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Pore connectivity (β) is a key parameter for investigating the hydration 
mechanism, transport performance, corrosion mechanism, and durability of 
cement-based materials. This article reviews the general experimental and 
computational, and numerical simulation methods used to study the β of 
cement-based materials. The principles, characteristics, and application of 
traditional and advanced experimental methods used to study the β of 
cement-based materials are compared and analysed. The principles and 
research progress of computational models, including random walker algorithm, 
Archie’s law, and multi-phase phenomenological model, are summarised. 
The characteristics of numerical simulation methods, such as hydration-
morphology-structure, CEMHYD3D, and HydratiCA, are described. Additionally, 
the research progress, challenges, and directions with respect to the β of 
cement-based materials are comprehensively discussed. This review aims to 
provide some foundation for understanding the pore structure, hydration and 
corrosion mechanism and for developing a durability prediction model of 
cement-based materials in the future.
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 1 Introduction

Cement-based materials are the most widely used artificial materials, and their 
total annual production is over 20 billion tons; however, the CO2 emission during the 
production of the materials accounts for 5%–10% of the world’s total CO2 emission 
(Abdolhosseini Qomi et al., 2014; Zhang W. et al., 2020; Jiang et al., 2025; Sun et al., 2025). 
Thus, to reduce the impact of the production of cement-based materials on the environment, 
improving the corrosion resistance and durability of the materials is an effective measure. 
However, there are a large number of complex pore structures in cement-based materials, 
which seriously affect the durability of the materials (Wang W. et al., 2019; MacLeod et al., 
2020; Upshaw and Cai, 2020; Zhang W. et al., 2020; Yu et al., 2024; Papp et al., 2025). 
Furthermore, the connected pores in the materials can provide a flow channel for the 
migration of water (Cao et al., 2019), Ca2+ ions (Gaitero et al., 2008), and corrosive medium 
(Zhang, 2017). Therefore, a generally acceptable view is that the pore structure, especially
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pore connectivity (β), is a key parameter to investigate the 
durability of hardened cement-based materials (Zhang et al., 2018b; 
2018c; Cao et al., 2019; Li et al., 2019). Meanwhile, researchers 
(Li Z. et al., 2016; Lyles, 2016) have proposed that understanding the 
pore structure and β of cement slurry during the hardening stage is 
very important to investigate the “natural gas migration” behavior 
in the cement slurry, and develop an anti-natural gas-migration 
technique for the cementing engineering of natural gas wells.

Based on the pore size, the pores in cement-based materials are 
divided as gel pores, capillary pores, and macropores (Liu et al., 
2019b). The macropores contain hollow-shell pores (Bede et al., 
2016; Tang et al., 2016) and air voids. Generally, the volume 
fraction of macropores in cement-based materials is low, and 
these pores have poor connectivity. Air voids are formed by air 
entrainment during the preparation of cement-based materials, 
which are entrapped and have a large diameter. Previous studies 
(Hadley et al., 2000; Aligizaki, 2006) have reported that the hollow-
shell pores are formed by hollow-shell hydration grains. The pores 
in the hydration products are named as gel pores, which have 
poor connectivity and their size is less than 10 nm. According to 
the microstructure of calcium silicate hydrates (C-S-H), Bede et al. 
(Bede et al., 2016) categorised gel pores into intra C-S-H gel pores 
(0.5–1.8 nm) and inter C-S-H pores (2–10 nm). Capillary pores 
are widely distributed in the hydration products, do not have a 
regular shape, and have size larger than 50 nm (Bede et al., 2016). 
Under natural conditions, the capillary pores are filled with pore 
solution and thus impact the durability of cement-based materials 
(Tang et al., 2016; Zhang et al., 2018b).

Recently, researchers have established several prediction models 
of capillary porosity (ϕ) and connectivity in cement-based materials 
using traditional methods such as mercury intrusion and gas 
adsorption (Salmas and Androutsopoulos, 2001; He et al., 2018). 
Furthermore, some advanced experimental methods, including high-
resolution computed tomography (CT) (Yue et al., 2025), nuclear 
magnetic resonance (NMR) (Yu et al., 2024; Song et al., 2025b), 
and electrical techniques, have been used for the in situ testing of 
the β in cement-based materials (Tang et al., 2016; 2017; Liu et al., 
2019b). Moreover, with the development of mathematical theories 
and computing technologies, researchers have constructed some 
numerical simulation methods to predict the hydration process, 
microstructure, pore structure, and properties of these materials 
(Breugel, 1995; Bentz, 2005). Based on these research achievements, 
several reviews have been reported on the pore structure of cement-
based materials. For example, Diamond (Diamond, 2000) reviewed 
the experimental processes and conditions of mercury intrusion 
to analyse the pore structures of cement-based materials. Tang 
et al. (Tang et al., 2016; Tang et al., 2017) reviewed the research 
processes used and the challenges encountered in the study of the 
pore structures of these materials using electrical methods such as 
electrical impedance and direct and alternative current methods. 
Zhang (Zhang and Zhang, 2014) reviewed the transport performance, 
ion diffusion, and gas permeability of unsaturated cement-based 
materials and reported the effects of chloride binding, supplementary 
cementitious materials, and water-to-cement ratio (W/C) on the 
transport performance of the materials. Patel et al. (Patel et al., 2016) 
evaluated the experimental and simulation methods used to investigate 
the effective diffusion coefficients (D(∆)) in saturated cement-based 
materials. Garboczi et al. (Garboczi, 1990) reviewed the principles and 

applications of several computational theories, such as Archie’s Law, 
Katz–Thompson theory, and Kozeny–Carman theory, and models for 
predicting the permeability of porous materials. Thomas et al. (2011) 
examined numerical simulation models, including single-particle, 
mathematical nucleation-growth, and vector and lattice-based models, 
used to predict the complex hydration reaction and microstructure of 
cement-based materials. Although β is a key parameter to investigate 
the corrosion behavior and predict the durability of cement-based 
materials, these reviews have paid little attention to the experimental, 
computational, and numerical methods used to test the β of cement-
based materials and the research progress and challenges in the study 
of the β of these materials. 

Therefore, the purpose of this review is to summarise the 
principles, characteristics, and applications of the experimental, 
computational, and simulation methods used to study the β
in cement-based materials. Figure 1 presents the outline of 
this review. According to the underlying principles and sample 
preparation techniques, the experimental methods used to study β
are divided into traditional and advanced experimental methods. 
Traditional methods include mercury intrusion, gas adsorption, 
and direct imaging methods, and advanced methods comprise 
high-resolution CT, NMR, and electrical methods. Herein, we 
have comparatively analysed the principles, characteristics and 
applications of these experimental methods, summarised the 
computational methods used to calculate the β in cement-based 
materials, and described the numerical simulation techniques 
applied to predict the microstructure and pore structure of these 
materials. Finally, the challenges and directions in the study of the 
β of these materials are evaluated.

2 Traditional experimental methods 
for testing the β

To study the β in hardened cement-based materials, researchers 
have established computational models based on the results of 
mercury intrusion and gas adsorption. Zeng et al. (Zeng et al., 2012; 
He et al., 2018) proposed that pore entrapment is the key parameter 
to determine the β in cement-based materials, and the volume 
fraction of the entrapped pores (αen) can be expressed as Equation 1

αen =
Ven

Vt
(1)

where Ven and Vt are the volumes of the entrapped pores and 
total volume of pores, respectively. Salmas et al. (Salmas and 
Androutsopoulos, 2001) formulated a relationship between αen and 
pore tortuosity (τ), which can be expressed as Equation 2

τ = 4.6242 ln( 4.996
1− αen
− 1)− 5.8032 (2)

According to the experimental results and multi-phase 
phenomenological model, He et al. (He et al., 2018) described a 
relationship between β and τ as follows Equation 3:

β = 1
τ1.721 (3)

Based on the abovementioned computational models, αen is 
an important parameter to calculate the β. Moreover, mercury 
intrusion and gas adsorption are effective methods to investigate the 
αen of cement-based materials. 
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FIGURE 1
Outline of this review.

2.1 Mercury intrusion

Mercury intrusion is used to determine the pore structure (ϕ, 
pore size distribution, and pore surface area) of a material by 
recording the mercury injection volume under different pressures 
(Li et al., 2025b; Dai et al., 2024). The pore shape in cement-based 
materials is assumed to be cylindrical. According to the surface 
tension of mercury (χm = 0.485N/m) and contact angle between 
mercury and cement-based materials (θ = 130°), the relationship 
between the mercury injection pressure (Pi) and pore diameter (Dm) 
can be expressed as Equation 4 (Zhou et al., 2017) Equation 4.

Dm = −
4χm cos θ

Pi
(4)

He et al. (He et al., 2018) determined the αen by calculating 
the difference between the volumes of the intruded and extruded 
mercury (Figure 2). Additionally, to accurately analyse the pore 
structure of cement-based materials by mercury intrusion, the 
sample need be dried to remove the pore water (Galle, 2001). 
According to Equation 4, mercury intrusion investigates the pore 
structure under high pressures. However, the drying and high 
pressure may change the skeleton in the sample. 

2.2 Gas adsorption

Gas adsorption is employed to measure the pore size using 
capillary condensation and volume equivalence principles. In this 
method, the volume of the gas filled in the pores is considered 
equivalent to the pores volume. The gas can be nitrogen, steam, or 
carbon dioxide. During gas adsorption, the pore size determined by 
capillary condensation is different under different relative pressures 

(P/P0), and it reduces with an increase in the P/P0. Therefore, 
Brunauer, Emmett, and Teller used classical statistical theory to 
deduce a multilayer adsorption equation (Brunauer et al., 1938) and 
determined the relationship between the P/P0 and specific surface 
area of pores by a method named as Brunauer–Emmett–Teller 
method. Barrett, Joyner, and Halenda proposed a relationship 
between the P/P0 and critical pore radius, as shown in Equation 5, 
using a method called Barrett–Joyner–Halenda (BJH) method 
(Zhou et al., 2017).

rc =
2χV

RT ln(P/P0)
(5)

where rc, χ, R, T, V, and P/P0 are the critical pore radius, surface 
tension of gas, gas constant, absolute temperature, molar volume 
of gas, and relative pressure, respectively. Salmas et al. (Salmas 
and Androutsopoulos, 2001) determined the αen by analysing the 
adsorption and desorption results. 

2.3 Direct imaging method

Backscatter scanning electron microscopy (BSEM) and scanning 
electron microscopy (SEM) are used to directly observe the pore 
structure of cement-based materials (Scrivener, 1988; Wong et al., 
2006; Attari et al., 2016; Lyles, 2016; Liu et al., 2019a; Xu et al., 
2021; Dong et al., 2024; Song et al., 2025a). The main experimental 
procedure includes: 1) the sample is dried to remove the pore water; 
2) a resin or low-melting-point metal is injected into the pores under 
high pressure or vacuum conditions (Chen et al., 2017); 3) when 
the resin or the metal is hardened, the sample with the resin or the 
metal is polished to obtain a flat surface; and 4) BSEM is used to 
obtain the corresponding images. Subsequently, the BESM images 
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FIGURE 2
Volume of the entrapped pores calculated using mercury 
intrusion (He et al., 2018).

are treated as binary images, and the grey threshold value between 
the pores and solid phase is calculated using the entropy determined 
by the grey-level histogram (PUN, 1980), indicator kriging (Oh 
and Brent Lindquist, 1999), global threshold (Ranefall and Wählby, 
2016), inflection point (Wong et al., 2006; Liu et al., 2019a), and 
ISODATA threshold (Ridler and Calvard, 1978; Chen et al., 2017) 
methods. According to the grey threshold value, the areas of the 
pores and solid phase can be evaluated to obtain the ϕ and pore 
size (Figure 3). Furthermore, the SEM images of the sample can be 
used to analyse the pore structures using the grey threshold value 
method (Attari et al., 2016; Liu et al., 2019a; 2020c; Zhang X. et al., 
2020) (Figure 4). The methods via which the pore structures of a 
sample can be directly determined by the BESM or SEM images 
are named as direct imaging methods. Moreover, using the direct 
imaging methods, the β can be directly obtained in two-dimensions. 
Additionally, to investigate the three-dimensional (3D) β of cement-
based materials, some researchers have used stereological methods 
to create a 3D microstructure of these materials using the BESM or 
SEM images (Mrzygłód et al., 2013; Li T. et al., 2016).

However, according to the abovementioned analysis, sample 
preparation in traditional experimental methods involves drying 
of the sample. Researchers (Galle, 2001; Zhang and Scherer, 2011; 
Zhang et al., 2019) have investigated the effects of drying methods 
(including 65 °C vacuum drying for 24 h (65VD), 105°C oven drying 
for 24 h (105D), ethanol solvent-exchange for 3 days +50°C oven 
drying for 24 h (A50D), and freeze-drying with liquid nitrogen 
(FD)) on the pore structures in cement-based materials using 
nitrogen adsorption and BJH methods; the experimental results 
show that the pore size and ϕ of the dried sample significantly 
increased when compared with those of the non-dried sample. 
Additionally, the pore structures of the cement-based materials 
dried by different methods have clear differences, and after 105D, 
the content of the macropores in these materials obviously increased 
(Figure 5). Fourmentin et al. (Fourmentin et al., 2017) proposed 
that the removal of pore water from these materials changes 
the C-S-H microstructure, and the pore size of the sample is 
increased (Figure 6).

3 Advanced experimental methods for 
testing the β

To avoid damaging the pore structure in cement-based materials 
during drying, some in situ nondestructive methods, such as high-
resolution CT, NMR, and electrical methods, have been applied to 
test the pore structures and β of the materials (Wang X. et al., 2019). 

3.1 X-ray CT

3.1.1 CT principle
According to Beer’s law (Sukop et al., 2008; Moreno-

Atanasio et al., 2010), the absorptivity of a sample to monochromatic 
X-rays depends on the density of the sample (ξ), atomic number (N), 
and electron beam energy (E). Therefore, when a monochromatic 
X-ray passes through a heterogeneous sample with i components, 
the intensity of the X-ray can be expressed as Equation 6:

I = I0 · exp[∑
i
−μixi] (6)

where I0, I, μi, and xi are the initial intensity of the monochromatic 
X-ray, intensity of the X-ray after it passes through the sample, 
absorption coefficient of the ith component, and length of the 
sample, respectively. Moreover, the μi is determined by ξ, N, and E, 
and their relationship can be expressed as Equation 7

μi = ξ(a+ bN3.8

E3.2 ) (7)

where a is a low-energy-dependence parameter and b and E
are constants. According to the abovementioned principles, when 
monochromatic X-rays pass through a material with high density, 
the material will absorb more X-rays. The X-ray intensity signal 
obtained by a CCD detector will be weakened (Sukop et al., 
2008; Fusseis et al., 2014). Then, the X-ray intensity signal 
acquired by the CCD detector will be treated and saved as a 
data matrix. Using this data matrix and image reconstruction 
technology, the microstructure of the sample can be obtained 
(Zhang et al., 2012; Wildenschild and Sheppard, 2013).

To date, high-resolution CT is widely used to investigate the 
microstructure, pore structure, and β of cement-based materials 
(Sugiyama et al., 2016). For example, Hong et al. (Hong et al., 2019) 
used micro-CT to directly observe the 3D crack microstructure 
in cement mortar and found that the fracturing process of the 
mortar includes compression, expansion, and cracking stages; this 
observation is consistent with the compression failure process 
fracture theory. Suleiman et al. (Suleiman et al., 2019) examined 
the 3D microstructure and cracks volume in self-healing cement-
based materials during the self-healing process using micro-CT. 
They studied the effects of mineral addition on the healing efficiency 
of these materials and found that the cement-based materials 
containing limestone microfiller have higher healing efficiency 
than those of the materials with other minerals. Additionally, a 
combination of micro-CT and random walker algorithm (RWA) 
has been used to analyse the 3D microstructure and pore network 
characteristics of alkali-activated binders, and researchers have 
found that the diffusion tortuosity of the binders is related to their 
ϕ (Provis et al., 2012). 
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FIGURE 3
BSEM images of cement-based materials (The white area is pores. The black and grey areas are solid phases) (Chen et al., 2017). (a) sample C1, w/c = 
0.4, 10 cycles,15.2 MPa; (b) magnified BSE image for pores near an unhydrated cement grain; (c) sample C2, w/c = 0.8, 4 cycles, 15.2 MPa; (d)
magnified BSE image of large metal-filled pores.

3.1.2 τ analysis
According to Equation 3, the τ of cement-based materials is 

related to their β. Therefore, to study the τ of cement-based 
materials, Nakashima et al. (Nakashima and Watanabe, 2002; 
Nakashima and Kamiya, 2007) reported the principle of RWA to 
calculate the τ. From the entire CT data, the RWA randomly selects 
a pore voxel as a walker, and the walker is used as a starting point of 
the lattice walk trial at t = 0. Then, the walker randomly jumps to the 
nearest other pore voxels. After the walker jumps, t increases to t+ 1. 
If the randomly selected voxel is solid, no jumping is performed; 
however, the t still increases to t+ 1. Therefore, the mean-square 
displacement (⟨r2⟩) of the walker can be expressed as Equation 8

⟨r(t)2⟩ = 1
n

n

∑
i=1
[(xi(t) − xi(0))2 + (yi(t) − yi(0))

2 + (zi(t) − zi(0))2]

(8)

where n, t, and xi(t), yi(t), and zi(t) are the number of random 
walkers, dimensional integer time, and positions of the ith walker in 
the x, y, and z directions, respectively, at t. If the walker is in a space 
without solid (i.e., ϕ is 100%), the ⟨r2⟩ of the walker is Equation 9

⟨r2⟩free = 6D(0)t = α2t (9)

where D(0) is the diffusion coefficient of the walker in free space 
and α is the lattice constant of the cube voxel. Furthermore, in 
isotropic homogeneous porous materials, the diffusion coefficient 
(D(t)) (scalar) is related to the time-derivative of its ⟨r2⟩
as Equation 10:

D(t) = 1
6

d⟨r2⟩
dt

(10)

Therefore, the τ of porous materials can be determined 
by calculating the ratio of D(0) to D(t) (Nakashima and 
Kamiya, 2007) Equation 11:

τ =
D(0)
D(t)
= α2

d⟨r(t)2⟩
dt

,as t→∞ (11)

If the pores in porous materials are anisotropic, 
their D(t) is a tensor (not a scalar) variable. The ⟨r2⟩
of the walker in the x, y, and z directions can be 
expressed as Equation 12. Additionally, in free space, the 
⟨r2⟩ of the walker can be calculated by Equation 13. By 
combining Equation 12 and Equation 13, the τ of anisotropic 
porous materials can be determined.
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FIGURE 4
Pore structures of cement slurry in the early hydration stage (The blue area is pores) (Liu et al., 2019a). (a) 120 min. (b) 360 min. (c) 600 min.

FIGURE 5
Pore size distribution and porosity of cement-based materials dried by different methods (Zhang et al., 2019).

{{{{{{{{{
{{{{{{{{{
{

⟨x(t)2⟩ = 1
n

n

∑
i=1
(xi(t) − xi(0))2

⟨y(t)2⟩ = 1
n

n

∑
i=1
(yi(t) − yi(0))

2

⟨z(t)2⟩ = 1
n

n

∑
i=1
(zi(t) − zi(0))2

(12)

⟨x2⟩free = ⟨y
2⟩free = ⟨z

2⟩free =
1
3
⟨r2⟩free =

1
3

α2t (13)

Using high-resolution CT, not only the 3D pore structures 
in cement-based materials can be directly observed, but also 
computational fluid dynamics (CFD) and lattice Boltzmann method 

(LBM) can be applied to calculate the transport performance of 
water and ions and analyse the permeability and diffusion process 
of cement-based materials (Koivu et al., 2009; Oesch et al., 2018; 
Yang X. et al., 2019; Liu et al., 2020b; Li et al., 2025a; Pan and 
Gencturk, 2025). For example, based on the 3D microstructure 
investigated by high-resolution CT, Koivu et al. (Koivu et al., 
2009) built an effective approach to calculate the diffusion, heat 
conduction, and permeability of cement-based materials using LBM 
and finite difference methods. Yang et al. (Yang X. et al., 2019) 
used micro-CT to examine the microstructure of G-class oil-well 
cement paste cured at 50°C under 10 MPa, and by combining 
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FIGURE 6
C-S-H microstructure before and after drying the sample (Fourmentin et al., 2017).

FIGURE 7
3D macroporous structure and spatial distribution of cement slurry in the early hydration stage (Liu et al., 2019b). (a) Hydration 4 h. (b) Hydration 6 h.
(c) Hydration 8 h. (d) Hydration 10 h. (e) Hydration 12 h.

micro-CT with the CFD, they found that the permeability of the 
cement was 9.771 × 10–17 m2. Moreover, according to the 3D 
capillary pores of cement-based materials studied by micro-CT, 
researchers (Zhang et al., 2012; Zhang and Jivkov, 2016; Zhang, 
2017) have comparatively calculated the water permeability and gas 
permeability of these materials and found that in these materials, 
the water permeability reduces and gas permeability increases with 
a decrease in saturation. Additionally, micro-CT has been utilized 
to investigate the hydration mechanism of Portland cement. Some 
researchers used micro-CT to in situ test the microstructure of the 
hydration products and the pore structure of cement slurry during 
hydration induction and acceleration periods (Figure 7) (Liu et al., 
2019b). Hu et al. (Hu et al., 2016) and Bullard et al. (Bullard et al., 
2018) studied the hydration of tricalcium silicate. They used high-
resolution CT to in situ measure the volume and microstructure 
of unhydrated tricalcium silicate and hydration products in a 
15 mmol/L Ca(OH)2 solution and found that in the hydration 
acceleration period, the volume of the hydration products is four 
times the initial sample volume.

However, due to the resolution limitation of the CT CCD 
detector, it is difficult to measure nanoscale and submicron 
structures using the existing CT technology. There are many 
nanoscale and submicron pores in cement-based materials 

(Ye et al., 2002; Lyles, 2016; Liu et al., 2019b). Therefore, to fully 
understand the β of cement-based materials, many techniques
may be needed. 

3.2 NMR

NMR has been widely used to study the pore structures of 
porous materials (including rocks and cement-based materials) 
(Webber et al., 2013; Dalas et al., 2014; Karakosta et al., 2015; 
Zhou et al., 2016; 2017; Fourmentin et al., 2017; Zhang et al., 
2018a; Papp et al., 2025). Because the relaxation time of chemically 
bonded water in hydration products is approximately 20 μs, which 
is far lower than that of 1H in pore water (Hansen, 1986; 
Valckenborg et al., 2001), NMR analyses the pore structures 
of cement-based materials by testing the relaxation signal of 
1H in pore water. The NMR experiment does not need a 
dry sample; however, the sample has to be treated by vacuum 
saturation of water (W.P.Halperin et al., 1994; Barberon et al., 
2003; Zhou et al., 2017), which is beneficial for investigating the 
pore structures of cement-based materials. Pulsed-field gradient 
nuclear magnetic resonance (PFG-NMR) focuses on the τ and 
connectivity of porous materials, and Carr–Purcell–Meiboom–Gill 
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nuclear magnetic resonance (CPMG-NMR) focuses on the pore size 
distribution (Latour et al., 1995). 

3.2.1 PFG NMR
The diffusion of molecules with a nuclear magnetic signal 

(M) between pulsed magnetic-field gradients will decline the 
M. The M/M0 index can be expressed as (Zecca et al., 2018; 
Yang K. et al., 2019) Equation 14

M
M0
= exp[−D0(γgψ)2(∆−

ψ
3
)] (14)

where D0, M0, γ, g, ∆, and ψ are the self-diffusion coefficient 
of the molecules, NMR signal without an applied magnetic-field 
gradient, spin magnetic ratio of nucleus, amplitude of the magnetic-
field gradient, time interval, and duration of a single magnetic-field 
gradient, respectively.

In porous materials, the flow of molecules is limited by solid 
phases. Previous studies (Zecca et al., 2018; Yang K. et al., 2019) have 
reported that the D(∆) of molecules is related to the NMR decay 
signal as Equation 15

M
M0
= exp{−D(∆)γ2[ψ2(4t+ 6λ−

2ψ
3
)ga

2 + 2λψ(ψ1 −ψ2)gag0 +
4
3

λ3g0
2]}

(15)

 where λ, ga,g0,andψ1,andψ2 are the time between the first two 
RF pulses, applied magnetic-field gradient, internal magnetic-
field gradient, and the pre-pulse and post-pulse time, respectively 
(Zecca et al., 2018). Mitra et al. (Mitra et al., 1992) have proposed 
that the relationship between the D(∆) of molecules, D0, pore surface 
( S), and pore volume (V) is (Latour et al., 1993; 1995) Equation 16

D(∆)
D0
= 1− 4

9√π
S
V
√D0∆−O(D0∆) (16)

When ∆ is small, the function O(D0t) is almost zero. 
Therefore, Equation 16 can be expressed as (Zecca et al., 2018; 
Yang K. et al., 2019) Equation 17

D(∆)
D0
≈ 1− 4

9√π
S
V
√D0∆ (17)

Using the two-point Pade’ approximation, D(∆)/D0 can be 
expressed as Equation 18

D(∆)
D0
= 1−(1− 1

τ
)×

c√∆+ (1− 1/τ)∆/ϖ

(1− 1/τ) + c√∆+ (1− 1/τ)∆/ϖ
(18)

where ϖ is the dimension of time and c is equal to 4
9√π

S
V
√D0.

At present, PFG-NMR is used to measure the τ of cement-
based materials. For example, using isotope exchange experiments 
and PFG-NMR, Hansen et al. (Hansen et al., 2005) found that 
the long-range diffusivity of pore water in hardened cement paste 
with a W/C of 1.0 is approximately (1.1± 0.3) × 10−10 m2/s. Nybo 
et al. (Nybo et al., 2019) applied PFG-NMR to investigate the 
diffusion coefficient of hydrogen ions in the pores of cement paste 
under an electric field, and they found that the diffusion coefficient 
of the hydrogen ions reduces with an increase in the hydration 
time. Meanwhile, Patural et al. (Patural et al., 2010) reported that 
a small amount of cellulose ether reduced the water mobility of 
cement mortar. Nevertheless, the PFG-NMR results showed that 

the diffusion coefficient of water molecules in the cement paste 
with cellulose ether at an actual application concentration was not 
changed. Therefore, the reason for the reduction of water mobility 
may be that cellulose ether increased the viscosity of pore water, 
which increased the capillary suction of pore water and reduced 
the mobility. 

3.2.2 CPMG-NMR
CPMG-NMR mainly focuses on the transverse relaxation time 

(T2) of samples. According to the previously reported results 
(Bhattacharja et al., 1993; Mcdonald et al., 2005; Zhou et al., 
2018), there is a multiple index relationship between total 
magnetization intensity and T2 of cement-based materials, as shown 
in Equation 19.

M(t) =M0∑
j

fi exp( −t
T2j
), fj =

Vj

Vt
and∑

j
fj = 1, (19)

where M(t), Vt, Vj, M0, and fj are the total magnetization intensity, 
total volume of pore water in the sample, volume of jth pore water, 
initial magnetization intensity, and volume fraction of the jth pore 
water in the total pore water, respectively. In cement-based materials, 
the pore water can be divided as bulk water and surface water, and 
the T2 can be expressed as Equation 20

1
T2
=

vs

T2s
+
(1− vs)

T2b
, (20)

where T2b, T2s, and vs are the transverse relaxation time of bulk 
water, transverse relaxation time of surface water, and volume 
fraction of surface water, respectively, and the volume fraction of 
bulk water is (1− vs). In a cement-based material, the volume of 
total pore water, the thickness of surface water, and the pore surface 
were hypothesized as vw, δ, and Sc, respectively. Thus, vs = δ · Sc/vw. 
According to the literature results (Korb et al., 2007; Dalas et al., 
2014), the T2b is far larger than the T2s; therefore, Equation 20 can 
be approximated as Equation 21

1
T2
=

δ · Sc

T2s · vw
+
(1− δ · Sc/vw)

T2b
≈ δ

T2s
·

Sc

vw
, (21)

Generally, the pore shape in cement-based materials is 
considered cylindrical; thus, Equation 22 can be obtained as

1
T2
= ϵ · 2

R
, (22)

where R is the pore radius and ϵ is the relaxivity of the hydration 
products in cement paste (ϵ = δ/T2s). Dalas et al. (Dalas et al., 
2014) measured the ϵ of each product in the cement paste using 
electron spin resonance, and the results are presented in Table 1. 
According to Equation 22, the T2 is proportional to the R of cement-
based materials.

CPMG-NMR has been widely used to investigate the pore 
structures of cement-based materials. For example, Bede et al. 
(Bede et al., 2016) classified the pores of cement-based materials 
into capillary, intra-C-S-H sheet, and inter-C-S-H gel pores. They 
comparatively studied the effects of different filling liquids (water, 
ethanol, and cyclohexane) on the pore structure analysis of cement-
based materials and found that ethanol and cyclohexane could better 
distinguish the pore reservoirs of cement-based materials than 
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TABLE 1  Relaxivity and surface species density of each product in cement-based materials (Dalas et al., 2014).

Phase Surface relaxivity (ϵ) Surface species density (ions/m2)

C-S-H 5.51 19 × 1012

Ettringite 39.5 2.3 × 1014

Gypsum 6.2 --

Crushed calcite 5.04 2.2 × 1017

Synthetic calcite 2.74 1.5 × 1015

Monocarboaluminate 1.65 7.4 × 1014

FIGURE 8
T2 and pore structures of cement slurry in the suspension-solid stage (Lyles, 2016).

water. Liu et al. (Lyles, 2016) in situ measured the T2 of cement slurry 
in a suspension-solid stage. According to the T2 of cement slurry, 
they found that when the cement slurry was in the suspension-solid 
stage, the pore water changed into gel water and capillary water; this 
proved that during this stage, the macropores in the cement slurry 
change into gel and capillary pores (see Figure 8).

3.3 Electrical conductivity/resistance 
methods

Recently, some electrical conductivity/resistivity methods, 
including the direct current method (Tang et al., 2017; Long et al., 
2019), alternating current method (Woo et al., 2005), alternating 
current impedance spectroscopy (McCarter et al., 2015; Kim et al., 
2017), inductance conductivity (Liu et al., 2019b), non-contact 
resistivity measurement (Xiao and Li, 2008; He et al., 2018), and 
non-contact impedance measurement (Zhu et al., 2018), have 
been used to investigate the β of cement-based materials (Xiao 
and Li, 2008; Sanish et al., 2013; Ridha et al., 2014; Tang et al., 
2016; Kim et al., 2017; Zhu et al., 2018). Tang et al. (Tang et al., 
2017) reviewed the principles and procedures of these methods
in detail.

In many previously reported studies, these methods have been 
used to explore the properties, microstructures, pore structures, and 
hydration degrees of cement-based materials (Christensen et al., 
1994). For instance, Sanish et al. (Sanish et al., 2013) studied 
the setting process of cement paste with minerals and chemical 
admixtures and found that the electrical conductivity of the cement 
paste could predict the initial and final setting time of the cement 
paste; moreover, using a combination of Power’s model (Bentz, 
2006) and Archie’s law (Roberts and Schwartz, 1985), the ϕ of 
the cement paste could be predicted. He et al. (He et al., 2018) 
replaced the pore water of the cement paste with a 3% NaCl 
solution and performed non-contact resistivity measurement to 
test the resistivity and formation factor (F) of the cement paste 
with different W/C. Then, a multi-phase phenomenological model, 
Archie’s law, and GEM model were utilized to calculate the β of 
the cement paste. Their results showed that the β increased with an 
increase in the W/C. Zhu et al. (Zhu et al., 2018) used micro-CT 
and electrical conductivity methods to comparatively investigate the 
capillary ϕ of cement-based materials, and via the Archie’s law, they 
found that at the same W/C, the τ of alkali-activated slag cement 
paste was lower than that of Portland cement paste. Moreover, the 
combination of micro-CT and electrical conductivity methods was 
used to analyse the relationship between the connected ϕ and β of 
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the cement slurry. The results indicated that the conductivity was 
proportional to the β of the cement slurry in the early hydration 
stage (Liu et al., 2019b). Additionally, the electrical methods were 
used to not only examine the pore structures and microstructures 
of cement-based materials, but also improve the conductivity of 
these materials. Cement-based materials with high conductivity 
can be applied as smart and multifunctional materials in practical 
engineering. Therefore, some high-conductivity materials, such as 
graphene (Wang D. et al., 2019), carbon nanofibers, and carbon 
nano-tubes (García-Macías et al., 2017; Kim et al., 2017; Sasmal et al., 
2017), have been employed in these materials. Researchers have 
found that in cement-based materials, the dispersivity of the high-
conductivity materials determines the conductivity. 

3.3.1 Relationship between the F and capillary ϕ
Cement paste is a porous material, and the conductivity of its 

pore solution is significantly larger than that of solid hydration 
products. Some researchers have found that the conductivity of 
cement-based materials (σ) is determined by their β and pore 
solution (Liu et al., 2019b). The ratio of the resistivity of cement paste 
(ρ) and the resistivity of its pore solution (ρl) is called F (F = ρ

ρl
). 

Many experimental results (Archie, 1941; Bernabé et al., 2011; 
He et al., 2018) have shown that F is a key parameter to describe the 
permeability and transport performance of cement-based materials. 
Moreover, based on different results, researchers have used the F of 
cement paste to establish several mathematical models for predicting 
capillary ϕ (Christensen et al., 1994; Zhang, 2008; He et al., 2018) 
(Table 2). Furthermore, based on experimental results, He et al. 
(He et al., 2018) analysed the match degree of these models (Table 2) 
and found that multi-phase phenomenological model, GEM, and 
Archie’s model had better match with the experimental results than 
other models (Figure 9); this observation is consistent with the 
results reported in the literature (Oh and Jang, 2004; Nokken and 
Hooton, 2008; Zhang, 2008; Zhang and Li, 2009; Zhu et al., 2018).

3.3.2 Relation between ϕ, τ, and β
Christensen et al. (Christensen et al., 1994) hypothesized that 

only the pore solution of cement-based materials is conductive 
(i.e., the solid hydration products are insulators). The relationship 
between the σ, the conductivity of pore solution (σh), and ϕ can be 
described as

σ = σh ·ϕ · β (23)

However, experiments have indicated that the solid hydration 
products are conductive. According to the experimental results, 
Shen and Chen (Shen and Chen, 2007) proposed a relationship 
between τ and F as Equation 24

τ2 = (Fϕ)n (24)

where n is an empirical constant (n ranged from 0.91 to 1.20 (Shen 
and Chen, 2007; He et al., 2018)). According to the Archie’s law, 
Equation 24 can be expressed as Equation 25

τ2 = (A ·ϕ1−m)n (25)

where A, m, and n are related to the properties of materials (A = n =
1 (van Brakel and Heertjes, 1974)).

Additionally, Iversen and Jorgensen (Iversen and Jørgensen, 
1993) proposed that the ϕ was proportional to the square of 
τ (see Equation 26). Weissberg (Weissberg, 1963) described 
that the relationship between ϕ and τ is a logarithmic 
function (see Equation 27).

τ2 = ϕ+B(1−ϕ) (26)

τ2 = 1−Y ln ϕ (27)

where B and Y are empirical constants. Boundreau (Boudreau, 
1996) determined that Y = 2, and Equation 27 can be 
expressed as Equation 28

τ2 = 1+ ln 1
ϕ2 (28)

Moreover, based on the multi-phase phenomenological model 
(Archie, 1941), the relationship between ϕ and β can be determined, 
as shown in Equations 29, 30:

F = 1
ϕ · β

(29)

β = 1
τ2/n

(30)

 

4 Prediction models of β

4.1 Power’s model

Researchers have realized that the density of hydration products 
is lower than that of unhydrated minerals, and the hydration 
products changes the pore structures and microstructure in cement-
based materials. Therefore, the Power’s model (Bentz, 2006) was 
established to describe the relationship between the pore solution 
fraction, the unhydrated cement fraction, and ϕ as follows Equations 
31–33:

ϕw(t) =
ξcem · (w/c) − (fexp + ξcem · βcs) · α

1+ ξcem · (w/c)
(31)

ϕ(t) =
ξcem · (w/c) − fexp · α

1+ ξcem · (w/c)
(32)

ϕuh(t) =
1− α

1+ ξcem · (w/c)
(33)

where ϕw(t), ϕuh(t), and ϕ(t) are the volume fraction of pore 
solution, volume fraction of unhydrated cement, and ϕ at time 
t, respectively; α, ξcem, fexp, and βcs are the hydration degree of 
the cement paste at time t, cement density, expansion coefficient 
of solid phases (fexp = 1.15 (Sanish et al., 2013)), and chemical 
shrinkage parameter of cement paste (βcs = 0.07mL/g (Bentz, 
2006)), respectively. 

4.2 Katz–Thompson model

Additionally, Katz and Thompson (Katz and Thompson, 1986) 
proposed a relationship between the permeability and conductivity 
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TABLE 2  Models used for describing the relationship between the conductivity, formation factor, and porosity of cement-based materials.

Models Relationship between 
capillary porosity and 

resistivity

Formation factor (F) Notes

Parallel model (Christensen et al., 1994) 1
ρ
= ϕ

ρl
+ 1−ϕ

ρh
F = ρh

ρl(1−ϕ)+ρh
Ref. (Rajabipour and Weiss, 2007; 

Li et al., 2016a; He et al., 2018) also 
called multi-phase phenomenological 

model

Archie’s law (Archie, 1941; Roberts and 
Schwartz, 1985; McLachlan et al., 1990; 

Christensen et al., 1994)

ρ = ρl ·ϕ
−m F = A ·ϕ−m m is a tortuosity-related factor. 

(1.3 ≤m ≤ 4.0) (Bentz and Garboczi, 
1992; He et al., 2018)

General effective medium (GEM) 
(McLachlan et al., 1990; Oh and Jang, 

2004)

ϕ =
(ρh

1/t−ρ1/t)[(1−ϕc)ρl
1/t+ϕcρ1/t]

ρ1/t(ρh
1/t−ρl

1/t)
F = [mϕ +√mϕ

2 + 1−ϕc

ϕc
( ρh

ρl
)

1/t
]
−t

(where mϕ =
1
2
{( ρh

ρl
)

1/t
+ ϕ

ϕc
[1−( ρh

ρl
)

1/t
]− 1−ϕc

ϕc
})

ϕc ≈ 0.18 (Zhang and Li, 2009)

NIST model (Bentz and Garboczi, 
1992)

ρl

ρ
= 0.001+ 0.07ϕ2 +H(ϕ− 0.18) ×

0.18× (ϕ− 0.18)2
F = 1

0.001+0.07ϕ2+H(ϕ−0.18)×0.18×(ϕ−0.18)2
H is a function

H(x) = 1 for x > 0 and H(x) = 0 for 
x ≤ 0. (Garboczi and Bentz, 1998)

Percolation model (Keblinski and Cleri, 
2004; Vertruyen et al., 2007)

ρ = ρl · (1−
1−ϕ
1−ϕc
)
−m

F = (1− 1−ϕ
1−ϕc
)
−m

m is a critical exponent

Series model (Zhang, 2008) ρ = ϕρl + (1−ϕ)ρh F = ϕ+ ρh

ρl
(1−ϕ)

Effective medium model (Liu et al., 
2013)

ϕ(ρ−ρl)
ρ+2ρl
+ (1−ϕ)(ρ−ρh)

ρ+2ρh
= 0 F =mϕ +√mϕ

2 + 2ρh/ρl, (where mϕ =
1
2
[ ρh

ρl
+ 3ϕ(1− ρh

ρl
)− 2])

Maxwell–Wagner (Christensen et al., 
1994)

ρ = ρl
2ρh+ρl+(1−ϕ)(ρh−ρl)

2ρh+ρl−2(1−ϕ)(ρh−ρl)
F = 2ρh+ρl+(1−ϕ)(ρh−ρl)

2ρh+ρl−2(1−ϕ)(ρh−ρl)

FIGURE 9
Relationship between porosity and formation factor obtained using 
different models (He et al., 2018).

of porous materials by investigating the conductivity of a porous 
material saturated with a single liquid, as shown in Equation 34.

k = c · lc2 σ
σh

(34)

where k is permeability, c is an empirical constant (c = 1/226), 
and lc is the characteristic length of pores. This model is usually 
applied to predict the permeability of cement-based materials. Katz 
and Thompson (Katz and Thompson, 1987) also established a 
relationship between ϕ, pore size distribution, and F to predict the 
permeability of cement-based materials, as shown in Equation 35, 
which is known as the Katz–Thompson equation (Garboczi, 1990; 
Bagel and Ziivica, 1997; Nokken and Hooton, 2008; Zhou et al., 
2017). By combining Equation 34 and Equation 35, Equation 36 can 
be obtained.

σ
σh
=

De
max

Dc
·ϕ ·φ(De

max) (35)

k =
lc2

226
·

De
max

Dc
·ϕ ·φ(De

max) (36)

where Dc is the crucial pore diameter (nm), De
max = 0.34Dc, and 

φ(De
max) is the volume fraction of pore with diameter larger than 

or equal to De
max. These models have been applied to investigate 

the pore structures of cement-based materials. According to the 
reported studies (Bernabé et al., 2010; Davudov et al., 2020; 
Xiong et al., 2020), permeability is related to the β of porous 
materials. Bernabé et al. (Bernabé et al., 2010) established a 
relationship between τ and permeability as Equation 37

τ = √
4 ·ϕ ·Vp

2

k · b · Sp
2 (37)
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where k, b, Vp, and Sp are the permeability, geometric factor (if the 
pores are pipe-like, b = 8 and if the pores are thin cracks, b = 12), 
total pore volume, and total pore surface area, respectively. Then, by 
combining Equation 37 with Equation 30, the β of materials can be 
determined. 

5 Numerical simulation methods for 
predicting the pore structure

With the rapid development of computing technology, some 
researchers have created several numerical simulation methods 
to predict the hydration, microstructure, pore structures, and 
mechanical properties of cement-based materials (Perko et al., 
2020). Additionally, according to the shape of cement particles, these 
simulation methods can be divided into spherical and actual-shape 
numerical simulation techniques. 

5.1 Spherical numerical simulation 
technique

Navi and Pignat (Navi and Pignat, 1996) simplified the shape 
of cement particles as spherical and considered the contact of 
particles and accessibility of water to create a simulation technique, 
which could be used to predict the hydration, microstructure, 
and pore structures of cement paste. According to transmission 
electron microscopy images, Bentz et al. (Bentz et al., 1995) 
simplified the shape of C-S-H as spherical particles and proposed 
a multiscale structural model to predict the microstructure 
and pore structures of cement paste. Subsequently, Zhang 
et al. (Zhang et al., 2017) used the multiscale structural model 
to create the microstructures of C-S-H (Figure 10), and the 
transport performance of the pore solution in the cement 
paste was calculated using electrical double layer modelling. 
Bishnoi and Scrivener (Bishnoi and Scrivener, 2009) considered 
the cement particles as spheres and proposed μic modelling 
platform, which uses vector and discretization approaches to 
simulate the microstructure and pore structures of cement-based 
materials.

Moreover, the hydration-morphology-structure (HYMOSTRUC) 
(Breugel, 1995) simulation technique simplified the shape of cement 
particles as spherical. This technique considers the expansion 
process of solid phases (see Equation 37) and penetration process 
of water (see Equations 38, 39) in cement paste during the 
hydration process.

Tin,x,j =
x
2
· [1− 3√1− αx,j] (38)

∆Tin,x,j+1

∆tj+1
= K0(.)·Ω1(.)·Ω2(.)·Ω3(.)·F1(.) · [F2(.) · (

Ttr(.)
Tx,j
)

η1

]
λ

(39)

where x, αx,j, tj, Tin,x,j, ∆Tin,x,j+1, K0(.), Ttr(.), Tx,j, and η1 are the 
diameter of cement particles, hydration degree, hydration time, 
penetration depth of water, penetration depth of water during a 
time step of ∆tj+1, basic rate factor, thickness of transition layer, 
total thickness of total hydration product layer (when the cement 

hydration is controlled by boundary, λ = 0, and when the hydration 
is controlled by water diffusion, λ = 1), and an empirical constant, 
respectively. In the simulation process, K0(.), Ω1(.), Ω2(.), Ω3(.), and 
F1(.) were obtained when the hydration was controlled by boundary 
and water diffusion. F2(.) was calculated only for the case when 
the hydration was controlled by water diffusion. This simulation 
technique considers not only vector changing of particle volume, but 
also the effect of the interaction between particles on the hydration 
process. Moreover, the growth of the hydration products followed a 
dynamic process.

However, the actual shape of cement particles is obviously 
different. Liu et al. (Liu C. et al., 2018) used the improved 
CEMHYD3D simulation technique to study the effect of particle 
shape on the pore structure (ϕ, pore size distribution, and β) of 
cement paste and found significant effects of particle shape on the 
pore structures of cement paste. 

5.2 Actual-shape numerical simulation 
technique

The CEMHYD3D simulation technique was developed by 
the National Institute of Standards and Technology (NIST) to 
describe the microstructure of cement paste during the hydration 
process. CEMHYD3D original code (C++) is public (Bentz, 2005). 
Before the modelling of CEMHYD3D, some experimental results, 
including the BESM image, particle size distribution, and X-
ray energy spectrum of cement particles, need to be obtained. 
Then, the principles of stereology are used to build a 3D 
microstructure of the cement slurry based on the experimental 
results. Furthermore, in CEMHYD3D, the shape of cement particles 
is determined by the BESM images. Therefore, in this simulation, 
the shape of the cement particles is closer to the actual shape of 
cement particles. CEMHYD3D uses the discrete cellular automata 
approach and biological self-replication to describe the growth 
of hydration products. Moreover, a voxel-based random-walk 
method is used to describe the diffusion process of the species in 
the pore solution of the cement slurry. Therefore, CEMHYD3D 
analyses the microstructure and pore structure of the cement 
slurry by controlling the growth of various hydration products. 
Patel et al. (Patel et al., 2018) comparatively examined and predicted 
the microstructure and pore structures of cement slurry using the 
CEMHYD3D and HYMOSTRUC techniques.

Additionally, the CEMHYD3D simulation results of cement 
slurry can be used as an input to finite element and finite 
differential models to calculate the properties such as electrical 
conductivity, AC impedance, permeability, and elastic modulus 
(Bentz et al., 1999; Bentz et al., 2000; Bentz et al., 2001; 
Torrents et al., 2000; Haecker et al., 2005).

To consider the dynamics of cement hydration, Bullard et al. 
(Bullard, 2007; Bullard et al., 2010; Bullard et al., 2015; Bullard et al., 
2018; Oey et al., 2013) built the HydratiCA simulation technique 
to predict the microstructure of cement slurry. HydratiCA regards 
each solid and liquid phase in the cement slurry as an independent 
chemical unit (named as a cell). Therefore, this technique can 
directly simulate the dissolution of cement particles, the diffusion of 
a solute in the pore solution, the reaction of various substances in the 
pore solution and on the cement surface, and the nucleation-growth 
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FIGURE 10
Pore structures and spatial distribution of C-S-H with different densities (Zhang et al., 2017).

of hydration products. Furthermore, the principle of probability is 
used to simulate the chemical and structural changes in small time 
increments, and the increment per unit time is decomposed into 
transport and reaction steps. The diffusion in the cement slurry is 
simulated as the random motion of a cell between adjacent lattice 
points, and the reaction between the cells is controlled by probability 
(Bullard, 2007; Bullard et al., 2018) as Equation 40.

pi = Kζ
(∑

q
vq,i)−1
Δt∏

ε
max (0,

vq,i

∏
m=1

Nq −m+ 1) (40)

where pi, K, ζ, and vq,i are the probability of reaction, reaction 
rate constant, proportionality constant of the number of species 
q (Nq) and its molar concentration, and molar stoichiometric 
coefficient, respectively. Compared with other simulation 
techniques, HydratiCA provides more realistic simulation 
results of the hydration and microstructure of cement slurry; 
however, its unit computational cost is the largest. Once the 
3D microstructure of cement-based materials is formed using 
numerical simulation techniques, some algorithms (such as RWA) 
can be employed to obtain the β of these materials (Al-Raoush and 
Madhoun, 2017; Liu C. et al., 2020). 

6 Conclusion and research directions

Herein, we reviewed the principles, characteristics, and 
applications of the experimental, computational, and simulation 
methods used to investigate the β in cement-based materials. 
Through the comparative analysis of different experimental 
methods, some limitations of these experimental methods could 
be found. For example, the drying of sample in traditional methods 
may destroy the pore structures and solid-phase skeleton, testing 
the nano-scale and sub-micron pores in cement-based materials 
by CT is difficult due to the limitation of resolution, and the 
replacement of the pore solution by a pure solution (such as 3% 
NaCl solution (He et al., 2018)) is required for electrical methods. 
However, the β of cement-based materials is a key parameter to 

understand the transport performance, corrosion behavior, and 
durability of these materials. Therefore, to accurately investigate 
the β in cement-based materials, some new methods need to 
be developed, or according to the characteristics of the existing 
experimental methods, an effective combination method should be 
established in the future.

Additionally, to date, researchers have mainly focused on the 
pore structures of hardened cement-based materials, and only 
few studies have been reported on the microstructure and pore 
structures of cement-based materials in the hardening stage. 
Nevertheless, to comprehensively understand the mechanism and 
prediction models of cement hydration, time-variation of the 
microstructure and pore structures of cement slurry in the early 
hydration stage should be obtained (Thomas et al., 2011). Moreover, 
understanding the properties of the hardening cement slurry is 
significant for solving the gas-migration issue of natural gas wells 
(Crook and Heathman, 1998; Li Z. et al., 2016; Liu et al., 2018a; 
Liu et al., 2019a), which threatens the safety and quality of 
cement engineering. Researchers (Prohaska et al., 1995; Monlouis-
Bonnaire et al., 2004; Li Z. et al., 2016; Lyles, 2016) have proposed 
that the β in hardening cement slurry is crucial for studying the 
mechanism of gas migration and developing an anti-gas-migration 
technology. Compared with the hardened cement, cement slurry in 
the hardening stage exhibits fast hydration, low strength, and no 
fixed shape (Lyles, 2016), which undoubtedly increases the difficulty 
of investigating its pore structures. Consequently, establishing an 
effective method to examine the pore structures of cement slurry in 
the hardening stage is still a future research direction.

Nowadays, many computational models and simulation 
techniques are being developed to analyse the β and tortuosity 
of porous materials. These models and techniques have been 
applied to study the β in cement-based materials. However, the 
results obtained by these models and techniques have large errors. 
Therefore, through the development of experimental technologies, 
mathematical theories, and computing technologies, these models 
and techniques should be improved and some new models should 
be established in the future to promote the understanding of the 
hydration mechanism and corrosion of cement-based materials
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and provide some foundation for predicting the durability of these 
materials and solving the engineering issues.
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