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In this study, we propose a novel defect localization method that integrates the
graph neural network (GNN) with the finite element method (FEM) to estimate
the three-dimensional location of defects in perforated carbon-fiber-reinforced
plastic (CFRP) interstage structures. Specifically, the model uses distributions
of the sum of principal stresses on the surface (DSPSS) to predict the three-
dimensional location of defects. FEM is employed to simulate tensile loading
conditions and generate stress distribution data using Teflon sheets to represent
predefined delaminations. These distributions serve as inputs to the graph
attention network (GAT), which classifies defect positions into 19 categories. The
proposed method achieved a macro-averaged Fl-score of 61% and accurately
predicted both the insertion layers and planar positions of defects.

KEYWORDS

nondestructive testing, infrared stress measurement, finite element method, graph
neural network, defect localization, carbon-fiber-reinforced plastic, rocket interstage
structure

1 Introduction

CFRP is a composite material composed of carbon fibers embedded in a polymer
resin matrix. Owing to its exceptionally high specific strength and stiffness, CFRP is
widely utilized in aerospace structures and automotive components. In particular, it
has become indispensable in the aerospace industry, where both lightweight and high
reliability are essential. Its applications include interstage structures in space launch vehicles,
satellite fairings, and external structures of fuel tanks. Notably, more than 50% of the
airframe structure in Boeing 787 incorporates CFRP (Ning et al., 2016). Typically, CFRP
is fabricated by laminating prepregs—unidirectionally reinforced sheets, which provide
high strength and stiffness along a specific direction (Christensen, 2012). As its use
continues to expand, defect detection during both the manufacturing and operational
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phases has become a critical issue (Kiefel et al., 2015; Stoessel et al.,
2011). However, damage modes in laminated CFRP are often
complex, including delamination, fiber breakage, and matrix
cracking. Therefore, high-efficiency and high-accuracy damage
evaluation techniques are required. Conventionally, nondestructive
testing (NDT) methods such as ultrasonic inspection (Scarponi
and Briotti, 2000), X-ray radiography (Sultan et al., 2011), and tap
testing (Mills et al., 2020) have been utilized. NDT enables the
evaluation of material integrity without causing destruction, and
although traditionally applied to metals such as steel and aluminum,
recent developments have extended its use to composite materials
including CFRP. Since internal damage such as delamination or fiber
fracture is often not observable externally, NDT plays an essential
role in ensuring structural safety (Caminero et al., 2019; Pirinu and
Panella, 2021).

Radiographic inspection leverages the penetrative properties
of X or y rays to detect internal inhomogeneities or defects.
This method excels at identifying volumetric defects and can
provide objective information about defect type, shape, and
size. For example, Dilonardo et al. applied high-resolution X-ray
computed tomography (CT) to CFRP laminates and sandwich
structures widely used in aircraft, successfully visualizing voids
and fiber misalignments (Dilonardo et al, 2020). Bagale etal.
demonstrated the utility of X-ray transmission in evaluating
long-term moisture thermal degradation in CFRP, enabling the
noncontact and quantitative assessment of internal changes (Bagale
and Bhat, 2020). Whereas advanced X-ray CT systems enable the
three-dimensional imaging, conventional radiography techniques
are generally limited to two-dimensional projection views, and
challenges remain regarding spatial setup, safety protocols, and
equipment costs.

Ultrasonic testing involves sending ultrasonic pulses into a
target material and detecting reflections from internal flaws. It
allows single-sided inspection and provides through-thickness
information, with relatively fewer safety concerns than radiographic
methods. Lee et al. developed a noncontact ultrasonic system using
laser-generated guided waves and air-coupled sensors for real-
time defect detection during CFRP fabrication, and identified the
attenuation of high-frequency wave components in delaminated
regions (Lee et al., 2006). Joas et al. proposed an automated method
using airborne ultrasonics to inspect CFRP pipes, demonstrating
its feasibility for mass-produced components (Joas et al., 2019).
Recent advancements include hybrid methods and image fusion
to further enhance defect discrimination accuracy (Pohl, 2016;
Torbali et al., 2023; Chen et al., 2012). Nonetheless, limitations
include their lower resolution than radiographic techniques and
variability in results depending on couplant use and operator skill.

Tap testing involves striking the surface of a structure with
a rigid rod or hammer and evaluating sound differences either
audibly or via sensors to infer internal defects. This method is
widely used as a practical screening technique for large or complex
structures, such as CFRP panels and rockets, owing to its operational
efficiency and rapid assessment capability (Cawley and Adams,
1987). It requires minimal equipment and is well-suited for rapid
field inspection. However, this method relies heavily on auditory
perception and experience, which compromises objectivity and
repeatability. In noisy environments or for complex geometries,
defect localization becomes less reliable. In practice, tap testing is
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often used for initial diagnostics, followed by higher-precision NDT
where anomalies are found.

In addition to the above techniques, infrared thermography
has been explored as an alternative damage evaluation technique
(Keo et al., 2015; Yang et al., 2013; Ishikawa et al., 2013; Fang et al,,
2021; Ishikawa et al., 2012; Kidangan et al, 2021; Wu et al.,
2018; Popow and Gurka, 2020). In this technique, the infrared
radiation emitted from an object’s surface is measured using
infrared (IR) sensors and converted into temperature distribution
data. Compared with other methods, IR thermography requires
no contact media, entails smaller safety and cost burdens, and
enables faster measurements. However, the accurate interpretation
of results requires considerable expertise, making the method prone
to variability and operator dependence. Recent developments have
employed infrared stress measurement, by which the distributions of
the sum of principal stresses on the surface (DSPSS) are calculated
from thermal variations (Qiu et al,, 2022). This technique can
achieve a resolution of approximately 1 MPa in mild steel and
requires only basic equipment: an IR camera, a load cell, a lock-
in processor, and a PC. its successful applications to actual CFRP
structures have also been reported (Swiderski, 2019; L et al., 2010;
Maierhofer et al., 2018). It has been demonstrated by Sakagami et al.
that infrared stress analysis is effective for large-scale infrastructure
such as bridges (Sakagami et al., 2016), although the resulting
stress data is inherently two-dimensional, making defect localization
dependent on expert experience.

On the other hand, in several studies, machine learning has
been applied to defect localization. Byon etal. divided a CFRP
laminate into ten longitudinal segments and used modal frequencies
and simulated damage parameters to train a neural network that
predicted defect positions in eight out of ten zones (Byon and
Nishi, 1998). Their model could estimate defect location and severity
the basis of the first- to third-mode natural frequencies but had
limited spatial resolution. Hasebe etal. used multitask learning
based on decision trees to estimate impact-induced damage from
surface features of CFRP specimens (Hasebe et al., 2023). Uchida
etal. proposed a hybrid defect detection method for building
exteriors by integrating visible and infrared images (Uchida, 2021).
To mitigate IR reflection effects, they applied structure-from-motion
(SfM) and visual SLAM techniques to enhance IR image fidelity.
Other researchers have proposed models using natural frequencies
or surface strain distributions (Byon et al., 2008; Hasebe et al.,
2020), as well as integrated IR and visible imaging for building
inspections (Uchida et al., 2021).

Kojima et al. demonstrated a proof of concept for estimating
internal CFRP defects from DSPSS obtained by the finite element
method (FEM), using a convolutional neural network (CNN)
(Kojima et al., 2022). They further proposed a transfer-learning-
based method combining FEM and IR stress measurements
to improve the applicability for defect localization to real
specimens (Kojima et al., 2024).

Defects around holes can significantly compromise structural
integrity and may lead to catastrophic failure (Nasrin et al,
2023). Delamination frequently occurs during drilling in CFRP,
making its detection and evaluation a crucial design concern
(Sobri et al., 2020; Kikukawa and Ugai, 1997). However, previous
research has mainly focused on simple coupon shapes. However, the
three-dimensional defect localization models for complex structures
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with hole - such as those used in aerospace systems - remain
underdeveloped.

In this study, we target interstage structures of space launch
vehicles and propose a method of predicting the three-dimensional
location of defects caused by delamination in perforated CFRP
specimens. The model uses DSPSS obtained by FEM as input to
a graph neural network (GNN). To evaluate model accuracy, the
test data not used in training is also generated by FEM simulations.
Delamination, the most common form of damage following impact
in CFRP laminates (Hou et al., 2019), is assumed as the defect type
focused in this study.

2 Theory
2.1 Infrared stress measurement

Infrared stress measurement is a noncontact imaging technique
that enables the visualization of the temperature distribution on
an object’s surface by measuring the infrared radiation emitted
from it using an infrared sensor. When mechanical stress is
applied to a material, a slight temperature change, known as the
thermoelastic effect is observed. This phenomenon enables the
estimation of variations in principal stress sum in a nondestructive
and noncontact manner.

This effect is theoretically described by Kelvins equation as
shown in Equation 1.

AT =-kTAo,

sum?

(1)

where AT denotes the temperature change, T is the absolute
temperature, Aodg,,, is the change in the sum of principal stresses,
and k is the thermoelastic coefficient, which is given by Equation 2.

2)

In this expression, « represents the coefficient of thermal
expansion, p is the material density, and C, is the specific heat at
a constant pressure.

The infrared stress measurement based on this theoretical
framework has been successfully applied to not only metallic
materials but also CFRP laminates.

2.2 Sum of principal stresses

Principal stresses are the eigenvalues obtained by diagonalizing
the stress tensor at a given point within a material. They represent the
normal stresses acting on mutually orthogonal planes where shear
stresses vanish. In a Cartesian coordinate system, the stress tensor ¢
can be diagonalized such that the diagonal components 0,0, and o3
correspond to the principal stresses.

The sum of principal stresses, referred to in this paper as DSPSS,
is defined as the trace of the stress tensor, that is, the sum of
its diagonal components. This can be expressed in two equivalent
forms, namely, by Equation 3 and,

A3)

(o}

sum:Ul+02+03

Frontiers in Materials

03

10.3389/fmats.2025.1652484

or equivalently, using the stress tensor in Equation 4 and the
resulting trace in Equation 5:

GXX Txy TXZ
o=|1, 0, T, (4)
Tox sz Oz
Ogum = t1(0) = 0 + 0y, + 0. (5)

This scalar value provides a comprehensive measure of the
overall mechanical stress intensity on the surface.

2.3 Graph neural network

GNN (Scarselli et al., 2009) belongs to a class of deep learning
models specifically designed for data with graph structures. Unlike
conventional neural networks, which are optimized for regular
structures such as images and sequences, GNN operates directly on
graphs composed of nodes and edges.

GNN updates node and edge features by leveraging the graph's
structure, enabling the learning of a holistic graph representation.
This makes GNN particularly well suited for utilizing the mesh
topology obtained from FEM simulations.

The fundamental mechanism of GNN is message passing
(Gilmer et al., 2017), which updates each node's feature vector
by aggregating messages from neighboring nodes. The general
update process at the Ith layer is described by the message function
in Equation 6, the aggregation in Equation 7, and the update
function in Equation 8.

0 (I-1) ; (I-1)
_fmsg(hu ’hV ’euv)’

my_,, =

(6)

where m(ulLv denotes the message from node u to node v, hgil) and
hf,l_l) are the feature vectors at the (/- 1)th layer, e

feature, and f,

msg
Aggregated messages for node v:

mf,l) = Z m

ueN(v)

is the edge

uv
is the message function.

(U]

Uu—ve

(7)

The updated feature vector for node v is
0] (-1 ()
1 = fpa (B m)), ®)

where fup 4 denotes the update function and N(v) represents the set
of neighbors of node v.

2.4 Graph attention network (GAT)

In this study, we use a specific GNN architecture called the graph
attention network (GAT) (VeliAkoviA et al., 2018), which introduces
attention mechanisms to learn the importance of neighboring nodes.
Each neighboring node is assigned a learnable weight, allowing
the model to focus more on relevant neighbors during feature
aggregation.

The basic GAT update for node v at the (I+ 1)th layer is given by
Equation 9.

h(l+1)V:0< Z (XWW(ZH)]”Z,(P 9)
ueN(v)
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FIGURE 1

Analysis conditions of the perforated CFRP curved interstage structure. The model simulates a scaled-down curved panel subjected to tensile
displacement along the z-direction, with periodic boundary conditions applied at both ends.
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FIGURE 2

Representative example of defect insertion regions in the perforated
CFRP curved interstage structure.

where ¢ is the activation function, W1 the weight matrix at the
(I+ 1)th layer, and «,,, the attention coefficient between nodes v and
u, computed using Equation 10:

e:b(aT[Wuu)h(Vf) I W“*”h?])

Ay = s 10
vi Z eqﬁ(aT[W‘““hi“IIW“*”hL"]) (10)
ke N (v)
X ifx>0
¢ (x) = ,where A € (0,1). (11)
Ax  ifx<O0

Where ¢(x) denotes the activation function LeakyReLU, which
is defined in Equation 11 as a piecewise linear function with
a small slope A for negative inputs. The vector a is a learnable
attention weight vector and | denotes the vector concatenation.
This mechanism enhances the model's ability to focus on influential
neighboring nodes during updates.
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3 Methods

3.1 Analysis conditions of the perforated
CFRP curved interstage structure

The analysis conditions for the CFRP space vehicle structure
modeled by FEM are illustrated in Figure 1. The target of the analysis
is a scaled-down model representing part of a cylindrical curved
interstage structure made of CFRP, similar to those used in the
H-IIA rocket. The original structure is a large curved panel with
a diameter of approximately 4.0m, a longitudinal length of about
7.0m, and an arc length of 12.6m. This structure is scaled down
by a factor of 1/80 with the curvature and geometric characteristics
maintained, and the resulting CFRP curved panel is used as the
analysis target (Ura et al., 1998).

The dimensions of the curved panel are approximately
2000.0mm in radius, 1570.0mm in arc length, 700.0mm in
vertical length, and 22.0mm in thickness. Square and rectangular
holes are introduced at the center to simulate openings typically
found in space launch vehicles: 100.0mm x 100.0mm for
square holes and 200.0mm X 100.0mm for rectangular holes.
The total thickness of the panel is 22.0mm, consisting of a
3.0mm-thick CFRP laminate on the top, a 16.0mm-thick foam
core in the middle, and another 3.0mm-thick CFRP laminate
at the bottom. This sandwich structure design ensures high
stiffness while maintaining lightweight structure. The core material
used for the CFRP-foam core sandwich structure is Rohacell
110WE a polymethacrylimide (PMI) rigid foam manufactured
by Evonik (Kobayashi, 2023). This material is widely used in
aerospace applications owing to its high specific strength and
stiffness, and stable mechanical properties even under cryogenic
conditions.

The CFRP layers are composed of ten plies of unidirectional
prepreg (0.3 mm-thick each) laminated on both sides of the foam
core (Shimazaki et al., 2015). The fiber orientations of the stacked
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TABLE 1 Material properties of each region (Young's modulus E and shear modulus G are in MPa.).

10.3389/fmats.2025.1652484

E, E, Es Nuy, Nuys Nuyz Gy, Gz Gy3
CFRP 136600 9650 9650 0.29 0.29 0.40 5200 5200 3400
Foam core 80.1 0.1 80.1 0.29 0.29 0.29 31.1 31.1 31.1
Defect 300000 300000 300000 0.39 0.39 0.39 108000 108000 108000
10, 18
bz -
[}
- A £
. |
g y &
0.0 z/k 0 )\
z x GNN z x
(a) Input Data : Normalized DSPSS (b) Output Data : 3D location of defects
FIGURE 3

Proposed inverse defect localization framework using a GNN. (a) The input data consists of the normalized DSPSS, which is generated by FEM
simulations. (b) GNN model predicts the three-dimensional location of defects by classifying each node with a discrete defect label.

‘L‘ Upper layer

. m Bottom layer
For without defects, set 0 class in the nodes

The defect in the 19" layer, set 18 class in the nodes

z

FIGURE 4

Ground truth labeling for each defect insertion layer. Each node is
assigned a class index on the basis of its proximity to the defect: nodes
within the defective layer are labeled from classes 1 to 18,
corresponding to the 2nd to 19th plies. Nodes not adjacent to any
defect are labeled class 0.

TABLE 2 Training conditions for GNN using surface DSPSS data.

GNN model GAT
Loss Function Focal Loss
Hidden Layers (Dims) [64, 256, 256]

Optimizer Adam (Ir = 0.0003)
Batch Size 32
Training Epochs 1,500

Training Data ‘Without defect: 1, With defect: 1,109

Test Data With defect: 278

unidirectional composites are 0° 45° 90° —45°, 0° 0° —45°, 90°, 45°,
and 0°. The z-axis in Figure 1 corresponds to the fiber direction of
0°.

Frontiers in Materials

Defects are inserted away from the red box area, which is
expected to be significantly affected by stress concentration around
the hole under tensile loading. As shown in the white boxes in
Figure 2, each defect measures 100.0mm x 100.0mm x 0.3mm.
Defects are implemented in the FEM model by modifying material
properties to elements corresponding to the defect regions. Defects
are inserted into the 18 internal plies excluding the top and bottom
CFRP laminates, i.e., 1st and 20th layers and the foam core. The
material properties of the CFRP, foam core, and defect regions
are summarized in Table 1. To simulate interlaminar delamination,
which is commonly performed in experiments by inserting Teflon
sheets between prepregs layers (LApez et al., 2010), the material
properties of Teflon sheets used in a previous study are referenced
for the defect region (Kojima et al., 2022).

The mesh size is set to 12.5mm. As boundary conditions,
periodic boundary conditions are applied to both ends of the z-
axis (9X!*! and aX!7!). The left edge in the x-axis direction is fully
constrained, whereas a uniform displacement boundary condition is
applied at the right edge, with an imposed displacement of 10.0 mm
in the z-axis direction.

Under these conditions, FEM simulations are conducted
to generate paired datasets consisting of the three-dimensional
location of defects and the corresponding DSPSS on the curved
panel. In total, one dataset without defects and 1,386 datasets with
defects are prepared.

3.2 Proposed defect localization method

Figure 3 illustrates the proposed inverse defect localization
framework. As shown in Figure 3a, for GNN training, we
use only the DSPSS of the two outermost surface layers.
As shown in Figure 3b, this method involves training a GNN using

frontiersin.org
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the normalized DSPSS obtained from FEM simulations to predict
the three-dimensional location of defects.

To construct the training dataset, defects are inserted into the
FEM model, and labels are assigned to the nodes corresponding
to their locations, as shown in Figure 4. In this study, the Ist layer
(bottommost) and 20th layer (topmost) of the CFRP structure are
referred to as the bottom and upper surfaces respectively. Let V be
., 18} denote
the class label assigned to node v; € V. The class label corresponds to

the set of nodes in the mesh graph, and let y, € {0,1,..

the defect insertion layer index minus 1, as defined in Equation 12:

¢* =1 ifnode vliesontheuppersurfaceof
Y= adefect insertedinlayer ¢* . (12)
0 otherwise

Using this labeling, we formulate the training objective as a 19-
class node classification problem.

The group index for a given class ¢ is defined using the following
grouping function, defined in Equation 13:

0 ifc+1<10
group (c) = . (13)
1 ifc+1>11

GNN is then trained to solve a 19-class node classification
problem on the basis of this input data and outputs the classification
results. The training conditions of GNN are summarized in Table 2.
Using this approach, we can construct a GNN capable of accurately
estimating defect locations from DSPSS.

3.3 Training conditions of GNN

Algorithm 1 outlines the training pipeline for a GNN model
that predicts the three-dimensional location of defects from
normalized DSPSS data. It covers data preprocessing, model
architecture, distributed training with focal loss, test-time inference,
and evaluation. In this study, GAT was constructed using three
GATConv layers with hidden dimensions [64, 256, 256] and four
attention heads. The attention mechanism is applied at each layer
to effectively aggregate the input features. These aggregated features
are then passed to a fully connected layer that performs final

classification into 19 classes.
To enhance training efficiency, distributed data parallelism was

employed, allowing parallel computations across multiple GPUs. To
assess the model's generalization capability, stratified five fold cross-
validation was carried out. The full dataset was randomly divided
into five equal-sized folds. One fold was used as the validation set,
whereas the remaining four were used for training, so that every
sample was evaluated exactly once. This random splitting procedure
guarantees that the model's performance is assessed on diverse,
nonoverlapping portions of the data, providing a reliable estimate
of its capability to generalize.

During the training process, model evaluation was conducted
at each epoch, and early stopping was applied if no performance
improvement was observed, thus preventing overfitting. The best-
performing model in each fold was saved and evaluated using the
test dataset. Evaluation metrics included precision, recall, F1-score,
and the confusion matrix, all of which were visualized to interpret
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Input:Normalized Coordinates {X},
normalized DSPSS {S},
Class labels {L},
Edge index &
Output:Trained weights 0",
Predictions {L}
1. Preprocessing;
1. Pair Sand Lby layer-block ID
2. Build node features x;=(X;,y;,2;,0;)
3. Apply fixed edge index £to every graph
2. Model (Residual GAT)
1. Layer 1: GATConv(4—64), h=4heads —
BatchNorm —Dropout(p=2x10~*%; add residual (x)
via linear projection if channel mismatch
2. Layer 2: GATConv(64—256) —BN —Dropout;
residual + FilLM-style projection
3. Layer 3: GATConv(256—256) —BN —Dropout;
residual + projection
4. Readout: h; eR*is forwarded to Linear
(256—-19) — SoFTMAX
All weights are initialized using Xavier
uniform distribution; the attention mechanism
employs LeakyReLU with a negative slope of 0.2
and edge dropout p=2x10~*
3. Distributed Training
1. Initialize nccl process group
2. K-fold cross-validation with
distributed sampler
3. Minimize focal loss
4. Early-stop on validation loss
4. Inference
The best-performing fold 0'is reloaded to make
predictions on the hold-out test set
5. Metrics & Archival
Compute weighted P/R/F1, MCC, balanced accuracy,
ROC-AUC. store O*, predictions, and figures
with timestamp

Algorithm 1. GNN Training.

performance. Finally, the model that achieved the lowest validation
loss among all folds was selected as the final model for performance
evaluation.

3.4 Loss function

In this study, we address an imbalanced classification problem in
which the number of intact nodes significantly exceeds that of nodes
containing defects. To handle this imbalance, focal loss (Lin et al.,
2017), rather than conventional cross-entropy loss, is employed.
Focal loss increases the loss contribution from misclassified
examples whereas it decreases the loss contribution from well-
classified ones, thereby encouraging the model to focus more on
difficult-to-classify samples: in this case, the nodes contain defects.
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Since intact nodes dominate the dataset, their contribution to the
overall loss is down-weighted accordingly.

The estimated probability p, is defined using p, as
shown in Equation 14.

p ify=1

1-p

P, = (14)

otherwise.

Using this definition, we express the focal loss using Equation 15:

FL (Pt) =—a(1 _pt)y log (pt)’

where y is the focusing parameter that controls the degree of down-

(15)

weighting for well-classified examples and « is the weighting factor.

3.5 Evaluation method for prediction
results

In this study, two evaluation metrics are used to quantitatively
assess the accuracy of defect prediction: the planar defect location
accuracy R and the defect insertion layer prediction accuracy Py, .
These metrics independently measure how accurately the model
predicts the planar position and depth of each defect. The total defect
prediction score (TDPS), defined as the average of these two metrics,
serves as a unified metric for evaluating model performance on each
defect case.

In addition, to evaluate the classification performance across the
entire test dataset, in this study, we also adopt the macro-averaged
Fl-score. This metric is used to calculate the Fl-score for each
class individually and then takes the arithmetic mean across all
classes, enabling fair evaluation even when the class distribution is
imbalanced.

In the following subsections, we describe the definition of each
metric in detail.

3.5.1 Prediction accuracy for each test data

The planar defect location accuracy R is defined as the F1-
score for the binary classification of whether each node contains a
defect. The F1-score is the harmonic mean of precision and recall, as
expressed in Equation 16.

2 X Precision x Recall

16
Precision + Recall (16)

R =F1-score =

A higher R value indicates higher accuracy of planar defect
localization by the model.

To quantitatively evaluate the prediction accuracy of the defect
insertion layer, we introduce Py, a score based on a Gaussian-
weighted function. This metric rewards predictions that are close to
the correct class and penalizes those belonging to a different group.
Specifically, the layers are divided into two groups: bottom layers
(1st-10th) and upper layers (11th-20th). predictions falling into the
incorrect group are assigned zero weight.

Let N be the total number of nodes predicted as having a defect,
¢; the predicted class of the i-th node, ¢* the ground truth class,
and o the standard deviation for the Gaussian weight. Then, Pg
is defined in Equation 17 as

auss

)» (17)

(Ci_C*)z

P
20°

gauss

-1
N

N
i=1

6group (Ci’ C*) " €Xp <_
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where 8,0,

and true classes belong to the same group and 0 otherwise,
defined in Equation 18:

(c;c™) is a function that returns to 1 if the predicted

1 ifgroup(c;) = group(c*)

8 roun (€)= (18)
grow 0  otherwise
The layer grouping function is defined in Equation 19 as:
0 if(c+1)<10
group (¢c) = (19)

1 if(c+1)=11

This approach imposes strict penalties for misclassification
between upper and lower layer groups, whereas allowing some
tolerance for errors between neighboring layers within the same
group. In this study, a standard deviation of 0= 2.0 is used as the
dispersion parameter for the Gaussian weight.

To quantify the overall defect prediction performance of the
model, we define a composite metric called the TDPS, which is the
average of the two metrics (see Equation 20).

P gauss

R

TDPS = (20)

A higher TDPS indicates that the model can accurately predict
both the planar position and depth of the defect.

3.5.2 Overall model performance:
macro-averaged F1-Score

To evaluate the classification performance equally across all
classes, in this study, we adopt the macro-averaged Fl-score as a
quantitative metric. The macro-averaged F1-score is calculated as
the arithmetic mean of the F1-scores computed individually for each
class and is defined in Equation 21:

(21

F 1macr0 =

C
> F1,
i=1

where C denotes the number of classes, which equals 19 in this study,

ol=

and F1; represents the F1-score for class i.

This metric treats all classes equally regardless of their frequency,
making it particularly effective for imbalanced classification
problems. By using this evaluation method, we can confirm that the
model performs balanced learning across all classes without being
biased toward the majority class, which corresponds to intact nodes.

4 Results and discussion
4.1 Stress distribution around defects

As shown in Figure 5a, presents the DSPSS in the physical
coordinate system (x, y,z), accurately representing the curvature of
the actual structural surface.

Figure 5b projects the same data into a dedicated visualization
space. By introducing a virtual coordinate system (x',y’,z),the
originally curved surface can be effectively unwrapped and flattened
facilitating the inspection of spatial patterns.

Figure 6 presents the surface stress distribution obtained by
FEM analysis along with vertical and horizontal stress profiles. The
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FIGURE 5
(a) Surface stress distribution with defect insertion. (b) Two-dimensional normalized surface stress distribution used for defect profiling.
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FIGURE 6
(a) Normalized DSPSS over the surface. Dashed lines indicate the vertical and horizontal cross sections through the defect center. (b) Stress profile
along the vertical z’ —axis. Bold lines highlight the affected region around the defect. (c) Stress profile along the horizontal x’ —axis. The shaded area
represents the hole region.

left panel shows the normalized DSPSS when a defect is inserted
into the second layer (45°). A significant stress drop is clearly visible
around the defect region.

The central graph displays the vertical stress profile along the
line passing through the center of the defect. A steep stress decrease
is observed in the region corresponding to the defect. The right
panel shows the horizontal stress profile across the defect center,
indicating stress reduction effects caused by both the defect and the
nearby hole.

Figure 7 shows the stress profiles in cases where a single defect is
inserted into each of the 2nd-10th layers against the intact scenario.
To visually distinguish the effects across layers, layers with the same
ply angle are plotted using the same color: 45° layers (2nd, 9th) in
blue, —45°layers (3rd, 7th) in green, 90° layers (4th, 8th) in red, and
0°layers (5th, 6th, 10th) in purple. The plots reveal that the impact
range and stress reduction patterns vary depending on the ply angle.
For instance, in the 90°layers, a more abrupt and deeper stress drop
is observed than in the other layers, suggesting that the relationship
between the fiber orientation and the tensile direction significantly
affects stress propagation. Conversely, layers oriented at 0°and —45°
tend to show more gradual stress gradients.

In the vertical stress profile shown in Figure 7b, each defect-
inserted layer exhibits a distinct stress reduction around the defect
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center, hat clearly deviates from the intact stress distribution. This
implies that the presence of defects can be quantitatively identified
from surface stress information alone.

The vertical direction in Figure 7b corresponds to the z’-axis,
which aligns with the fiber direction of 0° in Figure 7a. Detailed
characteristics according to the ply angle include the following.

e 2nd and 9th layers (45°): Owing to the angled fiber orientation,
stress disperses more broadly, resulting in a wider area of stress
reduction.

3rd and 7th layers (—45°): Similar distribution to 45° layers,
but with minor left right asymmetry in the stress valley’s
position and width.

4th and 8th layers (90°): As fibers are orthogonal to the out-
of-plane direction, defect-induced stress shielding is more
pronounced, with steeper and deeper stress drops.

5th, 6th and 10th layers (0°): Since the fiber direction aligns
with the tensile direction, stress propagates more smoothly and
the stress drop appears more gradual.

Similarly, in the horizontal stress profiles in Figure 7c, a
significant reduction in stress is observed near the defect center,
corresponding to the area affected by the defect. Compared with the
healthy profile, all layers exhibit consistent stress drops, indicating
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FIGURE 7
Comparison of DSPSS distributions and profiles for all defect-inserted inner layers. (a) Normalized DSPSS for a defect in the second layer. Dashed lines
indicate vertical and horizontal reference lines. (b) Vertical stress profiles (z' —axis) for all defect-inserted inner layers. (c) Horizontal stress profiles
(x' —axis) for all defect-inserted inner layers.

that the model accurately captures the horizontal spatial positions
of defects.

4.2 Evaluation of prediction results using
R, Pgauss: and TDPS

Figure 8 shows the results of predicting the three-dimensional
location of defects using the DSPSS obtained from FEM
simulations as input. Figures 8a—d correspond to cases where defects
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were inserted into the 11th layer (45°), 10th layer (0°), 8th layer
(90°), and 2nd layer (45°), respectively. Each case includes (i) the
input data, (ii) ground truth labels, and (iii) outputs predicted
by the model.

Figure 8a represents the casewith the highest TDPS (0.92),
which is the average of the planar defect location accuracy R and
the defect insertion layer prediction accuracy Py, . Figure 8b shows
the case with second-highest TDPS (0.89), whereas Figures 8c,d
correspond to the case with the second-lowest (0.50) and lowest
(0.48) TDPS respectively.
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FIGURE 8
Comparison of (i) input data (normalized DSPSS), (i) ground-truth labels, and (iii) model predictions for four representative cases, listed in descending
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Right

Left Center

FIGURE 9
Planar segmentation of the specimen into three regions-left (blue),

center (yellow), and right (red)-used to analyze the impact of defect
location on prediction performance.

Even in cases with low TDPS values, Both the planar position
and the insertion layer are generally predicted with reasonable
accuracy, as visually confirmed. This suggests that the proposed
model successfully learns geometric features of internal defects in
multilayered CFRP structures from DSPSS.

For all test data, the minimum value of the planar prediction
metric R was 0.55, indicating that the model can generally localize
defects in the plane accurately. In many cases, the predicted defect
region is slightly overestimated compared to the ground truth. On
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the other hand, the minimum layer prediction score Py, was 0.38,
indicating that the model is more sensitive to misclassification into

neighboring layers or false detections in depth.

4.3 Prediction accuracy depending on
defect insertion layer and planar position

Figure 10 shows the distribution of TDPS for each region
(left, center, right), corresponding to the planar position where
the defect was inserted. Here, TDPS is defined as the average of
the planar defect prediction accuracy R and the defect insertion
By plotting the TDPS for different
regions, the figure illustrates how prediction performance varies

layer prediction accuracy Py, .
with spatial location. The horizontal axis indicates each defect
insertion layer along with its corresponding ply angle.

As shown in Figure 10a, the data points classified into the center
region tend to exhibit higher TDPS than those classified into the left
and right regions.

This tendency is primarily attributed to the characteristic of defects
in the center region, which vary only in the z’-axis direction and are
located at a single position along the x'-axis in the visualization space
(x',y',Z"). In other words, since the center exhibits the narrowest
spatial variation and the most consistent defect pattern, the model can
more effectively learn representative features.

On the other hand, defects in the right and left regions are
distributed widely in both the x'- and z’'-directions, resulting
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FIGURE 10
Comparison of prediction accuracy depending on defect insertion layer and planar position. (a) TDPS: the average of R and Pg,,. (b) Planar prediction
accuracy R. (c) Layer prediction accuracy Py,,s. The horizontal axis indicates the defect insertion layer and corresponding ply angle.

in greater diversity and making the learning task relatively
more difficult. Nevertheless, the performance difference in TDPS
among these regions is modest, suggesting that the model
can handle asymmetric fields with reasonable accuracy. In
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summary, prediction accuracy tends to increase in the order
from the narrower search space: center, right, and left regions
which are indicated by the yellow, red and blue respectively,
in Figure 9.
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Comparison of (i) input data, (i) ground truth, and (iii) predicted outputs for cases in which defects are inserted into the 10th layer at different planar
regions defined in Figure 9. Specifically, (a,b) correspond to two different positions within the left region, (c) is from the center region, (d,e) correspond

to the right region.

Regarding  the prediction  metric

R shown in Figure 10b, the center region again demonstrates

planar  position
higher accuracy, whereas greater variation is observed in the
left and right regions.

Regarding the defect insertion layer prediction metric
PgaUSS
smaller, but the center region still achieves higher accuracy,

shown in Figure 10c, the variation across depth is generally

indicating that the uniqueness of defects in the training data
contributes to improved model performance.

Additionally, by examining the layer-wise trend, we observe
that the TDPS are highest when defects are inserted into deeper
layers (9th-12th), indicating more accurate defect recognition
by the model. In contrast, when defects are inserted into the
outermost layers (2nd-4th and 17th-19th), TDPS tends to
decrease slightly.

4.4 Prediction accuracy depending defect
insertion region

Figure 11 illustrates the comparison among the input data,

ground truth, and model predictions for various defect locations
within the same insertion layer (10th layer). The five subfigures

Frontiers in Materials

correspond to distinct planar regions as defined in Figure 9. Despite
differences in stress field distributions due to proximity to the
holes and edges, the model successfully localizes the defect regions
with high accuracy. Notably, the prediction performance remains
consistent in both symmetric and asymmetric stress regions,
demonstrating the robustness and generalization capability of the
proposed GNN-based approach.

In all these cases, the TDPS remains high, with the highest being
0.89 and the lowest 0.82. This indicates that even when defects are
located in regions with concentrated, peripheral, or nonuniform
stress distributions, the proposed method maintains high prediction
performance. These results suggest that the proposed approach is
not sensitive to particular stress patterns and is robust across various
stress distributions. Therefore, the model can stably detect internal
defects by appropriately capturing subtle variations in stress fields
caused by defects.

4.5 Prediction evaluation using confusion
matrix

Figure 12 shows the confusion matrix for visualizing the
prediction results for all nodes across 278 test data instances.
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FIGURE 12
Confusion matrix for 19-class defect classification. Rows represent ground truth defect layers and columns denote predicted classes. Diagonal
elements indicate correct predictions (True), whereas off-diagonal cells capture misclassifications. Green-line-enclosed cells represent false negatives
(undetected defects), and yellow-line-enclosed cells indicate false positives (incorrect defect predictions in defect-free nodes). The results not only
demonstrate high classification accuracy near the diagonal region but also reveal increased misclassification in adjacent layers.

The vertical axis represents the ground truth, whereas the
horizontal axis represents the predicted classes. Each cell
indicates the number of nodes classified into each category.
For each ground truth class, precision and recall were
calculated to derive the Fl-score. The macro-averaged Fl-score
was obtained by averaging the Fl-scores across all classes,
resulting in 61%.

In the green-line-enclosed area, the number of nodes
misclassified as intact despite actually having defects is extremely
low. This indicates that the proposed method rarely fails to
detect defects and achieves high detection accuracy. The yellow-
line-enclosed area indicates the number of nodes predicted
as having defects when there were actually no defects, which
correspond to false positives observed around defect edges
in Figure 8.

The red-line-enclosed diagonal region represents the correctly
classified nodes, and a large number of correct predictions
can be observed. However, frequent misclassification into
neighboring layers is also noticeable, which contributes to
the reduction in macro-averaged Fl-score. Misclassifications
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are most frequent in the deepest layers, specifically the 10th
and 11th layers.

5 Conclusion

In this paper, we proposed a method of predicting the
three-dimensional location of defects in perforated CFRP curved
interstage structures, assuming Teflon sheets to represent artificial
delamination defects within the prepreg layers. The method utilizes
DSPSS obtained by FEM analysis as input. The following findings
were confirmed:

e Using GNN, we can accurately distinguish between defective
and non-defective regions even for DSPSS not included in the
training data.

e The proposed model can localize both the planar position and
defect insertion layer in models with hole geometries.

e The macro-averaged Fl-score achieved 61%, demonstrating
high prediction accuracy even in
inhomogeneous stress fields due to holes.

the presence of
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e The average planar prediction accuracy R was 72%, with a
lowest value of 55%, indicating strong agreement between
predicted and actual defect positions.

e The depth prediction accuracy Py, which incorporates
tolerance to neighboring layer misclassification, yielded an
average of 69% with a lowest value of 38%, confirming robust
performance.

o The average TDPS, defined as the mean of R and Py, was
70%, with a minimum of 48%, demonstrating that the model
successfully predicts the three-dimensional location of defects
with high accuracy.
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