

OPEN ACCESS

EDITED AND REVIEWED BY Ming Li, University of Maryland, United States

*CORRESPONDENCE

Anna Olivé Abelló

anna.olive-abello@univ-grenoble-alpes.fr Francisco Machín

RECEIVED 08 October 2025 ACCEPTED 13 October 2025 PUBLISHED 24 October 2025

CITATION

Olivé Abelló A and Machín F (2025) Editorial: Physical processes in the Southern Ocean: dynamics, interactions, and climate change. Front. Mar. Sci. 12:1720638. doi: 10.3389/fmars.2025.1720638

COPYRIGHT

© 2025 Olivé Abelló and Machín. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Physical processes in the Southern Ocean: dynamics, interactions, and climate change

Anna Olivé Abelló 1* and Francisco Machín 2*

¹Université Grenoble Alpes/CNRS/IRD/INRAE/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France, ²Oceanografía Física y Geofísica Aplicada (OFyGA), IU-EcoAqua, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

KEYWORDS

Southern Ocean (SO), physical oceanographic processes, observational oceanography, submesoescale instabilities, long-term temperature records, Antarctic sea ice, ocean heat loss, ERA5

Editorial on the Research Topic

Physical processes in the Southern Ocean: dynamics, interactions, and climate change

With great pleasure, we introduce this Frontiers in Marine Science Research Topic dedicated to the physical processes of the Southern Ocean and their connections to global climate variability. The Southern Ocean plays a central role in regulating Earth's climate, acting as a key gateway for the exchange of heat, freshwater, gases, and nutrients between polar regions and lower latitudes. It is also the birthplace of some of the densest water masses in the global ocean, tightly coupling surface processes with abyssal circulation. Despite its importance, this ocean remains among the least observed and least understood regions of the planet, making sustained efforts in modeling, observations, and innovative techniques essential to advancing our understanding.

This Research Topic brings together five contributions that reflect the diversity of approaches and questions currently being addressed in Southern Ocean physical oceanography.

First, Ferris et al. investigate how topographic forcing modulates submesoscale instabilities in the Antarctic Circumpolar Current (ACC). Using a high-resolution hindcast model of the Drake Passage and Scotia Sea region, they reveal how symmetric and centrifugal instabilities can arise near continental slopes and seamounts, facilitating vertical mixing in regions of low potential vorticity. Specifically, the model suggests that both types of subsurface instabilities are widespread along the northern continental margins of the ACC and develop as a result of topographic shearing of the anticyclonic side of Polar Front jets.

Then, Werner-Pelletier et al. present a technological innovation and methodological advance in observational oceanography. By deploying 3D-printed hydrodynamic sensor housings aboard the historic sailing vessel *Pen Duick VI* during the Ocean Globe Race (2023–2024) to mitigate physical disturbances, and combining it with an automated filtering technique based on wavelet-based denoising algorithm, they demonstrate how opportunity vessels can provide high-quality sea surface temperature and salinity data in undersampled regions of the Southern Ocean.

Olivé Abelló and Machín 10.3389/fmars.2025.1720638

Luengo-S et al. analyze long-term seawater temperature records (2015-2024) at Livingston and Deception Islands, highlighting the interplay between regional climate trends, glacial melt, and local volcanic activity. Their decade-long dataset reveals consistent warming signals and pronounced seasonality, underlining the combined influence of large-scale drivers and local geophysical processes in shaping thermal variability across the South Shetland Islands. The contrasting patterns between both islands also reveal how local topography and volcanic dynamics modulate the regional oceanic response to atmospheric warming and freshwater fluxes.

Guo et al. examine decadal transformations in Antarctic sea ice modes, documenting a significant transition from growth (1.7% per year) to widespread decline (an overall average of -4.6% per year) in the past decade across most of the Southern Ocean, except the Amundsen Sea. Their Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD)-based analysis, over the period 2014-2023, links these changes to rising sea surface and surface air temperatures, and points to a shift in dominant patterns of variability, with critical implications for understanding tipping elements in the climate system.

Finally, Machín and Olivé Abelló use ERA5 reanalysis output (1980–2024, focusing on March–October) to quantify long-term reductions in oceanic heat loss over the four main dense-water formation regions of Antarctica. Their results reveal a consistent and marked decline since the mid-2010s across all four regions, particularly in the Weddell Sea (-32%), and identify a weakening of turbulent heat exchanges driven by decreasing sensible heat fluxes, which is directly associated with notable increases in 2-m air temperature (atmospheric warming) as a key mechanism reducing dense shelf water production.

Together, these contributions expand our understanding of how the Southern Ocean interacts with the atmosphere, sea ice, and topography, and how these processes are evolving under the influence of anthropogenic global warming.

We would like to express our sincere gratitude to all contributing authors for their high-quality work, and to the reviewers for their careful assessments that ensured the rigor of this Research Topic. We also extend our thanks to Dr. Donglai Gong, who supported the editorial process of one of the manuscripts and whose expertise helped improve the final outcome.

As editors, we hope this Research Topic not only advances the state of knowledge but also encourages further interdisciplinary collaboration in the study of the Southern Ocean. By deepening our understanding of its processes and variability, we are better prepared to anticipate the far-reaching consequences of ongoing climate change.

Author contributions

AOA: Writing – review & editing, Writing – original draft. FM: Writing – original draft, Writing – review & editing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative Al statement

The author(s) declare that Generative AI was used in the creation of this manuscript. The authors used generative AI tools to assist with language refinement and editorial suggestions during manuscript preparation.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.