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The structural stability of coal seam roof rock mass under dynamic load in
engineering practice is directly influenced by the dynamic characteristics of
weakly consolidated coal measures rock. A study was conducted on two types
of rocks, mudstone and siltstone, around the roof of coal seam No. 31 in Renlou
Coal Mine, northern Anhui Province. Rock-like specimens were created using
similar materials for analysis. The mechanical properties, energy dissipation
characteristics, and fractal characteristics of these rocks were investigated using
a 75 mm Split Hopkinson Pressure Bar (SHPB) test system at five different impact
velocities. The findings are as follows: 1) As the impact velocity increases, the
strain rate of the rock linearly increases while the dynamic uniaxial compressive
strength exponentially increases. 2) With an increase in strain rate, there is a
negative correlation between rock fragmentation and a positive correlation with
the number of fragments produced; additionally, the fractal dimension shows an
increasing quadratic term function relationship. 3) There exists a linear positive
correlation between incident energy and impact velocity; moreover, as incident
energy increases, so does the amount of energy lost due to rock breakage. These
research results provide both theoretical and experimental foundations for mine
dynamic disaster protection.

KEYWORDS

weakly consolidated rock, strain rate effect, dynamic response, energy dissipation,
fractal characteristic

1 Introduction

Coal plays a strategic role in China’s economic development system and holds a
crucial position in the energy structure (Li and Yuan, 2023; Wang S. M. et al., 2022;
Kang et al, 2023; Wu et al, 2025; Xie et al., 2022; WuJ. Y. et al, 2024). As coal
resources mining transitions to deeper formations, the deep formation rocks exhibit
characteristics of “three heights and one disturbance” (Shu et al, 2023; Yang et al,
2024; Zheng Q. Q. et al.,, 2024; Shi et al., 2024; Shi et al., 2025), leading to a complex
stress state and frequent dynamic disasters such as rock bursts, floor protrusions, and
roof cavings (Hao et al, 2022; Gong et al, 2023; Hu et al, 2023; Tan et al, 2024;
Zheng Q. et al., 2024; Lyu et al., 2022; Deng et al., 2023). Engineering disasters like large
deformations, high ground pressures, and challenging roadway support under dynamic

01 frontiersin.org


https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2025.1629892
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2025.1629892&domain=pdf&date_stamp=2025-09-07
mailto:dxyao@aust.edu.cn
mailto:dxyao@aust.edu.cn
https://doi.org/10.3389/fmats.2025.1629892
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2025.1629892/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1629892/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1629892/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1629892/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Shi et al. 10.3389/fmats.2025.1629892

( min-max ).
mean

TABLE 1 Mechanical properties of the overlying roof in coal seams No. 3,

Rock Compressive Tensile Shear strength (MPa) A EN14% Poisson ratio
strength (MPa) strength (MPa) modulus (GPa)
Internal friction = Cohesive force
angle
Mudstone 6.97-66.68 0.80-5.39 29°40'-37°41" 0.82-4.75 0.86-3.93 0.17-0.30
17.44 117 33°01' 1.75 2.04 0.22
Siltstone 12.54-112.90 1.24-4.47 35°05'-38°33' 1.28-3.71 1.99-3.62 0.15-0.22
28.64 2.19 36°37' 222 2.80 0.19

TABLE 2 The ratio between two analogous rock materials.

Similar material

Proportion

Siltstone-like material Concrete: Quartz sand: Water = 1.00:0.88:0.45

Mudstone-like material Concrete: Quartz sand: Gypsum: Water =

1.00:0.80:0.20:0.55

loading are on the rise (Zhang et al, 2019; He et al., 2024;
Yin et al., 2024). Blasting is a significant method for coal mine
rock roadway excavation and forced caving (Yue et al, 2022;
Zhou K. et al., 2022; Yang et al., 2023; Cheng et al., 2024; Zuo et al.,
2024; Zhao et al, 2025; Liao et al, 2025; Zhang et al.,, 2025;
Li et al,, 2025; Zheng et al., 2025). Therefore, it is imperative to
analyze and summarize the mechanical characteristics of coal seam
roof rocks under dynamic actions to ensure the safe mining of
coal and rock.

In recent years, SHPB has gained significant traction in
investigating the dynamic mechanical properties of rock materials
under medium and high strain rates. Shi (Shi et al., 2023a; Shi et al.,
2023b) based on observations from SHPB test results, proposed
new concepts of internal cohesion and internal friction angle
for quantitative analysis of the pre-peak and post-peak stages of
the dynamic loading process of sandstone. Rae etal. (Rae et al,
2020; Zuo et al, 2022; FangS. et al, 2023; Sun et al, 2023;
Wu et al., 2023) conducted SHPB impact compression tests on
both soft rock and hard rock, and found a significant correlation
between strain rate and rock strength. Additionally, the study
revealed that rock strength decreases significantly with an increase
in fractal dimension. Liu etal. (Liu et al, 2022; Wang X. et al.,
2022; You et al., 2022; ZhouT. et al., 2022; Wen et al., 2023;
Xia et al., 2023; Zheng et al., 2023; Gao et al,, 2024; Wu J. H. et al,,
2024) conducted dynamic splitting experiments on brittle rock and
discovered a highly significant linear positive correlation between
the dynamic tensile strength and the loading rate. Moreover, it was
observed that the failure of rock specimens initiated from internal
defects, with changes in geometric characteristics of these defects
influencing the fracture mode. Numerous researchers (Yuan et al.,
2022; Zhou]J. et al, 2022; Lyu et al, 2023; Wang et al., 2023;
Zhao et al., 2023; Wang et al, 2021; Zhang et al., 2021) have
conducted impact fracture experiments on rock samples and found
that the energy dissipation characteristics of rock samples are
related to the distribution of fragment sizes, and various efficiency
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indicators have been proposed to represent the crushing efficiency
under different conditions.

The dynamic behavior of weakly cemented rocks, in particular,
is a critical concern due to their inherent instability. Studies on
materials like weakly cemented red sandstone (Fang$.Z. et al,
2023) and argillaceous weakly cemented rock (Meng et al,
2020) have highlighted their strain rate sensitivity and unique
energy absorption patterns under dynamic loads. The deformation
and failure of rock-like materials is essentially a process of
energy dissipation (Chen et al, 2022), making the study of
energy transformation and dissipation mechanisms crucial for
understanding their response to impact loads and for assessing the
stability of engineering rock masses. For instance, comprehensive
studies on other rock types like sandstone, such as those by
Yuan etal. (Yuan et al., 2024), have detailed how factors like
environmental conditions (e.g., acidic drying-wetting cycles) and
loading parameters affect fragmentation and energy dissipation
characteristics, providing a methodological benchmark for rock
dynamic studies.

The on-site sampling, transport, and processing of intact rock
specimens from deep, weakly cemented coal seam roof levels
are often difficult, complex, and have a low success rate due to
the friable nature of these materials (Sun et al, 2019). While
the aforementioned studies (Shi et al., 2023a; Shi et al., 2023b;
Rae et al., 2020; Zuo et al., 2022; FangS. et al., 2023; Sun et al,,
2023; Wu et al, 2023; Liu et al, 2022; WangX. et al, 2022;
You et al., 2022; Zhou T. et al., 2022; Wen et al., 2023; Xia et al.,
2023; Zheng et al., 2023; Gao et al, 2024; Wu J. H. et al,, 2024;
Yuan et al., 2022; Zhou J. et al,, 2022; Lyu et al., 2023; Wang et al.,
2023; Zhao et al., 2023; Wang et al,, 2021; Zhang et al., 2021) and
newer investigations (Yuan et al., 2024); Wang et al. (Fang S. Z. et al.,
2023) provide valuable insights into the dynamic behavior of
various rock types, including some naturally occurring weakly
cemented rocks, a specific gap exists. There is a pressing need
for systematic investigations into the dynamic characteristics and
energy dissipation of analogous materials specifically fabricated to
represent the properties of problematic weakly cemented strata, such
as the mudstone and friable sandstone encountered in particular
coal seam roofs. Research that directly compares the dynamic
response, failure modes, and energy dissipation patterns of different
types of analogous weakly cemented rock-like materials under
controlled impact conditions is less common. This limits the
direct applicability of findings to engineering scenarios where such
specific, difficult-to-sample, weakly cemented rocks dominate.
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TABLE 3 Mechanical parameters of similar materials.

10.3389/fmats.2025.1629892

Similar Compressive Tensile Shear strength (MPa) Elasticity Poisson ratio
material strength strength modulus
(MPa) (MPa) Internal Cohesive (GPa)
friction angle force
Mudstone-like 12.74 1.57 31°08' 1.13 1.75 0.27
material
Siltstone-like 27.05 2.32 36°00" 1.44 2.18 0.21
material
Water
\“y,,)
Gypsum  sapd =
Cement 5
7 Mgl I'd
-
ﬁ Mixin Demoulding
o Mold
Specimens
FIGURE 1
Preparation procedure for rock-like specimens.
1
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FIGURE 2
(Wu J. H. et al., 2024): 1-Plenum chamber, 2-Emission cavity, 3-Impact bar, 4-Laser source, 5-Input bar, 6-Specimen, 7-Transmission bar, 8-Strain
gauge, 9-Damper, 10-Speed measuring device system, 11-Ultra-dynamic strain gauge, 12-Oscillograph, 13-Data processing system.

To address this issue, the study employs the method of
fabricating analogous specimens, conducting SHPB compression
experiments to evaluate the mechanical properties and failure
modes of mudstone and friable sandstone specimens under impact
loading to provide theoretical support for safeguarding the No. 31
coal seam roof.

2 Impact testing of weakly cemented
rock-like materials

2.1 Preparation of specimens

The rock sample investigated was obtained from the mudstone-
siltstone interlayer roof of coal seam No. 31 in Renlou Coal
Mine, located at the intersection of Suixi County, Huaibei City
and Mengcheng County, Bozhou City, Anhui Province. In order
to ensure the authenticity of the simulation test, a rock sample
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collected from the site was meticulously cut and polished into a
standardized specimen measuring ®50 mm x 100 mm, followed
by comprehensive physical and mechanical property testing. The
detailed results of these tests are presented in Table 1.

Based on extensive research conducted by scholars (Wang et al.,
2006; Wang et al, 2024) and in conjunction with the precise
measurement of mechanical properties of roof rock from seam No.
31 in Renlou Coal Mine, the proportion of the composition of the
corresponding rock-like material produced by mixing is shown in
Table 2. Subsequently, the analogous materials were fabricated using
the established mix ratio. The static mechanical properties of the
rock-like materials were evaluated using the electronic universal
testing machine located at the School of Civil Engineering, Anhui
Jianzhu University. The specimen dimensions were ®50 mm X
100 mm. The comprehensive static mechanical properties were
systematically documented in Table 3. The mold used in this test has
an internal size of ®70 mm x 35 mm, and the resulting specimens
are suitable for direct use in impact testing, as depicted in Figure 1.
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FIGURE 3
Method of strain rate determination.

2.2 Experimental apparatus and underlying
principles

The test was conducted at the National-local joint Engineering
Laboratory of building health monitoring and disaster prevention
technology, Anhui Jianzhu University. The SHPB equipment (model:
ZLK]J-SHPB-75) as shown in Figure 2 (Zuo etal., 2022). The incident
rod, transmission rod, and bullet have lengths of 3000mm, 2500mm,
and 500 mm respectively; their diameter is 75 mm. Additionally, the
elastic modulus is measured as 206 GPa with a density of 7820 kg/m’
and Poisson ratio of 0.29.

The SHPB impact test fulfills the assumptions of one-
dimensional stress wave propagation and uniform stress
distribution. The voltage signal acquired from the strain gauge is
converted into a strain signal, and using the three-wave method (as
Formulas 1-3) to calculate the stress o(t), strain £(t), and strain rate

&(t) of specimen (Zhu et al., 2009).

olf) = %Est(t) (1)
2C

&(t) = —L—Os,(t) )
S
12C,

&(t) = —JOL—Oe,(t)dt 3)
S

where E represents the elastic modulus of the bar material; A
represents the cross-sectional area of the bar material; C, represents
the longitudinal wave velocity of the bar material, and C, = \/E—/p;
L, represents the thickness of the sample; and ¢ represents the stress
wave loading time during the test.

The SHPB impact test adheres to the assumption of one
- dimensional stress waves. Specifically, it is assumed that the
propagation speed of stress waves in each rod remains constant.
However, in the experiment, a significant issue arises: low -
frequency stress waves propagate at a relatively faster rate compared
to high - frequency stress waves. This phenomenon results in
oscillations in the stress - strain curves obtained during the
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experiment. As a consequence, accurately evaluating the mechanical
properties of materials becomes challenging, a phenomenon known
as the dispersion effect.

To mitigate wave dispersion and maintain a state of constant
strain rate deformation in the specimen, a wave shaper made of
rubber is affixed to the end of the incident rod where it is struck by
the bullet. Moreover, researchers uniformly apply a layer of vaseline
at the interface between the specimen and the rods. This vaseline
layer serves as a lubricant, effectively reducing the adverse influence
of end - friction effects on the experimental results (Wang X. et al.,
2022). Simultaneously, the specimens we fabricated have dimensions
of @70 mm x 35 mm, with the ratio of length to radius being 2:1.
This ratio is close to the optimal length - to - diameter ratio (V/3/2))
for specimens used in SHPB impact tests, enabling the minimization
of end - friction effects and inertial effects (Wang X. et al., 2022).

2.3 Experimental design and results

The test involved the selection of five different impact
pressure levels, namely, 0.10MPa, 0.13MPa, 0.15MPa, 0.18 MPa
and 0.20MPa, for impacting similar specimens of mudstone and
siltstone. Each group underwent three replicate experiments. After
identifying and excluding outliers, a representative test value was
selected from the remaining dataset.

The strain rate at the plateau is determined as the mean strain
rate of the rock in this test, when the strain rate-time curve
reaches a steady state (Wu J. H. et al., 2024). The data processing
method is illustrated in Figure 3, and the final test results are
presented in Table 4.

3 Analysis of test results
3.1 Dynamic stress-strain curve analysis

The dynamic stress-strain curve of the weakly cemented rock-
like material specimen is depicted in Figure 4. For both mudstone-
like material and siltstone-like material, the general trend of the
curve follows an initial rise, reaching a peak, and then declining.
During the initial stage of stress growth, the majority of curve
segments exhibit linear elastic behavior, indicating a certain degree
of positive correlation between them. The specimen also attains a
state of uniform stress and strain. However, at this juncture, the stress
level is insufficient to induce crack expansion in the rock specimen;
instead, it can only propagate minimally along existing micro-
cracks. The elastic modulus observed during this stage can serve as
an appropriate dynamic elastic modulus for mudstone and siltstone.
With the escalation of stress, micro-cracks progressively propagate
and new cracks emerge, which are not interconnected with the
primary cracks, leading to a transition into plastic deformation. As
stress continues to intensify, crack propagation accelerates rapidly
and microcracks link up with the main crack. During this stage,
there is a change in slope on the stress-strain curve indicating a
non-linear relationship until reaching peak stress. Subsequently,
the slope of the stress-strain curve decreases due to macroscopic
failure caused by rock cracking, resulting in diminished load-
bearing capacity.
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TABLE 4 The dynamic impact test results of rock-like specimens.

Similar material Impact pressure (MPa) Impact speed (m/s) Strain rate (s™) Dynamic compressive
strength (MPa)
0.10 573 149.17 23.07
0.13 9.35 166.88 26.51
Mudstone-like material 0.15 11.17 217.60 29.82
0.18 13.03 256.53 34.90
0.20 14.64 315.92 37.36
0.10 7.17 116.36 29.50
0.13 9.56 146.47 38.67
Siltstone-like material
0.15 10.77 182.31 52.72
0.18 12.95 226.83 71.36
40 80
= Mudstone
70k ® Siltstone
30 +
60
~ <
£ s
e S S0t
z 201 g
g 72
»n v=14.64m/s 40 -
—v—v=13.03m/s
10 —A—v=11.17m/s 30 F
——v=9.35 m/s
—8—v=5.73 m/s
20 1 1 1 1 1 1
" , , , 100 150 200 250 300 350
0.00 0.02 0.04 0.06 Strain rate (s'l)
Strain
(a) FIGURE 5
The relationship between dynamic compressive strength and
strain rate.
120
—a—v=7.17 m/s
v=14.40m/s
100 —v—v=12.95m/s
A—v=10.77m/s TABLE 5 The relationship between compressive strength under dynamic
—8—v=9.56 m/s loading and strain rate.
= 80
& Rock  Formula ‘ A B c ‘ R? ‘
E’ 60
% Mudstone 46.04924 | -54.23277 | -0.00587 | 0.99969
e Ope =
b~ A+ Be®
40 Siltstone e -285.78 | 274.94 0.00115 0.99976
20
0 ) ! ) ) ) ) ) | Compared to the curves of siltstone-like material and mudstone-
0.000 0.002 0.004 0.006 0.008 like material, the stress interval of siltstone-like material is larger,
Strain indicating its superior hardness and dynamic impact resistance
(b) compared to mudstone. This trend becomes more pronounced
with increasing speed. Additionally, the stress flattening stage of
FIGURE 4 . . . . . . .
Typical dynamic stress-strain curve: (a) mudstone-like material, (b) mudstone is brief and immediately declines after reaching its peak,
siltstone-like material. whereas siltstone exhibits a prolonged period of stress flattening
following the peak. Moreover, the flattening stage in siltstone shows
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TABLE 6 Calculation results for the dynamic impact energy of Similar material.

Similar Impact Impact Strain rate Incident Reflected Transmitted  Dissipated
material pressure speed (m/s) (s energy (J) energy (J) energy (J) energy (J)
(MPa)
0.10 5.73 149.17 48.1 40.2 14 6.5
0.13 9.35 166.88 73.1 58.2 2.7 122
Mudstonfe—like 0.15 11.17 217.60 97.6 75.5 34 18.7
material
0.18 13.03 256.53 1283 95.3 3.9 29.1
020 14.64 315.92 161.1 117.8 5.8 37.5
0.10 7.17 116.36 37.2 284 2.1 6.7
0.13 9.56 146.47 81.3 61.9 38 15.6
Siltstone-like 0.15 1077 18231 914 63.5 8.2 197
material
0.18 12.95 226.83 129.7 86.7 11.9 321
020 14.40 329.62 151.9 101.2 9.4 413
strength of specimens and the strain rate. It is observed
40 o Siltstone that weakly cemented materials tend to harden at higher
®  Mudstone strain  rates, exhibiting exponential growth beyond a
35 certain threshold.
The two materials exhibit distinct disparities. The dynamic
~
L:‘/ 30F s compressive strength of mudstone demonstrates a gradual and
& ’s on-zgx -1.29x+1.65 relatively stable growth trend with an increase in strain rate, owing
b5 i R*=0.998 to its soft nature and limited strength. Conversely, siltstone material
B 20 displays an overall growth pattern that is notably faster, as evidenced
S L
B by the transition of the relationship function’s B value from negative
w2 e
A 15F y=0.35x2-3.36x+15.63 to positive.
R’=0.998
10 . . . . .
3.3 Energy dissipation relationship analysis
5 1 1 1 1
6 9 12 15 The bullet impacts the incident bar with a specific velocity,
Impact speed (m/s) resulting in the transfer of impact kinetic energy carried by the
HIGURE 6 bullet, as follows:

The relationship between impact velocity and dissipated energy.

a significant increase and gentler decline compared to that observed
in mudstone. These observations can be attributed to the fact that
siltstone does not undergo immediate destruction after reaching its
stress peak, highlighting its higher yield strength when compared
to mudstone.

3.2 Dynamic compressive strength analysis
The dynamic compressive strength of rocks directly reflects

their resistance to external impact loads. Figure5 and Table 5
illustrate the relationship between the dynamic compressive
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Wy = 22 )

where W), represents the impact kinetic energy of a bullet, J; m
represents the mass of the bullet, kg; and v, represents the impact
velocity, m/s.

The energy carried by the incident stress wave is as follows:

W= AeEeCeJtsZ(t)dt (5)
0
where A, represents the cross-sectional area of the press bar, m?% E,
represents the elastic modulus of bar; C, represents the longitudinal
wave velocity; and &(f) represents the strain corresponding to the
stress wave during the loading time.
The calculation formula for incident energy W, transmitted
energy W, and reflected energy Wy during the test is as follows:
t

W, = AeEecejoef(t)dt (6)
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G
FIGURE 7
The failure patterns of specimens at different impact velocities: (a) Mudstone-like material, p = 0.10MPa, (b) Mudstone-like material, p = 0.13MPa, (c)
Mudstone-like material, p = 0.15MPa, (d) Mudstone -like material, p = 0.18MPa, (e) Mudstone -like material, p = 0.20MPa, (f) Siltstone-like material, p =
0.10MPa, (g) Siltstone-like material, p = 0.13MPa, (h) Siltstone-like material, p = 0.15MPa, (i) Siltstone-like material, p = 0.18MPa, (j) Siltstone-like
material, p = 0.20 MPa.

t
W= AeEeCeJ (Hdt @)
0

W= AeEeCeI;ezT(t)dt 8)
where ¢(f) represents the incident wave; ey(f) represents
the reflected wave; and &(f) represents the transmission
wave of strain.

Dissipation energy of the test specimen equals incident wave
energy minus reflected and transmitted wave energies, as follows:

Wp=W;—(Wi+ W) 9)

The incident energy, reflected energy, and dissipated energy
of the two rocks were computed using formulas 4-9, and the
corresponding results are presented in Table 6.

The dissipated energy of rocks exhibits a velocity-dependent
effect on impact. As the impact velocity increases, the dissipated
energy of rocks also increases. A strong quadratic linear correlation
exists between the dissipated energy of mudstone and siltstone and
the impact velocity. This can be attributed to the fact that both
the development and penetration of internal micro-cracks during
specimen impacts require energy consumption, with higher energy
consumption observed during crack generation compared to their
subsequent development and penetration processes. Consequently,
when subjected to low external impacts, minimal energy is
generated resulting in tiny cracks within the specimen. At this
stage, both absorbed energy by the specimen and its degree of
damage remain low. However, as impact velocity rises, so does the
generated energy which activates cracks requiring more substantial
amounts of energy until complete fracture occurs in specimens (as
depicted in Figure 6).
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3.4 Failure blocks analysis

The failure morphology of the specimen under different impact
velocities is illustrated in Figure 7. As can be seen from the figure, the
mudstone specimen has been completely broken under the impact
pressure of 0.10MPa, with uneven distribution of fragments. The
siltstone specimen was completely broken under the impact pressure
of 0.13MPa, and the fragment distribution was relatively uniform,
which was basically large particle size and larger than mudstone.
When the impact pressure increased to 0.18MPa, there were almost
no large particle size fragments, and small particle size fragments
began to appear in a large area. Compared with mudstone and
siltstone, the fragmentation degree of siltstone is stronger than that
of mudstone under similar impact strength.

The failure mode of rock changes from tensile failure to tension-
shear coupling failure with the increase in impact velocity. In order
to analyze the impact of velocity on the degree of damage in
mudstone and siltstone, a statistical analysis of rock fragments was
conducted following the impact test. Building upon Wang Chun’s
method (Gao et al., 2024) for measuring rock fragment size, it is
noted that when fragmentation is minimal, its statistical significance
becomes less pronounced. Therefore, a standard length greater than
35 mm was adopted for broken rock fragments and subsequent
counting. The relationship between the number of damaged rock
blocks, the maximum length of rock blocks, and the impact velocity
is illustrated in Figure 8.

The analysis of Figure 8 reveals that the number of rock
blocks with a block size greater than 35 mm exhibits a quadratic
relationship with increasing impact velocity. Simultaneously, the
maximum length of broken rock blocks demonstrates a quadratic
decrease as impact velocity increases, indicating a reduction in
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FIGURE 8 The fragmentation distribution of similar material specimens at various
The relationship among the quantity of damaged rock mass, the impact velocities: (a) Mudstone -like material, (b)
maximum length of rock mass, and the impact velocity: (a) Quantity Siltstone-like material.
and impact velocity of the damaged rock mass, (b) Maximum length of
a rock block and impact velocity.

rock failure block size with higher impact velocities. At lower
impact speeds, only minimal energy is sufficient to cause slight
fragmentation in the rock sample. However, as impact velocity rises,
the degree of fragmentation intensifies and multiple occurrences of
tensile shear failure result in the formation of macroscopic fracture
surfaces. This further enhances the level of fragmentation within
the rock samples and ultimately leads to decreased block sizes post-
failure.

The fractal characteristics of rocks can provide insights into the
fracture mechanism of rocks. To investigate the fracture mechanism
of sandstone under varying impact rates, we employed a particle
size classification method to conduct an in-depth analysis of the
experimental observations. Specifically, we statistically measured the
longest edge of broken rock fragments and weighed the accumulated
mass of fragments across different particle sizes, establishing
a relationship between these two variables. The fragmentation
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distribution patterns for mudstone and siltstone under different
impact velocities are illustrated in Figure 9, while Figure 10 depicts
the ln[M(R) /MT] —InR curve for a representative rock specimen.
Additionally, we calculated the fractal dimension using formulas 10,
11 (WuJ. H. et al., 2024).

M
b ln[M_T] (10)
"~ InR
D=3-b (11)

where b represents the slope of the fitting function in the
double logarithmic coordinate system of ln[M(R)/MT] = InR; My,
represents the particle size less than R accumulated debris quality;
M represents the sample quality; and D represents the fractal
dimension of the sample fragments.

The fractal dimension of rock fragments increases as a quadratic
function with the increase of impact velocity, as shown in Figure 11,
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indicating that the fragmentation degree of mudstone and
siltstone also increases correspondingly. Based on the macroscopic
morphology analysis of typical rock breakage under different
impact velocities, it can be concluded that higher impact velocities
result in increased load and energy absorption by the rock
sample, leading to enhanced crushing degree. Therefore, fractal
dimension serves as a quantitative index for describing fracture
characteristics and reflecting the extent of rock sample fractures.
Through advanced drilling sampling and SHPB test analysis,
the anticipated fractal dimensions of fractures in the roof rocks
across various sections ahead of the roadway can be determined.
Subsequently, by differentiating these fractal dimensions, support
designs tailored to specific roof sections can be developed. This
approach enables a more scientific alignment with the rock mass
conditions, thereby achieving an optimal balance between safety
and economic efficiency.

The relationship between the fractal dimension of rock sample
fragments and dissipated energy exhibits an exponential pattern, as
illustrated in Figure 12. As dissipated energy increases, the fractal
dimension of rock progressively rises due to the absorption of
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energy during crack formation. Moreover, escalating impact velocity
intensifies rock damage, necessitating a greater amount of absorbed
energy for crack propagation until complete failure.

4 Conclusion

Based on the comprehensive experimental investigation
using the Split Hopkinson Pressure Bar (SHPB) system and
subsequent detailed analyses of mechanical response, failure modes,
fragmentation, and energy dissipation, the following principal
conclusions are drawn regarding the dynamic behavior of weakly
cemented siltstone and mudstone:

(1) The two rock materials exhibit a pronounced strain rate effect,
indicating an exponential increase in dynamic compressive
strength and strain rate. Moreover, the dynamic compressive
property of sandstone is significantly superior to that of
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mudstone as the strain rate increases. At equivalent impact

velocities, mudstone demonstrates greater ductility but lower

yield strength compared to siltstone.
(2) Under low strain rates, the rock specimen exhibits splitting
failure with a relatively mild degree of failure and maintains
certain integrity. Typically, the specimen initially cracks from
the side before experiencing complete failure. As the strain
rate increases, the failure mode gradually transitions from
splitting to crushing failure, resulting in a small but noticeable
increase in fragment count. Additionally, siltstone fragments
are significantly larger than mudstone materials. The fractal
dimension of rock fragments under impact loads follows a
quadratic function as impact velocity increases.
(3) With an increase in impact velocity of 9 m/s, the energy
dissipation rate of mudstone exhibited a significant rise of
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9.3%, from 13.5% to 24.8%. Similarly, the energy dissipation
rate of siltstone also experienced a notable increase of 9.1%,
from 18.1% to 27.2%.
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