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Introduction: Accurate defect detection in dissimilar metal welds (DMWs)
remains a major challenge due to heterogeneous microstructures and
imaging noise.

Methods: In this study, we propose a novel deep learning framework,
DynaWave-Net, combined with a Guided Progressive Distillation (GPD) strategy,
to address these challenges by integrating microstructural priors and frequency-
domain features. The proposed model incorporates dynamic geometry-aware
encoding and wavelet based attention to capture both structural deformations
and high-frequency defect signatures.

Results and Discussion: Extensive experiments on multiple real-world datasets
demonstrate that our approach significantly outperforms existing methods,
achieving up to 18% improvement in precision and enhanced robustness to
structural noise. Furthermore, the lightweight architecture enables real-time
deployment on edge devices, highlighting the practical relevance of this work
for industrial inspection in energy, aerospace, and manufacturing sectors.

weld defect detection, dissimilar metal welds, deep learning, wavelet attention, domain
adaptation

1 Introduction

Dissimilar metal welds (DMWs) are widely used in critical industrial applications,
including power plants, aerospace, and petrochemical systems, due to their ability
to join materials with differing mechanical properties and corrosion resistance
Ma et al. (2023). However, their intrinsic structural complexity—resulting from
variations in chemical composition, thermal expansion coefficients, and metallurgical
compatibility—renders them particularly susceptible to defects such as cracks, voids,
and inclusions Meng et al. (2021). These defects often initiate at the interface of
dissimilar materials, where stress concentration and microstructural heterogeneities
are most pronounced. Traditional nondestructive evaluation (NDE) techniques such
as ultrasonic testing or radiography are often limited in resolution and sensitivity,
especially when detecting subtle or subsurface anomalies in DMWs Gao et al. (2018).
Hence, there is a pressing need for advanced detection methodologies that not only
improve the accuracy of defect recognition but also account for the microstructural
variability that governs defect morphology Wang W. et al. (2024). Learning-based defect
detection models offer a compelling solution by leveraging large datasets and pattern
recognition capabilities Guan and Wang (2023). Not only can these models adapt to the
intrinsic heterogeneity of DMWs, but they also offer scalable and real-time monitoring
potential, providing a significant leap over conventional techniques Xu et al. (2018).
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To address the limitations of conventional inspection, earlier
efforts focused on symbolic AI and expert systems which relied
on hand-crafted features derived from domain knowledge. These
approaches used rule-based inference engines or knowledge
representation frameworks such as decision trees and fuzzy logic
to classify welding defects Xie et al. (2021). For instance, features
such as grain orientation, boundary density, and inclusion count
were manually extracted from metallographic images or sensor
signals. While these systems provided a valuable starting point,
they were heavily reliant on expert input and lacked adaptability
to new defect types or welding conditions Beygi et al. (2023).
Moreover, symbolic methods struggled to capture the complex
interrelations within microstructures, especially in regions of the
weld where phase transformations or diffusion gradients altered
material behavior. In order to compensate for these drawbacks,
researchers often attempted to enhance feature sets or refine the rule-
based logic, but scalability and robustness remained major concerns
Yang et al. (2017).

To overcome the rigidity of symbolic systems, data-driven
and machine learning techniques began to gain prominence.
Classical machine learning algorithms such as support vector
machines (SVM), k-nearest neighbors (KNN), and random forests
(RF) were applied to features extracted from thermographic,
ultrasonic, and radiographic data Liu et al. (2024). These methods
introduced greater flexibility and allowed for automated feature
selection and classification, improving defect detection rates
under varying operational conditions. Furthermore, statistical
learning models were better at accommodating minor variations
in weld geometry and microstructure, enabling more generalized
models Wei et al. (2024). However, these approaches were still
constrained by their dependence on feature engineering, which
limited their ability to model deep contextual relationships within
weld structures Zhao et al. (2016). For instance, capturing the
influence of multi-scale microstructural patterns—such as dendritic
growth, phase boundaries, or precipitate distributions—was
difficult without extensive domain-specific preprocessing. As a
result, while machine learning offered a significant improvement
over symbolic approaches, it still fell short in terms of
capturing the full complexity inherent to dissimilar metal welds
Yan et al. (2023).

In order to resolve the limitations of feature-dependent
methods, the advent of deep learning and pre-trained models
has ushered in a new era in defect detection. Convolutional
neural networks (CNNs), autoencoders, and transformers have
demonstrated an unprecedented ability to learn hierarchical
features directly from raw data, eliminating the need for manual
intervention Zhang L. et al. (2024). These models have been
trained on multimodal datasets including acoustic emissions,
high-resolution imaging, and microstructural maps, thereby
allowing them to learn complex, non-linear relationships between
defect signatures and underlying material structures. Transfer
learning and domain adaptation techniques have further enhanced
performance by enabling model generalization across different
welding setups and material combinations. For instance, a pre-
trained CNN on one type of weld defect can be fine-tuned for
another application with minimal additional data Baghel (2022).
Despite their success, deep models still face challenges such as
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interpretability, data scarcity in certain domains, and the need
for large-scale annotated datasets. Nonetheless, their potential
to model the microstructural influence on defect formation
and propagation in DMWs represents a major advancement
Liu et al. (2015).

Based on the aforementioned limitations of symbolic and
classical machine learning methods—particularly their reliance
on manual feature engineering and limited adaptability—we
propose a novel hybrid learning-based framework that integrates
microstructural priors into a deep learning pipeline. This
approach not only incorporates domain knowledge into the model
architecture but also enables context-aware defect detection that
is sensitive to the varying microstructural features of dissimilar
metal welds. By fusing material-specific attributes with learned
representations, our method can differentiate between benign
microstructural features and true defect signals more effectively.
Furthermore, this hybrid strategy addresses the data inefficiency
issues of deep learning by embedding physical constraints and
weld process parameters into the learning objective. Through this
method, we aim to bridge the gap between purely data-driven
models and the complex metallurgical realities of DMWs, thereby
achieving more accurate, interpretable, and generalizable defect
detection.

While the input to our defect detection model is primarily
image-based, such as radiographic or optical data, the influence
of microstructural features is integrated through multiple
layers of architectural and dataset-level design. The model
architecture incorporates frequency-domain selective attention
and geometry-aware modules that are highly sensitive to subtle
high-frequency variations and local spatial distortions. These
signal patterns often correlate with underlying microstructural
heterogeneities such as dendritic growth, intermetallic phases,
and grain boundary networks. We employ datasets containing
paired microstructural annotations, such as the Microstructure
and Alloy Dataset and the NIST Microstructure Dataset. These
datasets include grain morphology, phase composition, and
metallurgical transformations, enabling the model to learn
latent correlations between observable defect shapes and their
metallurgical contexts. Furthermore, the Guided Progressive
Distillation (GPD)
priors in the form of graph-regularized embeddings and

training strategy incorporates structural
probabilistic supervision based on class co-occurrence. This
ensures that the model implicitly internalizes how microstructural
environments influence defect formation and manifestation in
images, even if these structures are not directly observable in the
raw data.

e Introduces novel framework

a hybrid

microstructural knowledge with deep learning for enhanced

combining

defect recognition.

e Demonstrates strong adaptability across different welding
conditions and metal pairings, supporting efficient and
generalizable deployment.

e Experimental results show a significant increase in detection
precision (12%-18%) compared to baseline deep learning
models, with improved robustness to noise and structural
variation.
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2 Related work
2.1 Microstructural variability in welds

The microstructure of dissimilar metal welds (DMWs) is
highly heterogeneous due to differences in chemical composition,
melting point, and thermal conductivity between the joined
materials Chen et al. (2014b). These differences lead to complex
phase transformations and uneven residual stress distributions,
particularly near the weld interface. Researchers have used
advanced characterization techniques such as scanning electron
microscopy, transmission electron microscopy, and electron
backscatter diffraction to study these features, revealing grain
boundaries, precipitates, and dendritic growth patterns throughout
the weld zone Wang J. et al. (2024). These microstructural variations
significantly influence mechanical behavior and the likelihood
of defect formation. For example, the fusion boundary often
shows gradients in hardness and toughness, which increase
susceptibility to hot cracking, while brittle intermetallic compound
layers between dissimilar metals can promote crack initiation
under operational stress Subbaratnam et al. (2008). In machine
learning-based defect detection, such variability complicates feature
extraction, as differences in grain size, texture, and inclusion
distribution can distort signals in ultrasonic or X-ray imaging
Mishra et al. (2022). To address this, some approaches incorporate
domain-specific features or train models with data that mimic
real microstructural conditions, helping to improve performance
across diverse welding setups. Recent developments in physics-
informed learning have further enhanced robustness by integrating
simulated microstructural data into training pipelines, enabling
models to identify defects more reliably despite the noise introduced
by structural inconsistencies Chen et al. (2023).

2.2 Learning-based NDT techniques

The integration of machine learning with non-destructive
testing methods such as ultrasonic testing, eddy current testing,
and radiographic testing has greatly improved defect detection
in complex weld structures LiP. et al. (2023). Traditional signal
processing approaches depend on fixed thresholds and filters,
which often perform poorly in the presence of noise or when
signal behavior is affected by microstructural differences. In
contrast, learning-based methods use large datasets to identify
distinguishing features directly from raw or processed inputs,
offering more flexibility and accuracy. Convolutional neural
networks are especially effective in image-based inspection, as
they can automatically extract layered features that reveal spatial
relationships and subtle defect signatures. In ultrasonic testing,
models such as recurrent neural networks and transformers are used
to analyze time-series A-scan data, allowing for the detection of flaws
at early stages Meola et al. (2004). Given the variability of dissimilar
metal welds, domain adaptation and transfer learning techniques
have been introduced to improve generalization across different
material combinations. These include strategies like adversarial
training, few-shot learning, and meta-learning, which help models
adapt to new weld types with minimal labeled data Chen et al.
(2014a). In addition, semi-supervised and self-supervised learning
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approaches make use of unlabeled inspection records, reducing the
need for extensive manual annotation. For industrial deployment,
model interpretability is essential. Visualization tools such as Grad-
CAM, SHAP, and saliency maps are used to identify which parts
of the input most influence the model’s output, linking predictions
to physical features in the weld. This not only builds confidence
in automated decisions but also supports the optimization of
inspection techniques and repair decisions Shu et al. (2024).

2.3 Fusion zone and interface challenges

The fusion zone and heat-affected zone in dissimilar metal welds
are highly susceptible to defect formation due to abrupt changes
in chemical composition and temperature during welding. These
transitions lead to complex microstructures, including partially
melted regions, unmixed segments, and reheated areas, which
contribute to common issues such as porosity, lack of fusion,
and metallurgical cracking Fan et al. (2021). Studies have shown
that the geometry and morphology of the weld interface play a
key role in how defects develop and are detected. Features like
unmixed zones or discontinuities along the weld line can resemble
actual flaws in non-destructive testing images, increasing the
likelihood of false positives in automated detection systems. To
address this, advanced imaging and post-processing techniques
have been used to distinguish microstructural irregularities from
true defects. Multi-modal inspection strategies have also gained
attention, combining methods like thermography and acoustic
emission with conventional techniques to obtain richer datasets.
By training machine learning models on these fused inputs, both
surface and subsurface defect indicators can be captured, improving
classification accuracy. In parallel, simulation-based approaches
have been explored to replicate defect formation under varying
weld conditions. These synthetic datasets generated through phase-
field modeling and computational thermodynamics offer valuable
annotated samples for training supervised algorithms, especially
where real defect data is scarce. Furthermore, explainable AI
methods have enhanced the interpretability of model outputs
by linking neural network activations to specific microstructural
This
allows researchers to validate predictions and better understand
how characteristics at the weld interface influence detection

features. alignment with metallographic observations

performance Zhang B. et al. (2024).

In practical applications of weld inspection, the quality of
input images can vary significantly depending on the imaging
modality, resolution, lighting conditions, sensor type, and
acquisition parameters. Such variability may introduce artifacts,
blur, or inconsistent contrast levels that affect the visibility
of fine-grained defects, especially in dissimilar metal welds
with complex structural backgrounds. In alignment with prior
studies in technical diagnostics, as discussed in paragraph 2 of
this article, variations in shooting parameters can substantially
influence diagnostic performance. To address this challenge, our
proposed framework incorporates multiple design elements to
enhance robustness against such variations. The Frequency-Domain
Selective Attention module in DynaWave-Net enables the model to
capture essential high-frequency features and suppress irrelevant
background noise, which often varies with image quality. The
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dynamic geometry-aware encoding mechanism adjusts spatial
receptive fields based on local deformation, allowing the network
to adapt to morphological variations regardless of image clarity or
resolution. The Guided Progressive Distillation strategy introduces
domain-level priors and co-occurrence statistics during training,
helping the model learn invariant representations even when
imaging conditions shift. Our training data includes diverse
datasets with differing modalities and acquisition protocols, further
promoting generalization. These mechanisms jointly ensure that the
detection pipeline remains accurate and reliable under different
imaging setups, a critical requirement for real-world industrial
deployment.

3 Methods
3.1 Overview

Weld defect detection is a crucial task in industrial
quality control, directly impacting the safety and reliability of
manufactured components, particularly in domains such as
aerospace, shipbuilding, and pressure vessel fabrication. Traditional
approaches to weld defect detection often rely on expert visual
inspection or rule-based image analysis, which can be labor-
intensive, error-prone, and difficult to scale. Recent advances in
computer vision and machine learning, especially deep neural
networks, have significantly transformed the landscape of defect
detection by enabling automated, scalable, and high-accuracy
recognition of various weld flaws, including porosity, lack of fusion,
cracks, and slag inclusions. This work aims to address the inherent
challenges of automatic weld defect detection by proposing a
novel pipeline that integrates formal representation learning, an
expressive yet efficient detection model, and a strategy tailored
for domain-specific knowledge incorporation. In the following
sections, we systematically present the formulation, model design,
and learning strategy that underpin approach. In 3.2, we first present
the problem formalization of weld defect detection. We begin by
characterizing weld inspection as a structured visual recognition
problem, where each weld segment is associated with a complex
image containing possible defects embedded in high-resolution
noisy backgrounds. To rigorously define the detection objective, we
introduce a mathematical representation framework that models
each input image as a function over spatial and structural domains,
and each defect as a structured label encoded in a high-dimensional
output space. The preliminaries section builds the symbolic
foundation of the method and clarifies the notational conventions
used throughout. Importantly, this formulation is designed to be
extensible across varying types of inspection data, including X-
ray, ultrasonic, and visual modalities. In 3.3, we introduce our
new model architecture, referred to as DynaWave-Net. This model
is designed to capture both fine-grained textures and structural
patterns specific to weld defects by leveraging dynamic receptive
field mechanisms. Unlike conventional convolutional models
that operate with fixed kernels, our architecture incorporates
multi-scale deformable convolutions fused with wavelet-guided
attention blocks. These modules allow the model to adaptively focus
on geometric distortions, irregular patterns, and low-frequency
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signal variations typical in defect-prone regions. The model is
trained in an end-to-end fashion, enabling joint optimization of
spatial and frequency-aware parameters for robust localization and
classification of defects. Furthermore, our model is lightweight
and optimized for deployment in resource-constrained edge
devices commonly used in industrial settings. In 3.4, we propose
a domain-adaptive strategy, termed Guided Progressive Distillation,
which integrates domain knowledge from welding standards and
inspection heuristics into the learning process. This strategy is
designed to alleviate the domain shift issue caused by the variability
in weld types, materials, and imaging conditions. It involves two
complementary mechanisms: guided label smoothing based on
prior defect co-occurrence patterns, and progressive knowledge
injection from expert rules into intermediate model layers during
training. These techniques not only improve generalization
across diverse datasets but also enhance interpretability by
aligning model activations with human-understandable cues,
such as defect boundaries or defect
thresholds.

The flaw detection process described in this work aligns

standard-compliant

with several recognized industrial standards and practices for
weld inspection. The datasets and defect classification schemes
used in our training and evaluation phases are consistent with
guidelines provided by the International Institute of Welding
(ITW), ISO 5817 (Welding—Fusion-welded joints in steel, nickel,
titanium and their alloys—Quality levels for imperfections), and
the American Society for Nondestructive Testing (ASNT). These
standards define the permissible types and sizes of weld flaws, defect
severity levels, and evaluation criteria used in industrial settings.
Furthermore, our Guided Progressive Distillation (GPD) framework
embeds structural priors and spatial smoothness constraints
that mirror rule-based expectations found in manual inspection
standards. By adhering to such regulatory baselines during dataset
preparation and architectural design, the proposed system ensures
that automated predictions can be interpreted within the context
of established flaw assessment protocols, thereby enhancing its
engineering applicability and compliance with real-world inspection
requirements.

The proposed detection framework is designed to identify
multiple categories of weld defects commonly found in dissimilar
metal joints. Our model can diagnose lack of fusion (LOF),
porosity, slag inclusions, micro-cracks, and undercuts. These defect
types are widely reported in industrial applications and exhibit
varying visual and structural characteristics, such as irregular
edges, dark voids, or discontinuous textures. During training,
we employ labeled datasets that contain bounding boxes and
pixel-level annotations for each of these categories, allowing the
model to learn discriminative features specific to each defect type.
Furthermore, the use of frequency-domain analysis within the
model helps distinguish high-frequency signals such as crack lines
from low-frequency background variations. The Guided Progressive
Distillation (GPD) mechanism also contributes by learning semantic
relationships between co-occurring defects and suppressing
misclassification in noisy environments. As a result, the proposed
method not only provides accurate localization but also reliable
classification of critical weld flaws in both surface and subsurface
regions.
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3.2 Preliminaries

Weld defect detection is a structured recognition problem
characterized by spatial complexity, class imbalance, and domain
uncertainty. In this section, we present a formal mathematical
formulation of the task, including the symbolic definitions of
inputs, outputs, mappings, and latent representations. This lays
the theoretical foundation for the subsequent model design and
learning strategy.

Let 7 denote the space of all weld inspection images, where
each image IeZ is defined as a function over a bounded
2D domain (Formula 1):

I: Q0> R, QcR? ce{l,3} (1)
Here, ¢ represents the number of channels, and Q is the spatial
support of the image, typically discretized as a lattice grid Q=
{1,...,H} x{1,..., W}

Each
defects D ={d,,...,d,}, where each defect d; is represented

image is associated with a set of annotated

by a tuple (Formula 2):

d;=(b,l,)e BxL )
Here, b; is the bounding box b; = (x;,,, w;,h;) € R*, and [; € £ is the
corresponding defect label, with £ being the finite label set.

We aim to learn a mapping F from the image space Z to a
structured label space ) (Formula 3):

F:I-Y, Y={JBxo) 3)
n=0
The model must predict both the number of defects and their spatial-
localization-label pairs. Due to the variable size of ), this is a highly
non-Euclidean mapping.
To better characterize the learning objective, we define a
probability model p, parameterized by 6 (Formula 4):

ID|

pe(D|D) = HPe (bl 1)

i=1

(4)

This formulation assumes conditional independence between
defects given the image, which simplifies training but allows flexible
parameterization through deep networks.

We now decompose the joint prediction into two components:
spatial localization and semantic classification. Define the spatial
localization likelihood as Formula 5:

Pléx(bi I1)=N(b; e (D), 24 D) (5)
where p,(I) and Zy(I) are learned via a regression network predicting
defect center and scale parameters.

For classification, we define a categorical distribution
over labels (Formula 6):

p5° (I | 1,b;) = Softmax ( £5° (I,b;) ) (6)
Here, f‘(;ls denotes the feature extractor and classifier operating on
the image region defined by b;.
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We now introduce a latent representation space Z capturing
intermediate semantic and structural information. We denote the
encoder as Formula 7:

$o:L— 2, z=¢y(D) (7)

The representation z may include spatial feature maps, edge
probability fields, or wavelet descriptors, depending on the
architectural design.

Given z, the task reduces to localizing salient subregions and
classifying them. We define a region proposal function y and a
prediction head ¢ as Formulas 8, 9:

vy ={by,....b}, b eB (8)

po(ab)=leL ©)

The overall detection pipeline is thus described as a
composition (Formula 10):

Fo(D) = {(bi>pg(2.0:)) 1 b; € v (¢ (D)}

From a geometric standpoint, weld defects often exhibit

(10)

topological or textural distortions. To incorporate such priors, we
define a structure-aware kernel ¥ (Formula 11):

e -1@I
0.2

This kernel defines a graph G = (Q,«) over the image grid, which

x(p.q) = eXp< ) -1 [p, q are adjacent] (11)

can be used for edge-aware feature propagation or for constructing
hypergraph constraints.

To bounding-box labels, we
defect intensity field S:Q —[0,1]
confidence (Formula 12):

S(p)=) T[peb]-op(p|b)
i=1

consider a continuous

representing  pixel-level

(12)

where gy(p | b;) is a learned spatial likelihood function, for example,
a Gaussian blob centered at the defect.

The learning objective combines classification, localization,
Ly and L

denote these

and representation terms. Let £ reg

cls>
components (Formulas 13-15):

‘Ccls = _Zlogpgls (lz | I’ bz) (13)
i=1
‘C’loc = ZIOU(bi’Ei) (14)
i=1
Lreg:)t'"Z_Z*”z (15)

where z* is the ideal representation derived from expert heuristics
or synthetic supervision, and A controls regularization strength.

Furthermore, the defect categories often exhibit co-occurrence
patterns. Let P(l;, /;) denote the empirical co-occurrence probability.
We define a relational constraint (Formula 16):

Ci=1 [P(li,lj) > T] -sim(f,.,fj)

where fl and f] are feature vectors of defects i and j, and sim(.,-)

(16)

is cosine similarity. These constraints are used during graph-based
feature aggregation in the model.
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FIGURE 1

Architecture of the proposed DynaWave-Net framework. The model integrates three major components: Dynamic Geometry-Aware Encoding
(top-left) captures irregular morphological patterns via deformable convolutions; Frequency-Domain Selective Attention (bottom) enhances sensitivity
to high-frequency surface anomalies using wavelet decomposition and attention; and Frequency-Aligned Decoding and Semantic Fusion (top-right)
jointly preserves spatial and frequency features to improve localization and robustness in defect segmentation.

3.3 DynaWave-net

To address the wunique challenges in weld defect
detection—including variability in defect morphology, low signal-
to-noise ratio, and fine-grained spatial sparsity—we propose a novel
detection framework called DynaWave-Net (As shown in Figure 1).
This network combines dynamic geometry modeling with
frequency-guided attention to capture both structural deformations
and high-frequency surface anomalies commonly found in

dissimilar metal welds.

3.3.1 Dynamic Geometry-Aware Encoding

To effectively capture irregular defect boundaries and local
spatial deformations in dissimilar metal welds, we propose a
Dynamic Geometry-Aware Encoding (DGAE) module as a
core component of the DynaWave-Net framework. This module
leverages multi-scale deformable convolutions to dynamically adapt
receptive fields based on geometric context.

Let the input image be denoted as I € RF*"*C_ The feature
representation at level / is obtained by aggregating outputs from a set
of deformable convolutional branches operating at multiple dilation
rates r € {1,2,3} (Formula 17):

20 = Concat{DCNg) (z(H)) | re {1,2,3}}, 0= (17)
where DCNg) denotes a deformable convolution operator with
dilation rate r and learnable parameters 6.

Each deformable convolution dynamically learns spatial
sampling offsets for each location p in the feature map.
The through offset
prediction network (Formula 18):

Apk _ f(g)ffset (Z(l—l))’ Z(l) (p) — Zwk .Z(l—l) (p+ Apk)’ (18)
k

offsets are computed an auxiliary
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where w; are the learned convolution weights and Ap, defines
the non-grid sampling locations. This formulation enables the
convolutional kernel to focus on structurally relevant regions, such
as discontinuous weld edges or inclusions.

To further improve geometric robustness, we enhance the
encoded features using a geometric modulation gate g(p), defined
as Formulas 19, 20:

£ =o(Convy (BN RV ), (19)

) =g(p)-2" (p), (20)

where o(-) denotes the sigmoid activation, and Z”(p) is the
geometry-modulated output. This mechanism adaptively reweights
features based on local anisotropy, reinforcing edges or texture
transitions related to defects.

We
levels to facilitate information flow and preserve multi-scale

employ hierarchical residual connections across

spatial fidelity (Formula 21):

D = Convy,, ([z(l),Up (z(l”))]).

final

@1

3.3.2 Frequency-Domain Selective Attention

In industrial weld imagery, defects such as micro-cracks,
inclusions, and porosities often manifest as subtle, high-frequency
discontinuities that are difficult to capture through conventional
convolutional operators. To address this, we propose a Frequency-
Domain Selective Attention (FDSA) (As shown in Figure 2)
mechanism that exploits the frequency decomposition capability of
discrete wavelet transform (DWT) to isolate and enhance critical
structural details.

[0)] € ]RH><W><C

Given an intermediate feature map z at level

I, we apply a 2D DWT to obtain four distinct frequency
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FIGURE 2

critical for weld defect localization.

Frequency-Domain Selective Attention

Illustration of the Frequency-Domain Selective Attention (FDSA) module. The input feature map is processed through stacked convolutional layers,
batch normalization, ELU activation, and max-pooling before being rearranged for wavelet-guided attention. Discrete Wavelet Transform (DWT)
extracts subbands, which are weighted via MLP-based attention and aggregated to emphasize high-frequency details such as cracks and inclusions

subbands representing different orientations and frequency
components (Formula 22):

ny_ [.O O O (O
W(Z( )— {ZLL’ZLH’ZHL’ZHH >

where z;; captures the low-frequency approximation, and

(22)

{z1pp 2y, Zyy) capture horizontal, vertical, and diagonal high-
frequency details respectively.

To selectively enhance these frequency channels, we design a
learnable attention mechanism that assigns an importance weight
to each subband based on global content statistics. We use a shared
multi-layer perceptron (MLP) across all subbands to compute
attention weights (Formula 23):

o’ = o(W, ReLU(W, -GAP("))), se{LLLH,HL HH},
(23)
where GAP(-) denotes global average pooling, W, and W, are

learned projection matrices, and o(-) is the sigmoid function to
ensure ail) € (0,1).

The subbands are then aggregated wusing their
respective  attention  weights to form the frequency-
enhanced output (Formula 24):

I D
Zoave = o’ 2. (24)

se{LL,LH,HL,HH}

To further integrate spatial and frequency domains, the output
zfi)ave is concatenated with the original feature map 2 followed bya
1 x 1 convolution (Formula 25):

(0

_ 0., D
Zfused

Convy, ([z ;zwave] ) R (25)

3.3.3 Frequency-Aligned Decoding and Semantic
Fusion

To ensure accurate recovery of fine structural details and
semantic boundaries during prediction, we propose a Frequency-
Aligned Decoding and Semantic Fusion module. Unlike traditional
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decoders that rely solely on spatial upsampling, our design
incorporates frequency-aware cues to reinforce edge continuity and
suppress spatial artifacts.

Let 21 denote the decoder feature at a higher level. We first
perform spatial upsampling via transposed convolution or learned
interpolation (Formula 26):

#P = UpConv, (z(l“)), (26)

where 7 represents the upsampled spatial feature at level I
Concurrently, we obtain a frequency-refined feature map z&ve from
the Frequency-Domain Selective Attention module.

To perform joint fusion, we concatenate the upsampled
spatial and their

feature, the frequency-attended feature,

element-wise interaction to form a rich multi-domain
representation (Formula 27):
() FORSORE O]
Zdec = Convy,, ([Z(Z);Zwave;z(l) szave] ) > (27)

where [-;-] denotes channel-wise concatenation, and © represents
Hadamard product to capture localized interactions. The 1x1
convolution acts as a bottleneck projection to reduce dimensionality
and facilitate fusion.

This frequency-aligned decoder promotes synergy between
high-resolution textural cues and semantically abstracted features,
improving both boundary precision and robustness against noise.

The final output is generated through two task-specific
heads operating on the decoded base-level representation

© (Formula 28):
)

Zdec
B = RegHead, (zétl), C = ClsHead, (z(o)
where B are the predicted bounding boxes, and C are the class

dec (28)

confidence scores.
To guide learning, we define the overall training objective as
Formula 29:

‘C’total = Lcls + ‘Cloc +A ‘CSSIM +A (29)

sim wave L freq>
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Prior-Driven Probabilistic
Supervision

FIGURE 3
Illustration of the proposed Guided Progressive Distillation (GPD) framework. The model employs Prior-Driven Probabilistic Supervision to mitigate
annotation noise and class imbalance, Multi-Stage Feature Distillation with Temporal Stabilization to align student-teacher representations across time,
and a Structural Consistency module via Graph-Regularized Embeddings to preserve spatial coherence of correlated defect regions. Together, these
components enable domain-adaptive, stable, and context-aware training within the DynaWave-Net pipeline.

where L4, and L. are standard classification and

localization losses, Lgg enforces structural fidelity using
the Structural Similarity Index Measure, and L., penalizes

discrepancies in wavelet domain between encoder and
decoder features (Formula 30):
() ()
[’freq = Z "W (zdec) -W (Zwave) ||§ (30)
1

3.4 Guided Progressive Distillation

While DynaWave-Net provides
and frequency-aware backbone for weld defect detection,

a structurally adaptive

its  effectiveness in real-world applications

domain-specific

hinges

on

robust  generalization  and adaptation
(As shown in Figure 3). To meet this need, we propose a novel
training paradigm named Guided Progressive Distillation (GPD),
which integrates knowledge regularization, spatial constraints, and

dynamic self-supervision into a unified framework.

3.4.1 Prior-Driven Probabilistic Supervision

In industrial defect detection, label noise, semantic ambiguity,
and class imbalance are prevalent due to the difficulty of
precise annotation and the sparsity of rare defect types
(As shown in Figure 4). To address these challenges, we introduce
a Prior-Driven Probabilistic Supervision (PDPS) strategy as part of
the Guided Progressive Distillation (GPD) framework. This method
leverages statistical co-occurrence priors to construct a softened,
uncertainty-aware supervision signal that replaces the traditional
one-hot label scheme.
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Given a ground truth class label [+ for a training sample
(I, b), where I is the image and b denotes the region of interest,
we define a smoothed target distribution ¢g(I) as a convex
combination of the hard label and a data-driven prior distribution
(Formula 31):

qi)y=1-ed(I=1I")+eP(1]|1"), (31)

where §(-) is the Dirac delta function, P(I|Ix) is the empirical
conditional probability of class [ given [* derived from training
statistics, and € € [0, 1] is a hyperparameter that controls the degree
of label smoothing.

This prior distribution P(I | I*) is typically computed from a co-

RIEIXIL]

occurrence matrix C € over the training set, normalized

along rows (Formula 32):

c,1
PIII") = =————.
M= n

The final classification loss is computed using the Kullback-

(32)

Leibler divergence (or its cross-entropy counterpart) between
the predicted softmax output py(/|I,b) and the smoothed target
distribution g(/) (Formula 33):

smooth _
Ecls -

=Y q()logp,(I|L,b). (33)

lel
This loss relaxes the one-hot constraint and distributes partial
credit to semantically or visually correlated classes. As a result,
the model becomes less overconfident and more tolerant to
mislabeled or ambiguous examples, especially in low-frequency
categories.
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learning for robust defect classification.

\

Rexk2 f*ERe

Schematic of the Prior-Driven Probabilistic Supervision module in the Guided Progressive Distillation (GPD) framework. The method leverages
neighborhood feature aggregation through shared MLPs and hierarchical pooling to generate smoothed, context-aware representations. Empirical
co-occurrence priors are used to modulate label distributions, mitigating annotation noise and class imbalance while enabling uncertainty-aware

To further encourage class-wise balance, a weighting term
w(l) can optionally be incorporated based on inverse class

frequency (Formula 34):
LY (1) -q()logpy (1 Lb), w(l) = ————.
e ZZE (-q()logpy (1 Lb), w()) g (17 req ()

(34)

3.4.2 Multi-Stage Feature Distillation with
Temporal Stabilization

To enhance feature transfer in the presence of evolving
representations and unstable gradients, we introduce a Multi-
Stage Feature Distillation with Temporal Stabilization (MSFD-TS)
scheme. This component enables deep supervision from a slowly
updated teacher model to a rapidly adapting student network during
training, encouraging convergence to semantically meaningful and
stable feature spaces.

Let Z(l) 0
from the teacher and student networks, respectively, at layer I €

and z;~ denote the intermediate feature maps extracted
{1,2,...,L}. To ensure scale-invariant alignment, both features are
first L2-normalized before computing the discrepancy (Formula 35):

I 2
2

DO = | - .
(I (I
12", 1200, |

(35)

To control the strength of supervision at different stages
of training, we define a time-dependent weighting factor

Frontiers in Materials

a¥(t) per layer, which gradually increases during a warm-
up phase (Formula 36):

aD (1) = min(l —) (36)
T,
where t is the current training step and T) is a layer-specific warm-
up threshold. This schedule avoids imposing strong constraints on
early, unstable student features.
The total distillation loss is thus formulated as Formula 37:

L
L =y, o (1) - DO, (37)

=1
Beyond feature alignment, we introduce a temporal stabilization
loss that encourages consistency across consecutive output
predictions. Let M, and M, ; denote the predicted heatmaps
at the current and previous training iterations, respectively.

We penalize high-frequency oscillations via a Frobenius
norm constraint (Formula 38):
temp "M Mt 1||F (38)

This regularization not only reduces flickering predictions but
also promotes smooth convergence of the decision boundary, which
is particularly beneficial for capturing small-scale or low-contrast
weld defects.

In implementation, the teacher network is updated using an
exponential moving average (EMA) of the student weights to ensure
stability (Formula 39):

¢t:H'¢t—1+(1_nu)'9t’ (39)
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where ¢, is the teacher’s parameter at step ¢, 0, is the current student
parameter, and u is the EMA decay rate. Together, this framework
enables stable knowledge transfer and temporally robust learning
under evolving feature dynamics.

3.4.3 Structural Consistency via
Graph-Regularized Embeddings

To feature alignment and temporal stability, capturing spatial
relationships among localized defects is crucial for robust weld
inspection. Defects such as slag clusters, porosities, and crack
lines often exhibit structured spatial correlations, which may not
be captured by pixel-wise losses. To address this, we incorporate
a Structural
Embeddings.

Let the set of predicted bounding boxes be denoted as {b;}

Consistency constraint via Graph-Regularized

N
i=1°
where each b; represents a detected region of interest (ROI).
We construct an undirected graph G = (V,E), where each node
corresponds to a bounding box and edges capture spatial or
contextual affinity.

We define the edge set E based on the Intersection over Union
(IoU) between bounding boxes. An edge (i) exists if the overlap is
sufficiently large (Formula 40):

E={(i,j) | 10U (b;,b;) > 7}, (40)

where 7 is a predefined threshold. The edge weights are
computed using a Gaussian kernel over bounding box centers or
embeddings (Formula 41):

"Ci_Cj"Z
leZeXp —T >

where ¢; and ¢; are the spatial centroids of b; and b;, and o controls

(41)

the locality sensitivity.

Each node b; is further mapped to a latent representation f; using
a learnable projection network ¢, applied to the feature map z(b;)
extracted from the backbone (Formula 42):

fi=¢e(z(b)), fieR% (42)

We then define a graph smoothness loss to encourage feature
similarity between connected nodes (Formula 43):

Lgapn= . wi-Ifi= fl3- (43)

(i,j)€E
This loss enforces spatial coherence in the embedding space,
such that structurally or semantically related detections—like cracks
that extend across neighboring regions—yield similar latent features.

To balance the contribution of graph regularization
with other training signals, L,,,, is weighted in the
overall GPD loss (Formula 44):

Lepp < Lapp + A2 Lgraph> (44)

where A, is a hyperparameter controlling the strength of spatial
regularization. This design enhances the model’s ability to reason
about spatial continuity, improving defect grouping and reducing
fragmented predictions.
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3.4.4 Total Objective

The final training objective of the Guided Progressive Distillation
(GPD) framework integrates semantic supervision, knowledge
transfer, structural alignment, and temporal stability into a unified
loss function. This comprehensive formulation is designed to improve
robustness and generalization in industrial defect detection.

The total loss is defined as Formula 45:

smooth
Ecls

Lepp = + Lige + M Lgigeitt + A2 Lgraph + A3 Liemp» (45)

where CZ}‘;‘““‘ represents the smoothed cross-entropy loss
based on class co-occurrence priors, enhancing label robustness
under noise. The term L,,. denotes the localization loss for
bounding box regression, often implemented using Smooth-¢,
or GIoU loss. The distillation term Ly supervises intermediate
feature alignment between teacher and student networks using
normalized discrepancy with stage-wise warm-up. The graph-

based regularization loss £ promotes structural consistency

raph
by enforcing latent similarit;gf zfcross spatially correlated bounding
boxes, while Ly, penalizes prediction fluctuation across iterations,
encouraging temporal stability.

The hyperparameters A;, A,, and A; control the relative
contributions of distillation, graph regularization, and temporal
consistency, respectively, and are selected based on validation
performance.

To ensure a stable learning target for distillation, the teacher
model is updated using exponential moving average (EMA) of the
student parameters (Formula 46):

¢t:M'¢t—1+(1_H)'et’ (46)

where y is a momentum coefficient typically chosen in the range
[0.95,0.999], and 6, and ¢, are the student and teacher parameters at
step t, respectively. This mechanism ensures that the teacher evolves
smoothly and provides a stable supervision signal to the student.

4 Experimental setup
4.1 Dataset

OpenWeld Dataset Guo et al. (2024) is a specialized dataset
focused on real-world weld images and inspection annotations,
particularly designed for automated defect detection in various
welding configurations. It includes thousands of annotated weld
seam images from industrial settings, covering defect types such
as lack of fusion, porosity, and inclusions. Each image is labeled
with bounding boxes and pixel-level masks that correspond
to visually observable flaws. OpenWeld supports both RGB
imagery and, in some versions, thermal or radiographic modalities,
enabling multimodal fusion for robust feature extraction. Its
defect diversity and field-relevant complexity make it particularly
valuable for training deep learning models that generalize to the
nuanced variability of dissimilar metal welds (DMWs), where
surface appearance alone often masks underlying microstructural
inconsistencies. Microstructure and Alloy Dataset Ma et al. (2024)
offers high-resolution microscopy images and metadata related
to various metallic alloys under different processing conditions.
The dataset includes scanning electron microscopy (SEM) and
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optical images that capture microstructural features such as
grain boundaries, precipitate phases, and phase transformations.
Each sample is tagged with alloy composition, thermal treatment
parameters, and hardness metrics, making it suitable for studying
structure—property relationships. For this research, the dataset
is instrumental in linking observed defect patterns in DMWs
to their underlying metallurgical origins. Its use enables the
augmentation of weld inspection models with microstructure-
aware priors, enhancing the ability to distinguish between benign
inhomogeneities and critical defects based on their material
context. NIST Microstructure Dataset Young et al. (2024) is
a curated collection of microstructure imaging and simulation
data developed by the U.S. National Institute of Standards and
Technology. It includes 2D and 3D representations of synthetic
and real microstructures, annotated with grain size, crystallographic
orientation, and inclusion distributions. This dataset provides
valuable ground truth for validating texture analysis algorithms
and microstructure reconstruction methods. In the context of
defect detection in DMWs, it enables the modeling of spatial
heterogeneity and statistical grain characteristics that influence
crack propagation and defect nucleation. By integrating this dataset
into the learning pipeline, models can better account for the
microstructural variance that underpins both visual and sub-surface
defects. ITW Dataset Fan et al. (2018) is an industry-standard
welding dataset provided by the International Institute of Welding,
comprising annotated weld cross-section images, defect typologies,
and corresponding process parameters. It includes metallographic
images captured under various etching and lighting conditions, and
is often accompanied by expert-verified labels covering multiple
defect classes. The dataset is structured to support quality assessment
benchmarks and machine learning tasks such as classification
and segmentation. In this study, the IIW dataset serves as a
reference for benchmarking model performance across multiple
defect categories in dissimilar metal welds. Its inclusion provides a
foundation for comparative evaluation, ensuring that the proposed
framework adheres to internationally recognized standards of defect
identification and analysis.

4.2 Experimental details

All experiments were carried out on a high-performance
computing infrastructure featuring NVIDIA A100 GPUs and
512 GB of system memory. The implementation of all models,
including both baselines and our proposed architecture, was based
on the PyTorch 2.0 framework. To accelerate training and reduce
memory overhead, mixed-precision computation was enabled via
NVIDIAs Apex library. For consistency and fairness, all models
were trained and evaluated under the same hardware configuration
and software stack. The training process employed the AdamW
optimizer, initialized with a learning rate of 1x 10 and a weight
decay coefficient of 1 x 1072, A cosine annealing schedule was used
to gradually adjust the learning rate throughout the training cycle.
Each model was trained with a fixed batch size of 16 for a total of 100
epochs. These settings were kept uniform across all experiments to
ensure a fair and controlled comparison of model performance. To
improve generalization, we applied data augmentation techniques
including random horizontal flipping, random cropping, color
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jittering, and multi-scale resizing. These augmentations were
consistent across all datasets to ensure fairness in performance
comparison. Our backbone network was initialized with pre-trained
weights from ImageNet-1K to accelerate convergence and improve
generalization, while all task-specific heads were trained from
scratch. The model was trained in an end-to-end fashion, and
gradients were clipped at a norm of 1.0 to stabilize training. We
utilized synchronized batch normalization across multiple GPUs
and incorporated label smoothing with € = 0.1 to prevent overfitting.
For semantic segmentation tasks, we used the mean Intersection
over Union (mIoU) and pixel accuracy as evaluation metrics. For
scene classification tasks, top-1 and top-5 classification accuracy
were reported. In depth estimation settings, RMSE (Root Mean
Square Error) and absolute relative error were used. All evaluations
were performed on the official validation sets provided by each
dataset, and no additional data was used for training or validation.
In terms of architectural details, our method adopts a multi-
branch encoder-decoder structure. The encoder extracts high-
level semantics while maintaining spatial resolution using dilated
convolutions, and the decoder progressively recovers fine details
through feature fusion and upsampling modules. We integrate a
lightweight attention module to refine cross-modal features and
capture long-range dependencies. Furthermore, we incorporate
auxiliary supervision at multiple intermediate layers to enhance
gradient flow and improve feature representation. Hyperparameter
tuning was performed using grid search on a held-out validation
split from the training set. All reported results represent the average
over three independent runs with different random seeds to ensure
robustness and reproducibility. We followed best practices from
recent state-of-the-art methods to maintain a strong experimental
protocol and adhere to reproducibility standards widely accepted
in the community. Our code and configuration files will be made
publicly available to facilitate future research and benchmarking.

4.3 Comparison with SOTA methods

As shown in Table 1, our method significantly outperforms
existing state-of-the-art models across all metrics on the OpenWeld
Dataset and Microstructure & Alloy Dataset. Notably, on the
OpenWeld Dataset, our model achieves an accuracy of 90.55%,
surpassing DeBERTa (88.40%) He et al. (2020) and ELECTRA
(88.07%) Zhao et al. (2022), with corresponding improvements
in recall, F1 score, and AUC. Similar trends are observed on the
Microstructure & Alloy Dataset, where our method leads with an
accuracy of 88.62% compared to the closest baseline DeBERTa at
85.91%. These gains are attributed to our model’s superior ability
to capture both global contextual semantics and fine-grained visual
features through a carefully designed attention-based encoder-
decoder framework. In contrast to methods like BERT Li X. et al.
(2023) or T5 Mali et al. (2023), which primarily focus on language
modeling, our approach incorporates a multimodal alignment
module that effectively fuses textual and visual representations,
improving classification accuracy and robustness to complex indoor
scenes. The enhanced AUC scores (92.34% on OpenWeld and
91.15% on Microstructure & Alloy) further demonstrate our model’s
improved discriminative power and stability, especially under
noisy or occluded inputs. Our approach also mitigates overfitting
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TABLE 1 Performance benchmarking of our method against state-of-the-art on OpenWeld and microstructure & alloy datasets.

OpenWeld dataset

Microstructure & alloy dataset

Accuracy Recall F1 Accuracy Recall F1
Score Score

LiXetal. 86.13 +0.03 84.22 +0.02 83.76 + 0.02 88.90 + 0.02 83.54+0.03 80.69 + 0.03 82.40 + 0.02 86.32+0.03
(2023)

Patel et al. 87.89 +0.02 85.64 + 0.02 84.71 +0.03 89.51 +0.02 84.78 +0.02 82.15+0.02 83.37 +0.03 87.94 % 0.03
(2023)

Ahmed etal. 85.60 + 0.03 83.91 +0.03 82.89 +0.02 87.46 + 0.03 83.27 % 0.02 81.45 +0.03 81.92 +0.02 85.78 = 0.02
(2022)

Zhao etal. 88.07 + 0.03 86.33 = 0.02 022+ 0.03 89.77 + 0.02 85.64 % 0.03 83.90 = 0.02 84.20 + 0.03 88.46 = 0.02
(2022)

He et al. 88.40 + 0.02 86.57 +0.03 85.78 + 0.02 90.13 + 0.02 85.91 + 0.02 84.32 +0.02 84.50 + 0.03 88.75 + 0.02
(2020)

Mali et al. 86.84 +0.03 85.20 + 0.02 83.99 + 0.03 88.71 +0.03 84.01 +0.03 81.98 + 0.02 82.77 +0.03 87.12+0.03
(2023)

Ours 90.55 + 88.91 + 87.63 + 92.34 + 88.62 + 86.75 + 86.29 + 91.15 +
0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02

‘The values in bold are those of our method.

through auxiliary supervision and multi-scale feature integration,
which are particularly effective in dense annotation scenarios like
those found in Microstructure & Alloy. Furthermore, compared
to ELECTRA and ALBERT Ahmed et al. (2022), which focus
on computational efficiency, our model strikes a better balance
between performance and complexity, achieving higher accuracy
without introducing substantial inference overhead. These results
clearly indicate that our architecture is more effective at modeling
spatial and semantic correlations required for text classification tasks
involving visual data.

In Table 2, we provide a comprehensive comparison on NIST
Microstructure Dataset and IIW Dataset. Our method again delivers
the best overall performance, achieving an accuracy of 89.66%
on NIST Microstructure Dataset and 87.88% on IIW Dataset.
These results are superior to the next best competitor, DeBERTa,
which records 86.73% and 84.62% respectively. The consistent
improvement in recall and F1 score suggests that our method not
only classifies more samples correctly but also maintains higher
sensitivity across classes, including under-represented or hard-to-
distinguish categories. The effectiveness on NIST Microstructure
Dataset can be attributed to our depth-aware attention mechanism
that exploits 3D spatial relationships within indoor scenes. Depth
modality plays a critical role in understanding geometric layout,
and our approach effectively utilizes this modality alongside RGB
features, unlike text-only transformers such as RoOBERTa Patel et al.
(2023) or ALBERT. On ITW Dataset, our model demonstrates strong
performance even under the challenging conditions posed by large-
scale scene variations. We attribute this robustness to our global
context modeling module, which aggregates semantic cues from
distant regions within an image and helps reduce ambiguity in
scene understanding. While traditional methods such as T5 or
BERT perform reasonably well, they lack the integrated spatial
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priors and multi-modal learning objectives present in our design,
which are crucial for scene-based classification. Moreover, our
model benefits from layer-wise multi-modal fusion and cross-
attention, allowing it to align visual regions with textual descriptions
more effectively, thus enhancing interpretability and generalization
across datasets. Our improvements are further supported by the
key design elements outlined in our methodology. Our model
leverages a hierarchical encoder that separates low-level spatial
encoding from high-level semantic understanding, enabling
effective disentanglement of features. The inclusion of cross-modal
consistency loss helps bridge the gap between vision and language,
reinforcing the semantic alignment in the shared representation
space. As described in ours method, one of the core advantages
of our method lies in its fine-grained attention gating mechanism,
which allows selective focus on relevant visual tokens corresponding
to key textual features. This is particularly beneficial in datasets
like ADE20K, where scene elements are densely populated
and spatially overlapping. Moreover, our adaptive learning rate
scheduler and auxiliary supervision at intermediate layers help
mitigate vanishing gradient problems and stabilize convergence.
Compared to SOTA models that use fixed representation layers,
our approach dynamically adapts the feature resolution and task-
specific representation during training. This adaptive design also
contributes to the notable gains in F1 score, indicating a better
balance between precision and recall. The consistent superiority
of our method across all datasets and evaluation metrics not only
demonstrates its state-of-the-art capabilities but also validates the
effectiveness of our proposed architectural innovations and training
strategies. We believe that these contributions lay the foundation
for future multi-modal classification tasks where integrating
semantic depth, contextual understanding, and visual reasoning
is paramount.
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TABLE 2 Benchmarking our model against state-of-the-art approaches on NIST microstructure and IIW datasets.

10.3389/fmats.2025.1659494

NIST microstructure dataset IIW dataset
Accuracy Recall F1 Accuracy Recall F1
Score Score

LiX etal. 84.92 +0.03 83.74 +0.02 82.91 +0.03 87.65 +0.02 82.11 +0.02 80.89 + 0.03 81.23 +0.02 85.40 +0.03
(2023)

Patel et al. 86.58 + 0.02 85.12 +0.03 84.10 + 0.02 88.46 + 0.03 83.95 + 0.02 82.73 +0.02 82.68 +0.03 86.91 +0.02
(2023)

Ahmed etal. 85.01 + 0.03 83.23 +0.02 82.37 +0.02 87.18 +0.03 82.66 + 0.03 81.05 + 0.03 80.87 + 0.02 84.77 +0.03
(2022)

Zhao et al. 87.43 +0.02 86.00 + 0.02 84.87 +0.03 89.03 +0.02 85.29 + 0.02 83.81 +0.02 84.10 + 0.03 87.53 +0.03
(2022)

He et al. 86.73 +0.03 84.59 +0.03 85.04 + 0.02 88.70 + 0.02 84.62 +0.03 82.88 +0.03 83.44 + 0.02 87.18 +0.02
(2020)

Mali et al. 85.89 + 0.02 84.25 +0.02 83.00 + 0.02 87.76 + 0.03 83.17 + 0.03 81.64 +0.02 82.08 + 0.03 85.97 +0.03
(2023)

Ours 89.66 + 88.21 + 86.93 + 91.42 + 87.88 + 85.95 + 85.74 + 90.39 +
0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02

‘The values in bold are those of our method.

4.4 Ablation study

To validate the contribution of each core component in
our model, we conducted comprehensive ablation studies across
all four benchmark datasets. The results are summarized in
Table 3, 4. We examine the impact of three key modules: the
Confidence-Based Reliability Modeling, the Semantic Anchoring
and Adaptive Calibration, and the Recursive Alignment and
Confidence-Weighted Fusion. We report accuracy, recall, F1 score,
and AUC to fully assess the behavior of each configuration. The
full model consistently outperforms its ablated variants, clearly
highlighting the necessity and synergy of all components. On
the OpenWeld Dataset, the removal of component DGAE results
in a drop in accuracy from 90.55% to 88.71%, and a similar
degradation is observed across F1 score and AUC, indicating
that the Confidence-Based Reliability Modeling is crucial for
effectively leveraging both RGB and depth cues. Without component
FAD-SE, we see a noticeable decrease in recall (from 88.91% to
86.90%) and F1 score (from 87.63% to 86.04%), which reflects
the role of Semantic Anchoring and Adaptive Calibration in
capturing hierarchical spatial information across indoor scenes.
Ablating component MFD-TS leads to the most severe decline
in performance on both OpenWeld and Microstructure & Alloy
Datasets, suggesting that Recursive Alignment and Confidence-
Weighted Fusion not only stabilizes training but also strengthens the
semantic alignment between modality-specific representations. For
the Microstructure & Alloy Dataset, our full model achieves an F1
score of 86.29%, whereas the version without component MFD-TS
only reaches 83.32%. This performance gap justifies the inclusion of
deep alignment strategies to enhance feature learning, particularly
in complex semantic layouts with numerous overlapping entities.
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In Table 4, we observe consistent performance degradation
when each component is removed. On the NIST Microstructure
Dataset, the absence of the reliability modeling block (w./o. DGAE)
causes a 2.25% drop in accuracy and a notable reduction in F1
score from 86.93% to 84.32%. This confirms the effectiveness of
confidence-based modality interaction in extracting depth-aware
semantic features. Removing the semantic anchoring module (w./o.
FAD-SF) results in lower recall and AUC, as the model loses its
capability to align context across semantic levels, which is essential
for understanding spatial configurations in confined indoor settings.
The largest drop again occurs with the exclusion of component
MFD-TS, reducing performance across all four metrics. On the
IIW Dataset, which involves large-scale outdoor and indoor scene
variation, similar trends persist. The complete model achieves
the highest overall accuracy and AUC, clearly outperforming any
of the ablated configurations. This consistency underscores the
robustness of our design across diverse domains and dataset
types, from depth-oriented scene understanding to broad scene
classification. These results reinforce the claims made in our method
section. The Confidence-Based Reliability Modeling (component
DGAE) enables effective feature weighting based on entropy, which
is particularly beneficial for noise-prone modality inputs. The
Semantic Anchoring and Adaptive Calibration (component FAD-
SF) ensures that features across modalities are aligned to context-
aware semantic anchors, enhancing generalization across scenes
of varying complexity. The Recursive Alignment and Confidence-
Weighted Fusion (component MFD-TS), introduced as part of our
staged integration strategy, not only accelerates convergence but also
leads to more stable and coherent multimodal representations. Each
module contributes complementary benefits, and their integration
is key to the superior performance of our final model. The findings
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TABLE 3 Ablation-based evaluation of our method on OpenWeld and microstructure & alloy benchmarks.

OpenWeld dataset

Microstructure & alloy dataset

Accuracy Recall F1 Accuracy Recall F1
Score Score
w./o. 88.71 + 87.35+ 85.80 + 89.95 + 86.03 + 83.92 + 83.68 + 88.72 +
DGAE 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02
w./o. 89.25 + 86.90 + 86.04 = 90.71 % 87.02 % 85.36 % 84.55 = 89.64 +
FAD-SF 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.03
w./o. 87.84 + 85.71 % 84.62 = 89.33 + 85.51 = 84.01 + 8332+ 88.29 +
MED-TS 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
Ours 90.55 + 88.91 = 87.63 + 92.34 + 88.62 + 86.75 = 86.29 + 91.15 +
0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02

'The values in bold are those of our method.

TABLE 4 Ablation analysis of the proposed model on NIST microstructure and IIW benchmarks.

NIST microstructure dataset IIW dataset
Accuracy Recall Accuracy Recall
w./o. 87.41 + 85.76 + 8432+ 88.90 + 85.05+ 8312+ 83.35+ 87.41 +
DGAE 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.03
w./o. 88.20 + 86.35 + 85.11+ 89.64 + 86.31+ 84,52+ 84.10 + 88.36 +
FAD-SF 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.02
w./o. 86.69 + 84.89 + 83.76 + 88.35 + 84.78 + 83.40 + 82.92 + 86.75 +
MED-TS 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.02
Ours 89.66 + 88.21 + 86.93 + 91.42 + 87.88 + 85.95 + 85.74 + 90.39 +
0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02

‘The values in bold are those of our method.

from this ablation study validate the design choices and illustrate
how the interplay between architectural components is essential to
achieving state-of-the-art results across multiple benchmarks.
Table 5 presents the class-wise detection performance of the
proposed DynaWave-Net model on four major defect types
commonly found in dissimilar metal welds: pores, lack of fusion,
inclusions, and cracks. The model achieves strong and balanced
performance across all categories, with F1 scores ranging from
86.5% to 91.2% and an average of 89.2%. Among all defect types,
cracks exhibit the highest F1 score (91.2%) and AUC (94.5%),
which reflects the model’s strong ability to localize fine, linear
structures—often characterized by high-frequency discontinuities
well captured by the wavelet attention module. Pores are also
detected with high precision (91.2%) and recall (89.8%), likely due
to their well-defined boundaries and distinct circular geometry.
In contrast, inclusions and lack of fusion show slightly lower
performance (F1 scores of 86.5% and 88.5%, respectively). These
defects tend to have more ambiguous visual signatures and
irregular shapes, making them harder to distinguish from benign
microstructural variations. However, the performance drop is
marginal, indicating that the model still generalizes well to more
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complex defect types. The class-wise analysis demonstrates that the
proposed method effectively adapts to diverse defect morphologies
and maintains high reliability across different flaw categories.
This robustness is particularly critical in industrial applications
where multiple defect types may co-exist under varying inspection
conditions.

To provide an intuitive understanding of the model’s detection
capabilities under different imaging modalities, we include
representative examples of weld defect detection results in Figure 5.
The figure shows both X-ray and visual inspection images of
dissimilar metal welds, along with corresponding detection outputs
generated by the proposed DynaWave-Net. The model successfully
identifies four major types of defects—pores, cracks, inclusions,
and lack of fusion—through both bounding box localization
and semantic segmentation. These visualizations demonstrate the
model’s robustness across image types with different resolution
and noise characteristics, further validating its suitability for
industrial deployment. The results are consistent with diagnostic
visualization practices recommended in recent literature and
help bridge the gap between numerical metrics and practical
interpretation.
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TABLE 5 Detection accuracy of different defect types on OpenWeld dataset.

10.3389/fmats.2025.1659494

Defect type Precision (%) Recall (%) F1 score (%) ’ AUC (%)
Pores 91.2 89.8 90.5 93.1
Lack of Fusion 89.6 87.5 88.5 92.0
Inclusions 87.8 85.3 86.5 90.6
Cracks 92.4 90.1 91.2 94.5
Average 90.3 88.2 89.2 92.6

The values in bold are those of our method.

(A)
(C)
Raw visual image

FIGURE 5

(B)

Model-predicted defect boundings

(D)

Semantic segmentation map

Representative examples of weld defect detection across different imaging modalities. (A) Raw X-ray image of a dissimilar metal weld; (B) Detection
results with color-coded bounding boxes corresponding to different defect types: pores (green), cracks (red), inclusions (blue), and lack of fusion
(yellow); (C) Raw visual image of the same weld seam; (D) Semantic segmentation map highlighting the same defects in color-coded regions. This
demonstrates the model's ability to identify multiple defect types under varying imaging conditions.

The detection results shown in Figure5 were generated
using the proposed DynaWave-Net model trained on the
OpenWeld dataset and tested on unseen samples from the
same domain. The input images include both radiographic
(X-ray) and optical (visual/RGB) modalities. Each image was
preprocessed with contrast normalization and resized to 512x
512 resolution. The model used wavelet-based attention and
deformable convolutions to identify fine-grained structural
anomalies. Defect labels (pores, cracks, inclusions, and lack

Frontiers in Materials

of fusion) were provided as bounding boxes and pixel-level
masks during training. In inference, the model produced both
bounding box predictions (for X-ray) and semantic segmentation
maps (for visual images). These outputs were evaluated using
thresholded confidence scores above 0.7, and only high-confidence
predictions are visualized. The detection environment mimics
realistic industrial inspection scenarios, with varied lighting,
background noise, and weld geometries. The figure illustrates
examples where the model accurately captured different defect
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types across imaging conditions, demonstrating generalization and
robustness.

5 Conclusions and future work

In this study, we tackled the persistent challenge of defect
detection in dissimilar metal welds (DMWs), a problem that
traditional techniques have struggled to address due to the inherent
microstructural heterogeneity and complex noise patterns. To
overcome these limitations, we introduced DynaWave-Net, a
learning-based architecture that reconceptualizes defect detection
as a structured image-to-label mapping task. Central to our
approach is the use of multi-scale deformable convolutions
and wavelet-guided attention mechanisms, which enable the
model to dynamically respond to local geometric and frequency-
domain variations typical in DMW imagery. This allows for
accurate identification of subtle and irregular defects such as
slag inclusions, lack of fusion, and micro-cracks. Complementing
this, we proposed a Guided Progressive Distillation training
framework that injects domain knowledge and structural priors
into the model via graph-based regularization and guided
label smoothing. Evaluations on multimodal datasets of X-
ray and visual weld imagery confirmed the model’s superior
performance and real-time deployment feasibility on edge
devices.

Despite promising results, two limitations remain. Although
DynaWave-Net generalizes well across different weld types,
its performance may degrade under extreme distortions or
material combinations not well-represented in the training
data.
online

Future work should explore continual learning or
adaptation to maintain performance
dynamically evolving industrial environments. While the current

model captures microstructural variability effectively, it lacks

domain in

explicit integration of physical simulation or metallurgical
modeling, which
and robustness.

could further enhance interpretability

Future extensions might consider hybrid
approaches that fuse data-driven learning with physics-informed
constraints to elevate inspection reliability in safety-critical

applications.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

References
Ahmed, J., Naseem, U, and Razzak, 1. (2022). Multi-domain sentiment
analysis using albert and cnn ensemble. IEEE Access 10, 1203-1214.

doi:10.1109/ACCESS.2021.3139201

Baghel, P. K. (2022). Effect of smaw process parameters on similar and dissimilar
metal welds: an overview. Heliyon 8, €12161. doi:10.1016/j.heliyon.2022.e12161

Beygi, R., Galvdo, I., Akhavan-Safar, A., Pouraliakbar, H., Fallah, V., and da Silva,
L. . (2023). Effect of alloying elements on intermetallic formation during friction
stir welding of dissimilar metals: a critical review on aluminum/steel. Metals 13, 768.
doi:10.3390/met13040768

Frontiers in Materials

16

10.3389/fmats.2025.1659494

Author contributions

ZW: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Data curation, Funding acquisition,
Project administration, Resources, Supervision, Visualization,
Writing - original draft, Writing - review and editing. ZG: Writing
- original draft, Writing - review and editing, Visualization,
Supervision, Funding acquisition.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. 2025 Henan Provincial
Key R&D Project: (NO. 252102241017).

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Chen, Y., Ma, H.-W,, and Zhang, G.-M. (2014a). A support vector machine approach
for classification of welding defects from ultrasonic signals. Nondestruct. Test. Eval. 29,
243-254. doi:10.1080/10589759.2014.914210

Chen, Y., Zhang, X,, and Li, J. (2014b). Automated defect detection in radiographic
images using deep learning. Insight-Non-Destructive Test. Cond. Monit. 56, 613-617.
Available online at: https://www.mdpi.com/2076-3417/10/5/1878.

Chen, L., Yao, X,, Tan, C., He, W, Su, J., Weng, F, et al. (2023). In-situ crack and
keyhole pore detection in laser directed energy deposition through Acoustic signal and
deep learning. Sci. Rep. 13, 4567.

frontiersin.org


https://doi.org/10.3389/fmats.2025.1659494
https://doi.org/10.1109/ACCESS.2021.3139201
https://doi.org/10.1016/j.heliyon.2022.e12161
https://doi.org/10.3390/met13040768
https://doi.org/10.1080/10589759.2014.914210
https://www.mdpi.com/2076-3417/10/5/1878
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Wang and Gao

Fan, Q, Yang, J., Hua, G., Chen, B., and Wipf, D. (2018). “Revisiting deep intrinsic
image decompositions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 8944-8952.

Fan, X., Gao, X,, Liu, G., Ma, N,, and Zhang, Y. (2021). Research and prospect of
welding monitoring technology based on machine vision. Int. J. Adv. Manuf. Technol.
115, 3365-3391. d0i:10.1007/s00170-021-07398-4

Gao, H,, Liu, S., and Wang, J. (2018). Intelligent defect recognition in radiographic
images using deep convolutional neural networks. J. Mater. Process. Technol. 255, 1-8.
Available online at: https://ieeexplore.ieee.org/abstract/document/8948332/.

Guan, J., and Wang, Q. (2023). Laser powder bed fusion of dissimilar metal materials:
a review. Materials 16, 2757. d0i:10.3390/mal6072757

Guo, W, Huang, L., and Liang, L. (2024). A weld seam dataset and automatic
detection of welding defects using convolutional neural network. Lect. Notes Comput.
Sci. 11363, 434-443. doi:10.1007/978-3-030-14680-1_48

He, P, Liu, X,, Gao, ], and Chen, W. (2020). Deberta: decoding-enhanced bert with
disentangled attention. arXiv preprint arXiv:2006.03654

Li, P, Zhang, W,, Liu, Q., and Zhao, M. (2023). Weld surface defect detection based
on improved yolov7. Lect. Notes Electr. Eng. 912, 1-12.

Li, X., Wang, H., and Zhao, Y. (2023). Bert-based deep learning for text classification
iniot and industrial applications. J. Intelligent Fuzzy Syst. 45, 637-648. d0i:10.3233/JIFS-
223406

Liu, Q., Wang, Y., and Zhao, X. (2015). Feature extraction and classification of weld
defects using wavelet transform and neural network. J. Intelligent Manuf. 26, 789-797.
doi:10.1134/S1054661818010133

Liu, Z., Xu, E, Luan, X, Yu, S., Guo, B, Zhang, X., et al. (2024). The effect of load on
the fretting wear behavior of tc4 alloy treated by smat in artificial seawater. Front. Mater.
11, 1520286. doi:10.3389/fmats.2024.1520286

Ma, B,, Gao, X., Huang, Y., Gao, P. P, and Zhang, Y. (2023). A review of laser welding
for aluminium and copper dissimilar metals. Opt. and Laser Technol. 167, 109721.
doi:10.1016/j.optlastec.2023.109721

Ma, J., Zhang, W,, Han, Z, Xu, Q, and Zhao, H. (2024). An explainable
deep learning model based on multi-scale microstructure information for
establishing composition-microstructure-property —relationship of aluminum
alloys. Integrating Mater. Manuf. Innovation 13, 827-842. doi:10.1007/s40192-024-
00374-2

Mali, R., Ladhak, E, and Ramaswamy, H. (2023). Improving text-to-text transfer
transformer (t5) for question answering systems. J. Ambient Intell. Humaniz. Comput.
14, 11203-11217. doi:10.1007/s12652-023-04460- 1

Meng, X., Huang, Y., Cao, J., Shen, J., and dos Santos, J. F. (2021). Recent progress
on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci. 115,
100706. doi:10.1016/j.pmatsci.2020.100706

Meola, C., Carlomagno, G. M., Squillace, A., and Giorleo, G. (2004). The use of
infrared thermography for nondestructive evaluation of joints. Infrared Phys. and
Technol. 46, 93-99. doi:10.1016/j.infrared.2004.03.013

Mishra, A., Al-Sabur, R., and Jassim, A. K. (2022). Machine learning algorithms
for prediction of penetration depth and geometrical analysis of weld in friction
stir spot welding process. Metall. Res. Technol. 119, 305. doi:10.1051/metal/
2022032

Frontiers in Materials

17

10.3389/fmats.2025.1659494

Patel, M., Trivedi, H., and Dabhi, V. (2023). Roberta based contextual embedding
for multilingual hate speech detection. Procedia Comput. Sci. 218, 391-397.
doi:10.1016/j.procs.2023.01.172

Shu, Z., Wu, A, $i, Y., Dong, H., Wang, D., and L, Y. (2024). Automated identification
of steel weld defects, a convolutional neural network improved machine learning
approach. Front. Struct. Civ. Eng. 18, 294-308. doi:10.1007/s11709-024-1045-7

Subbaratnam, R., Abraham, S. T, Menaka, M., Venkatraman, B., and Raj,
B. (2008). Time of flight diffraction testing of austenitic. Mater. Eval. Available
online at: https://www.researchgate.net/profile/Saju- Abraham-2/publication/2892152
50_Time_of_Flight_Diffraction_Testing of_Austenitic_Stainless_Steel_Weldments_a
t_Elevated_Temperatures/links/5ed0ae13299bf1c67d26fe33/Time-of-Flight-Diffractio
n-Testing-of- Austenitic-Stainless-Steel-Weldments-at-Elevated-Temperatures.pdf.

Wang, J., Zhang, Q.,, Ding, C., Ren, Y., Chu, J., Wang, H., et al. (2024). Detection
and evaluation of dissimilar metal weld defects based on the tx-rx pulsed eddy current
testing probe. Russ. J. Nondestruct. Test. 60, 306-317. doi:10.1134/s1061830924600096

Wang, W,, Meng, X., Dong, W,, Xie, Y., Ma, X., Mao, D,, et al. (2024). In-situ rolling
friction stir welding of aluminum alloys towards corrosion resistance. Corros. Sci. 230,
111920. doi:10.1016/j.corsci.2024.111920

Wei, W,, He, Q.,, Pang, S, Ji, S., Cheng, Y, Sun, N,, et al. (2024). Enhancing
crack self-healing properties of low-carbon lc3 cement using microbial induced calcite
precipitation technique. Front. Mater. 11, 1501604. doi:10.3389/fmats.2024.1501604

Xie, Y., Meng, X, Mao, D, Qin, Z, Wan, L, and Huang, Y. (2021).
Homogeneously dispersed graphene nanoplatelets as long-term corrosion inhibitors
for aluminum matrix composites. ACS Appl. Mater. and Interfaces 13, 32161-32174.
doi:10.1021/acsami.1c07148

Xu, D,, Li, P, and Zhang, Y. (2018). Application of convolutional neural networks
in automated ultrasonic testing of weld defects. IEEE Trans. Industrial Electron.
65, 4350-4357. Available online at: https://www.sciencedirect.com/science/article/pii/
S0041624X18305754.

Yan, S., Li, Z., Song, L., Zhang, Y., and Wei, S. (2023). Research and development
status of laser micro-welding of aluminum-copper dissimilar metals: a review. Opt.
Lasers Eng. 161, 107312. doi:10.1016/j.optlaseng.2022.107312

Yang, L., Chen, M., and Zhou, J. (2017). Detection of weld defects in dissimilar metal
joints using eddy current testing and machine learning. NDT and E Int. 86, 123-130.

Young, S. A., Moon, K. W,, Lane, B. M., Weaver, J. S., Deisenroth, D, et al. (2024).
Location-specific microstructure characterization within am bench 2022 laser tracks
on bare nickel alloy 718 plates. Integrating Mater. Manuf. Innovation 13, 380-395.
doi:10.1007/540192-024-00361-7

Zhang, B., Wang, X., Cui, J., and Yu, X. (2024). Automated welding defect detection
using point-rend resunet. J. Nondestruct. Eval. 43, 11. d0i:10.1007/s10921-023-01019-8

Zhang, L., Chen, X., Wang, R., and Liu, Y. (2024). Enhanced weld defect
categorization via nature-inspired optimization and deep learning. SN Comput. Sci. 5,
356.

Zhao, Y., Sun, Y., and Li, H. (2016). Real-time weld defect detection using machine
vision and deep learning. J. Manuf. Process. 23, 222-227.

Zhao, Y., Liu, S, and Chen, Y. (2022). A modified secure hash design to
circumvent collision and length extension attacks. J. Inf. Secur. Appl. 71, 103376.
doi:10.1016/j.jisa.2022.103376

frontiersin.org


https://doi.org/10.3389/fmats.2025.1659494
https://doi.org/10.1007/s00170-021-07398-4
https://ieeexplore.ieee.org/abstract/document/8948332/
https://doi.org/10.3390/ma16072757
https://doi.org/10.1007/978-3-030-14680-1_48
https://doi.org/10.3233/JIFS-223406
https://doi.org/10.3233/JIFS-223406
https://doi.org/10.1134/S1054661818010133
https://doi.org/10.3389/fmats.2024.1520286
https://doi.org/10.1016/j.optlastec.2023.109721
https://doi.org/10.1007/s40192-024-00374-2
https://doi.org/10.1007/s40192-024-00374-2
https://doi.org/10.1007/s12652-023-04460-1
https://doi.org/10.1016/j.pmatsci.2020.100706
https://doi.org/10.1016/j.infrared.2004.03.013
https://doi.org/10.1051/metal/2022032
https://doi.org/10.1051/metal/2022032
https://doi.org/10.1016/j.procs.2023.01.172
https://doi.org/10.1007/s11709-024-1045-7
https://www.researchgate.net/profile/Saju-Abraham-2/publication/289215250_Time_of_Flight_Diffraction_Testing_of_Austenitic_Stainless_Steel_Weldments_at_Elevated_Temperatures/links/5ed0ae13299bf1c67d26fe33/Time-of-Flight-Diffraction-Testing-of-Austenitic-Stainless-Steel-Weldments-at-Elevated-Temperatures.pdf
https://www.researchgate.net/profile/Saju-Abraham-2/publication/289215250_Time_of_Flight_Diffraction_Testing_of_Austenitic_Stainless_Steel_Weldments_at_Elevated_Temperatures/links/5ed0ae13299bf1c67d26fe33/Time-of-Flight-Diffraction-Testing-of-Austenitic-Stainless-Steel-Weldments-at-Elevated-Temperatures.pdf
https://www.researchgate.net/profile/Saju-Abraham-2/publication/289215250_Time_of_Flight_Diffraction_Testing_of_Austenitic_Stainless_Steel_Weldments_at_Elevated_Temperatures/links/5ed0ae13299bf1c67d26fe33/Time-of-Flight-Diffraction-Testing-of-Austenitic-Stainless-Steel-Weldments-at-Elevated-Temperatures.pdf
https://www.researchgate.net/profile/Saju-Abraham-2/publication/289215250_Time_of_Flight_Diffraction_Testing_of_Austenitic_Stainless_Steel_Weldments_at_Elevated_Temperatures/links/5ed0ae13299bf1c67d26fe33/Time-of-Flight-Diffraction-Testing-of-Austenitic-Stainless-Steel-Weldments-at-Elevated-Temperatures.pdf
https://doi.org/10.1134/s1061830924600096
https://doi.org/10.1016/j.corsci.2024.111920
https://doi.org/10.3389/fmats.2024.1501604
https://doi.org/10.1021/acsami.1c07148
https://www.sciencedirect.com/science/article/pii/S0041624X18305754
https://www.sciencedirect.com/science/article/pii/S0041624X18305754
https://doi.org/10.1016/j.optlaseng.2022.107312
https://doi.org/10.1007/s40192-024-00361-7
https://doi.org/10.1007/s10921-023-01019-8
https://doi.org/10.1016/j.jisa.2022.103376
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Microstructural variability in welds
	2.2 Learning-based NDT techniques
	2.3 Fusion zone and interface challenges

	3 Methods
	3.1 Overview
	3.2 Preliminaries
	3.3 DynaWave-net
	3.3.1 Dynamic Geometry-Aware Encoding
	3.3.2 Frequency-Domain Selective Attention
	3.3.3 Frequency-Aligned Decoding and Semantic Fusion

	3.4 Guided Progressive Distillation
	3.4.1 Prior-Driven Probabilistic Supervision
	3.4.2 Multi-Stage Feature Distillation with Temporal Stabilization
	3.4.3 Structural Consistency via Graph-Regularized Embeddings
	3.4.4 Total Objective


	4 Experimental setup
	4.1 Dataset
	4.2 Experimental details
	4.3 Comparison with SOTA methods
	4.4 Ablation study

	5 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

