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As plastic pollution continues to escalate, the widespread presence and potential

hazards ofmicroplastics as an emerging global contaminant have drawn increasing

attention. In natural environments, microplastic surfaces are prone to colonization

by microbial biofilms composed of microorganisms and extracellular polymeric

substances (EPS), forming a distinct microecosystem known as the plastisphere.

This process not only modulates the physicochemical properties and

environmental behavior of microplastics but also significantly changes their

ecotoxicity. This paper systematically reviews the biofilm formation process on

microplastic surfaces, the succession dynamics of microbial communities, and the

key environmental and material factors influencing microbial colonization. On this

basis, the regulatory modulates of biofilm formation on the physicochemical

properties and environmental behavior of microplastics are analyzed, as well as

their effects on bioavailability and ecotoxicological effects. Although there has

been an increasing number of studies on the ecotoxicity of microplastics in recent

years, most experiments are still limited to the pristine microplastics, that fail to

reflect their realistic environmental exposure status. Therefore, this review

emphasizes the necessity of incorporating biofilm-coated microplastics into

toxicological assessments, to better simulate actual environmental conditions

and to elucidate their synergistic roles in compound pollution scenarios.
KEYWORDS

microplastics, biofilm, microbial community, plastisphere, ecotoxicity
1 Introduction

Plastics are widely used across various industries due to their light weight, durability, and

low production cost (Adeleke, 2023), which has significantly contributed to the process of

industrialization (PlasticsEurope, 2019). In recent years, plastic pollution has become a global

environmental issue (Zhang et al., 2021b), among which microplastics with a particle size of
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less than 5 mm have become an emerging pollutant in the ecosystem

due to their small particle size, diverse sources, and strong persistence

(Geyer et al., 2017; O'brien et al., 2023). With the intensification of

human activities, microplastics have become widely present in

oceans, freshwater, soil, and atmosphere (Chen et al., 2023; O'brien

et al., 2023), and have even been detected in remote and pristine

regions such as the Arctic Ocean (Kanhai et al., 2020). At the same

time, it has been detected in animals (Rebelein et al., 2021; Rakib

et al., 2023), plants (Li et al., 2020), and even human tissues (Amato-

Lourenco et al., 2021; Nor et al., 2021; Leslie et al., 2022). This

widespread presence underscores the high environmental mobility

and bioavailability of microplastics (Liu and Zheng, 2025). Moreover,

their large specific surface area, surface hydrophobicity, and high

adsorption capacity (Raddadi and Fava, 2019), enable them to act as

carriers for persistent organic pollutants, heavy metals, and

antibiotics (Sorensen et al., 2020; An et al., 2023), which enhance

the bioavailability and toxicity of these contaminants (Wang et al.,

2019b; Eze et al., 2024), and threatens ecosystem health. Therefore,

microplastic pollution has become an urgent global environmental

challenge. Although there is an increasing number of studies on

the environmental behavior and ecotoxicity of microplastics, most

experiments still focus onmicroplastics in the pristine state, making it

difficult to accurately reflect their true exposure forms in the natural

environment. In reality, microplastics are highly susceptible to

microbial colonization once they enter the environment, and their

surfaces rapidly develop biofilms composed of bacteria, fungi, algae,

and extracellular polymeric substances (EPS). This attachment

process not only modulates the surface physicochemical properties

and migration behavior of microplastics, but also establishes a unique

microecosystem called the "plastisphere" (Zettler et al., 2013; Amaral-

Zettler et al., 2020). This interfacial zone between microplastics and

biofilm not only reflects the ecological niche properties of

microplastics, but also serves as a critical site for pollutant

adsorption, accumulation, transformation, and release, all of which

may significantly influence the bioavailability and environmental

toxicity of microplastics.

In recent years, the structural characteristics, ecological

functions and roles of microbial communities at microplastic

interfaces in the process of compound pollution have attracted

increasing attention. Studies have shown that the formation of

biofilms is driven by environmental factors (e.g., temperature,

nutrient level, pH) and microplastic characteristics (e.g., material,

surface roughness, polarity, etc.), and plays an important role in

regulating the adsorption, release and toxic behavior of pollutants.

However, most existing reviews focus solely on ecotoxicity, and

there is still a lack of systematic integrated review of "biofilm-coated

microplastic". In view of this, this paper takes the biofilm-coated

microplastics as the core research unit to systematically sort out the

formation mechanism of biofilm, the succession characteristics of

microbial communities, and the complex's regulatory function on

the environmental behavior of pollutants, and further explore its

key role in the bioavailability and toxicity mechanisms. Ultimately,

this work seeks to deepen understanding of the environmental risks

of microplastics and provide theoretical support for research into

compound pollution and ecotoxicity.
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We performed a bibliometric analysis of relevant literature

(2023-2025) using VOSviewer (v1.6.19) based on the Web of

Science database. Based on the keywords "microplastic biofilm",

"plastisphere" and "microplastic microorganisms", the analysis

identified 4,389 unique keywords in total, of which 83 met the

minimum occurrence threshold of 20. The red cluster focuses on

keywords including "toxicity", "oxidative stress" and "adsorption",

emphasizing interactions between microplastics and pollutants

alongside and their ecotoxicological effects. The green cluster

highlights terms like "antibiotic resistance", "wastewater

treatment" and "public health", reflecting growing research

interest in biofilm-coated microplastics as vectors for antibiotic

resistance genes (ARGs) and human health risks. Meanwhile, the

blue cluster covers technical terms such as "network analysis" and

"machine learning", suggesting the increasing application of multi-

omics and computational approaches to resolve complex

microplastic related systems. Collectively, the network diagram

(Figure 1) demonstrates the multidimensional of microplastics

research, spanning pollution behavior mechanisms, microbial

ecological responses, and health risk assessments.

2 Formation of biofilm on the surface
of microplastics and succession of
microbial communities

2.1 Biofilm formation process on the
surface of microplastics

In natural environments, microplastics readily serve as

substrates for microbial colonization. The development of

biofilm-coated microplastics is a dynamic and multi-phased

process (Du et al., 2022), which usually includes initial

attachment, irreversible attachment, biofilm maturation, and

detachment (Datta et al., 2016). Microplastic surfaces exhibit

strong hydrophobicity, and rapidly adsorb dissolved organic

matter in aquatic environments, forming an organic adsorption

layer, that facilitates initial microbial colonization. During early

colonization, pioneer bacteria reversibly adhere to the plastic

surface, forming loose multicellular aggregates (Harrison et al.,

2014; Quero and Luna, 2017), which constitute the first stage of

biofilm development. As pioneer bacteria, their metabolic activity

and EPS secretion gradually reduced surface hydrophobicity of the

plastic (Tu et al., 2020), promoting stable microbial binding.

Secondary colonizers enhance irreversible adhesion via surface

structures (e.g., fimbriae, adhesion proteins), creating ecological

niches for subsequent microbial populations (Dussud et al., 2018;

Yang et al., 2020). The continuous introduction, loss and

replacement of species in the community led to the dynamic

succession of microbial composition, and finally formed a mature

and functionally complex microbial community structure. Due to

the significant differences in physical and chemical conditions,

biological resources and disturbance intensity in environmental

media, the colonization process and community structure of

microplastic biofilms showed high variability in different
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environments. To further understand the differences in ecological

behavior, Table 1 summarizes the main characteristics of

microplastic biofilms in different environments.

Across environmental media, microplastics rapidly develop

surface-attached microbial communities that evolve into biofilms

upon environmental exposure. Current research, however, remains

predominantly focused on aquatic environments, where substantial

data exist regarding microbial colonization dynamics and ecological

impacts. Most available studies in these systems are limited to

description (Domozych and Domozych, 2008; Liu et al., 2024),

lacking systematic characterization of biofilm community structure,

functional potential, and ecological roles. Therefore, fundamental

aspects including biofilm evolution processes in non-aqueous

environments, synergistic pollutant adsorption capacities, and

associated ecosystems impacts require in depth investigation.
2.2 Microbial community assembly in
microplastic biofilms

The assembly mechanisms governing microbial communities

within microplastic biofilms are fundamental to understanding

their structural development and functional evolution. These

processes not only determine microbial diversity and community

stability but also underpin successful biofilm colonization on

heterogeneous surfaces. Current theoretical frameworks center on
Frontiers in Marine Science 03
two paradigms: niche theory, which emphasizes deterministic

environmental selection, and neutral theory, which highlights the

role of stochastic processes in community assembly.

Niche theory believes that community structure is determined

by environmental conditions and species physiological traits, with

environmental selection acting as the primary screening mechanism.

Distinct microbial taxa showed significant variation in niche

preference and spatial distribution patterns in response to

pollution-induced environmental stress. For example, Wang et al.

employed high-throughput 16S rRNA gene sequencing to compared

planktonic archaea and their predominant taxa, Marine Group I

(MGI) and Marine Group II (MGII), across varying environmental

gradients. Their results showed that the selection processes

predominantly governed the assembly of these three archaeal

communities, with salinity and nutrient availability identified as

key influencing factors. These findings support the central role of

niche theory in shaping microbial community structure (Li et al.,

2021b). Similarly, Sun et al. collected and analyzed bacterial

communities in different ecological niches (including water,

sediment, and plant root foliage) in artificial lakes. They found that

niche type exerted a significantly stronger influence on community

diversity and structure than pollution intensity, Moreover, specific

ecological niches, such as sediments and plant-associated interfaces,

exhibited more complex and structured community networks,

reflecting a clear environmental filtering mechanism. These results

further reinforce niche theory, suggesting that environmental
FIGURE 1

Network visualization for the keywords microplastic biofilm, plastisphere, and microplastic microorganisms.
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TABLE 1 An overview of the main microbial communities on the surface of microplastics in different environments.

Environment type Substrate type Eukaryotes Microbial community Reference

cteria, Pseudomonas fluorescens,
Aeromonas caviae

(Liu et al., 2024)

Proteobacteria,
cteroidota, Roseococcus

(Domozych and Domozych, 2008)

/ (Meng et al., 2024)

ellulaceae, Phycisphaerales,
Cyclobacteriaceae

(Miao et al., 2019b)

yces, Cryptococcus (fungus);
coplana, Erythromicrobium

(bacterium)
(González-Pleiter et al., 2021b)

/ (Di Pippo et al., 2022)

Proteobacteria (Guan et al., 2020)

monas monteilii, Pseudomonas
ocina, Pseudomonas syringae

(Wu et al., 2019)

Cyanobacteria (Miao et al., 2021)

roteobacteria, Firmicutes (Zhao et al., 2024c)

Alphaproteobacteria,
aproteobacteria, Cyanobacteria

(Amaral-Zettler et al., 2021)

acteriaceae, Rhodobacteraceae,
omonadaceae, Vibrionaceae

(Zhang et al., 2024a)

canivorax, Nitratireductor (Chu et al., 2024)

hujaibacter, Rhodanobacter,
ycobacteria EP: Ralstonia

(Tian et al., 2024)

DPE: Methylophaga, PS:
Saccharimonadales,
PET: Sphingomonas

(Chen et al., 2022)

: Bacillus, Sphingomonas
Pseudomonas, Acinetobacter

(Ding et al., 2024)

teobacteria, Cyanobacteria,
Actinobacteria

(Tu et al., 2022)
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Polyvinyl chloride (PVC)
Nitzschia sicula, Mastogloia Corsicana,

M. fimbriate
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PE, PP /
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Poly(3-hydroxybutyrate) (PHB), High-
density polyethylene (HDPE), Low-

density polyethylene (LDPE)

Cryptomonas, Chlamydomonas (algae);
Stentor, Vorticella (ciliates)
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Pennales, Bacillariophyceaea,
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conditions and resource availability are critical factors driving the

assembly of microbial communities on biofilm-coated microplastics

(Sun et al., 2023b). With the deepening of research, the application of

this theory was expanded to the study of new artificial ecological

niches (e.g., microplastic surfaces) generated by human activities. The

surface of microplastics is hydrophobic and nutrient deficient, and

the biofilm community structure on it was markedly different from

that of the suspended communities in the surrounding water column,

showing lower OUT abundance and Shannon diversity index.

Additionally, the non-random distribution of biofilm communities

and functional taxonomic preferences support the dominance of a

species sorting mechanism, indicating that biofilm formation on

microplastics is largely influenced by deterministic niche selection

processes (Besemer et al., 2012). Some studies have pointed out that

the plastisphere can form a stable coexistence pattern by selectively

recruiting specific microbial groups, which is clearly different from

the microbial composition in the natural environment. In addition,

community differences driven by ecosystem background are much

greater than physical attributes between plastics and natural

substrates, and this trend is also reflected in the global microbial

co-occurrence network (Li et al., 2024).

Relatively speaking, the neutral theory emphasizes the

equivalence of species in ecological functions, arguing that

community structure is mainly determined by random processes

such as birth, death, migration, and dispersal (Chen et al., 2019). In

certain plastisphere, non-deterministic processes have been found

to play an important role in community construction. The role of

selective recruitment appears limited. Community assembly is

mainly driven by ecological drift and dispersal restrictions. Early

dominant taxa, such as Proteobacteria, with broad ecological niches,

increase susceptibility to opportunistic colonization. In addition,

hydrodynamic processes such as tides further enhance the

probability of random attachment of microorganisms on plastic

surfaces, reflecting the high randomness of community structure

(Yan et al., 2024). In another study of archaeal communities,

homogeneous dispersal played a dominant role in the assembly of

MGI and MGII communities, with effects 1.63 times and 1.34 times

higher than that of the selection process, respectively. This indicates

that in these archaeal communities, mass effect leads to the

convergence of community structure. The remaining difficult-to-

explain differences in the community may be caused by the

superposition of multiple weak drivers, manifesting as a non-

deterministic random assembly pattern (Wang et al., 2019a).

Accumulating evidence suggests that microbial community

assembly is not attributable to a single mechanism, but instead reflects

the combined influence of deterministic and stochastic factors. It

presents a continuous and unified dynamic balance. Some studies

have found that there is no significant correlation between

environmental factors and species diversity index in the plastisphere,

indicating that the community structure is largely driven by non-

deterministic processes such as ecological drift and dispersal

restrictions. At the same time, compared with non-plastic substrates,

plastic surfaces provide relatively more stable ecological niches, showing

certain environmental selectivity, such as the significant enrichment of

microorganisms associated with plastic degradation on plastic particles,
Frontiers in Marine Science 05
reflecting the directed screening role of functional species (Pang et al.,

2024). In addition, there is differentiation in the response of different

microbial taxa to the assembly mechanism. Studies have shown that

even within the same community, different taxa may be governed by

different mechanisms. Dominant taxa are more likely to be shaped by

environmental selection, whereas rare taxa are primarily influenced by

non-deterministic processes such as ecological drift and dispersal

limitations (Xiang et al., 2022). Another study pointed out that

eukaryotic communities tend to be controlled by homogeneous

selection at specific periods, driven by seasonal changes, while overall

random processes and neutral mechanisms remain dominant. In

addition, the neutral model had a significantly higher fit for bacterial

communities than eukaryotes, indicating that neutral processes have a

stronger explanatory power for bacterial community structure

formation (Huang et al., 2025). Preference for community assembly

mechanisms may also be influenced by organism characteristics. Luan

et al. suggested that differences in microbial size affect their ability to

spread, with small microorganisms more susceptible to random

processes and large microorganisms more affected by environmental

screening (Luan et al., 2020). In complex ecosystems, the dynamic

balance between assembly mechanisms is significantly reshaped. For

example, natural hydrological disturbances can guide communities from

decisive screening to random assembly at different time scales, with

specific manifestations that vary depending on the ecological context,

such as inverse shifts in mechanisms within Mediterranean rivers and

northern streams (Sarremejane, 2018). Continuous environmental stress

often enhances the dominance of decisive mechanisms, leading to

functional stability but reduced structural diversity (Santillan et al.,

2020). In addition, plastics can also profoundly affect community

assembly mechanisms in the environment. Studies have shown that

microplastic introduction increases the relative importance of

deterministic processes, particularly in water and sediment samples.

This effect is likely due to microplastics providing new ecological niches

or altering the local microenvironment, which promotes the selective

colonization of specific microorganisms (Wu et al., 2025). Bacterial

communities on degradable microplastics are more strongly shaped by

deterministic processes, particularly homogeneous selection, compared

with non-degradable microplastics. Material degradation alters the

microenvironment, which enhances environmental filtering, promotes

the colonization of specific microorganisms, and reduces community

diversity (Zhang et al., 2024c). It is worth noting that the influence of

microplastics on bacterial community assembly and succession is not

only affected by their material properties, but also closely related to the

shape of microplastics (e.g., fibers, fragments, particles), which have

different microstructural characteristics, which in turn change the

attachment area and spatial distribution of bacteria, thereby further

regulating the colonization process and community structure of

microorganisms (Wang et al., 2023). In addition, process such as

preferential biological effects and historical contingency are also

thought to play an important role in the early colonization stage of

communities, further increasing the complexity of assembly

mechanisms. The above community assembly process is jointly

regulated by a variety of environmental factors and microplastic

characteristics, and these key influencing factors are systematically

sorted out below.
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2.3 Influencing factors of biofilm formation
on the surface of microplastics

Microbial biofilm formation on microplastics fundamentally alters

their environmental behavior and may amplify ecological risks. The

multifaceted process is governed by complex interactions between

environmental conditions and microplastic properties. To

systematically synthesize current knowledge, we consolidate key

influencing factors and their action trends in Table 2. The formation

of microplastic biofilm is significantly regulated by multiple

environmental factors, mainly including the combined effects of

external environmental conditions and the physicochemical

properties of microplastics. Existing studies have shown that the

initial biomass and diversity on microplastic surfaces are influenced

by both the characteristics of microplastics and the surrounding

environment, although over time the environmental influence may

become more pronounced (Jin et al., 2025). In addition, under

specific environmental backgrounds (such as high salinity and low

nutrition availability), biofilm communities may show certain substrate

specificity. However, this effect is typically governed by environmental

factors and its trend is often unstable. Additionally, microbial

community structures vary significantly across geographic regions,

highlighting the role of spatial heterogeneity in community assembly

within the plastisphere (Oberbeckmann et al., 2018). This conclusion is

also consistent with the results of previous studies in the North Sea (De

Tender et al., 2015).

At the same time, as an important carrier of biofilm colonization,

the inherent physicochemical properties of microplastics profoundly
Frontiers in Marine Science 06
affect the initial attachment and community succession process of

microorganisms. Compared to suspended particles in aqueous

environments, the rough microscale structure of solid microplastics

provides a stable surface for microbial adhesion, facilitating the

development of structurally complete biofilms. The microbial

community structure on microplastics is significantly different from

that of free microorganisms in seawater, and only a few dominant

orders coexist in prokaryotes, and the rest are endemic taxa.

Eukaryotic microorganisms also showed a clear trend of

community differentiation. Although both communities are subject

to seasonal variation, microplastic-associated communities remain

relatively stable, indicating that microplastics provide a consistent

ecological niche for microbes (Davidov et al., 2024). Under the action

of external interference, the microbial community on the surface of

microplastics showed strong resilience, especially the bacterial

community could be quickly rebuilt. The eukaryotic community

showed a trend of decreasing diversity after disturbance, which

may reflect the differences in ecological strategies between the two

communities (Nguyen et al., 2023). In addition, under the same

culture conditions, biofilm formation on the surface of microplastics

is generally faster than that of natural polymers, and the community

succession process is also more rapid, often undergoing multiple

dynamic stages in a short period of time (Zhao et al., 2024c). The

material type of microplastics further shapes the structure and

function of their biofilms. Biofilms on the surface of degradable

plastics (such as PLA) exhibit high robustness and low ecological

vulnerability. In contrast, petroleum-based plastics such as PE form

thicker biofilms, have greater greenhouse gas emission potential, and
TABLE 2 The main factors and mechanisms affecting the formation of biofilm on the surface of microplastics.

Factors Mechanisms Reference

Environmental
factors

Temperature
High summer temperatures enhance microbial growth and metabolism,
accelerating early biofilm colonization.

(Jin et al., 2020; Zhang et al.,
2021a; Song et al., 2024)

Salinity
Salinity alters microbial community structure and selects tolerant strains,
shaping biofilm composition.

(Kesy et al., 2019; Qiang et al.,
2021)

Illumination
Light supports phototrophs (e.g., diatoms, green algae) and stabilizes biofilm
communities.

(Tu et al., 2020; Smith et al.,
2021; Bairoliya et al., 2024; Deng

et al., 2024)

Nourishment
Rich nutrients accelerate microbial proliferation and biofilm growth. Low
nutrients stimulate specific microorganisms, enhancing attachment and
stabilizing biofilm formation.

(Stanley and Lazazzera, 2004;
Arias-Andres et al., 2018a; Li

et al., 2019)

Time
Over time, biofilm morphology and structure become increasingly complex
and diverse.

(De Tender et al., 2017; Guan
et al., 2020; Song et al., 2024)

Substrate type

Substrate type
The rough surface is conducive to the early colonization of biofilms; Provide a
more stable ecological niche.

(Chen et al., 2022; Tkachuk and
Zelena, 2023; Zhao et al., 2024c)

Plastics type
Different plastic properties affect the selective attachment of microorganisms.
The functional tendency to form biofilms is different.

(Chu et al., 2024; Wang et al.,
2024; Yan et al., 2024)

Particle source
Environmentally aged particles generally have biological attachments, which
affect the succession process and function of biofilm bacteria.

(Shan et al., 2022; Rozman et al.,
2023a; Zhao et al., 2024b)

Morphological structure Different morphologies affect the capacity and ecotoxicity of adherent biofilms.
(Lee et al., 2022; Rozman et al.,

2023b)

Particle size
Particle size determines microbial load per unit area, with smaller particles
offering greater surface area.

(Klein et al., 2021)
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carry a higher risk of antibiotic resistance. However, some studies

have also shown that microbial communities on PLA surfaces are

relatively simple and more susceptible to external disturbance,

potentially increasing the risk of pathogen enrichment and

transmission. This suggests that the impact of plastic material type

on biofilm succession may be context-dependent (Yan et al., 2024). In

addition, the physical and chemical properties of plastics determine

their adsorption preference for microorganisms. PP and PE are more

conducive to the development of carbon cycle-related

microorganisms and biofilms, while PET tends to enrich microflora

with plastic degradation potential (e.g., Pseudomonas), further

illustrating the material-dependent selectivity of microplastics in

shaping microbial ecological processes (Wang et al., 2024).
3 Effects of biofilm formation on
microplastics

Beyond biofilm formation mechanisms, the subsequent

environmental feedback effects warrant equal attention. Biofilms

are prone to form on the surface of microplastics in the

environment, which significantly modulates their interface

properties and environmental behavior. The adhesion of biofilm

endows microplastics with new environmental response

characteristics by regulating their surface properties, migration

behavior, and degradation processes. The following section

explains its key impacts from three aspects. During biofilm

formation, microorganisms secrete large amounts of EPS and

metabolites containing polar functional groups (e.g., carboxyl,

hydroxyl, and amino groups). These substances markedly alter

the hydrophilicity, surface charge, and reactivity of microplastics.

As microorganisms colonize microplastic surfaces, clear signs of

aging rapidly emerge, including reshapes in crystallinity, stiffness,

surface roughness, and the colonization of unique microbial taxa.

This indicates a close link between microbial community structure

and the physicochemical properties of microplastics (Mcgivney

et al., 2020). The accumulation of biofilms leads to the gradual

formation of irregular structures such as cracks, holes, and grooves

on the surface, which not only expands the space available for

attachment, but also promotes the expansion and stability of

biofilms (Guan et al., 2020). In addition, the hydrophilicity of

microplastics is enhanced by microbial secretion of organic

matter and degrading enzymes. This effect becomes more

pronounced as biofilms mature (Tu et al., 2020). Increased

hydrophilicity, in turn, accelerates the adsorption of bioorganic

matter, promotes heterogeneous surface deposition, and ultimately

strengthens surface roughness (Bhagwat et al., 2021).

The accumulation of biofilms is usually accompanied by an

increase in the biomass and density of the surface of microplastics,

significantly altering their behavior in water bodies. Microplastics

that originally accumulate at the water-air interface due to

hydrophobicity have reduced buoyancy and gradually settled to

the bottom of the water column or even sediment areas after natural

exposure and biofilm attachment (Lobelle and Cunliffe, 2011). With

the increase of attached biofilm, the density of microplastics
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increased, and the sinking rate was affected by the particle size,

biofilm thickness and loading. Among them, small-sized

microplastics are more likely to lose buoyancy and sink faster

than large-sized microplastics (Fazey and Ryan, 2016).

Interestingly, this process may show periodic "oscillatory"

behavior. As the biofilm load increases, microplastic particles

gradually sink. In deeper zones unfavorable for biofilm growth,

microbial death and respiration reduce the biofilm, decrease particle

density, and increase buoyancy, causing the particles to rise again.

Once back in the shallow chlorophyll-rich water body, the biofilm

re-accumulates and the particles sink again, showing a periodic

cycle of rise and fall (Golubeva and Gradova, 2024). Different types

of microplastics exhibit varying responses. The formation of

biofilms accelerates the sedimentation rate of high-density plastics

such as PET and PVC, while the sinking trend of microplastics with

densities close to water, such as PE or PP, is limited by the structural

properties and composition of biofilms (Kaiser et al., 2017).

However, some studies have shown that biofilm colonization does

not significantly alter the sedimentation behavior of particles in

some scenarios, suggesting that the density change caused by

biofilms may not be sufficient to overcome the buoyancy of the

original plastic, or its effect is limited by the physical properties of

microbial populations and EPS (Jalón-Rojas et al., 2022). In

addition, some scholars have suggested that surfactants produced

by microbial metabolism may affect their vertical migration

pathways and sedimentation stability by regulating the interfacial

tension between microplastics and water bodies (Pete et al., 2023).

Compared with its effect on sedimentation, biofilm adhesion also

provides an alternative migration pathway. It promotes aggregation

with other particles and stable attachment to plants, aquatic

animals, or other biological surfaces, thereby influencing

migration, spatial distribution, and environmental stability

(Kalčıḱová, 2023).

Microplastics in marine environments primarily undergo

degradation through two distinct pathways: abiotic degradation,

driven by physical and chemical factors such as ultraviolet radiation,

oxidation, and mechanical abrasion; and biotic degradation, which

relies on microbial communities that metabolically facilitate the

breakdown and transformation of microplastics (Weinstein et al.,

2016). Studies have shown that biofilms may play a critical protective

role in the photoaging process of microplastics by modulating

photoaging pathways and suppressing the generation of reactive

oxygen species (ROS) (Zhang et al., 2024b). Emerging evidence

demonstrates that plastic-degrading microorganisms preferentially

accumulate on plastic surfaces, suggesting that the formation of

biofilms on plastic surfaces may actively promote plastic degradation

in natural aqueous environments (Pang et al., 2024). To further reveal

the role of biofilms in influencing the stability of microplastics, recent

studies have explored the underlying mechanistic pathways involved in

various degradation processes. For example, on the PS surface, biofilms

can induce oxidative reactions that lead to the formation of oxygen-

containing functional groups, thereby significantly altering their FT-IR

spectral characteristics of the material (Liu et al., 2023b). Moreover,

comparisons of microplastics with and without biofilm colonization

suggest that key bacteria taxa, including Flavobacterium and
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Erythrobacteriummay be crucial to the long-term evolution of biofilm

communities (Gulizia et al., 2025). However, it is worth noting that

Rhusobacter spp. were absent from the microbial consortia associated

with polyethylene degradation, indicating that their ecological function

may exhibit substrate-specific characteristics (Restrepo-Flórez et al.,

2014). Biofilms also showed a significantly influence the release

behavior of plastic additives. Experiments have shown that

microplastics with smaller particle sizes and higher surface roughness

exhibit more pronounced leaching of additives such as FP-127, and this

process is positively correlated with the abundance of specific core

microbial communities (Pan et al., 2025). In addition, biofilm

attachment significantly promotes the release of phthalate additives

such as di(2-ethylhexyl) phthalate (DEHP), and their cumulative

release increases with biofilm development. Although DEHP can be

partially adsorbed and degraded in biofilms, its metabolites (such as

MEHP) may exhibit even higher toxicity, indicating that biofilms may

not fully eliminate additives and might instead amplify the ecological

risks associated with microplastics (Zhao et al., 2024a). In view of the

in-depth research on the microplastic-biofilm system in aquatic

environments, this paper constructs a schematic diagram (Figure 2)

illustrating the environmental changes of microplastics following

biofilm colonization. The diagram focuses on key processes such as

altered migration behavior, pollutant enrichment and ecological risk.

Biofilms not only reshape the environmental behavior of

microplastics (e.g., sedimentation and agglomeration), but also

greatly enhance the ability of microplastics as pollutant carriers and
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pathogen transmission platforms, and significantly improve their

bioavailability and feeding attractiveness, ultimately profoundly

affecting their ecotoxicological effects.
4 Ecotoxicological effects of biofilm-
coated microplastics

Biofilm adhesion makes the surface of microplastics appear

looser and more porous, which is conducive to the capture and

retention of pollutants (Sun et al., 2021). EPS significantly changes

the adsorption properties of microplastics by introducing a variety

of functional groups, thereby enhancing pollutant enrichment and

prolonging their environmental retention time (Liu et al., 2019;

Guan et al., 2020). For example, although biofilm biomass on glass

beads was initially higher than that on LDPE and PLA, biofilms on

the plastic surfaces gradually accumulated over time. This increased

biofilm load enhanced metal adsorption, and the final accumulation

on LDPE and PLA exceeded that on glass beads, indicating that

biofilm adhesion strengthens the pollutant adsorption capacity of

microplastics (Richard et al., 2019). Biofilms on microplastics

frequently accumulate diverse contaminants, including heavy

metals (Forero-López et al., 2022; Xiao et al., 2025), persistent

organic pollutants, and antibiotics (Wang et al., 2022). Moreover,

microbial communities in biofilms can achieve horizontal transfer

of ARGs through close contact, making microplastics an important
FIGURE 2

The adhesion of biofilms in aquatic environments changes the surface properties of microplastics and affects their environmental behavior.
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"pollutant-gene" transmission platform, potentially threatening

aquatic organisms and public health (Arias-Andres et al., 2018b;

Li et al., 2021a). Furthermore, biofilm-coated microplastics act not

only as carriers of pollutants and toxins but also as inducers of

physiological stress in host organisms (Huang et al., 2020)and cause

intestinal microbiota dysbiosis (Jin et al., 2018). To systematically

assess exposure pathways and toxicological effects, Table 3

synthesizes findings across pollutant categories, affected species,

and associated toxic effects.

In addition, the complex has a higher bioavailability. Biofilm-

coated microplastics not only enhance the adsorption capacity of

organic pollutants, antibiotics, and heavy metals, but also improve the

bioavailability of these pollutants through their metabolic activity and

enzymatic reactions. Studies have shown that biofi lm

microorganisms can secrete a variety of intracellular and

extracellular enzymes, such as oxidoreductase and dehydrogenase,

which can convert complex pollutants such as PAHs into small

molecule metabolic intermediates, thereby promoting their uptake by

organisms (Yadav and Chandra, 2020). In addition, some biofilm

formation can also biodegrade the plastic surface by secreting

esterases, lipases, etc., and indirectly release secondary pollutants

such as plasticizers or additives, thereby changing the exposure form

and risk level of pollutants (Behera and Das, 2023). Under specific

environmental conditions, microplastics attached to pollutants are

more likely to stimulate microbial metabolic reactions and accelerate

the transformation of pollutants (Girard et al., 2020). For example,

Fajardo et al. found that biofilm-coated polyethylene microplastics

triggered microbial oxidative stress reactions after exposure to

organic carbon (OCs), suggesting that pollutants may undergo

initial metabolic transformations in biofilms (Bonnineau et al.,

2021). Secondly, biofilm-coated microplastics are more likely to be

ingested by a variety of aquatic organisms, which allows pollutants to

be transmitted across trophic levels of the food chain and may lead to

bioaccumulation. Biofilms are an important food resource in

freshwater ecosystems accumulating metals and organic pollutants,

and their high metabolic activity makes them an important entry

point for pollutants into the food chain (Bonnineau et al., 2021).

Biofilm in rivers can significantly enrich microplastic particles and be

ingested by protozoa, indicating that biofilms not only improve

particle retention, but also increase their bioavailability at low

trophic levels, which may affect their subsequent distribution in the

food chain (Hamann et al., 2024). Studies have confirmed that the

amount of microplastics ingested by fish through the food chain is

significantly higher than that taken directly from water bodies,

indicating that the trophic level transfer pathway of microplastics is

one of the important exposure pathways faced by high-trophic

organisms (Hasegawa and Nakaoka, 2021). Furthermore, biofilm

formation produces an "ecological bait" effect on the surface of

plastic, enhancing its feeding appeal to benthic and zooplankton.

Once microplastics are attached to microorganisms, their feeding rate

is significantly increased. For example, benthic filter feeding animals

have a much higher ability to ingest microplastics coated with E. coli

than pristine microplastics, with average concentrations of 42.360 ±

23.588 no.g⁻¹ and 11.443 ± 0.4 no.g⁻¹, respectively (Fabra et al., 2021).
In addition, the amphipod Orchestia gammarellus significantly
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enhances the breaking strength of biofilm-coated plastics,

producing up to 8.23 fragments per day, indicating that

microplastics are more biologically identified as food after being

biofilm-coated. For fish, although active ingestion of microplastics is

uncommon, the incidence of accidental ingestion "bycatch" increases

significantly when food particles are present nearby, and this

probability rises with fish age. These results suggest that biofilm-

coated microplastics floating in aquatic environments are more likely

to be mistaken for edible prey, thereby increasing their risk of

transmission in the food chain (Yagi et al., 2022). This process not

only increases the risk of ingestion of microplastics, but may also

trigger a "toxicity amplification effect", posing a potential threat to

apex predators and even human health (Hodgson et al., 2018). As

feeding behavior increases, biofilm-coated microplastics more easily

cross the biological barrier and accumulate in the gut, liver, and even

brain tissue. The viscous and functional components of the biofilm

surface can affect the residence time and distribution of microplastics

in the body, inducing microplastics to reside in specific tissues for a

long time. Microplastics have been shown to enter a variety of tissues

through the digestive system, blood circulation, and even across the

blood-brain barrier (Zhu et al., 2023). The presence of biofilms

enhances the interaction between particles and biological interfaces,

which is one of the important factors for enhancing their trans-

barrier migration ability. Studies have further simulated the behavior

of microplastics that adsorb pollutants in the gastric environment,

and found that gastric juice components promote the release of

pollutants on its surface, while changing the physical and chemical

properties of the particles, thereby enhancing their penetration in the

digestive system and the risk of tissue contact (Wu et al., 2023). To

more clearly illustrate the toxicological pathways of biofilm-coated

microplastics in ecosystems, Figure 3 presents the main mechanistic

routes, including pollutant enrichment, pathogen carriage, and

enhanced bioavailability.

Although numerous studies have pointed out that biofilm-coated

microplastics may exacerbate ecotoxicity in the context of compound

pollution, some experiments have found that the formation of biofilms

may alleviate the toxic effects of microplastics, showing certain

bidirectional regulation characteristics. On the one hand, the

attachment of biofilms can effectively alleviate the acute toxicity and

physiological interference caused by microplastics. For example,

biofilm-coated microplastics exhibit lower lethality and physiological

interference effects in a variety of exposure experiments than pristine

microplastics. In zooplankton, biofilm-coated microplastics

significantly reduce individual mortality (Nik Mut et al., 2024). In

fish, biofilm-coated particles also induce less oxidative damage and

metabolic disorders than clean particles (Kelly et al., 2024). After

exposure in to natural water bodies, the biofilm and humus layer

formed by microplastics colonize weaken their ability to enrich

hydrophobic pollutants, thereby attenuating their toxic effects on fish

(Hanslik et al., 2022). In addition, studies on polystyrene microplastics

and nanoplastics of different sizes and surface modifications found that

the acute effects of large-sized particles on the freshwater biofilm

system were significantly reduced after the formation of biofilms,

and the level of oxidative stress induced was significantly lower than

that of exposed particles, further indicating that biofilms have a certain
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TABLE 3 An overview of the adsorption mechanism and ecotoxicological effects of pollutants on biofilm-coated microplastics.
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buffering and protective effect (Miao et al., 2019a). On the other hand,

biofilms may provide nutritional compensation or act as a physical

barrier. In some cases, microorganisms and their metabolites in

biofilms can provide secondary sources of nutrients, slightly

improving the survival rate of feeding organisms (Motiei et al., 2021).

In addition, with the accumulation of biofilms, the roughness and

particle volume of microplastic surfaces increase, whichmay exceed the

feeding threshold of some benthic larvae or small zooplankton,

reducing their ingestion probability (Nik Mut et al., 2024). Therefore,

the formation of biofilm is not simply enhanced or weakened by

toxicity, but its ecological effect is obviously context-dependent, which

is specifically regulated by multiple factors such as the state of the

biofilm (maturity, composition), the nature of pollutants, the

physiological and ecological characteristics of exposed organisms

(such as species, feeding mechanism) and environmental conditions,

which may eventually change the size and mechanism of toxicity.

When assessing the ecological risks of microplastics, the serious

consequences caused by the above multiple factors should be

fully considered.

5 Conclusion and perspectives

This paper provides a systematic review of the formation

process, assembly mechanisms, and key influencing factors of

biofilms on microplastics in different media and further explores

how biofilm encapsulation alters their environmental behavior and

ecotoxicity. The results show that biofilm attachment not only
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significantly changes the physical and chemical properties and

environmental orientation of microplastics, but also profoundly

affects the ecotoxicity risk by affecting the adsorption and release of

pollutants, carrying pathogens and resistance genes, and interfering

with host physiology. It is worth noting that the regulation of

microplastic toxicity by biofilms is not always linearly enhanced,

and its specific effects depend on the composition and structure of

biofilms, environmental conditions and exposure scenarios, and

may show diverse trends such as amplification, mitigation

or neutrality.

At present, the research on biofilm-coated microplastics is still

mainly based on the aquatic environment, while investigations into

biofilm formation and behavior in other environmental media, such

as soil and the atmosphere, remain in their infancy. Moreover,

although existing studies have revealed the significant effects of

biofilm attachment on the toxic behavior of microplastics, several

key challenges remain: Firstly, most experiments are still based on

idealized conditions, and the complex process of multi-factor

coupling in the real environment has not been fully simulated;

Secondly, the research focuses on the adsorption and carriage of

pollutants by microplastics, and lacks a systematic assessment of the

multi-level toxicological reactions induced by biofilm-coated

microplastics in ecosystems. Thirdly, ecotoxicity research is

mainly based on acute exposure, and the understanding of long-

term exposure, bioaccumulation and genetic risks is still weak.

Future research should further focus on the ecological behavior

of biofilm-coated microplastics in the context of compound
FIGURE 3

Mechanism of toxic effects of biofilm-coated microplastic.
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pollution and systematically reveal their environmental trends and

ecotoxicological pathways from multiple levels such as mechanism

of action, dynamic processes to biological effects. At the same time,

research should broaden its environmental scope, enabling in-depth

comparisons of biofilm formation characteristics and ecological

effects in water, soil, and atmospheric systems, thereby establishing

a cross-media risk assessment framework for microplastics. In

addition, the spatio-temporal scale of ecotoxicology research

should be expanded to promote the transformation from short-

term experiments to long-term, cross-generational, and

multitrophic ecotoxicity assessments.
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Hodgson, D. J., Bréchon, A. L., and Thompson, R. C. (2018). Ingestion and
fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus:
Effects of plastic type and fouling load. Mar. pollut. Bull. 127, 154–159. doi: 10.1016/
j.marpolbul.2017.11.057

Huang, S., Wang, H., Tang, Y., Wang, Z., Li, G., and Li, D. (2025). New insights into
the assembly processes of biofilm microbiota communities: Taking the world's largest
water diversion canal as a case study. Sci. Total Environ. 968, 178827. doi: 10.1016/
j.scitotenv.2025.178827

Huang, J.-N., Wen, B., Zhu, J.-G., Zhang, Y. S., Gao, J.-Z., and Chen, Z. Z. (2020).
Exposure to microplastics impairs digestive performance, stimulates immune response
and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata). Sci.
Total Environ. 733, 138929. doi: 10.1016/j.scitotenv.2020.138929
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