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Cellulose, as a natural material, serves as an excellent raw material for 
creating antimicrobial biological materials due to its unique nanostructure 
for cell scaffolds, customizable mechanical properties, biodegradability, 
and biocompatibility. The cellulose hydrogel offers exceptional structural 
adjustability and functional design options, thanks to the abundance of hydroxyl 
groups on its surface, making it suitable for various applications in tissue 
engineering, biomedicine carriers, wound dressings, and more. Despite its 
potential in stomatology, the research progress in this area remains unclear. This 
review focuses on the performance criteria for ideal cellulose-based hydrogels, 
including self-healing, adhesion, antibacterial properties, and drug delivery. 
It also covers preparation methods, repair mechanisms, and applications in 
biomimetic remineralization for hard tooth tissues, periodontitis, dental body 
repair, alveolar bone repair, and more. Persistent challenges—including scalable 
manufacturing processes, cost-effective production of functionalized variants, 
long-term biological safety assurances, antimicrobial resistance management, 
and ecological sustainability require resolution. Concurrently, establishing 
standardized regulatory protocols for clinical translation warrants prioritized 
efforts. By aligning material innovations with unresolved clinical demands 
in dental care, this review positions cellulose hydrogels as foundational 
components for personalized stomatological interventions, accelerating the 
transition toward precision-oriented dental therapeutics.
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 1 Introduction

Oral diseases not only affect daily physiological functions of the oral system, such 
as chewing and swallowing, but are also closely related to systemic illnesses, thereby 
endangering the quality of life of the patients (González-Moles et al., 2021). It is worth noting 
that the oral cavity is a complex environment characterized by high moisture, motility, 
and microbial colonization, making oral diseases not only diverse but also difficult to cure 
(An et al., 2022; Fan et al., 2016). Oral microorganisms play a crucial role in shaping the 
oral environment through complex biological signaling systems and interactions with their
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host (Hutchens et al., 2006). Imbalances in these microorganisms 
can lead to the production of virulence factors and metabolites, 
ultimately resulting in conditions such as dental caries and 
periodontal disease (Chinese Stomatological Association, 2021; 
Lamont et al., 2018). In recent years, with the broad application 
of biomaterials, traditional therapeutic methods has been gradually 
replaced. Among them, hydrogel is one of the most widely used 
biomaterials due to its good compatibility, easy preparation, 
and flexibility in design to achieve different ideal functions 
(Bertsch et al., 2023; Peng et al., 2022). However, wet environment, 
high motility and oral opportunistic pathogens require hydrogel 
for more particular properties such as wet adhesion, injectablity, 
self-healing ability and antibacterial delivery.

Cellulose hydrogels offer distinct advantages over other 
hydrogel systems, such as gelatin, alginate, and chitosan. Unlike 
gelatin-based hydrogels, which may degrade too rapidly, cellulose 
hydrogels exhibit enhanced mechanical stability and resistance to 
enzymatic degradation. Alginate hydrogels, while biocompatible, 
often lack the structural integrity required for load-bearing dental 
applications (Curvello et al., 2019). Chitosan hydrogels demonstrate 
antibacterial properties but may induce adverse immune responses 
in certain contexts (Mehrabi et al., 2022). In contrast, cellulose 
hydrogels, particularly nanofibrillated cellulose (NFC), combine 
high strength, biodegradability, and minimal immunogenicity, 
making them superior for precision medicine in stomatology. 
Moreover, the tunability of cellulose hydrogels through chemical 
modification (e.g., carboxymethylation or oxidation) allows 
customization for specific clinical needs, further distinguishing 
them from conventional hydrogels.

Among various hydrogel materials, cellulose-based hydrogels 
stand out as particularly promising candidates for oral applications 
due to their natural abundance, structural versatility, and 
biocompatibility. Cellulose hydrogels, derived from renewable 
sources, are classified based on their structural forms and synthesis 
methods. The primary categories include cellulose nanofibers (CNF) 
and nanocrystals (CNC), obtained from plant-based materials, and 
bacterial cellulose (BC), produced microbially. These hydrogels 
consist of β-1,4-linked glucose units with abundant surface hydroxyl 
groups, enabling facile chemical modifications (e.g., oxidation, 
acetylation) to tailor their mechanical, adhesive, and bioactive 
properties. Such versatility makes them ideal for oral applications, 
where wet adhesion, antibacterial activity, and biocompatibility 
are critical (Pereira et al., 2020; Wu et al., 2021). Cellulose can be 
categorized according to its origin and preparation into cellulose 
nanofiber (CNF) and cellulose nanocrystal (CNC) derived from 
wood materials, as well as bacterial cellulose (BC) obtained from 
bacterial synthesis, etc. (Pereira et al., 2020). CNF is extracted from 
lignocellulosic biomass materials through physical, chemical, or 
enzymatic processes, with its mechanical and optical properties 
influenced by factors like length-diameter ratio and crystallinity; 
CNC is produced by hydrolyzing CNF and exhibits strong 
mechanical properties due to its high intermolecular bonding; BC 
is derived from the metabolic processes of various microorganisms 
such as fungi, algae, and bacteria (Agrobacterium, Achromobacter, 
Acetobacter, Salmonella, etc.) (Rahmayetty, 2023). Various modern 
techniques such as HQ SEM, TEM, TGA, FTIR, XRD, tensile test, 
contact angle have been used to characterize their performances 
and their characteristics are listed in Table 1. Both CNF and 

CNC possess a high surface area and low coefficient of thermal 
expansion, making them suitable for tissue engineering applications. 
Moreover, BC not only shares the similar chemical structure as plant 
cellulose but offers superior properties including high purity, high 
crystallinity, high water retention, good mechanical properties, 
and a 3D nanofiber structure (Wu S. et al., 2021). The plentiful 
hydroxyl groups on the surface of cellulose can be easily modified 
with biopolymers through processes like oxidation (Curvello et al., 
2019), acetylation (Wahid et al., 2021), and phosphorylation 
(Curvello et al., 2019). Cellulose itself has natural biocompatibility. 
However, its derivatives for tissue engineering must meet three 
requirements and can be naturally biodegraded or removed as the 
wound heals: (i) toxic groups cannot be chemically introduced 
into the structure of cellulose; (ii) the main chain structure of 
cellulose shouldn’t be changed; (iii) moderate crystallinity to avoid 
not to be biodegraded .Therefore cellulose has good compatibility 
and flexibility in designto reach the complex requirements for 
particular usage. This makes it a valuable material in tissue 
engineering and wound dressings, offering advantages such as 
appropriate mechanical properties, non-immunogenicity, and 
cost-effectiveness. Additionally, to address the unique moist and 
bacterial oral environment, researchers have developed a range 
of oral dressings with wet adhesion and antibacterial properties. 
Cellulose derivatives thus have been found wide applications in 
drug delivery systems and various other fields. Cellulose hydrogels 
have been designed to promote remineralization, osteoinduction 
properties, and facilitate the regeneration of oral soft and hard tissues 
based on these strategies (Elgendy et al., 2023; Najafi et al., 2021;
Singh et al., 2022).

This article intends to review the application of cellulose 
hydrogels in stomatology, focusing on their essential properties such 
as wet adhesion, appropriate mechanical properties, antibacterium 
and self-healing, as well as their fundamental uses to dicuss 
their potential application on specific oral conditions such as 
periodontitis, dental caries, alveolar bone defect, etc (Figure 1). 
Additionally, the article discusses the advantages of cellulose 
hydrogels and potential modification strategies.

2 Performance requirements of 
cellulose hydrogels for oral tissue 
repair

An ideal polymer for tissue repair should possess mechanical 
stability, biocompatibility, bioactivity, and biodegradability (Xu 
and Hong, 2021). Oral repair materials must meet specific 
environmental requirements, including adequate strength, wet 
adhesion, self-healing capabilities, antibacterial properties, 
and other attributes to enhance the repair and regeneration 
process of oral soft and hard tissues for improved outcomes 
(Farshidfar et al., 2023; Montoya et al., 2023). 

2.1 Wet adhesion

Bioadhesive materials find widespread application in medical 
implant technology, wound care, surgical anastomosis, and 
drug delivery (Deng et al., 2023). Oral bioadhesive agents are 
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TABLE 1  The characteristics of CNF, CNC and BC.

Analytical method Characteristics

CNF CNC BC

HQ SEM Fibrous network structure, fibre 
diameter 10–100 nm

Rod-shaped or needle-shaped, fibre 
diameter 100–200 nm

Three-dimensional nanofiber network, 
fibre diameter 20–30 nm

TEM The layered structure of fibers, low 
crystallinity

lattice fringe, high crystallinity The parallel arrangement of nanofiber 
bundles without grain boundary defects

TGA Moderate thermal stability The highest thermal stability Similar to CNC

FTIR Hydroxyl peak Sulfate ester residue Sharp hydroxyl peak

XRD Low crystallinity The highest crystallinity (Type II 
cellulose)

Type I cellulose, Broad and narrow 
peaks

Tensile test Moderate tensile strength, depending 
on fiber orientation

High modulus but brittle The highest tensile strength and 
toughness

Contact angle Hydrophilic (Contact angle <90°) It can be modified to be hydrophobic 
(Contact angle >90°)

Highly hydrophilic (Contact angle <90°)

FIGURE 1
Schematic overview of cellulose hydrogels’ essential properties (wet adhesion, mechanical strength, antibacterial activity, self-healing) and their 
potential applications in stomatology for treating periodontitis, dental caries, and alveolar bone defects.

often utilized in conjunction with other technologies or dosage 
forms to enhance oral mucosal delivery of biomacromolecules 
(Nakipoglu et al., 2023). Moreover, a moist oral environment can 
impede material fixation (Jia et al., 2024). Thus, there is a pressing 
need for materials with strong wet adhesion to withstand salivary 
flushing and moist oral movements.

Hydrogel adhesive patches exhibit strong adhesion to wet 
surfaces, a critical feature for their clinical applications. Studies 
have shown that surface modification, such as introducing 

carboxyl, amine, or catechol groups, combined with non-
covalent bonding strategies like hydrogen bonding and 
ionic interactions, enables effective adhesion to moist tissues 
(Chakraborty et al., 2023). Polar acid-base interaction forces 
and van der Waals dispersion forces play a significant role 
in the adhesion of cellulose to other materials (Liu et al., 
2021). The surface free energies of the interface can vary 
depending on the cellulose source and preparation method. 
Polar functional groups on the surface of CNC decrease its 
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attraction to lipophilic components significantly (Goldmann, 2021), 
whereas disordered regions within the CNF chain enhance the 
accessibility of its surface functional groups and promote better 
interfacial adhesion (Li B. et al., 2023).

However, when the hydrogel adhesive acts on the surface of 
wet tissue for a span, hydrone invades into hydrogels influences 
surface adhesion and mechanical properties, which limits hydrogels’ 
application. Therefore, some biomimetic hydrogels with wet 
adhesion has been reported, such as hydrogels inspired by mussel 
(Cheng et al., 2021; Hou et al., 2023; Xue et al., 2021; Zhang Y. et al., 
2021), barnacle (Ni et al., 2022), octopus (Baik et al., 2017; Lee et al., 
2022; Chen and Yang, 2017) et al. Marine mussels are well-known 
for their strong adhesion to various surfaces over time and their 
adhesion stength to skin can achieve 0.2 mN (Westerman et al., 
2023). Mussel-inspired and barnacle-inspired hydrogels adhere 
to the wet surface by their catechol-derived groups imitating the 
3,4-dihydroxy-L-phenylalanine (DOPA). The amino acid L-dopa, 
specifically its residues tyrosine and two hydroxyl groups, has been 
identified as a potential enhancer of adhesion (Fichman et al., 
2021). It is hypothesized that dopamine (DA)-modified hydrogel 
exhibits robust adhesion to tissues in the presence of blood or saliva 
(An et al., 2022). Hou et al. (2023) find that these kinds of hydrogels’ 
wet adhesion ability much depend on the length of hydrophobic 
alkyl groups on their framework: the shorter ones disrupt the 
hydration layer to endow catechol groups to directly interact with 
wet surface resulting in strong wet adhesion, while the longer 
ones ofen entangle by strong hydrophobic interaction resulting 
in augmentation of rigidity and weakness of wet adhesion because 
they limit the mobility of the catechol and hydrophobic chains. 
Besides, catecholamine hydogels’ adhesion strength is weakened 
by self-oxidation, thus limiting their application. Therefore, it has 
been taken into consideration that to maintain catecholamine 
groups in these hydrogels should keep their self-oxidation state. 
Ocutopus-inspired hydrogels are designed by imitating the structure 
of octopus’ suction cup to physically adhere to wet surface and 
modifying other chemical groups to enhance their wet adhesion 
by chemical bongding. Inspired by the predation behavior of 
blue-ringed octopus, Zhu et al. (2023) (Figure 2a) develop the 
hydrogel by mimicing the designation of octopus’ suction cup 
using (Silk-Fp)-poly (N-isopropylacrylamide) (PNIPAm) with 
its inner wall modified by annic acid (TA). This hydrogel can 
achive wet adhesion not only by negative air pressure but also 
by chemical bonding between phenolic hydroxyl groups of TA 
and tissue proteins. Moreover, PNIPAm endowed the hydrogel 
with thermal response ability, whose viscosity increased by 
approximately 10 times with the temperature ranging from 20 °C to 
37 °C.

The hydroxyl groups of cellulose have regulatory properties 
and can be chemically modified to convert into aldehyde 
or carboxyl groups. Among them, aldehyde groups can 
react with amino groups on the skin to form dynamic 
Schiff bases, which is one of the important strategies for 
adhesion (Yin et al., 2024). Carboxyl groups, such as 
modified as carboxymethyl cellulose (CMC), can promote 
the further functionalization of adhesives, enabling them to 
incorporate antibacterial properties and facilitate wound healing, 

thereby expanding the application scope of hydrogels in the 
biomedical field (Wang et al., 2021a). 

2.2 Appropriate mechanical strenth

Cellulose hydrogel’s mechanical strength is directly correlated 
with its crystallinity, as a higher crystallinity increases the 
proportion of crystalline area within the fiber (Wang C-H. et al., 
2017). A more orderly molecular arrangement enhances the binding 
force between molecules, leading to higher breaking strength, yield 
stress, and initial modulus. The abundance of hydroxyl groups on 
cellulose hydrogel surfaces allows for the formation of electrostatic 
interactions and hydrogen bonds with other polymers, thereby 
enhancing its strength (Chen et al., 2023). Alongside crystallinity, 
fiber orientation is also a crucial factor influencing strength and 
tensile properties (Li et al., 2022). Althouh CNCs offer broad 
availability and excellent biocompatibility (Lekshmi et al., 2020), 
however, their low aspect ratio, limited interaction length, and 
inadequate shear transfer capability result in subpar mechanical 
properties (Zhou et al., 2018). Consequently, researchers are 
focusing on leveraging CNC’s crystallinity and polyhydroxyl 
structure more effectively to enhance its mechanical properties. 

2.3 Self-healing ability

The dynamic reversibility of covalent bonds or non-covalent 
interactions in the cellulose hydrogel network is crucial for its 
self-healing properties (Zhang Z. P. et al., 2023; Zhao B. et al., 
2023). Some hydrogels exhibit pH-responsive properties under 
physiological conditions and demonstrate self-healing behavior 
under acidic conditions, showing significant potential in practical 
biomedical applications. CNC can transition into a hydrogel state 
through physical rearrangement in the presence of salt, and its liquid 
mixture can gel at physiological temperatures when injected directly 
into the periodontal pocket (Mehrabi et al., 2022). These systems can 
positively impact the endogenous repair of alveolar bone and may 
be utilized for periodontal treatment in experimental periodontitis 
models, such as ligation-induced periodontitis (He X. et al., 2021). 

2.4 Drug-delivery performance

The abundance of hydroxyl structures on the surface of 
cellulose hydrogel facilitate easy chemical modification or loading 
of antibacterial substances, allowing for targeted binding to 
various tissue sites due to its adhesive properties (Han et al., 
2023). This modified material offers distinct advantages over 
conventional treatment methods. For example, the intricate 
non-covalent forces present within and between cellulose 
molecules pose challenges in dissolving them in conventional 
solvents (Wang et al., 2021a). Besides, the introduction of 
nanoparticles not only enhances themechanical strength of 
hydrogels but also impaits stimulus-response properties, suchas 
thermotropic properties, thereby enabling controlled diug 
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FIGURE 2
(a) Design of CNF-DA/PAA@Fe3+ dynamic hydrogel based on a light-driven supramolecular network engineering strategy via photo-Fenton-like (P.F.) 
reaction. (i) Schematic diagrams of a reversible structure of the adhesive and photo-detachable dynamic hydrogel with light-driven supramolecular 
network. (ii) Photographs of the molecular switch being peeled off from human skins under UV irradiation and air oxidation. And comparison of the 
adhesive strength of photo-detachable hydrogel before and after UV irradiation. Values represent their means ± SDs from n = 6 independent samples 
(Huang, 2023). (b) Complete Silk-Fp patch and its adhesive ability. (i) Comparison of the tensile strength of the patches via pull-off tests. (ii) Comparison 
of the shear strength of the patches via shear tests. (iii) Comparison of the interfacial toughness of the patches via peel tests. (iv) Comparison of the 
tensile strength of the patches after 1 h’s source underwater via pull-off tests (Zhu et al., 2023).

release (Persano et al., 2025). However, through chemical 
modification, cellulose can enhance the permeation of hydrophilic 
drugs and facilitate the targeted release of anti-inflammatory, 
antibacterial, and other drugs like antibiotics in alkaline 
conditions (Tang et al., 2022). While a humid setting can 
enhance drug release, excessive saliva production and flow 
may lead to premature drug swallowing, resulting in drug loss 
known as the ‘saliva flushing effect’, thereby impacting drug 
bioavailability (Hu et al., 2021). 

2.5 Biocompatibility and biodegradability

Cellulose derivatives are biocompatible due to their natural 
origin and non-toxic nature, which aligns with their widespread use 
in biomedical applications. However, not all cellulose derivatives 
are biodegradable; biodegradability depends on the degree 
of modification. For instance, unmodified cellulose is readily 
biodegradable, whereas oxidized cellulose and CMC may exhibit 
reduced biodegradability due to structural changes. In the case 
of cellulose hydrogels, they are fully biodegradable and gradually 
broken down by enzymatic hydrolysis in dressings, resulting in 
complete absorption without significant residues. Transitioning 
to implant applications, cellulose hydrogels function as temporary 
scaffolds that support tissue integration and are either fully degraded 
or removed by the body after serving their purpose, depending on 
their structural integrity. These properties collectively highlight 
the versatility of cellulose derivatives in advancing precision 
dental and biomedical therapies. 

3 Application of cellulose hydrogel in 
oral medicine

3.1 Oral infectious diseases

The oral cavity harbors numerous bacteria, with the loose 
mucous membrane and saliva-rich environment posing challenges 
to oral tissue repair (Yin Z. et al., 2023). Approximately 700 different 
types of bacteria can be found in the oral cavity of healthy 
individuals, with a concentration of 1.5 × 108 CFU mL-1 (Deo 
and Deshmukh, 2019). The majority of these bacteria, about 94%, 
belong to Actinomycetes, Bacteroidetes, Firmicutes, Fusobacteria, 
Proteobacteria, and Spirochaetes. The oral environment provides 
an environment conducive to the growth and reproduction of 
microorganisms by its appropriate temperature, humidity, and 
slightly acidic saliva (Humphrey and Williamson, 2001). The 
production of virulence factors and metabolites lead to oral 
infectious diseases such as dental caries, periodontal disease and 
mucositis. Dental caries are thought to be a kind of infectious 
diseases resulted by acid metabolites of dental plaque adhered on 
the surface of tooth. Dental caries can lead to tooth defect, including 
enamel and dentin defect, and even pulp infection (Zhang and 
Yelick, 2021). Periodontitis results from a host response to microbial 
plaque, which leads to a loss of the connective tissue and alveolar 
structure and finally tooth lost.

Cellulose itself does not have antibacterial properties. The 
commonly used modification methods include: i). Quaternary 
ammonium salt modification method; ii). Natural antibacterial 
agent compounding method; iii). Dual-network construction 

Frontiers in Materials 05 frontiersin.org

https://doi.org/10.3389/fmats.2025.1647024
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhang et al. 10.3389/fmats.2025.1647024

TABLE 2  The antimicrobial strategies of cellulose hydrogels.

Strategies Antimicrobial culture Ref

Natural antibacterial agent compounding E. coli, S. aureus, C. albicans Chiaoprakobkij et al. (2020), Shah et al. (2023), Wang et al. (2021b), Zhang et al. (2025)

Quaternary ammonium salt modification E. coli, S. aureus, C. albicans Meng et al. (2024)

Nano-silver loading E. coli, S. aureus, C. albicans Zhang et al. (2025)

Double network construction E. coli, S. aureus Hu et al. (2023), Yu X. et al. (2023)

method. On this basis, the dual-network construction method 
can also be adopted to achieve antibacterial performance while 
endowing cellulose hydrogel with multiple properties such as strong 
mechanical performance and self-healing. (Table 2).

3.2 Cellulose hydrogels applied to 
treatment of dental caries

The target of treatment for dental caries is to repair tooth 
geometric profile and then recover bite. Therefore, strategies 
of hydrogels applied to treatment of dental caries target to 
make biomimetic remineralization to repair detected enamel 
or dentin. The hydroxyl-rich surfaces of cellulose hydrogels 
play a critical role in facilitating mineral nucleation during 
enamel and dentin remineralization. These hydroxyl groups act 
as nucleation sites for calcium phosphate minerals, accelerating 
the deposition of hydroxyapatite and promoting the repair of 
hard tissues (Persano et al., 2025).

Biomimetic remineralization of dental hard tissue involves 
precisely controlling the deposition of inorganic mineral apatite 
crystals on demineralized dental tissue to restore a similar form 
and function to natural dental hard tissue (Lei et al., 2024; 
Zhao H. et al., 2022). Current research suggests that cellulose 
hydrogels primarily promote remineralization by i) stabilizing 
calcium and phosphorus ions in solution and inhibiting their 
premature precipitation (Bussola Tovani et al., 2019). ii) Combined 
with amorphous calcium phosphate (ACP) to form a nanopolymer, 
and has a high affinity for the enamel hydroxyapatite (HAP) 
crystal surface (Liu Q. et al., 2023); iii) provide nucleation sites 
or mineralization for new crystals template to control the orderly 
formation of crystals and guide the remineralization of remaining 
dental tissue (Tang et al., 2024); iv) simulate dentin as a hierarchical 
structure of tissue repair scaffold (Soares et al., 2018); v) load 
components related to dental repair, such as: human dental pulp 
cells (hDPCs) (Qian Y. et al., 2023), HAP (Wu Y. et al., 2023), 
amorphous fluorinated calcium phosphate (AFCP) (Gao et al., 
2024), etc. Furthermore, cellulose derivatives such as carboxymethyl 
cellulose (CMC) and nanocellulose (NC) interact with oral cells 
by modulating cell adhesion and proliferation. For example, NC 
scaffolds have been shown to upregulate osteogenic markers (e.g., 
OCN and ALP) in human dental pulp stem cells. In terms of 
biofilm interaction, cellulose hydrogels inhibit bacterial adhesion 
and biofilm formation, thereby reducing the risk of secondary caries. 
These mechanisms collectively underscore the potential of cellulose 
hydrogels as multifunctional biomaterials in dental regeneration
(Chakraborty et al., 2023).

The strength of biocomposites, such as bone and crustaceans, can 
be attributed to their characteristic layered and helical structures of soft 
and hard phases (Plocher et al., 2021). Biomineralized nanocellulose, 
with a hierarchical structure and chemistry similar to that of enamel 
or dentin, is a promising candidate composite material for tooth 
restoration (Zhao et al., 2024) (Figure 3a). Research on imitating the 
biomineralization process to enhance the strength of cellulose has 
gradually gained attention (Yu and Zhu, 2024). Mohammadi et al. 
(2021) (Figures 4a, 3b) developed a biocomposite material with high 
strength, stiffness, fracture toughness, and complex shape, inspired 
by the mantis shrimp toe stick. The material consists of CNCs 
with long-range helical structures, artificial proteins with cellulose-
binding modules (CBMs) and the CMP-1 acidic domain that regulates 
biomineralization, and apatite. Additionally, they fabricated this 
biocomposite into dental implant crowns, closely matching the internal 
quality of natural teeth. This study serves as a valuable reference 
for large-scale material manufacturing and prototype development 
in the field of hard tissue bionic repair and bioengineering. Bacterial 
cellulose is a promising carrier option due to its strong biocompatibility 
(Tang et al., 2024). In a study by Wang et al. (2024) (Figure 4b), 
BC/HAP composite hydrogels were created in various concentrations 
of simulated body fluids (SBF) to mimic the mineralization process 
and incorporate platelet-rich plasma (PRP), which enhanced the 
release of growth factors. The scaffold demonstrated outstanding 
biocompatibility, formation of mineralized nodules, and controlled 
release abilities in laboratory settings, suggesting significant potential 
for use in repairing tooth hard tissue. 

ACP nanoparticles are crucial precursors for biomimetic 
mineralization (Zhang et al., 2022a). However, they tend to 
transition into a crystalline phase in aqueous solutions, highlighting 
the importance of stabilizing the amorphous state of ACP in 
remineralization research (Zhang et al., 2022a). In a study by Zhe 
et al. (2021) (Figure 5b), a mineralized film was developed using 
hydroxypropyl methylcellulose (HPMC) and polyaspartic acid-
stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles 
for tooth demineralization and subsequent remineralization. Both 
in vivo and in vitro experiments demonstrated that the group treated 
with the mineralized membrane exhibited a significantly enhanced 
remineralization layer compared to the control group. This effect 
may be attributed to the abundant hydroxyl, methyl, and methoxy 
anionic groups in the HPMC gel, which interact with calcium ions 
to form a stable network structure. Furthermore, the HPMC loaded 
with PAsp-ACP nanoparticles could create a dry film, effectively 
stabilizing the nanoparticles. Importantly, this formulation could 
also induce dentin mineralization in the gel state through synergistic 
action with PAsp additives. 
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FIGURE 3
(a) Biologically inspired multiphase nanocomposite with a graded structure that mimics key molecular and architectural features of the mantis shrimp 
dactyl club (Zhao et al., 2024). (b) Bioinspired dental implant crown design, architecture, and composition. (i) Front view of 3D-printed human lower 
jaw with second premolar bioinspired crowns in place. (ii) Side view of second premolar implant assembled from titanium screw with the bioinspired 
crown. The X-ray and µCT 3D tomogram images. (iii) SEM images of cross-sections of the crown indicating distinct microstructural regions. (iv) 
Synchrotron 2D WAXS mapping corresponding to regions shown in (iii). (v) Synchrotron X-ray fluorescence spectra in different regions shown in (iii). (vi) 
Large-area (L ≈ 5.5 mm, W ≈ 0.9 mm) 2D nanoindentation map of elastic modulus and hardness for the cross-sectional region of the crown. (vii, viii) AB 
and LDH assay of adult human dermal fibroblast (AHDFs) cultured for 96 h on a tissue culture plate (TCP) and a bioinspired crown. Cell viability on both 
scaffolds over a period of 10 d is shown (Mohammadi et al., 2021).

FIGURE 4
(a) Bioinspired dental implant crown design, architecture, and composition. (i) Front view of 3D-printed human lower jaw with second premolar 
bioinspired crowns in place. (ii) Side view of second premolar implant assembled from titanium screw with the bioinspired crown. The X-ray and µCT 
3D tomogram images. (iii) SEM images of cross-sections of the crown indicating distinct microstructural regions. (iv) Synchrotron 2D WAXS mapping 
corresponding to regions shown in (iii). v) Synchrotron X-ray fluorescence spectra in different regions shown in (iii). (vi) Large-area (L ≈ 5.5 mm, W ≈ 
0.9 mm) 2D nanoindentation map of elastic modulus and hardness for the cross-sectional region of the crown. vii, viii) AB and LDH assay of adult 
human dermal fibroblast (AHDFs) cultured for 96 h on a tissue culture plate (TCP) and a bioinspired crown. Cell viability on both scaffolds over a period 
of 10 d is shown (Mohammadi et al., 2021). (b) Schematic showing fabrication of the BC/HAP@PRP hydrogel (Wang et al., 2024).

3.3 Cellulose hydrogel for periodontitis

Periodontitis is the main cause of tooth loss in all oral 
bacterial diseases and has become the 11th epidemic disease in the 
world (Chinese Stomatological Association, 2021). For refractory 

periodontitis, simple removal of plaque biofilm can not achieve 
a good therapeutic effect, and local drug treatment must be 
supplemented (Elgendy et al., 2023). Oral gargle is the main 
way of oral mucosal damage and antibacterial, but it can not be 
targeted to treat the recognized pathogenic bacteria of periodontitis 
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FIGURE 5
(a) Schematic showing fabrication of the BC/HAP@PRP hydrogel. (Wang et al., 2024). (b) (i) Scheme of the fabrication of mineralized film made of 
HPMC loaded with PAsp-ACP. (ii) Cryo-TEM images of the mineralizing flm and its SAED pattern at 0 h (a, f), 6 h (b, g), 8 h (c, h), 12 h (d, i) and 24 h (Zhe 
et al. (2021)).

FIGURE 6
(a) The molecular docking conformation of (i) I3- @COF. (ii) I3- @CD; (b) Cumulative release of iodine from I2@COF particles and I2@COF-HEC 
hydrogel; (c) Progressive increase in DPP during the periodontitis modelling period; (d) Changes in DPP following two-week dosing of minocycline 
ointment and I2@COF-HEC hydrogel; (e) Changes in DPP following four-week dosing of minocycline ointment and I2@COF-HEC hydrogel (mean ± 
SD, n = 3) (Zhang et al., 2022b).

(Porphyromonas., Haemophilus., Fusobacterium.), so there is a lack 
of standard treatment for most patients with periodontitis in 
clinic, and personalized periodontal medication has become a 
key problem to be solved urgently in clinic. Currently, there 
are two primary antibacterial strategies employed in the oral 

environment: i) incorporating antibiotic molecules or antibacterial 
proteins/polymers to confer antibacterial properties (Zhang et al., 
2022b); ii) utilizing antibacterial patches to create a barrier effect 
against bacteria (Han et al., 2023). Both strategies necessitate a stable 
and well-adhesive carrier, with cellulose hydrogels emerging as a 
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FIGURE 7
(a) Fabrication and structure analysis of BHF. (i) The stem of the lotus marked by the red square is the place from which the lotus fibers are extracted. (ii) 
Hierarchical structure of the lotus stem. (iii) Three-dimensional structure of bacterial cellulose hydrogel as the raw material of BHF. (iv) BC hydrogel 
strip after cutting. (v) BHF after wet-twisting with a lotus-fiber-like spiral structure. (b) Structural characterization and comparison of lotus fibers and 
BHF (Guan et al., 2021). (c) Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue 
engineering scaffold. (i) Illustration of the setup for bacterial barrier property of photocured BC-PDz patches using Gram negative Escherichia coli as 
model bacteria; (ii) comparison of % relative fluorescence units observed for different groups owing to bacteria (or fluorescent protein) penetrating 
through the patches (or controls); (iii) comparison of colony forming units (CFUs) per ml indicating live bacteria penetrated through the matrix after 24 h 
study duration; SEM micrograph of (iv) control trans-well membrane, (v) tran-swell-PDz interface after the study, (vi) BC-PDz patch (BC-FD)-trans-well 
interface, (vii) BC-PDz patch (BC-PD)-trans-well interface. BC-FD represents freeze-dried and BC-PD represents press-dried BC films. Data presented 
as mean ± SD, n = 9, p-values are calculated using two-way ANOVA with Bonferroni post hoc test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001 (Yu X. et al., 2021).

FIGURE 8
(a) (i) Schematic representations of CP hydrogels obtained by 3D printing; (ii) Internal morphology of the CP41, CP43, and CP45 hydrogels by SEM. (b)
(i) DPPH scavenging rate of different concentrations of CP41, CP43, and CP45 hydrogels; The antibacterial efficiency of CP41, CP43, and CP45 
hydrogels. (ii) And antibacterial activity (Left: PBS; Right: sample group) (iii) and Live/dead bacterial viability assay of Escherichia coli and S. aureus
before and after contact with CP45 hydrogel (Wang et al., 2021a).
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FIGURE 9
(a) Comparison of porous structure of CH/HPMC/BG/ZnO hydrogel with different concentration of BG 100 mg (S1), 200 mg (S2), 300 mg (S3) 
respectively at 100× (A), 500× (B) and 1,000× (C) magnification (Wu Y. et al., 2023). (b) A scheme of the development of nanoparticles-in-nanofibrous 
scaffolds using polylactic acid/cellulose acetate (PLA/CA), silver nanoparticles (AgNP), and hydroxyapatite na-noparticles (HANPs) for GTR/GBR 
applications with enhanced antibacterial and bone regeneration activity (Abdelaziz et al., 2021).

preferred antibacterial material due to their exceptional physical and 
chemical properties (He X. et al., 2021).

An efficient periodontitis treatment system was created by 
Zhang et al. (2022a) (Figure 6) using a cross-linked cyclodextrin 
metal-organic framework (COF) suspended in a hydroxyethyl 
cellulose gel as I2@COF-HEC hydrogel. The outcomes of in vitro
experiments showed that COF-HEC hydrogel’s ability to delay 
iodine release in artificial saliva for up to 5 days. Microcomputed 
tomography of the alveolar bone morphology in a rat periodontitis 
model showed that I2@COF-HEC hydrogel reduced pocket depth 
and alveolar bone resorption in a manner similar to that of 
the periodontal antibiotic minocycline ointment. I2@COF-HEC 
hydrogel is a brand-new method of delivering iodine locally and is 
utilized as a broad-spectrum antibacterial to treat periodontitis.

In spite of iodine, curcumin is also an ideal antibacterial. 
Multifunctional biopolymer composites synthesised by mechanical 
decomposed BC, gelatin, alginate, curcumin and glycerol 
are stretchable, transformation sustained and has appropriate 
stiffness (Chiaoprakobkij et al., 2020). No leakage of curcumin from 
the membrane was detected during immersion in PBS or synthetic 
saliva, with liquid absorption ranging from 100% to 700%. Using the 
model membrane of the pig mucosa, the in vitro adhesion duration 
ranges from 0.5 to 6 h in the synthetic saliva. It’s not cytotoxic to 
human gingival fibroblasts and keratinocytes. However, oral cancer 
cells are strongly inhibited by it. It is possible to further improve 
these multifunctional films to acquire the necessary features of 
topical patches for the treatment of oral cancer, periodontitis, 
and wounds. 

3.4 Cellulose materials for maxillofacial 
trauma

Wound healing necessitates angiogenesis and antimicrobial 
activity (Chiaoprakobkij et al., 2020; Yu H. et al., 2023). Topical 

treatment is a promising approach for oral mucositis, and the use 
of spray film-forming systems can streamline self-administration, 
deliver anti-inflammatory drugs directly to the affected area, 
and prolong drug retention at the site of injury. To achieve 
this, the gelling formulation must be capable of gelling in situ
(Guo et al., 2023; Singh et al., 2022; Singh et al., 2023) and 
rapidly forming a film when sprayed onto damaged oral mucosa. 
When formulating an optimal wound dressing, key properties 
to consider include ease of sterilization, promotion of wound 
debridement, user-friendliness, biodegradability, and non-toxicity
(Wu W. et al., 2023).

Cellulose-based hydrogel has been utilized in wound dressings 
due to its favorable biocompatibility, adjustable mechanical 
properties, customizable structure, tissue adhesion, anti-infectious 
properties, and its ability to enhance the tensile properties of 
scaffolds (Ding et al., 2024). Leveraging its modifiability, these 
criteria can be effectively addressed. The discussion on the anti-
infectious properties of cellulose in this section primarily focuses 
on its wet adhesion properties. The abundance of hydroxyl groups 
on cellulose surfaces facilitates easy modification (Zeng et al., 
2022). Huang et al. utilized a CNF-enhanced supramolecular 
network, strong coordination between Fe3+ and polymer 
chains, and dopamine (DA) adhesion groups to create a CNF-
DA/PAA@Fe3+ supramolecular hydrogel (Huang, 2023) (Figure 
2b). This hydrogel exhibits reversible tough adhesion and easy 
photodetachment, attributed to the cellulose nanofiber reinforced 
network and the coordination between ions and polymer chains. 
These factors contribute to the dynamic reconstruction of 
the supramolecular network and the adhesive properties of
the hydrogel.

BC is a nanoporous polymer with self-regulated swelling and 
stable bonding strength in the hydrated state, potentially serving 
as a bacterial barrier (Zhang et al., 2024) (Figure 4a). Qing-
Fang Guan and colleagues developed a lotus biomimetic fiber 
spiral structure hydrogel using BC fibers, known as biomimetic 
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FIGURE 10
(a) Illustration of BC/SrAp fabrication and application (Luz et al., 2018). (b) Double network microcrystalline cellulose hydrogels with high mechanical 
strength and biocompatibility for cartilage tissue engineering scaffold. (i) Preparation of SN and DN hydrogel. (ii) Photographs of DN hydrogels under 
compression, kink, and bending (Yu X. et al., 2021). (c) Therapeutic effect of the GNT hydrogel on full-thickness palatal mucosal defects in rats. (i) 
Schematic diagram illustrated the surgery to create a bilateral full-thickness hard palatal mucosal defect of 2 mm in diameter in rats. (ii) Macroscopic 
view of palatal bilateral mucosal wound morphology at different times: control, the left wound; GNT-M, the right wound. (iii) Representative confocal 
images of macrophages (CD68, red) and nuclei (DAPI, blue) from control and GNT-M groups and their ×4 magnified plots on day 1. Scale bar: 100 μm. 
(iv) Representative confocal images of α-SMA (red), laminin (green), and nuclei (DAPI, blue) for the control and GNT-M groups and their ×4 magnified 
plots on day 5. Scale bar: 200 μm (Zhu et al., 2022).

hydrogel fiber (BHF) (Guan et al., 2021) (Figure 7a). This material 
exhibits a remarkable toughness of approximately 116.3 MJ m−3, 
along with high strength, toughness, and stretchability, making 
it a valuable biofilm material. In a study by Singh et al. (2023) 
(Figures 4b, 7b), the bacterial barrier properties of bacterial 
cellulose layered composites and bacterial cellulose-hydrogel (BC-
PDz) were compared using Gram-negative Escherichia coli as 
a model bacterium. The study included an evaluation of light-
cured BC-PDz patches. The results, based on measuring colony 
forming units (CFU) per milliliter of different groups after bacterial 
penetration, revealed that the pure BC membrane and trans-well 
groups allowed approximately 0.5–2 × 107 CFU/mL of bacteria 
to pass through in 24 h. In contrast, the BC-PDz patch group 
showed results ranging from 0 to 100 CFU/mL. The BC-FD patch 
demonstrated a 7-log reduction in CFU/mL compared to the 
control group, indicating its ability to block bacterial passage. 
BC-PDz was shown to possess unique self-sealing properties, 

reducing microbial penetration. Therefore, this cellulose hydrogel 
could potentially leverage its inherent barrier properties for 
applications aimed at preventing bacterial infections. Singh et al. 
(2022) developed aqueous composites for delicate epithelial 
surfaces using fibrotic BC and photoactive bioadhesives. The study 
demonstrated that these aqueous composites transitioned from a 
viscous state to an elastic material within 60 s of photoactivation. 
They exhibited a similar shear modulus to mimic soft tissues 
like oral mucosa and had adjustable adhesion strength ranging 
from 3 to 35 kPa on wet substrates. This approach offers a means 
to efficiently adhere the film to the tissue surface and could 
potentially be incorporated into the BC hydrogel system for treating 
mucosal wounds.

Carboxymethyl cellulose (CMC) is carboxymethylated by 
cellulose, which has a rigid chain and thus good mechanical 
properties. It can be used to prepare hydrogels with good mechanical 
properties and can also be combined with various chemicals to 
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prepare hydrogels with multiple specific functions. It has many 
applications in the medical field. Wang et al. (2021) (Figure 8)
reported three-dimensional (3D)-printed hydrogels with 
antibacterial and antioxidant properties as a new type of wound 
dressing, which can adapt to the shape of wounds and have a more 
ordered pore structure, and are used for wound repair of large 
irregular wounds. It is composed by CMC, glycidyl methacrylate 
(GMA) and ε-Polylysine (ε-PL). PL, a kind of positively charged 
polypeptide, which also contains -NH2, has been widely reported 
used as antibacterial material to prepare hydrogel dressings. CMC-
GMA and ε-PL-GMA (with GMA grafted onto CMC and ε-
PL respectively) were mixed and hydrogels were formed under 
ultraviolet irradiation of a 3D printer, resulting in printable CP 
hydrogel dressings. Its 3D porous structure is conducive to tissue 
growth, cell adhesion and proliferation, as well as oxygen exchange. 
The degradation time of the material is 6–7 days. It also has good 
antibacterial properties, biocompatibility and the ability to promote 
wound repair. 

3.5 Cellulose materials for alveolar bone 
defect repair

The repair of jaw and alveolar bone defects poses a significant 
challenge for dental treatment (Guo et al., 2023; Kang et al., 
2021). Various factors such as cleft lip and palate, congenital 
malformations, trauma, jaw tumors, or tooth extraction can 
result in bone defects, leading to difficulties in chewing, aesthetic 
concerns, and language dysfunction (Zhang et al., 2023). The 
primary objective of bone repair in oral and maxillofacial 
surgery is to prepare for future tooth or implant restoration, 
necessitating sufficient bone volume and appropriate bone structure 
(He et al., 2024). Alveolar bone enhancement is essential for 
the success of dental implants, with the presence of healthy 
structural alveolar bone being a key factor for clinical success 
(Elgali et al., 2017). Barrier materials with strong support properties, 
osteoconductivity, and osteoinduction potential show promise for 
such applications (Li Q. et al., 2023; Wu et al., 2024). Guided bone 
regeneration (GBR) involves using a barrier membrane to direct 
bone growth, promoting the migration of osteoblasts to the site 
of bone defect while preventing the interference of other cells 
(Wu et al., 2024). Infection is a common reason for the failure 
of GBR technology, highlighting the importance of incorporating 
antibacterial features into the membranes to enhance treatment 
success rates (Mu et al., 2021; Qian et al., 2020). Therefore, cellulose 
hydrogels must possess bone-promoting, antibacterial, and bone-
immunomodulatory properties, in addition to acting as a barrier and 
support structure to ensure the desired bone mass and morphology 
in new bone formation (Chen et al., 2022; Mao et al., 2023;
Wu M. et al., 2023) (Figure 9a).

In order to reduce the risk of bacterial infection during 
GBR, Abdelaziz et al. (2021) (Figure 9b) fabricated electrospun 
nanofiber scaffolds using a combination of polylactic acid/cellulose 
acetate (PLA/CA), silver nanoparticles (AgNP), and hydroxyapatite 
nanoparticles (HANPs). The addition of HANPs to the scaffold 
aimed to enhance its antibacterial and bone regeneration properties. 
In vitro studies demonstrated that nanofibers incorporated 
with HANPs improved the viability of bone marrow stromal 

cells (BMSCs) by 41%–51% compared to the control group. 
Furthermore, all AgNPs-loaded fibers exhibited a significant 
ability to inhibit bacterial growth, with the antibacterial effect 
becoming more pronounced over time. Consequently, this 
nanofiber scaffold shows promising application potential in 
GBR. Luz et al. (2018) (Figure 10a) capitalized on strontium’s 
ability to inhibit osteoclastosis, stimulate osteogenesis, and reduce 
bone resorption by developing a hybrid composite material 
composed of oxidized bacterial cellulose membrane and strontium 
apatite. The material demonstrated good biocompatibility, reduced 
inflammatory responses, and promoted the growth and repair of 
connective tissue in in vivo experiments. However, its osteoinductive 
properties did not show significant differences from the
control group. 

4 Conclusion

This article provides an overview of the current utilization 
of cellulose hydrogels in oral medicine, highlighting the diverse 
applications and unique characteristics of these materials. Cellulose 
hydrogels are known for their excellent biocompatibility, sustained 
release properties, and intricate 3D structure. The abundance 
of hydroxyl groups on the surface of cellulose enables easy 
formation of hydrogen bonds and facilitates chemical modifications. 
By undergoing chemical alterations, cellulose hydrogels can 
acquire specific properties such as strength, wet adhesion, self-
healing abilities, antibacterial effects, and controlled drug delivery 
capabilities. These versatile hydrogels show promise in treating 
various oral diseases and in repairing both soft and hard oral 
tissues. Researchers have developed a range of cellulose hydrogels 
loaded with bioactive substances like drugs, stem cells, fibroblasts, 
enamel-forming proteins, and antibacterial agents, with potential 
applications in dental and alveolar bone repair, periodontal 
tissue regeneration, and oral mucosa repair. Recent advances in 
technologies such as 3D printing and nanoengineering provide 
innovative pathways to optimize cellulose hydrogel design for 
precision medicine. For instance, multi-material 3D bioprinting 
enables the fabrication of complex, patient-specific hydrogel 
scaffolds with spatially controlled drug delivery systems, mimicking 
native tissue architecture. Similarly, nanoengineering approaches, 
such as surface modification and nanofiber incorporation, can 
enhance hydrogel biofunctionality, biocompatibility, and drug 
release profiles. These cutting-edge techniques not only facilitate 
personalized treatment strategies but also open new avenues 
for on-demand, site-specific therapy delivery (Wang et al., 
2021b). While cellulose hydrogels have been extensively studied 
in tissue engineering applications, research on their use in 
temporomandibular joint cartilage and articular disc repair, 
as well as in oral malignant tumors, is limited. Furthermore, 
most of these studies have not progressed to the clinical trial
phase yet.

While cellulose hydrogels exhibit promising mechanical 
properties and biocompatibility, their clinical translation faces 
significant hurdles. First, their potential toxicity and mechanisms 
for clearance within the human body remain inadequately 
explored, necessitating comprehensive in vivo assessments across 
small (e.g., mice, rats) and large animal models (e.g., monkeys).
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Additionally, cellulose hydrogels for periodontitis lack specific 
antibacterial experiments targeting key pathogens such as 
Porphyromonas, Haemophilus, and Fusobacterium, highlighting 
the need for more focused research on antibacterial efficacy and 
bone regeneration mechanisms. Furthermore, material degradation 
due to enzymatic breakdown in the oral environment can reduce 
efficacy over time, while safety regulations require extensive 
biocompatibility testing, including cytotoxicity and genotoxicity 
assays, potentially delaying market approval. Sterilization protocols 
may also compromise structural integrity, limiting shelf life. These 
challenges underscore the importance of interdisciplinary research 
to develop robust, scalable manufacturing processes and novel 
modification strategies, with clinical trials serving as a crucial 
next step for translating cellulose hydrogels into viable clinical
solutions.

The unique and excellent biological properties of cellulose 
hydrogel make it a promising material for applications in oral 
medicine and biomedicine. As more relevant animal experiments 
and clinical trial data become available, cellulose hydrogels are 
expected to be extensively utilized across various biomedical 
fields. Extensively researched by numerous scholars, cellulose 
hydrogels have been recognized for their significant application 
potential in treating periodontitis, repairing dental hard tissue 
defects, addressing maxillofacial trauma, and repairing jaw
bone defects.
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