CFST column with a diameter of 2.1 m adopted in
the construction of large-span arch bridges was taken for evaluation.
The 2.1-m-diameter full-scale CFST columns were tested on-site to
investigate the relationship between its dimensions during hydration
and concrete temperature and cracking behavior (see Figure 1).
Temperature variations and strain values during hydration were
recorded through the test. In addition, eight scaled-down CFST
specimens, each 0.6 m in height and made of the same material as the
test specimen, were fabricated, with diameters ranging from 0.2 m to
1.2 m, as shown in Figure 2. The dimensions and main materials of
each specimen are summarized in Table 2.

The experiment utilized self-consolidating concrete (SCC) with
a strength grade of C50, with average cube compressive strengths of
53.6 MPa at 7 days and 62.5 MPa at 28 days. To capture temperature
and strain variations as well as internal cracking, strain gauges with
an accuracy of 1 were embedded in the specimens. Additionally,
a temperature sensor with an accuracy of 0.2 °C was attached to
the strain gauges. The sensors were placed 4.5 m below the joint to
prevent edge effects, as shown in Figure 1.

3.2 Coupling chemo-thermal-mechanical
model

The basic computational framework is roughly as follows:
concrete hydration reaction releases heat (chemical field), which
generates and transfers heat, leading to the rising heat and
temperature differences (temperature field) of concrete. The
temperature difference, together with the confinement from the
steel tube, leads to the generation of thermal stress (mechanical
field), as illustrated in Figure 3.

3.2.1 Subsubsection

The heat release from concrete hydration is influenced by its
mix proportion and degree of hydration. Therein, the hydration
(Jia et al., 2024) degree of concrete can be calculated as Equation

9 (Sun et al., 2025):
()]
a=oa,exp|- -

where ¢, is the equivalent age; 7 and f are the material coefficient
determined by fitting the measured curve, with the value of 14.0 and

)

0.94, respectively, and «,, is the ultimate degree of hydration, which
can be investigated as Equation 10:
1.031w/c
oty = ——————
0.194 + w/c

where w/c is the water-to-cement ratio.

(10)

Furthermore, the equivalent age f, can be calculated as Equation 11:

t E, 1 1
t.=| exp|— - dt
0 R\273+T, 273+T.t)
where E, is the activation energy (41,841 J/mol); R is the gas constant

(8.314]J/(mol - K)); T, is the reference temperature (20 °C), and T_(t)
is the concrete temperature at time t.

(€3))
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FIGURE 1
Instrument layout in 2.1 m-dia. CFST column.

Temperature & Strain sensors

Ultrasonic pulse velocity measurement points

FIGURE 2
CFST Specimens.

3.2.2 Thermal field
The hydration process of massive concrete will release a large
amount of heat, leading to heat transfer. Through the heat transfer,
the thermodynamic equilibrium requires that the heat absorbed
equals the sum of the net external input heat and the heat of

hydration, as Equation 12:
pC%—f =V(x,VT) + %—? (12)
where p, C and «, represent the density (kg/m?), volumetric
heat capacity (J/(kg-°C)), and thermal conductivity (W/(m-°C)) of
concrete, respectively (Zhou et al., 2025; Nguyen et al., 2019). Vis the
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divergence operator; and Q is the volumetric rate of heat generation
due to cement hydration. Therein, the volumetric heat capacity
can be determined considering the impact of mix proportion,
temperature and hydration degree of concrete as Equation 13
(Deng et al., 2025):

C= Il)(wc o (84T.+339)+ W.(1-a)C.+ W,C, + W, C,,) (13)

where W,, W, and W,, are the quantities of cement, aggregate and
water in each cube of concrete (kg/m*); C_, C, and C,, are the specific
heat capacities of cement, aggregate and water respectively (J/kg °C),
and T, is concrete temperature (°C).

The thermal conductivity of concrete is calculated by the
following Equation 14 (Dehwah and Yunping, 2025):

k(e) = k,(1.33 - 0.33cx) (14)

where k, is the thermal conductivity when fully hydrated (a=
1),taking the value 2.55 W/(m-°C).

3.2.3 Mechanical field

The mechanical field adopted in the proposed approach
employs the principle of small strain superposition, with
the total strain tensor & depicted in Figure4 schematically.
Specifically, the total strain tensor & consists of: elastic strain

€,, plastic strain &, creep strain &, shrinkage strain &g, and

£
14
temperature strain &;. The total strain tensor can be expressed as

Equation 15:

e=¢g,+e,+e +e, e (15)

P

In addition, the plasticity and ductility of concrete after

cracking (se+s ) can be simulated using the concrete damage

P
plasticity (CDP) model, concrete creep behavior (e,) is simulated
using the viscoelastic model, and concrete shrinkage (ey,) and
temperature (&) behavior are simulated using characteristic strain

models.
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TABLE 2 Details of CFST specimens.

10.3389/fmats.2025.1672487

Specimens Sizes (Unit: mm) ‘ Materials
Inside diameter Steel tube thickness ‘ Concrete
A02
200
B02
A04
400
B04
600 5
A08
800 C50 Q345
B08
Al2
1,200
B12
A21-L
— 2,100 32
B21-L

“-I” means that the length of the specimen is much larger than the diameter, and the heat dissipation on the concrete surface at both ends of the specimen can be ignored.

When using the CDP model to analyze the time-dependent
damage of concrete, the stress tensor can be expressed as
Equation 16:

o=(1-d)o = (1-d)C(t):e, = (1 - DC():(e— &, — &, — £~ &)
(16)

where o is the effective stress tensor; d is the damage scalar, which
can be referred to GB50010 (Ministry of Housing and Urban-
Rural Development of the People’s Republic of China MOHURD,
2010), and C(t) is the fourth-order elastic stiffness tensor
without damage.

Usually, the early mechanical properties of concrete are
influenced by the hydration degree «. More specifically, the
relationship between the tensile strength f,, compressive strength f_
and modulus of elasticity of concrete E, and the degree of hydration
a can be described as Equation 17 (Zhou et al., 2025):

(=

() (=)
(17)

where « is the threshold value for the degree of hydration in

fi(a)

fila=1) "

- a—a E (o)

E(ax=1)

a-a

1-ap 1-a 1-ap

controlling the development of mechanical properties, which is
usually taken from 0.1 to 0.6. The values of m, n, p and «,, in PII52.5R
cement are 0.46, 0.84, 0.26 and 0.25, respectively (Zhou et al., 2025).
Furthermore, f,(a=1), f.(a=1)and E_(a = 1) can be approximated
by taking the tensile strength, compressive strength and modulus of
elasticity of concrete for the 28-day age.

In order to facilitate the use of finite element software for
concrete creep analysis, the Kevin chain element is used to compute
the creep, which can be shown as Equation 18 (Schindler, 2002):

lim (—krp)ka(kTP)
Lr) === (k—1)!

(18)
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where T,

increment. C* is the kth derivative of the creep degree function,

is the discrete time for calculating the creep strain

when k is taken as 3, can satisfy the accuracy of L(Tp).
The creep strain increment Ae. can be represented by the
following Equation 19:

N n-1
Ae=Y(1- ﬁp)<APAoDi + ﬂpyﬁ’2> (19)
u=1 P
To facilitate implementation in FE software, the creep
compliance is often expressed by a Kelvin chain model, as
shown in Equation 19. In this equation, A, = Tp(l —ﬂu)/At, B.=
exp (—At/‘rp) and D, = 1/A(‘rp)(1 —AP) are the fitted coefficients
and retardation times of the 3 K units in the chain, respectively,
which characterize the viscoelastic behavior of concrete at different
time scales (Schindler, 2002).
The self-shrinkage strain of concrete is related to the degree of
hydration as Equation 20 (Li, 2020):

(t_ tc)

=—¢

f+ (t_tc)

where I is the second-order identity tensor, f is a parameter

eg(tt,) (20)

shu

considering the shape and size of the component (often related to
the volume-to-surface ratio), g,
strain, taken as 780 x 107°.

Moreover, it is assumed that the thermal strain rate and

is the final value of the shrinkage

temperature change of concrete satisfy the linear assumption, which
is presented as Equation 21:
&p = kpT1 (1)

where T is the rate of temperature change, and ky takes the value
1x107°.
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FIGURE 3

Illustration of “chemo-thermal-mechanical” fields of concrete.

Total Stress Tensor &

FIGURE 4
Illustration of strain superposition principle.
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Concrete Damage Creep Shrinkage

3.3 Numerical simulation

After complex derivation of the coupling chemo-thermal-
mechanical model, the refined finite element (FE) models of CFST
specimens were established using the ABAQUS software, as shown
in Figure 5. The CDP model in ABAQUS was used to describe
the ductile behavior of concrete, with an expansion angle of 38°,
a viscosity coefficient of 0.01, and default values for the remaining
parameters (Ministry of Housing and Urban-Rural Development of
the People’s Republic of China MOHURD, 2010; Bazant and Jirasek,
2018). Relevant parameters are summarized in Tables 3, 4.

In the modeling process, appropriate simplifications of initial
conditions and boundary conditions were made to obtain an

Frontiers in Materials

accurate and effective numerical solution. The boundary conditions
of the CFST specimens consist of two parts: steel (C1) and concrete
(C2), as shown in Figure 6.

The initial temperature fields of the steel tube and concrete at (t
= 0) should satisfy the Equation 22:

Ty = To(x, 9, 2) (22)

Boundary CI: The temperature difference between the steel pipe
surface and the ambient temperature results in heat convection, and
their relationship is as Equation 23 (Sun and Xie, 2019):

5o = ﬁ(Tf_ Tso) (23)
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FIGURE 5
Implementation of proposed numerical model in Abaqus/Standard.

Z

TABLE 3 Values of material parameters.

Material p (kg/m?3) ’ C (J/kg-°C)
Concrete 2,490 980
Steel 7,850 480

TABLE 4 Values of concrete hydration parameters.

Parameters | 7 | B | E,(3/mol) | «, | Q.(@'m?)
140 | 094

41,841

1.67 x 108

Value 0.703

In the equation, Ty represents the ambient temperature
(°C); T,, represents the steel pipe surface temperature (°C);
B represents the convective heat transfer coefficient of
the steel pipe outer surface (kJ/(m*h-°C)), determined by
Equation 24:

Roughsurface: = 23.9 + 14.50v

Smoothsurface: f =21.8 +13.53v (24)

In the equation, v represents the wind speed (m/s). During
the early hardening process of concrete, the heat loss due to long-
wave radiation is small and has little effect on heat exchange.
Therefore, the long-wave radiation from the steel and concrete
surfaces is ignored.
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Boundary C2: For larger-sized CFST specimens (A21-L
and B21-L), the end of the CFST is considered an adiabatic
boundary, i.e. Equation 25:

oT

=0
onlr

(25)
where n represents the normal vector of the boundary.

The measured temperature changes of the scaled CFST
specimens and the simulation results are shown in Figure 7. It can
be observed that approximately 5.9 h after the concrete pouring,
the peak temperatures of specimens A02 and B02 were 43.6 °C and
42.7 °C, respectively; the peak temperatures of specimens A04 and
B04 were 62.8 °C and 64.2 °C, respectively; the peak temperatures of
specimens A08 and B08 were 79.9 °C and 76.2 °C, respectively; and
the peak temperatures of specimens A12 and B12 were 85.5 °C and
77.7 °C, respectively. For CFST specimens with a diameter exceeding
0.8m, the peak temperatures were higher, indicating significant heat
exchange between the concrete and the external steel surface. After
20 h of pouring, the temperature gradually decreased and eventually
approached the ambient temperature. The core temperature of CFST
specimens with smaller diameters (<0.4 m) was significantly affected
by the ambient temperature.

4 Temperature prediction based on
LSTM network

To more effectively and efficiently train the LSTM neural
network, this study has established the overall computational
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B08. (d) Specimens A12 and B12.

Surface and core concrete temperatures of scaled CFST specimens. (a) Specimens AO2 and B02. (b) Specimens AO4 and B04. (c) Specimens A08 and

“Time (h) Time ()

(d)

framework of the LSTM prediction model, which is
presented in Figure 8. The framework consists of five functional
modules, including (1) input layer; (2) hidden layer; (3) output
layer; (4) network training, and (5) network prediction. The
input layer is responsible for normalizing the raw data to achieve
the network’s input requirements, and the hidden layer uses
LSTM cells to build a single-layer recurrent neural network. The
output layer provides the prediction results, and network training
uses the Adam optimization algorithm to realize the network
prediction.

Frontiers in Materials 08

4.1 Data generation and database
construction

To study the impact of w/c, cement dosage, heat release
of cement, and outside diameter of members on the maximum
temperature of concrete in the core area of CFST during casting, 500
sets of input data were generated considering the above 4 parameters
using the Monte Carlo sampling method within their respective
value ranges, assuming that the parameters are independent with
each other. The ranges of the parameters are listed in Table 5.
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TABLE 5 Investigated ranges of input parameters.

Variables Cement dosage Heat release of cement Specimen diameter (mm)
(kg/m?) (J/kg)
Maximum 0.6 450 200,000 1,200
Minimum 0.42 300 450,000 200
Average 0.504 387.4 356,200 650
Standard deviation 0.065 55.8125 93,668.351 384.0573

For each set of input parameters, temperature variation
curves of the core and surface of CFST members were
calculated based on refined finite element (FE) models that
coupled fields.  After
obtaining the initial output dataset, to ensure the accuracy
of the training, it is necessary to standardize the initial data

consider chemo-thermal-mechanical

using Z-score normalization, which is a linear transformation
method used to map the original data to a standard normal
distribution. The standardization calculation method is presented as
Equation 26:

(26)

where X is the standardized data, x is the original data, yu is the
arithmetic mean of the data, and o is the standard deviation of the

Frontiers in Materials

data. In this way, all data are distributed around a mean of 0 and a
standard deviation of 1, resulting in data with zero mean and unit
standard deviation.

4.2 Establishment of LSTM neural network

The adopted LSTM neural network in this study was established
using MATLAB 2022b. The hyperparameters were determined
through a trial-and-error procedure, in which different numbers
of hidden units (100-300), dropout rates (0.2-0.6), batch sizes
(50-200), and epochs (1,000-3,000) were tested. The final
configuration (200 hidden units, dropout = 0.5, batch size = 125,
and 2000 epochs) provided the best compromise between prediction
accuracy and computational cost. The dataset consisting of 500

frontiersin.org


https://doi.org/10.3389/fmats.2025.1672487
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Huang et al.

TABLE 6 Architecture of the LSTM.

Component Parameters Value
numHiddenUnits 200
layers fullyConnectedLayer 50
dropoutLayer 0.5
trainingOptions Adam
maxEpochs 2000
miniBatchSize 125
options
InitialLearnRate 0.01
GradientThreshold 1
Shuffle every-epoch

generated samples was randomly divided into 70% training, 15%
validation, and 15% testing subsets. Moreover, the parameters
of hidden layers and options of the constructed LSTM network
were listed in Table 6.

4.3 Results and discussion

This section presents the results of LSTM predictions compared
with experimental data, followed by a discussion of their
implications. Figure 9 shows the prediction results of the core
concrete temperature curves of four CFST columns with different
diameters. For each group, only the diameter varied while the
other parameters remained the same. The results demonstrate that
the established LSTM model closely matches the measured data,
successfully capturing both the peak temperature and the overall
trend of temperature evolution.

For smaller CFST specimens (diameters < 400 mm), both
experimental and predicted curves exhibit double-peak patterns,
as illustrated in Figures 9A,B. This phenomenon is attributed to
the slower hydration process and lower heat generation in smaller
specimens, combined with the influence of ambient temperature
(~40 °C), which delayed heat release from the core concrete. For
larger specimens (> 800 mm), shown in Figures 9C,D, hydration
heat dominated, resulting in a single, sharp temperature peak. These
findings confirm that the accuracy of the LSTM predictions is
consistent across different specimen sizes, and the model effectively
reflects size-dependent thermal behavior.

Considering that the maximum core temperature of CFST
columns plays a significant role in practical engineering, thus the
maximum temperature predicted by LSTM was also investigated and
the results are shown in Figure 10. Figure 10 shows the distribution
of relative errors in the maximum temperature prediction for 500
sets of data. It can be observed that 99.4% of the data exhibit a
relative error within 5%, and all maximum temperature relative
errors remain below 5.5%. The computational error is acceptable,
and can demonstrate the efficiency and accuracy of the established
LSTM model in this study. The model demonstrates notable
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accuracy, particularly in forecasting the maximum temperature of
the core concrete in the CFST members after casting, indicating
its potential to streamline and enhance temperature prediction in
CEST structures, thereby offering practical benefits to engineering
applications.

To further validate the reliability of the established LSTM model,
16 sets of randomly generated parameters within the specified range
were adopted. The numerical simulation results using ABAQUS
were compared with the predicted results adopting LSTM model.
The results of the 16 test cases are shown in Figure 11. Assuming
that the numerical simulation results are accurate enough to satisfy
the practical engineering based on the validated FE models, it can
be seen that the precision of the predicted maximum temperature
using the LSTM model will also achieve engineering requirements.

Compared with previous studies on CFST thermal analysis (Sun
etal., 2019; Xie et al,, 2022), which relied solely on finite element
simulations, the present study provides an additional data-driven
approach capable of rapid and accurate prediction. The ability of the
LSTM model to capture both the overall trend and local variations
highlights its value as a complementary tool to FE simulations.

From an engineering perspective, the results imply that LSTM
models can be effectively integrated into real-time monitoring
and decision-making systems during the construction of large
CEST bridge members. The rapid prediction of peak temperatures
is particularly beneficial for preventing early-age cracking and
ensuring long-term durability.

5 Conclusion

CEST components have been increasingly adopted in the
construction of large-span arch bridges. The early hydration heat of
massive concrete after casting will affect the structural performance
and durability of CFST members. Therefore, this research has
investigated the temperature variance of two full-scale CFST
specimens and several scaled specimens with different diameters
experimentally. Besides, a multiple coupling chemo-thermal-
mechanical model was developed to describe the constitutive
behavior of CFST members under the impact of hydration heat.
In addition, the multiple coupling model can be implemented in the
refined FE model to simulate the hydration process and calculate
the response of CFST members. Considering the computational
efficiency and model dependent of conventional FE methods, a more
efficient approach was further proposed to predict the temperature
variance curve and the maximum temperature of core concrete of
CEST members based on the LSTM neural network model. The
conclusions can be drawn as follows.

1. With the increase of diameter of CFST columns, the hydration
degree and peak temperature of the concrete in the core
area will increase. The increase in ambient temperature will
accelerate the hydration process of CFST members, further
accelerating the early hydration heat reaction of concrete.

The temperature variance of the core concrete of CFST
members calculated by the refined FE models based on
multiple coupling chemo-thermal-mechanical model can
achieve great agreement with the in-situ measured temperature
data.
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3. The temperature field of full-scale CFST members is
significantly affected by hydration heat. In the early stage, the
temperature at the centroid and the outer surface of concrete
increases rapidly due to the hydration heat, which may lead to
concrete cracking.

For the scaled CFST members, the influence of ambient
temperature of concrete is more pronounced if the diameter
of the members is below 0.4 m. When the diameter exceeds
0.8 m, the heat release during early-age concrete hydration
becomes notably significant. In addition, heat exchange
resulting from boundary conditions at both ends of Concrete-
filled steel tube (CFST) members significantly influences the
crack propagation of the core concrete.

By combining refined FE modeling with LSTM neural
network prediction, the core concrete temperature of CFST
members can be predicted effectively using LSTM model.
The established LSTM model can provide a convenient
and eflicient approach for evaluating the temperature
and mechanical behavior of the core concrete in CFST
members.
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6. The LSTM model proposed in this study provides a reliable tool
for predicting the hydration temperature of CFST members
in large-span bridge construction. It can be integrated into
real-time monitoring systems to optimize temperature control
during the curing process. This approach helps mitigate the
risk of early-age thermal cracking, ensuring better structural
integrity and longevity.

Although the proposed multi-field FE model and LSTM
predictions show strong agreement with experimental results,
several limitations must be acknowledged. First, measurement
uncertainty arises from sensor accuracy (+0.2 °C) and potential
errors in sensor installation, which may locally affect the recorded
temperature. Second, scaling effects exist between laboratory
specimens (0.2-1.2 m in diameter) and full-scale CFST members
(2.1 m in diameter); smaller specimens may dissipate heat more
rapidly than larger ones. Third, in the FE simulations, boundary
conditions were simplified by assuming adiabatic behavior at the
specimen ends and using empirical convective coeflicients, which
may not perfectly represent real field conditions. Finally, variability
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in material properties, such as cement composition and hydration
kinetics, introduces additional uncertainty. These factors may partly
explain the small discrepancies observed between experiments and
predictions. Nonetheless, the consistency across different validation
methods (Figures 9-11) suggests that the proposed framework
remains reliable for engineering applications, provided that these
limitations are carefully considered.

Future studies should focus on expanding the LSTM framework
to include strain and crack predictions, integrating real-time
monitoring data, and applying the model to extreme environmental
conditions to further enhance its practical application in CFST
bridge construction.
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