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In this study, we propose a novel defect localization method that integrates the 
graph neural network (GNN) with the finite element method (FEM) to estimate 
the three-dimensional location of defects in perforated carbon-fiber-reinforced 
plastic (CFRP) interstage structures. Specifically, the model uses distributions 
of the sum of principal stresses on the surface (DSPSS) to predict the three-
dimensional location of defects. FEM is employed to simulate tensile loading 
conditions and generate stress distribution data using Teflon sheets to represent 
predefined delaminations. These distributions serve as inputs to the graph 
attention network (GAT), which classifies defect positions into 19 categories. The 
proposed method achieved a macro-averaged F1-score of 61% and accurately 
predicted both the insertion layers and planar positions of defects.
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 1 Introduction

CFRP is a composite material composed of carbon fibers embedded in a polymer 
resin matrix. Owing to its exceptionally high specific strength and stiffness, CFRP is 
widely utilized in aerospace structures and automotive components. In particular, it 
has become indispensable in the aerospace industry, where both lightweight and high 
reliability are essential. Its applications include interstage structures in space launch vehicles, 
satellite fairings, and external structures of fuel tanks. Notably, more than 50% of the 
airframe structure in Boeing 787 incorporates CFRP (Ning et al., 2016). Typically, CFRP 
is fabricated by laminating prepregs—unidirectionally reinforced sheets, which provide 
high strength and stiffness along a specific direction (Christensen, 2012). As its use 
continues to expand, defect detection during both the manufacturing and operational
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phases has become a critical issue (Kiefel et al., 2015; Stoessel et al., 
2011). However, damage modes in laminated CFRP are often 
complex, including delamination, fiber breakage, and matrix 
cracking. Therefore, high-efficiency and high-accuracy damage 
evaluation techniques are required. Conventionally, nondestructive 
testing (NDT) methods such as ultrasonic inspection (Scarponi 
and Briotti, 2000), X-ray radiography (Sultan et al., 2011), and tap 
testing (Mills et al., 2020) have been utilized. NDT enables the 
evaluation of material integrity without causing destruction, and 
although traditionally applied to metals such as steel and aluminum, 
recent developments have extended its use to composite materials 
including CFRP. Since internal damage such as delamination or fiber 
fracture is often not observable externally, NDT plays an essential 
role in ensuring structural safety (Caminero et al., 2019; Pirinu and 
Panella, 2021).

Radiographic inspection leverages the penetrative properties 
of X or γ rays to detect internal inhomogeneities or defects. 
This method excels at identifying volumetric defects and can 
provide objective information about defect type, shape, and 
size. For example, Dilonardo et al. applied high-resolution X-ray 
computed tomography (CT) to CFRP laminates and sandwich 
structures widely used in aircraft, successfully visualizing voids 
and fiber misalignments (Dilonardo et al., 2020). Bagale et al. 
demonstrated the utility of X-ray transmission in evaluating 
long-term moisture thermal degradation in CFRP, enabling the 
noncontact and quantitative assessment of internal changes (Bagale 
and Bhat, 2020). Whereas advanced X-ray CT systems enable the 
three-dimensional imaging, conventional radiography techniques 
are generally limited to two-dimensional projection views, and 
challenges remain regarding spatial setup, safety protocols, and 
equipment costs.

Ultrasonic testing involves sending ultrasonic pulses into a 
target material and detecting reflections from internal flaws. It 
allows single-sided inspection and provides through-thickness 
information, with relatively fewer safety concerns than radiographic 
methods. Lee et al. developed a noncontact ultrasonic system using 
laser-generated guided waves and air-coupled sensors for real-
time defect detection during CFRP fabrication, and identified the 
attenuation of high-frequency wave components in delaminated 
regions (Lee et al., 2006). Joas et al. proposed an automated method 
using airborne ultrasonics to inspect CFRP pipes, demonstrating 
its feasibility for mass-produced components (Joas et al., 2019). 
Recent advancements include hybrid methods and image fusion 
to further enhance defect discrimination accuracy (Pohl, 2016; 
Torbali et al., 2023; Chen et al., 2012). Nonetheless, limitations 
include their lower resolution than radiographic techniques and 
variability in results depending on couplant use and operator skill.

Tap testing involves striking the surface of a structure with 
a rigid rod or hammer and evaluating sound differences either 
audibly or via sensors to infer internal defects. This method is 
widely used as a practical screening technique for large or complex 
structures, such as CFRP panels and rockets, owing to its operational 
efficiency and rapid assessment capability (Cawley and Adams, 
1987). It requires minimal equipment and is well-suited for rapid 
field inspection. However, this method relies heavily on auditory 
perception and experience, which compromises objectivity and 
repeatability. In noisy environments or for complex geometries, 
defect localization becomes less reliable. In practice, tap testing is 

often used for initial diagnostics, followed by higher-precision NDT 
where anomalies are found.

In addition to the above techniques, infrared thermography 
has been explored as an alternative damage evaluation technique 
(Keo et al., 2015; Yang et al., 2013; Ishikawa et al., 2013; Fang et al., 
2021; Ishikawa et al., 2012; Kidangan et al., 2021; Wu et al., 
2018; Popow and Gurka, 2020). In this technique, the infrared 
radiation emitted from an object’s surface is measured using 
infrared (IR) sensors and converted into temperature distribution 
data. Compared with other methods, IR thermography requires 
no contact media, entails smaller safety and cost burdens, and 
enables faster measurements. However, the accurate interpretation 
of results requires considerable expertise, making the method prone 
to variability and operator dependence. Recent developments have 
employed infrared stress measurement, by which the distributions of 
the sum of principal stresses on the surface (DSPSS) are calculated 
from thermal variations (Qiu et al., 2022). This technique can 
achieve a resolution of approximately 1 MPa in mild steel and 
requires only basic equipment: an IR camera, a load cell, a lock-
in processor, and a PC. its successful applications to actual CFRP 
structures have also been reported (Swiderski, 2019; L et al., 2010; 
Maierhofer et al., 2018). It has been demonstrated by Sakagami et al. 
that infrared stress analysis is effective for large-scale infrastructure 
such as bridges (Sakagami et al., 2016), although the resulting 
stress data is inherently two-dimensional, making defect localization 
dependent on expert experience.

On the other hand, in several studies, machine learning has 
been applied to defect localization. Byon et al. divided a CFRP 
laminate into ten longitudinal segments and used modal frequencies 
and simulated damage parameters to train a neural network that 
predicted defect positions in eight out of ten zones (Byon and 
Nishi, 1998). Their model could estimate defect location and severity 
the basis of the first- to third-mode natural frequencies but had 
limited spatial resolution. Hasebe et al. used multitask learning 
based on decision trees to estimate impact-induced damage from 
surface features of CFRP specimens (Hasebe et al., 2023). Uchida 
et al. proposed a hybrid defect detection method for building 
exteriors by integrating visible and infrared images (Uchida, 2021). 
To mitigate IR reflection effects, they applied structure-from-motion 
(SfM) and visual SLAM techniques to enhance IR image fidelity. 
Other researchers have proposed models using natural frequencies 
or surface strain distributions (Byon et al., 2008; Hasebe et al., 
2020), as well as integrated IR and visible imaging for building 
inspections (Uchida et al., 2021).

Kojima et al. demonstrated a proof of concept for estimating 
internal CFRP defects from DSPSS obtained by the finite element 
method (FEM), using a convolutional neural network (CNN) 
(Kojima et al., 2022). They further proposed a transfer-learning-
based method combining FEM and IR stress measurements 
to improve the applicability for defect localization to real 
specimens (Kojima et al., 2024).

Defects around holes can significantly compromise structural 
integrity and may lead to catastrophic failure (Nasrin et al., 
2023). Delamination frequently occurs during drilling in CFRP, 
making its detection and evaluation a crucial design concern 
(Sobri et al., 2020; Kikukawa and Ugai, 1997). However, previous 
research has mainly focused on simple coupon shapes. However, the 
three-dimensional defect localization models for complex structures 
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with hole – such as those used in aerospace systems – remain 
underdeveloped.

In this study, we target interstage structures of space launch 
vehicles and propose a method of predicting the three-dimensional 
location of defects caused by delamination in perforated CFRP 
specimens. The model uses DSPSS obtained by FEM as input to 
a graph neural network (GNN). To evaluate model accuracy, the 
test data not used in training is also generated by FEM simulations. 
Delamination, the most common form of damage following impact 
in CFRP laminates (Hou et al., 2019), is assumed as the defect type 
focused in this study. 

2 Theory

2.1 Infrared stress measurement

Infrared stress measurement is a noncontact imaging technique 
that enables the visualization of the temperature distribution on 
an object’s surface by measuring the infrared radiation emitted 
from it using an infrared sensor. When mechanical stress is 
applied to a material, a slight temperature change, known as the 
thermoelastic effect is observed. This phenomenon enables the 
estimation of variations in principal stress sum in a nondestructive 
and noncontact manner.

This effect is theoretically described by Kelvin’s equation as 
shown in Equation 1.

ΔT = −kTΔσsum, (1)

where ΔT denotes the temperature change, T is the absolute 
temperature, Δσsum is the change in the sum of principal stresses, 
and k is the thermoelastic coefficient, which is given by Equation 2.

k = α
ρCp
. (2)

In this expression, α represents the coefficient of thermal 
expansion, ρ is the material density, and Cp is the specific heat at 
a constant pressure.

The infrared stress measurement based on this theoretical 
framework has been successfully applied to not only metallic 
materials but also CFRP laminates.

2.2 Sum of principal stresses

Principal stresses are the eigenvalues obtained by diagonalizing 
the stress tensor at a given point within a material. They represent the 
normal stresses acting on mutually orthogonal planes where shear 
stresses vanish. In a Cartesian coordinate system, the stress tensor σ
can be diagonalized such that the diagonal components σ1,σ2 and σ3
correspond to the principal stresses.

The sum of principal stresses, referred to in this paper as DSPSS, 
is defined as the trace of the stress tensor, that is, the sum of 
its diagonal components. This can be expressed in two equivalent 
forms, namely, by Equation 3 and,

σsum = σ1 + σ2 + σ3 (3)

or equivalently, using the stress tensor in Equation 4 and the 
resulting trace in Equation 5:

σ =
[[[[

[

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

]]]]

]

, (4)

σsum = tr (σ) = σxx + σyy + σzz. (5)

This scalar value provides a comprehensive measure of the 
overall mechanical stress intensity on the surface. 

2.3 Graph neural network

GNN (Scarselli et al., 2009) belongs to a class of deep learning 
models specifically designed for data with graph structures. Unlike 
conventional neural networks, which are optimized for regular 
structures such as images and sequences, GNN operates directly on 
graphs composed of nodes and edges.

GNN updates node and edge features by leveraging the graph's 
structure, enabling the learning of a holistic graph representation. 
This makes GNN particularly well suited for utilizing the mesh 
topology obtained from FEM simulations.

The fundamental mechanism of GNN is message passing
(Gilmer et al., 2017), which updates each node's feature vector 
by aggregating messages from neighboring nodes. The general 
update process at the lth layer is described by the message function 
in Equation 6, the aggregation in Equation 7, and the update 
function in Equation 8.

m(l)u→v = fmsg (h
(l−1)
u ,h

(l−1)
v ,euv) , (6)

where m(l)u→v denotes the message from node u to node v, h(l−1)u  and 
h(l−1)v  are the feature vectors at the (l− 1)th layer, euv is the edge 
feature, and fmsg is the message function.

Aggregated messages for node v:

m(l)v = ∑
u∈N(v)

m(l)u→v. (7)

The updated feature vector for node v is

h(l)v = fupd (h
(l−1)
v ,m

(l)
v ) , (8)

where fupd denotes the update function and N(v) represents the set 
of neighbors of node v. 

2.4 Graph attention network (GAT)

In this study, we use a specific GNN architecture called the graph 
attention network (GAT) (VeliÄkoviÄ et al., 2018), which introduces 
attention mechanisms to learn the importance of neighboring nodes. 
Each neighboring node is assigned a learnable weight, allowing 
the model to focus more on relevant neighbors during feature 
aggregation.

The basic GAT update for node v at the (l+ 1)th layer is given by 
Equation 9.

h(l+1)v = σ( ∑
u∈N(v)

αvuW(l+1)h(l)u ), (9)
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FIGURE 1
Analysis conditions of the perforated CFRP curved interstage structure. The model simulates a scaled-down curved panel subjected to tensile 
displacement along the z-direction, with periodic boundary conditions applied at both ends.

FIGURE 2
Representative example of defect insertion regions in the perforated 
CFRP curved interstage structure.

where σ is the activation function, W(l+1) the weight matrix at the 
(l+ 1)th layer, and αvu the attention coefficient between nodes v and 
u, computed using Equation 10:

αvu =
eϕ(a⊤[W(l+1)h(l)v ‖W(l+1)h

(l)
u ])

∑
k∈N (v)e

ϕ(a⊤[W(l+1)h(l)v ‖W(l+1)h
(l)
k ])
, (10)

ϕ (x) =
{
{
{

x if x ≥ 0

λx if x < 0
,where λ ∈ (0,1) . (11)

Where ϕ(x) denotes the activation function LeakyReLU, which 
is defined in Equation 11 as a piecewise linear function with 
a small slope λ for negative inputs. The vector a is a learnable 
attention weight vector and ‖ denotes the vector concatenation. 
This mechanism enhances the model's ability to focus on influential 
neighboring nodes during updates. 

3 Methods

3.1 Analysis conditions of the perforated 
CFRP curved interstage structure

The analysis conditions for the CFRP space vehicle structure 
modeled by FEM are illustrated in Figure 1. The target of the analysis 
is a scaled-down model representing part of a cylindrical curved 
interstage structure made of CFRP, similar to those used in the 
H-IIA rocket. The original structure is a large curved panel with 
a diameter of approximately 4.0m, a longitudinal length of about 
7.0m, and an arc length of 12.6m. This structure is scaled down 
by a factor of 1/80 with the curvature and geometric characteristics 
maintained, and the resulting CFRP curved panel is used as the 
analysis target (Ura et al., 1998).

The dimensions of the curved panel are approximately 
2000.0mm in radius, 1570.0mm in arc length, 700.0mm in 
vertical length, and 22.0mm in thickness. Square and rectangular 
holes are introduced at the center to simulate openings typically 
found in space launch vehicles: 100.0mm × 100.0mm for 
square holes and 200.0mm × 100.0mm for rectangular holes. 
The total thickness of the panel is 22.0mm, consisting of a 
3.0mm–thick CFRP laminate on the top, a 16.0mm–thick foam 
core in the middle, and another 3.0mm–thick CFRP laminate 
at the bottom. This sandwich structure design ensures high 
stiffness while maintaining lightweight structure. The core material 
used for the CFRP-foam core sandwich structure is Rohacell 
110WF, a polymethacrylimide (PMI) rigid foam manufactured 
by Evonik (Kobayashi, 2023). This material is widely used in 
aerospace applications owing to its high specific strength and 
stiffness, and stable mechanical properties even under cryogenic 
conditions.

The CFRP layers are composed of ten plies of unidirectional 
prepreg (0.3mm–thick each) laminated on both sides of the foam 
core (Shimazaki et al., 2015). The fiber orientations of the stacked 
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TABLE 1  Material properties of each region (Young’s modulus E and shear modulus G are in MPa.).

E1 E2 E3 Nu12 Nu13 Nu23 G12 G13 G23

CFRP 136600 9650 9650 0.29 0.29 0.40 5200 5200 3400

Foam core 80.1 80.1 80.1 0.29 0.29 0.29 31.1 31.1 31.1

Defect 300000 300000 300000 0.39 0.39 0.39 108000 108000 108000

FIGURE 3
Proposed inverse defect localization framework using a GNN. (a) The input data consists of the normalized DSPSS, which is generated by FEM 
simulations. (b) GNN model predicts the three-dimensional location of defects by classifying each node with a discrete defect label.

FIGURE 4
Ground truth labeling for each defect insertion layer. Each node is 
assigned a class index on the basis of its proximity to the defect: nodes 
within the defective layer are labeled from classes 1 to 18, 
corresponding to the 2nd to 19th plies. Nodes not adjacent to any 
defect are labeled class 0.

TABLE 2  Training conditions for GNN using surface DSPSS data.

GNN model GAT

Loss Function Focal Loss

Hidden Layers (Dims) [64, 256, 256]

Optimizer Adam (lr = 0.0003)

Batch Size 32

Training Epochs 1,500

Training Data Without defect: 1, With defect: 1,109

Test Data With defect: 278

unidirectional composites are 0°, 45°, 90°, −45°, 0°, 0°, −45°, 90°, 45°, 
and 0°. The z-axis in Figure 1 corresponds to the fiber direction of 
0°.

Defects are inserted away from the red box area, which is 
expected to be significantly affected by stress concentration around 
the hole under tensile loading. As shown in the white boxes in 
Figure 2, each defect measures 100.0mm × 100.0mm × 0.3mm. 
Defects are implemented in the FEM model by modifying material 
properties to elements corresponding to the defect regions. Defects 
are inserted into the 18 internal plies excluding the top and bottom 
CFRP laminates, i.e., 1st and 20th layers and the foam core. The 
material properties of the CFRP, foam core, and defect regions 
are summarized in Table 1. To simulate interlaminar delamination, 
which is commonly performed in experiments by inserting Teflon 
sheets between prepregs layers (LÃpezâ et al., 2010), the material 
properties of Teflon sheets used in a previous study are referenced 
for the defect region (Kojima et al., 2022).

The mesh size is set to 12.5mm. As boundary conditions, 
periodic boundary conditions are applied to both ends of the z-
axis (∂X[+1] and ∂X[−1]). The left edge in the x-axis direction is fully 
constrained, whereas a uniform displacement boundary condition is 
applied at the right edge, with an imposed displacement of 10.0mm
in the z-axis direction.

Under these conditions, FEM simulations are conducted 
to generate paired datasets consisting of the three-dimensional 
location of defects and the corresponding DSPSS on the curved 
panel. In total, one dataset without defects and 1,386 datasets with 
defects are prepared. 

3.2 Proposed defect localization method

Figure 3 illustrates the proposed inverse defect localization 
framework. As shown in Figure 3a, for GNN training, we 
use only the DSPSS of the two outermost surface layers. 
As shown in Figure 3b, this method involves training a GNN using 
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the normalized DSPSS obtained from FEM simulations to predict 
the three-dimensional location of defects.

To construct the training dataset, defects are inserted into the 
FEM model, and labels are assigned to the nodes corresponding 
to their locations, as shown in Figure 4. In this study, the 1st layer 
(bottommost) and 20th layer (topmost) of the CFRP structure are 
referred to as the bottom and upper surfaces respectively. Let V be 
the set of nodes in the mesh graph, and let yi ∈ {0,1,…,18} denote 
the class label assigned to node vi ∈ V. The class label corresponds to 
the defect insertion layer index minus 1, as defined in Equation 12:

yi =
{{{{
{{{{
{

c∗ − 1 if node viliesontheuppersurfaceof

adefect inserted in layer c∗

0 otherwise

. (12)

Using this labeling, we formulate the training objective as a 19-
class node classification problem.

The group index for a given class c is defined using the following 
grouping function, defined in Equation 13:

group (c) =
{
{
{

0 if c+ 1 ≤ 10

1 if c+ 1 ≥ 11
. (13)

GNN is then trained to solve a 19-class node classification 
problem on the basis of this input data and outputs the classification 
results. The training conditions of GNN are summarized in Table 2. 
Using this approach, we can construct a GNN capable of accurately 
estimating defect locations from DSPSS. 

3.3 Training conditions of GNN

Algorithm 1 outlines the training pipeline for a GNN model 
that predicts the three-dimensional location of defects from 
normalized DSPSS data. It covers data preprocessing, model 
architecture, distributed training with focal loss, test-time inference, 
and evaluation. In this study, GAT was constructed using three 
GATConv layers with hidden dimensions [64, 256, 256] and four 
attention heads. The attention mechanism is applied at each layer 
to effectively aggregate the input features. These aggregated features 
are then passed to a fully connected layer that performs final 
classification into 19 classes.

To enhance training efficiency, distributed data parallelism was 
employed, allowing parallel computations across multiple GPUs. To 
assess the model's generalization capability, stratified five fold cross-
validation was carried out. The full dataset was randomly divided 
into five equal-sized folds. One fold was used as the validation set, 
whereas the remaining four were used for training, so that every 
sample was evaluated exactly once. This random splitting procedure 
guarantees that the model's performance is assessed on diverse, 
nonoverlapping portions of the data, providing a reliable estimate 
of its capability to generalize.

During the training process, model evaluation was conducted 
at each epoch, and early stopping was applied if no performance 
improvement was observed, thus preventing overfitting. The best-
performing model in each fold was saved and evaluated using the 
test dataset. Evaluation metrics included precision, recall, F1-score, 
and the confusion matrix, all of which were visualized to interpret 

Input:Normalized Coordinates {X},

normalized DSPSS {S},

Class labels {L},

Edge index E
Output:Trained weights Θ

∗
,

Predictions {L̂}

1. Preprocessing;

  1. Pair Sand Lby layer-block ID
  2. Build node features xi = (xi,yi,zi, σ̂i)

  3. Apply fixed edge index Eto every graph
2. Model (Residual GAT)
  1. Layer 1: GATConv(4→64), h = 4heads →

  BatchNorm →Dropout(p = 2×10−4); add residual (x)

  via linear projection if channel mismatch
  2. Layer 2: GATConv(64→256) →BN →Dropout;

  residual + FiLM-style projection

  3. Layer 3: GATConv(256→256) →BN →Dropout;

  residual + projection

  4. Readout: hi ∈ ℝ4his forwarded to Linear

  (256→19) → SOFTMAX

  All weights are initialized using Xavier

  uniform distribution; the attention mechanism

  employs LeakyReLU with a negative slope of 0.2

  and edge dropout p = 2×10−4

3. Distributed Training
  1. Initialize nccl process group
  2. K-fold cross-validation with

  distributed sampler
  3. Minimize focal loss
  4. Early-stop on validation loss
4. Inference

The best-performing fold Θ
∗
is reloaded to make 

predictions on the hold-out test set
5. Metrics & Archival
Compute weighted P/R/F1, MCC, balanced accuracy, 

ROC-AUC. store Θ
∗
, predictions, and figures 

with timestamp 

Algorithm 1. GNN Training.

performance. Finally, the model that achieved the lowest validation 
loss among all folds was selected as the final model for performance 
evaluation. 

3.4 Loss function

In this study, we address an imbalanced classification problem in 
which the number of intact nodes significantly exceeds that of nodes 
containing defects. To handle this imbalance, focal loss (Lin et al., 
2017), rather than conventional cross-entropy loss, is employed. 
Focal loss increases the loss contribution from misclassified 
examples whereas it decreases the loss contribution from well-
classified ones, thereby encouraging the model to focus more on 
difficult-to-classify samples: in this case, the nodes contain defects. 
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Since intact nodes dominate the dataset, their contribution to the 
overall loss is down-weighted accordingly.

The estimated probability pt is defined using p, as
shown in Equation 14.

pt =
{
{
{

p if y = 1

1− p otherwise.
(14)

Using this definition, we express the focal loss using Equation 15:

FL(pt) = −αt(1− pt)
γ log(pt) , (15)

where γ is the focusing parameter that controls the degree of down-
weighting for well-classified examples and αt is the weighting factor. 

3.5 Evaluation method for prediction 
results

In this study, two evaluation metrics are used to quantitatively 
assess the accuracy of defect prediction: the planar defect location 
accuracy R and the defect insertion layer prediction accuracy Pgauss. 
These metrics independently measure how accurately the model 
predicts the planar position and depth of each defect. The total defect 
prediction score (TDPS), defined as the average of these two metrics, 
serves as a unified metric for evaluating model performance on each 
defect case.

In addition, to evaluate the classification performance across the 
entire test dataset, in this study, we also adopt the macro-averaged 
F1-score. This metric is used to calculate the F1-score for each 
class individually and then takes the arithmetic mean across all 
classes, enabling fair evaluation even when the class distribution is 
imbalanced.

In the following subsections, we describe the definition of each 
metric in detail. 

3.5.1 Prediction accuracy for each test data
The planar defect location accuracy R is defined as the F1-

score for the binary classification of whether each node contains a 
defect. The F1-score is the harmonic mean of precision and recall, as 
expressed in Equation 16.

R = F1− score = 2×Precision×Recall
Precision+Recall

. (16)

A higher R value indicates higher accuracy of planar defect 
localization by the model.

To quantitatively evaluate the prediction accuracy of the defect 
insertion layer, we introduce Pgauss, a score based on a Gaussian-
weighted function. This metric rewards predictions that are close to 
the correct class and penalizes those belonging to a different group. 
Specifically, the layers are divided into two groups: bottom layers 
(1st–10th) and upper layers (11th–20th). predictions falling into the 
incorrect group are assigned zero weight.

Let N be the total number of nodes predicted as having a defect, 
ci the predicted class of the i-th node, c∗ the ground truth class, 
and σ the standard deviation for the Gaussian weight. Then, Pgauss
is defined in Equation 17 as

Pgauss =
1
N

N

∑
i=1

δgroup (ci,c∗) ⋅ exp(−
(ci − c∗)2

2σ2 ), (17)

where δgroup(ci,c∗) is a function that returns to 1 if the predicted 
and true classes belong to the same group and 0 otherwise, 
defined in Equation 18:

δgroup (ci,c∗) =
{
{
{

1 if group(ci) = group (c∗)

0 otherwise
. (18)

The layer grouping function is defined in Equation 19 as:

group (c) =
{
{
{

0 if  (c+ 1) ≤ 10

1 if  (c+ 1) ≥ 11
. (19)

This approach imposes strict penalties for misclassification 
between upper and lower layer groups, whereas allowing some 
tolerance for errors between neighboring layers within the same 
group. In this study, a standard deviation of σ = 2.0 is used as the 
dispersion parameter for the Gaussian weight.

To quantify the overall defect prediction performance of the 
model, we define a composite metric called the TDPS, which is the 
average of the two metrics (see Equation 20).

TDPS =
R+ Pgauss

2
(20)

A higher TDPS indicates that the model can accurately predict 
both the planar position and depth of the defect. 

3.5.2 Overall model performance: 
macro-averaged F1-Score

To evaluate the classification performance equally across all 
classes, in this study, we adopt the macro-averaged F1-score as a 
quantitative metric. The macro-averaged F1-score is calculated as 
the arithmetic mean of the F1-scores computed individually for each 
class and is defined in Equation 21:

F1macro =
1
C

C

∑
i=1

F1i, (21)

where C denotes the number of classes, which equals 19 in this study, 
and F1i represents the F1-score for class i.

This metric treats all classes equally regardless of their frequency, 
making it particularly effective for imbalanced classification 
problems. By using this evaluation method, we can confirm that the 
model performs balanced learning across all classes without being 
biased toward the majority class, which corresponds to intact nodes. 

4 Results and discussion

4.1 Stress distribution around defects

As shown in Figure 5a, presents the DSPSS in the physical 
coordinate system (x,y,z), accurately representing the curvature of 
the actual structural surface.

Figure 5b projects the same data into a dedicated visualization 
space. By introducing a virtual coordinate system (x′,y′,z′),the 
originally curved surface can be effectively unwrapped and flattened 
facilitating the inspection of spatial patterns.

Figure 6 presents the surface stress distribution obtained by 
FEM analysis along with vertical and horizontal stress profiles. The 
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FIGURE 5
(a) Surface stress distribution with defect insertion. (b) Two-dimensional normalized surface stress distribution used for defect profiling.

FIGURE 6
(a) Normalized DSPSS over the surface. Dashed lines indicate the vertical and horizontal cross sections through the defect center. (b) Stress profile 
along the vertical z′–axis. Bold lines highlight the affected region around the defect. (c) Stress profile along the horizontal x′–axis. The shaded area 
represents the hole region.

left panel shows the normalized DSPSS when a defect is inserted 
into the second layer (45°). A significant stress drop is clearly visible 
around the defect region.

The central graph displays the vertical stress profile along the 
line passing through the center of the defect. A steep stress decrease 
is observed in the region corresponding to the defect. The right 
panel shows the horizontal stress profile across the defect center, 
indicating stress reduction effects caused by both the defect and the 
nearby hole.

Figure 7 shows the stress profiles in cases where a single defect is 
inserted into each of the 2nd–10th layers against the intact scenario. 
To visually distinguish the effects across layers, layers with the same 
ply angle are plotted using the same color: 45° layers (2nd, 9th) in 
blue, −45° layers (3rd, 7th) in green, 90° layers (4th, 8th) in red, and 
0° layers (5th, 6th, 10th) in purple. The plots reveal that the impact 
range and stress reduction patterns vary depending on the ply angle. 
For instance, in the 90° layers, a more abrupt and deeper stress drop 
is observed than in the other layers, suggesting that the relationship 
between the fiber orientation and the tensile direction significantly 
affects stress propagation. Conversely, layers oriented at 0° and −45°
tend to show more gradual stress gradients.

In the vertical stress profile shown in Figure 7b, each defect-
inserted layer exhibits a distinct stress reduction around the defect 

center, hat clearly deviates from the intact stress distribution. This 
implies that the presence of defects can be quantitatively identified 
from surface stress information alone.

The vertical direction in Figure 7b corresponds to the z′-axis, 
which aligns with the fiber direction of 0° in Figure 7a. Detailed 
characteristics according to the ply angle include the following. 

• 2nd and 9th layers (45°): Owing to the angled fiber orientation, 
stress disperses more broadly, resulting in a wider area of stress 
reduction.
• 3rd and 7th layers (−45°): Similar distribution to 45° layers, 

but with minor left right asymmetry in the stress valley’s 
position and width.
• 4th and 8th layers (90°): As fibers are orthogonal to the out-

of-plane direction, defect-induced stress shielding is more 
pronounced, with steeper and deeper stress drops.
• 5th, 6th and 10th layers (0°): Since the fiber direction aligns 

with the tensile direction, stress propagates more smoothly and 
the stress drop appears more gradual.

Similarly, in the horizontal stress profiles in Figure 7c, a 
significant reduction in stress is observed near the defect center, 
corresponding to the area affected by the defect. Compared with the 
healthy profile, all layers exhibit consistent stress drops, indicating 
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FIGURE 7
Comparison of DSPSS distributions and profiles for all defect-inserted inner layers. (a) Normalized DSPSS for a defect in the second layer. Dashed lines 
indicate vertical and horizontal reference lines. (b) Vertical stress profiles (z′–axis) for all defect-inserted inner layers. (c) Horizontal stress profiles 
(x′–axis) for all defect-inserted inner layers.

that the model accurately captures the horizontal spatial positions 
of defects. 

4.2 Evaluation of prediction results using
R, Pgauss, and TDPS

Figure 8 shows the results of predicting the three-dimensional 
location of defects using the DSPSS obtained from FEM 
simulations as input. Figures 8a–d correspond to cases where defects 

were inserted into the 11th layer (45°), 10th layer (0°), 8th layer 
(90°), and 2nd layer (45°), respectively. Each case includes (i) the 
input data, (ii) ground truth labels, and (iii) outputs predicted 
by the model.

Figure 8a represents the casewith the highest TDPS (0.92), 
which is the average of the planar defect location accuracy R and 
the defect insertion layer prediction accuracy Pgauss. Figure 8b shows 
the case with second-highest TDPS (0.89), whereas Figures 8c,d 
correspond to the case with the second-lowest (0.50) and lowest 
(0.48) TDPS respectively.

Frontiers in Materials 09 frontiersin.org

https://doi.org/10.3389/fmats.2025.1652484
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Nishioka et al. 10.3389/fmats.2025.1652484

FIGURE 8
Comparison of (i) input data (normalized DSPSS), (ii) ground-truth labels, and (iii) model predictions for four representative cases, listed in descending 
order of the TDPS. (a) 11th layer (45°, highest TDPS); (b) 10th layer (0°, second-highest TDPS); (c) 8th layer (90°, second-lowest TDPS); (d) 2nd layer
(45°, lowest TDPS).

FIGURE 9
Planar segmentation of the specimen into three regions-left (blue), 
center (yellow), and right (red)-used to analyze the impact of defect 
location on prediction performance.

Even in cases with low TDPS values, Both the planar position 
and the insertion layer are generally predicted with reasonable 
accuracy, as visually confirmed. This suggests that the proposed 
model successfully learns geometric features of internal defects in 
multilayered CFRP structures from DSPSS.

For all test data, the minimum value of the planar prediction 
metric R was 0.55, indicating that the model can generally localize 
defects in the plane accurately. In many cases, the predicted defect 
region is slightly overestimated compared to the ground truth. On 

the other hand, the minimum layer prediction score Pgauss was 0.38, 
indicating that the model is more sensitive to misclassification into 
neighboring layers or false detections in depth. 

4.3 Prediction accuracy depending on 
defect insertion layer and planar position

Figure 10 shows the distribution of TDPS for each region 
(left, center, right), corresponding to the planar position where 
the defect was inserted. Here, TDPS is defined as the average of 
the planar defect prediction accuracy R and the defect insertion 
layer prediction accuracy Pgauss. By plotting the TDPS for different 
regions, the figure illustrates how prediction performance varies 
with spatial location. The horizontal axis indicates each defect 
insertion layer along with its corresponding ply angle.

As shown in Figure 10a, the data points classified into the center 
region tend to exhibit higher TDPS than those classified into the left 
and right regions.

This tendency is primarily attributed to the characteristic of defects 
in the center region, which vary only in the z′–axis direction and are 
located at a single position along the x′–axis in the visualization space 
(x′,y′,z′). In other words, since the center exhibits the narrowest 
spatial variation and the most consistent defect pattern, the model can 
more effectively learn representative features. 

On the other hand, defects in the right and left regions are 
distributed widely in both the x′– and z′–directions, resulting 
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FIGURE 10
Comparison of prediction accuracy depending on defect insertion layer and planar position. (a) TDPS: the average of R and Pgauss. (b) Planar prediction 
accuracy R. (c) Layer prediction accuracy Pgauss. The horizontal axis indicates the defect insertion layer and corresponding ply angle.

in greater diversity and making the learning task relatively 
more difficult. Nevertheless, the performance difference in TDPS 
among these regions is modest, suggesting that the model 
can handle asymmetric fields with reasonable accuracy. In 

summary, prediction accuracy tends to increase in the order 
from the narrower search space: center, right, and left regions 
which are indicated by the yellow, red and blue respectively,
in Figure 9.
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FIGURE 11
Comparison of (i) input data, (ii) ground truth, and (iii) predicted outputs for cases in which defects are inserted into the 10th layer at different planar 
regions defined in Figure 9. Specifically, (a,b) correspond to two different positions within the left region, (c) is from the center region, (d,e) correspond 
to the right region.

Regarding the planar position prediction metric 
R shown in Figure 10b, the center region again demonstrates 
higher accuracy, whereas greater variation is observed in the 
left and right regions. 

Regarding the defect insertion layer prediction metric 
Pgauss shown in Figure 10c, the variation across depth is generally 
smaller, but the center region still achieves higher accuracy, 
indicating that the uniqueness of defects in the training data 
contributes to improved model performance.

Additionally, by examining the layer-wise trend, we observe 
that the TDPS are highest when defects are inserted into deeper 
layers (9th–12th), indicating more accurate defect recognition 
by the model. In contrast, when defects are inserted into the 
outermost layers (2nd–4th and 17th–19th), TDPS tends to
decrease slightly. 

4.4 Prediction accuracy depending defect 
insertion region

Figure 11 illustrates the comparison among the input data, 
ground truth, and model predictions for various defect locations 
within the same insertion layer (10th layer). The five subfigures 

correspond to distinct planar regions as defined in Figure 9. Despite 
differences in stress field distributions due to proximity to the 
holes and edges, the model successfully localizes the defect regions 
with high accuracy. Notably, the prediction performance remains 
consistent in both symmetric and asymmetric stress regions, 
demonstrating the robustness and generalization capability of the 
proposed GNN-based approach.

In all these cases, the TDPS remains high, with the highest being 
0.89 and the lowest 0.82. This indicates that even when defects are 
located in regions with concentrated, peripheral, or nonuniform 
stress distributions, the proposed method maintains high prediction 
performance. These results suggest that the proposed approach is 
not sensitive to particular stress patterns and is robust across various 
stress distributions. Therefore, the model can stably detect internal 
defects by appropriately capturing subtle variations in stress fields 
caused by defects. 

4.5 Prediction evaluation using confusion 
matrix

Figure 12 shows the confusion matrix for visualizing the 
prediction results for all nodes across 278 test data instances. 
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FIGURE 12
Confusion matrix for 19-class defect classification. Rows represent ground truth defect layers and columns denote predicted classes. Diagonal 
elements indicate correct predictions (True), whereas off-diagonal cells capture misclassifications. Green-line-enclosed cells represent false negatives 
(undetected defects), and yellow-line-enclosed cells indicate false positives (incorrect defect predictions in defect-free nodes). The results not only 
demonstrate high classification accuracy near the diagonal region but also reveal increased misclassification in adjacent layers.

The vertical axis represents the ground truth, whereas the 
horizontal axis represents the predicted classes. Each cell 
indicates the number of nodes classified into each category. 
For each ground truth class, precision and recall were 
calculated to derive the F1-score. The macro-averaged F1-score 
was obtained by averaging the F1-scores across all classes,
resulting in 61%.

In the green-line-enclosed area, the number of nodes 
misclassified as intact despite actually having defects is extremely 
low. This indicates that the proposed method rarely fails to 
detect defects and achieves high detection accuracy. The yellow-
line-enclosed area indicates the number of nodes predicted 
as having defects when there were actually no defects, which 
correspond to false positives observed around defect edges
in Figure 8.

The red-line-enclosed diagonal region represents the correctly 
classified nodes, and a large number of correct predictions 
can be observed. However, frequent misclassification into 
neighboring layers is also noticeable, which contributes to 
the reduction in macro-averaged F1-score. Misclassifications 

are most frequent in the deepest layers, specifically the 10th
and 11th layers. 

5 Conclusion

In this paper, we proposed a method of predicting the 
three-dimensional location of defects in perforated CFRP curved 
interstage structures, assuming Teflon sheets to represent artificial 
delamination defects within the prepreg layers. The method utilizes 
DSPSS obtained by FEM analysis as input. The following findings 
were confirmed: 

• Using GNN, we can accurately distinguish between defective 
and non-defective regions even for DSPSS not included in the 
training data.
• The proposed model can localize both the planar position and 

defect insertion layer in models with hole geometries.
• The macro-averaged F1-score achieved 61%, demonstrating 

high prediction accuracy even in the presence of 
inhomogeneous stress fields due to holes.
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• The average planar prediction accuracy R was 72%, with a 
lowest value of 55%, indicating strong agreement between 
predicted and actual defect positions.
• The depth prediction accuracy Pgauss, which incorporates 

tolerance to neighboring layer misclassification, yielded an 
average of 69% with a lowest value of 38%, confirming robust 
performance.
• The average TDPS, defined as the mean of R and Pgauss, was 

70%, with a minimum of 48%, demonstrating that the model 
successfully predicts the three-dimensional location of defects 
with high accuracy.
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