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As plastic pollution continues to escalate, the widespread presence and potential
hazards of microplastics as an emerging global contaminant have drawn increasing
attention. In natural environments, microplastic surfaces are prone to colonization
by microbial biofilms composed of microorganisms and extracellular polymeric
substances (EPS), forming a distinct microecosystem known as the plastisphere.
This process not only modulates the physicochemical properties and
environmental behavior of microplastics but also significantly changes their
ecotoxicity. This paper systematically reviews the biofilm formation process on
microplastic surfaces, the succession dynamics of microbial communities, and the
key environmental and material factors influencing microbial colonization. On this
basis, the regulatory modulates of biofilm formation on the physicochemical
properties and environmental behavior of microplastics are analyzed, as well as
their effects on bioavailability and ecotoxicological effects. Although there has
been an increasing number of studies on the ecotoxicity of microplastics in recent
years, most experiments are still limited to the pristine microplastics, that fail to
reflect their realistic environmental exposure status. Therefore, this review
emphasizes the necessity of incorporating biofilm-coated microplastics into
toxicological assessments, to better simulate actual environmental conditions
and to elucidate their synergistic roles in compound pollution scenarios.

KEYWORDS

microplastics, biofilm, microbial community, plastisphere, ecotoxicity

1 Introduction

Plastics are widely used across various industries due to their light weight, durability, and
low production cost (Adeleke, 2023), which has significantly contributed to the process of
industrialization (PlasticsEurope, 2019). In recent years, plastic pollution has become a global
environmental issue (Zhang et al., 2021b), among which microplastics with a particle size of
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less than 5 mm have become an emerging pollutant in the ecosystem
due to their small particle size, diverse sources, and strong persistence
(Geyer et al., 2017; O'brien et al., 2023). With the intensification of
human activities, microplastics have become widely present in
oceans, freshwater, soil, and atmosphere (Chen et al., 2023; O'brien
et al, 2023), and have even been detected in remote and pristine
regions such as the Arctic Ocean (Kanhai et al., 2020). At the same
time, it has been detected in animals (Rebelein et al., 2021; Rakib
et al,, 2023), plants (Li et al., 2020), and even human tissues (Amato-
Lourenco et al,, 2021; Nor et al., 2021; Leslie et al., 2022). This
widespread presence underscores the high environmental mobility
and bioavailability of microplastics (Liu and Zheng, 2025). Moreover,
their large specific surface area, surface hydrophobicity, and high
adsorption capacity (Raddadi and Fava, 2019), enable them to act as
carriers for persistent organic pollutants, heavy metals, and
antibiotics (Sorensen et al., 2020; An et al., 2023), which enhance
the bioavailability and toxicity of these contaminants (Wang et al,
2019b; Eze et al,, 2024), and threatens ecosystem health. Therefore,
microplastic pollution has become an urgent global environmental
challenge. Although there is an increasing number of studies on
the environmental behavior and ecotoxicity of microplastics, most
experiments still focus on microplastics in the pristine state, making it
difficult to accurately reflect their true exposure forms in the natural
environment. In reality, microplastics are highly susceptible to
microbial colonization once they enter the environment, and their
surfaces rapidly develop biofilms composed of bacteria, fungi, algae,
and extracellular polymeric substances (EPS). This attachment
process not only modulates the surface physicochemical properties
and migration behavior of microplastics, but also establishes a unique
microecosystem called the "plastisphere” (Zettler et al., 2013; Amaral-
Zettler et al., 2020). This interfacial zone between microplastics and
biofilm not only reflects the ecological niche properties of
microplastics, but also serves as a critical site for pollutant
adsorption, accumulation, transformation, and release, all of which
may significantly influence the bioavailability and environmental
toxicity of microplastics.

In recent years, the structural characteristics, ecological
functions and roles of microbial communities at microplastic
interfaces in the process of compound pollution have attracted
increasing attention. Studies have shown that the formation of
biofilms is driven by environmental factors (e.g., temperature,
nutrient level, pH) and microplastic characteristics (e.g., material,
surface roughness, polarity, etc.), and plays an important role in
regulating the adsorption, release and toxic behavior of pollutants.
However, most existing reviews focus solely on ecotoxicity, and
there is still a lack of systematic integrated review of "biofilm-coated
microplastic”. In view of this, this paper takes the biofilm-coated
microplastics as the core research unit to systematically sort out the
formation mechanism of biofilm, the succession characteristics of
microbial communities, and the complex's regulatory function on
the environmental behavior of pollutants, and further explore its
key role in the bioavailability and toxicity mechanisms. Ultimately,
this work seeks to deepen understanding of the environmental risks
of microplastics and provide theoretical support for research into
compound pollution and ecotoxicity.
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We performed a bibliometric analysis of relevant literature
(2023-2025) using VOSviewer (v1.6.19) based on the Web of
Science database. Based on the keywords "microplastic biofilm",
"plastisphere” and "microplastic microorganisms”, the analysis
identified 4,389 unique keywords in total, of which 83 met the
minimum occurrence threshold of 20. The red cluster focuses on
keywords including "toxicity", "oxidative stress" and "adsorption”,
emphasizing interactions between microplastics and pollutants
alongside and their ecotoxicological effects. The green cluster
highlights terms like "antibiotic resistance”, "wastewater
treatment” and "public health", reflecting growing research
interest in biofilm-coated microplastics as vectors for antibiotic
resistance genes (ARGs) and human health risks. Meanwhile, the
blue cluster covers technical terms such as "network analysis" and
"machine learning", suggesting the increasing application of multi-
omics and computational approaches to resolve complex
microplastic related systems. Collectively, the network diagram
(Figure 1) demonstrates the multidimensional of microplastics
research, spanning pollution behavior mechanisms, microbial
ecological responses, and health risk assessments.

2 Formation of biofilm on the surface
of microplastics and succession of
microbial communities

2.1 Biofilm formation process on the
surface of microplastics

In natural environments, microplastics readily serve as
substrates for microbial colonization. The development of
biofilm-coated microplastics is a dynamic and multi-phased
process (Du et al., 2022), which usually includes initial
attachment, irreversible attachment, biofilm maturation, and
detachment (Datta et al., 2016). Microplastic surfaces exhibit
strong hydrophobicity, and rapidly adsorb dissolved organic
matter in aquatic environments, forming an organic adsorption
layer, that facilitates initial microbial colonization. During early
colonization, pioneer bacteria reversibly adhere to the plastic
surface, forming loose multicellular aggregates (Harrison et al.,
2014; Quero and Luna, 2017), which constitute the first stage of
biofilm development. As pioneer bacteria, their metabolic activity
and EPS secretion gradually reduced surface hydrophobicity of the
plastic (Tu et al, 2020), promoting stable microbial binding.
Secondary colonizers enhance irreversible adhesion via surface
structures (e.g., fimbriae, adhesion proteins), creating ecological
niches for subsequent microbial populations (Dussud et al., 2018;
Yang et al., 2020). The continuous introduction, loss and
replacement of species in the community led to the dynamic
succession of microbial composition, and finally formed a mature
and functionally complex microbial community structure. Due to
the significant differences in physical and chemical conditions,
biological resources and disturbance intensity in environmental
media, the colonization process and community structure of
microplastic biofilms showed high variability in different
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Network visualization for the keywords microplastic biofilm, plastisphere, and microplastic microorganisms.

environments. To further understand the differences in ecological
behavior, Table 1 summarizes the main characteristics of
microplastic biofilms in different environments.

Across environmental media, microplastics rapidly develop
surface-attached microbial communities that evolve into biofilms
upon environmental exposure. Current research, however, remains
predominantly focused on aquatic environments, where substantial
data exist regarding microbial colonization dynamics and ecological
impacts. Most available studies in these systems are limited to
description (Domozych and Domozych, 2008; Liu et al., 2024),
lacking systematic characterization of biofilm community structure,
functional potential, and ecological roles. Therefore, fundamental
aspects including biofilm evolution processes in non-aqueous
environments, synergistic pollutant adsorption capacities, and
associated ecosystems impacts require in depth investigation.

2.2 Microbial community assembly in
microplastic biofilms

The assembly mechanisms governing microbial communities
within microplastic biofilms are fundamental to understanding
their structural development and functional evolution. These
processes not only determine microbial diversity and community
stability but also underpin successful biofilm colonization on
heterogeneous surfaces. Current theoretical frameworks center on
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two paradigms: niche theory, which emphasizes deterministic
environmental selection, and neutral theory, which highlights the
role of stochastic processes in community assembly.

Niche theory believes that community structure is determined
by environmental conditions and species physiological traits, with
environmental selection acting as the primary screening mechanism.
Distinct microbial taxa showed significant variation in niche
preference and spatial distribution patterns in response to
pollution-induced environmental stress. For example, Wang et al.
employed high-throughput 16S rRNA gene sequencing to compared
planktonic archaea and their predominant taxa, Marine Group I
(MGI) and Marine Group II (MGII), across varying environmental
gradients. Their results showed that the selection processes
predominantly governed the assembly of these three archaeal
communities, with salinity and nutrient availability identified as
key influencing factors. These findings support the central role of
niche theory in shaping microbial community structure (Li et al,
2021b). Similarly, Sun et al. collected and analyzed bacterial
communities in different ecological niches (including water,
sediment, and plant root foliage) in artificial lakes. They found that
niche type exerted a significantly stronger influence on community
diversity and structure than pollution intensity, Moreover, specific
ecological niches, such as sediments and plant-associated interfaces,
exhibited more complex and structured community networks,
reflecting a clear environmental filtering mechanism. These results
further reinforce niche theory, suggesting that environmental
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TABLE 1 An overview of the main microbial communities on the surface of microplastics in different environments.

Environment type

Aquatic environment

Substrate type Eukaryotes Microbial community Reference
Polyethylene (PE), Polypropylene (PP) / Proteobacteria, Pseudomon.as fluorescens, (Liu et al, 2024)
Aeromonas caviae
. . Proteobacteria,
Wetland / Desmids, Diatoms . (Domozych and Domozych, 2008)
Bacteroidota, Roseococcus
Nitzschia sicula, Mastogloi icana,
Polyvinyl chloride (PVC) Hzscia Swu]\; ﬁnf;r?agtzm Corsicana / (Meng et al.,, 2024)
PE, PP y Pirellulaceae, Phycllsphaerales, (Miao et al,, 2019b)
Cyclobacteriaceae
Poly(3-hydroxybutyrate) (PHB), High- Bet. , Crypt fu 3
oly( . ydroxybutyrate) ( ). Hig Cryptomonas, Chlamydomonas (algae); clamyces, CIp ococcus' ( r.lgus) , .
density polyethylene (HDPE), Low- . . Mycoplana, Erythromicrobium (Gonzalez-Pleiter et al., 2021b)
. Stentor, Vorticella (ciliates) X
Lake density polyethylene (LDPE) (bacterium)
PE, Expanded polystyrene (EPS-foam), Pennales, Bacillariophyceaea, y (Di Pippo et al, 2022)
PP Chlorophyceae
Polystyrene (PS) / Proteobacteria (Guan et al., 2020)
PVC y Pseudomqnas monteilii, Pseudo¢onus (Wu et al,, 2019)
mendocina, Pseudomonas syringae
River PVC, Polyethylene terephthalate (PET) Green algae, Diatoms Cyanobacteria (Miao et al., 2021)
PE, Polylactic acid (PLA), PS, Cellulose,
olylactic aci R ( ) clulose / Proteobacteria, Firmicutes (Zhao et al., 2024c)
Hemicellulose
A ia,
PE, EPS-foam, PP, Nylon Alveolata, Stramenopiles, Radiozoa lphap roteo?)acterza i (Amaral-Zettler et al., 2021)
Gammaproteobacteria, Cyanobacteria
F i , R A
Seawater EPS-foam y lavobacteriaceae, hoz'iol{acteruceae (Zhang et al,, 2024a)
Halomonadaceae, Vibrionaceae
PE, PLA / Alcanivorax, Nitratireductor (Chu et al., 2024)

PE, Epoxy Resin (EP)

Coccus, Bacilli, Fusarium

PE : Chujaibacter, Rhodanobacter,
Mycobacteria EP: Ralstonia

(Tian et al., 2024)

LDPE: Methylophaga, PS:

Actinobacteria

Soil LDPE, HDPE, PS, PP, PET / Saccharimonadales, (Chen et al., 2022)
PET: Sphingomonas
PP: Bacillus, Sphingomonas
PP, Tire Wear Particles (TP Di t al., 2024
ire Wear Particles (TP) ! TP: Pseudomonas, Acinetobacter (Ding et a )
Proteobacteria, bacteria,
Atmosphere PET / roteobacteria, Cyanobacteria (Tu et al., 2022)

In this table, EPS-foam denotes expanded polystyrene. Elsewhere, EPS refers to extracellular polymeric substances; "/" denotes data not reported in the cited source.
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conditions and resource availability are critical factors driving the
assembly of microbial communities on biofilm-coated microplastics
(Sun et al., 2023b). With the deepening of research, the application of
this theory was expanded to the study of new artificial ecological
niches (e.g., microplastic surfaces) generated by human activities. The
surface of microplastics is hydrophobic and nutrient deficient, and
the biofilm community structure on it was markedly different from
that of the suspended communities in the surrounding water column,
showing lower OUT abundance and Shannon diversity index.
Additionally, the non-random distribution of biofilm communities
and functional taxonomic preferences support the dominance of a
species sorting mechanism, indicating that biofilm formation on
microplastics is largely influenced by deterministic niche selection
processes (Besemer et al., 2012). Some studies have pointed out that
the plastisphere can form a stable coexistence pattern by selectively
recruiting specific microbial groups, which is clearly different from
the microbial composition in the natural environment. In addition,
community differences driven by ecosystem background are much
greater than physical attributes between plastics and natural
substrates, and this trend is also reflected in the global microbial
co-occurrence network (Li et al., 2024).

Relatively speaking, the neutral theory emphasizes the
equivalence of species in ecological functions, arguing that
community structure is mainly determined by random processes
such as birth, death, migration, and dispersal (Chen et al., 2019). In
certain plastisphere, non-deterministic processes have been found
to play an important role in community construction. The role of
selective recruitment appears limited. Community assembly is
mainly driven by ecological drift and dispersal restrictions. Early
dominant taxa, such as Proteobacteria, with broad ecological niches,
increase susceptibility to opportunistic colonization. In addition,
hydrodynamic processes such as tides further enhance the
probability of random attachment of microorganisms on plastic
surfaces, reflecting the high randomness of community structure
(Yan et al, 2024). In another study of archaeal communities,
homogeneous dispersal played a dominant role in the assembly of
MGI and MGII communities, with effects 1.63 times and 1.34 times
higher than that of the selection process, respectively. This indicates
that in these archaeal communities, mass effect leads to the
convergence of community structure. The remaining difficult-to-
explain differences in the community may be caused by the
superposition of multiple weak drivers, manifesting as a non-
deterministic random assembly pattern (Wang et al., 2019a).

Accumulating evidence suggests that microbial community
assembly is not attributable to a single mechanism, but instead reflects
the combined influence of deterministic and stochastic factors. It
presents a continuous and unified dynamic balance. Some studies
have found that there is no significant correlation between
environmental factors and species diversity index in the plastisphere,
indicating that the community structure is largely driven by non-
deterministic processes such as ecological drift and dispersal
restrictions. At the same time, compared with non-plastic substrates,
plastic surfaces provide relatively more stable ecological niches, showing
certain environmental selectivity, such as the significant enrichment of
microorganisms associated with plastic degradation on plastic particles,
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reflecting the directed screening role of functional species (Pang et al,,
2024). In addition, there is differentiation in the response of different
microbial taxa to the assembly mechanism. Studies have shown that
even within the same community, different taxa may be governed by
different mechanisms. Dominant taxa are more likely to be shaped by
environmental selection, whereas rare taxa are primarily influenced by
non-deterministic processes such as ecological drift and dispersal
limitations (Xiang et al, 2022). Another study pointed out that
eukaryotic communities tend to be controlled by homogeneous
selection at specific periods, driven by seasonal changes, while overall
random processes and neutral mechanisms remain dominant. In
addition, the neutral model had a significantly higher fit for bacterial
communities than eukaryotes, indicating that neutral processes have a
stronger explanatory power for bacterial community structure
formation (Huang et al., 2025). Preference for community assembly
mechanisms may also be influenced by organism characteristics. Luan
et al. suggested that differences in microbial size affect their ability to
spread, with small microorganisms more susceptible to random
processes and large microorganisms more affected by environmental
screening (Luan et al, 2020). In complex ecosystems, the dynamic
balance between assembly mechanisms is significantly reshaped. For
example, natural hydrological disturbances can guide communities from
decisive screening to random assembly at different time scales, with
specific manifestations that vary depending on the ecological context,
such as inverse shifts in mechanisms within Mediterranean rivers and
northern streams (Sarremejane, 2018). Continuous environmental stress
often enhances the dominance of decisive mechanisms, leading to
functional stability but reduced structural diversity (Santillan et al,
2020). In addition, plastics can also profoundly affect community
assembly mechanisms in the environment. Studies have shown that
microplastic introduction increases the relative importance of
deterministic processes, particularly in water and sediment samples.
This effect is likely due to microplastics providing new ecological niches
or altering the local microenvironment, which promotes the selective
colonization of specific microorganisms (Wu et al, 2025). Bacterial
communities on degradable microplastics are more strongly shaped by
deterministic processes, particularly homogeneous selection, compared
with non-degradable microplastics. Material degradation alters the
microenvironment, which enhances environmental filtering, promotes
the colonization of specific microorganisms, and reduces community
diversity (Zhang et al., 2024c). It is worth noting that the influence of
microplastics on bacterial community assembly and succession is not
only affected by their material properties, but also closely related to the
shape of microplastics (e.g., fibers, fragments, particles), which have
different microstructural characteristics, which in turn change the
attachment area and spatial distribution of bacteria, thereby further
regulating the colonization process and community structure of
microorganisms (Wang et al, 2023). In addition, process such as
preferential biological effects and historical contingency are also
thought to play an important role in the early colonization stage of
communities, further increasing the complexity of assembly
mechanisms. The above community assembly process is jointly
regulated by a variety of environmental factors and microplastic
characteristics, and these key influencing factors are systematically
sorted out below.
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2.3 Influencing factors of biofilm formation
on the surface of microplastics

Microbial biofilm formation on microplastics fundamentally alters
their environmental behavior and may amplify ecological risks. The
multifaceted process is governed by complex interactions between
environmental conditions and microplastic properties. To
systematically synthesize current knowledge, we consolidate key
influencing factors and their action trends in Table 2. The formation
of microplastic biofilm is significantly regulated by multiple
environmental factors, mainly including the combined effects of
external environmental conditions and the physicochemical
properties of microplastics. Existing studies have shown that the
initial biomass and diversity on microplastic surfaces are influenced
by both the characteristics of microplastics and the surrounding
environment, although over time the environmental influence may
become more pronounced (Jin et al., 2025). In addition, under
specific environmental backgrounds (such as high salinity and low
nutrition availability), biofilm communities may show certain substrate
specificity. However, this effect is typically governed by environmental
factors and its trend is often unstable. Additionally, microbial
community structures vary significantly across geographic regions,
highlighting the role of spatial heterogeneity in community assembly
within the plastisphere (Oberbeckmann et al., 2018). This conclusion is
also consistent with the results of previous studies in the North Sea (De
Tender et al.,, 2015).

At the same time, as an important carrier of biofilm colonization,
the inherent physicochemical properties of microplastics profoundly

10.3389/fmars.2025.1701766

affect the initial attachment and community succession process of
microorganisms. Compared to suspended particles in aqueous
environments, the rough microscale structure of solid microplastics
provides a stable surface for microbial adhesion, facilitating the
development of structurally complete biofilms. The microbial
community structure on microplastics is significantly different from
that of free microorganisms in seawater, and only a few dominant
orders coexist in prokaryotes, and the rest are endemic taxa.
Eukaryotic microorganisms also showed a clear trend of
community differentiation. Although both communities are subject
to seasonal variation, microplastic-associated communities remain
relatively stable, indicating that microplastics provide a consistent
ecological niche for microbes (Davidov et al., 2024). Under the action
of external interference, the microbial community on the surface of
microplastics showed strong resilience, especially the bacterial
community could be quickly rebuilt. The eukaryotic community
showed a trend of decreasing diversity after disturbance, which
may reflect the differences in ecological strategies between the two
communities (Nguyen et al., 2023). In addition, under the same
culture conditions, biofilm formation on the surface of microplastics
is generally faster than that of natural polymers, and the community
succession process is also more rapid, often undergoing multiple
dynamic stages in a short period of time (Zhao et al.,, 2024c). The
material type of microplastics further shapes the structure and
function of their biofilms. Biofilms on the surface of degradable
plastics (such as PLA) exhibit high robustness and low ecological
vulnerability. In contrast, petroleum-based plastics such as PE form
thicker biofilms, have greater greenhouse gas emission potential, and

TABLE 2 The main factors and mechanisms affecting the formation of biofilm on the surface of microplastics.

Mechanisms

High summer temperatures enhance microbial growth and metabolism,

Salinity alters microbial community structure and selects tolerant strains,

Light supports phototrophs (e.g., diatoms, green algae) and stabilizes biofilm

Rich nutrients accelerate microbial proliferation and biofilm growth. Low
nutrients stimulate specific microorganisms, enhancing attachment and

Over time, biofilm morphology and structure become increasingly complex

The rough surface is conducive to the early colonization of biofilms; Provide a

Different plastic properties affect the selective attachment of microorganisms.

Environmentally aged particles generally have biological attachments, which

Factors
Temperature . . -
accelerating early biofilm colonization.
Salinit;
ity shaping biofilm composition.
Environmental Illumination e
communities.
factors
Nourishment
stabilizing biofilm formation.
Time
! and diverse.
Substrate t
ubstrate type more stable ecological niche.
Plastics type . . -
The functional tendency to form biofilms is different.
Substrate type Particle source

affect the succession process and function of biofilm bacteria.

Reference

(Jin et al., 2020; Zhang et al.,
2021a; Song et al., 2024)

(Kesy et al,, 2019; Qiang et al,,
2021)

(Tu et al., 2020; Smith et al.,
2021; Bairoliya et al., 2024; Deng
et al,, 2024)

(Stanley and Lazazzera, 2004;
Arias-Andres et al., 2018a; Li
et al,, 2019)

(De Tender et al., 2017; Guan
et al,, 2020; Song et al., 2024)

(Chen et al., 2022; Tkachuk and
Zelena, 2023; Zhao et al., 2024c)

(Chu et al., 2024; Wang et al,,
2024; Yan et al., 2024)

(Shan et al., 2022; Rozman et al.,
2023a; Zhao et al., 2024b)

Morphological structure

Particle size

Frontiers in Marine Science

Different morphologies affect the capacity and ecotoxicity of adherent biofilms.

Particle size determines microbial load per unit area, with smaller particles
offering greater surface area.

06

(Lee et al., 2022; Rozman et al.,
2023b)

(Klein et al., 2021)

frontiersin.org


https://doi.org/10.3389/fmars.2025.1701766
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Chen et al.

carry a higher risk of antibiotic resistance. However, some studies
have also shown that microbial communities on PLA surfaces are
relatively simple and more susceptible to external disturbance,
potentially increasing the risk of pathogen enrichment and
transmission. This suggests that the impact of plastic material type
on biofilm succession may be context-dependent (Yan et al,, 2024). In
addition, the physical and chemical properties of plastics determine
their adsorption preference for microorganisms. PP and PE are more
conducive to the development of carbon cycle-related
microorganisms and biofilms, while PET tends to enrich microflora
with plastic degradation potential (e.g., Pseudomonas), further
illustrating the material-dependent selectivity of microplastics in
shaping microbial ecological processes (Wang et al., 2024).

3 Effects of biofilm formation on
microplastics

Beyond biofilm formation mechanisms, the subsequent
environmental feedback effects warrant equal attention. Biofilms
are prone to form on the surface of microplastics in the
environment, which significantly modulates their interface
properties and environmental behavior. The adhesion of biofilm
endows microplastics with new environmental response
characteristics by regulating their surface properties, migration
behavior, and degradation processes. The following section
explains its key impacts from three aspects. During biofilm
formation, microorganisms secrete large amounts of EPS and
metabolites containing polar functional groups (e.g., carboxyl,
hydroxyl, and amino groups). These substances markedly alter
the hydrophilicity, surface charge, and reactivity of microplastics.
As microorganisms colonize microplastic surfaces, clear signs of
aging rapidly emerge, including reshapes in crystallinity, stiffness,
surface roughness, and the colonization of unique microbial taxa.
This indicates a close link between microbial community structure
and the physicochemical properties of microplastics (Mcgivney
et al., 2020). The accumulation of biofilms leads to the gradual
formation of irregular structures such as cracks, holes, and grooves
on the surface, which not only expands the space available for
attachment, but also promotes the expansion and stability of
biofilms (Guan et al, 2020). In addition, the hydrophilicity of
microplastics is enhanced by microbial secretion of organic
matter and degrading enzymes. This effect becomes more
pronounced as biofilms mature (Tu et al., 2020). Increased
hydrophilicity, in turn, accelerates the adsorption of bioorganic
matter, promotes heterogeneous surface deposition, and ultimately
strengthens surface roughness (Bhagwat et al., 2021).

The accumulation of biofilms is usually accompanied by an
increase in the biomass and density of the surface of microplastics,
significantly altering their behavior in water bodies. Microplastics
that originally accumulate at the water-air interface due to
hydrophobicity have reduced buoyancy and gradually settled to
the bottom of the water column or even sediment areas after natural
exposure and biofilm attachment (Lobelle and Cunliffe, 2011). With
the increase of attached biofilm, the density of microplastics
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increased, and the sinking rate was affected by the particle size,
biofilm thickness and loading. Among them, small-sized
microplastics are more likely to lose buoyancy and sink faster
than large-sized microplastics (Fazey and Ryan, 2016).
Interestingly, this process may show periodic "oscillatory”
behavior. As the biofilm load increases, microplastic particles
gradually sink. In deeper zones unfavorable for biofilm growth,
microbial death and respiration reduce the biofilm, decrease particle
density, and increase buoyancy, causing the particles to rise again.
Once back in the shallow chlorophyll-rich water body, the biofilm
re-accumulates and the particles sink again, showing a periodic
cycle of rise and fall (Golubeva and Gradova, 2024). Different types
of microplastics exhibit varying responses. The formation of
biofilms accelerates the sedimentation rate of high-density plastics
such as PET and PVC, while the sinking trend of microplastics with
densities close to water, such as PE or PP, is limited by the structural
properties and composition of biofilms (Kaiser et al, 2017).
However, some studies have shown that biofilm colonization does
not significantly alter the sedimentation behavior of particles in
some scenarios, suggesting that the density change caused by
biofilms may not be sufficient to overcome the buoyancy of the
original plastic, or its effect is limited by the physical properties of
microbial populations and EPS (Jalon-Rojas et al., 2022). In
addition, some scholars have suggested that surfactants produced
by microbial metabolism may affect their vertical migration
pathways and sedimentation stability by regulating the interfacial
tension between microplastics and water bodies (Pete et al., 2023).
Compared with its effect on sedimentation, biofilm adhesion also
provides an alternative migration pathway. It promotes aggregation
with other particles and stable attachment to plants, aquatic
animals, or other biological surfaces, thereby influencing
migration, spatial distribution, and environmental stability
(Kalcikova, 2023).

Microplastics in marine environments primarily undergo
degradation through two distinct pathways: abiotic degradation,
driven by physical and chemical factors such as ultraviolet radiation,
oxidation, and mechanical abrasion; and biotic degradation, which
relies on microbial communities that metabolically facilitate the
breakdown and transformation of microplastics (Weinstein et al,
2016). Studies have shown that biofilms may play a critical protective
role in the photoaging process of microplastics by modulating
photoaging pathways and suppressing the generation of reactive
oxygen species (ROS) (Zhang et al, 2024b). Emerging evidence
demonstrates that plastic-degrading microorganisms preferentially
accumulate on plastic surfaces, suggesting that the formation of
biofilms on plastic surfaces may actively promote plastic degradation
in natural aqueous environments (Pang et al.,, 2024). To further reveal
the role of biofilms in influencing the stability of microplastics, recent
studies have explored the underlying mechanistic pathways involved in
various degradation processes. For example, on the PS surface, biofilms
can induce oxidative reactions that lead to the formation of oxygen-
containing functional groups, thereby significantly altering their FT-IR
spectral characteristics of the material (Liu et al, 2023b). Moreover,
comparisons of microplastics with and without biofilm colonization
suggest that key bacteria taxa, including Flavobacterium and
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Erythrobacterium may be crucial to the long-term evolution of biofilm
communities (Gulizia et al.,, 2025). However, it is worth noting that
Rhusobacter spp. were absent from the microbial consortia associated
with polyethylene degradation, indicating that their ecological function
may exhibit substrate-specific characteristics (Restrepo-Florez et al,
2014). Biofilms also showed a significantly influence the release
behavior of plastic additives. Experiments have shown that
microplastics with smaller particle sizes and higher surface roughness
exhibit more pronounced leaching of additives such as FP-127, and this
process is positively correlated with the abundance of specific core
microbial communities (Pan et al., 2025). In addition, biofilm
attachment significantly promotes the release of phthalate additives
such as di(2-ethylhexyl) phthalate (DEHP), and their cumulative
release increases with biofilm development. Although DEHP can be
partially adsorbed and degraded in biofilms, its metabolites (such as
MEHP) may exhibit even higher toxicity, indicating that biofilms may
not fully eliminate additives and might instead amplify the ecological
risks associated with microplastics (Zhao et al., 2024a). In view of the
in-depth research on the microplastic-biofilm system in aquatic
environments, this paper constructs a schematic diagram (Figure 2)
illustrating the environmental changes of microplastics following
biofilm colonization. The diagram focuses on key processes such as
altered migration behavior, pollutant enrichment and ecological risk.
Biofilms not only reshape the environmental behavior of
microplastics (e.g., sedimentation and agglomeration), but also
greatly enhance the ability of microplastics as pollutant carriers and

10.3389/fmars.2025.1701766

pathogen transmission platforms, and significantly improve their
bioavailability and feeding attractiveness, ultimately profoundly
affecting their ecotoxicological effects.

4 Ecotoxicological effects of biofilm-
coated microplastics

Biofilm adhesion makes the surface of microplastics appear
looser and more porous, which is conducive to the capture and
retention of pollutants (Sun et al., 2021). EPS significantly changes
the adsorption properties of microplastics by introducing a variety
of functional groups, thereby enhancing pollutant enrichment and
prolonging their environmental retention time (Liu et al., 2019;
Guan et al., 2020). For example, although biofilm biomass on glass
beads was initially higher than that on LDPE and PLA, biofilms on
the plastic surfaces gradually accumulated over time. This increased
biofilm load enhanced metal adsorption, and the final accumulation
on LDPE and PLA exceeded that on glass beads, indicating that
biofilm adhesion strengthens the pollutant adsorption capacity of
microplastics (Richard et al., 2019). Biofilms on microplastics
frequently accumulate diverse contaminants, including heavy
metals (Forero-Lopez et al,, 2022; Xiao et al, 2025), persistent
organic pollutants, and antibiotics (Wang et al., 2022). Moreover,
microbial communities in biofilms can achieve horizontal transfer
of ARGs through close contact, making microplastics an important
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"pollutant-gene" transmission platform, potentially threatening
aquatic organisms and public health (Arias-Andres et al., 2018b;
Li et al,, 2021a). Furthermore, biofilm-coated microplastics act not
only as carriers of pollutants and toxins but also as inducers of
physiological stress in host organisms (Huang et al., 2020)and cause
intestinal microbiota dysbiosis (Jin et al., 2018). To systematically
assess exposure pathways and toxicological effects, Table 3
synthesizes findings across pollutant categories, affected species,
and associated toxic effects.

In addition, the complex has a higher bioavailability. Biofilm-
coated microplastics not only enhance the adsorption capacity of
organic pollutants, antibiotics, and heavy metals, but also improve the
bioavailability of these pollutants through their metabolic activity and
enzymatic reactions. Studies have shown that biofilm
microorganisms can secrete a variety of intracellular and
extracellular enzymes, such as oxidoreductase and dehydrogenase,
which can convert complex pollutants such as PAHs into small
molecule metabolic intermediates, thereby promoting their uptake by
organisms (Yadav and Chandra, 2020). In addition, some biofilm
formation can also biodegrade the plastic surface by secreting
esterases, lipases, etc., and indirectly release secondary pollutants
such as plasticizers or additives, thereby changing the exposure form
and risk level of pollutants (Behera and Das, 2023). Under specific
environmental conditions, microplastics attached to pollutants are
more likely to stimulate microbial metabolic reactions and accelerate
the transformation of pollutants (Girard et al., 2020). For example,
Fajardo et al. found that biofilm-coated polyethylene microplastics
triggered microbial oxidative stress reactions after exposure to
organic carbon (OCs), suggesting that pollutants may undergo
initial metabolic transformations in biofilms (Bonnineau et al,
2021). Secondly, biofilm-coated microplastics are more likely to be
ingested by a variety of aquatic organisms, which allows pollutants to
be transmitted across trophic levels of the food chain and may lead to
bioaccumulation. Biofilms are an important food resource in
freshwater ecosystems accumulating metals and organic pollutants,
and their high metabolic activity makes them an important entry
point for pollutants into the food chain (Bonnineau et al., 2021).
Biofilm in rivers can significantly enrich microplastic particles and be
ingested by protozoa, indicating that biofilms not only improve
particle retention, but also increase their bioavailability at low
trophic levels, which may affect their subsequent distribution in the
food chain (Hamann et al., 2024). Studies have confirmed that the
amount of microplastics ingested by fish through the food chain is
significantly higher than that taken directly from water bodies,
indicating that the trophic level transfer pathway of microplastics is
one of the important exposure pathways faced by high-trophic
organisms (Hasegawa and Nakaoka, 2021). Furthermore, biofilm
formation produces an "ecological bait" effect on the surface of
plastic, enhancing its feeding appeal to benthic and zooplankton.
Once microplastics are attached to microorganisms, their feeding rate
is significantly increased. For example, benthic filter feeding animals
have a much higher ability to ingest microplastics coated with E. coli
than pristine microplastics, with average concentrations of 42.360 +
23.588 no.g™" and 11.443 + 0.4 no.g™", respectively (Fabra et al., 2021).
In addition, the amphipod Orchestia gammarellus significantly
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enhances the breaking strength of biofilm-coated plastics,
producing up to 8.23 fragments per day, indicating that
microplastics are more biologically identified as food after being
biofilm-coated. For fish, although active ingestion of microplastics is
uncommon, the incidence of accidental ingestion "bycatch" increases
significantly when food particles are present nearby, and this
probability rises with fish age. These results suggest that biofilm-
coated microplastics floating in aquatic environments are more likely
to be mistaken for edible prey, thereby increasing their risk of
transmission in the food chain (Yagi et al., 2022). This process not
only increases the risk of ingestion of microplastics, but may also
trigger a "toxicity amplification effect”, posing a potential threat to
apex predators and even human health (Hodgson et al., 2018). As
feeding behavior increases, biofilm-coated microplastics more easily
cross the biological barrier and accumulate in the gut, liver, and even
brain tissue. The viscous and functional components of the biofilm
surface can affect the residence time and distribution of microplastics
in the body, inducing microplastics to reside in specific tissues for a
long time. Microplastics have been shown to enter a variety of tissues
through the digestive system, blood circulation, and even across the
blood-brain barrier (Zhu et al., 2023). The presence of biofilms
enhances the interaction between particles and biological interfaces,
which is one of the important factors for enhancing their trans-
barrier migration ability. Studies have further simulated the behavior
of microplastics that adsorb pollutants in the gastric environment,
and found that gastric juice components promote the release of
pollutants on its surface, while changing the physical and chemical
properties of the particles, thereby enhancing their penetration in the
digestive system and the risk of tissue contact (Wu et al., 2023). To
more clearly illustrate the toxicological pathways of biofilm-coated
microplastics in ecosystems, Figure 3 presents the main mechanistic
routes, including pollutant enrichment, pathogen carriage, and
enhanced bioavailability.

Although numerous studies have pointed out that biofilm-coated
microplastics may exacerbate ecotoxicity in the context of compound
pollution, some experiments have found that the formation of biofilms
may alleviate the toxic effects of microplastics, showing certain
bidirectional regulation characteristics. On the one hand, the
attachment of biofilms can effectively alleviate the acute toxicity and
physiological interference caused by microplastics. For example,
biofilm-coated microplastics exhibit lower lethality and physiological
interference effects in a variety of exposure experiments than pristine
microplastics. In zooplankton, biofilm-coated microplastics
significantly reduce individual mortality (Nik Mut et al, 2024). In
fish, biofilm-coated particles also induce less oxidative damage and
metabolic disorders than clean particles (Kelly et al, 2024). After
exposure in to natural water bodies, the biofilm and humus layer
formed by microplastics colonize weaken their ability to enrich
hydrophobic pollutants, thereby attenuating their toxic effects on fish
(Hanslik et al., 2022). In addition, studies on polystyrene microplastics
and nanoplastics of different sizes and surface modifications found that
the acute effects of large-sized particles on the freshwater biofilm
system were significantly reduced after the formation of biofilms,
and the level of oxidative stress induced was significantly lower than
that of exposed particles, further indicating that biofilms have a certain
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Toxic effects

The abundance of proteobacteria in the intestinal flora was increased, and
the abundance of firmicutes was decreased

Reference

(Liu et al., 2023a)

Salmonella, Aeromonas

Zebrafish

Changing the structure of intestinal flora, increasing the diversity and
abundance of pathogenic genera and ARGs, and inducing intestinal
oxidative reactions

(Yu et al., 2024)

Vibrio parahaemolyticus

Staphylococcus sp., Elizabethkingia sp.

Escherichia coli

Mytilus galloprovincialis

Amphioxus

Ostrea edulis

Causes oxidative stress and apoptosis of blood cells

Bacteria have the potential to transfer from the plastic intersection to the
biological intestine

Biofilms make microplastics more easily ingested by oysters, creating an
immune system response

(Sun et al., 2023a)

(Cheng et al., 2023)

(Fabra et al., 2021)

Chloroflexi, Proteobacteria,
Basidiomycotina

Zebrafish

Enhanced endocrine system and thyroid toxicity

(Chen et al., 2021)

Bacillus

Enchytraeus crypticus

Induce intestinal dysbiosis and affect ecological function

(Ding et al., 2024)

Aeromonas salmonicida achromogenes Zebrafish Affects development and interferes with key gene expression (Missawi et al., 2024)
Provide attachment envi t and Vibrio,
rov1' ¢ attachment env1r'onmen an 1orio Coral reef Interferes with symbiont metabolism and coral bleaching (Zhou et al., 2024)
functional group adsorption ARGs
Antibiotic:

Functional group adsorption azithromycin (AZI), clarithromycin Anabaena sp. PCC7120 Inhibited growth and chlorophyll A content (Gonzalez-Pleiter et al., 2021a)

(CLA)

Enhanced toxicity to Pb(II) and adsorpti d combined toxicity, and

EPS complexation - D. magna. anced toxicity to Pb(II) and adsorption and combined toxicity, an (Qi et al,, 2021)

mortality increased in acute toxicity experiments

EPS complexation and providing an
attachment environment

Hydrophobic interactions

Cu, Pb, Vibrio

Pollutant:
triclosan (TCS)

Pollutant:
dichlorodiphenyldichloroethylene
(DDE), chlorpyrifos, and
benzophenone-3

Clarias gariepinus

D. magna.

Dicentrarchus labrax

The number of Vibrio in the intestine of catfish increased; Reduces
immunity and causes greater toxicity

Regulate the adsorption and desorption behavior of microplastics on TCS,
and affect the toxicity to organisms

Inflammatory response and increase in potentially pathogenic
microorganisms in the intestines

(Jang et al., 2022)

(Verdu et al., 2023)

(Montero et al., 2022)
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buffering and protective effect (Miao et al., 2019a). On the other hand,
biofilms may provide nutritional compensation or act as a physical
barrier. In some cases, microorganisms and their metabolites in
biofilms can provide secondary sources of nutrients, slightly
improving the survival rate of feeding organisms (Motiei et al,, 2021).
In addition, with the accumulation of biofilms, the roughness and
particle volume of microplastic surfaces increase, which may exceed the
feeding threshold of some benthic larvae or small zooplankton,
reducing their ingestion probability (Nik Mut et al., 2024). Therefore,
the formation of biofilm is not simply enhanced or weakened by
toxicity, but its ecological effect is obviously context-dependent, which
is specifically regulated by multiple factors such as the state of the
biofilm (maturity, composition), the nature of pollutants, the
physiological and ecological characteristics of exposed organisms
(such as species, feeding mechanism) and environmental conditions,
which may eventually change the size and mechanism of toxicity.
When assessing the ecological risks of microplastics, the serious
consequences caused by the above multiple factors should be
fully considered.

5 Conclusion and perspectives

This paper provides a systematic review of the formation
process, assembly mechanisms, and key influencing factors of
biofilms on microplastics in different media and further explores
how biofilm encapsulation alters their environmental behavior and
ecotoxicity. The results show that biofilm attachment not only

Frontiers in Marine Science

11

significantly changes the physical and chemical properties and
environmental orientation of microplastics, but also profoundly
affects the ecotoxicity risk by affecting the adsorption and release of
pollutants, carrying pathogens and resistance genes, and interfering
with host physiology. It is worth noting that the regulation of
microplastic toxicity by biofilms is not always linearly enhanced,
and its specific effects depend on the composition and structure of
biofilms, environmental conditions and exposure scenarios, and
may show diverse trends such as amplification, mitigation
or neutrality.

At present, the research on biofilm-coated microplastics is still
mainly based on the aquatic environment, while investigations into
biofilm formation and behavior in other environmental media, such
as soil and the atmosphere, remain in their infancy. Moreover,
although existing studies have revealed the significant effects of
biofilm attachment on the toxic behavior of microplastics, several
key challenges remain: Firstly, most experiments are still based on
idealized conditions, and the complex process of multi-factor
coupling in the real environment has not been fully simulated;
Secondly, the research focuses on the adsorption and carriage of
pollutants by microplastics, and lacks a systematic assessment of the
multi-level toxicological reactions induced by biofilm-coated
microplastics in ecosystems. Thirdly, ecotoxicity research is
mainly based on acute exposure, and the understanding of long-
term exposure, bioaccumulation and genetic risks is still weak.

Future research should further focus on the ecological behavior
of biofilm-coated microplastics in the context of compound
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pollution and systematically reveal their environmental trends and
ecotoxicological pathways from multiple levels such as mechanism
of action, dynamic processes to biological effects. At the same time,
research should broaden its environmental scope, enabling in-depth
comparisons of biofilm formation characteristics and ecological
effects in water, soil, and atmospheric systems, thereby establishing
a cross-media risk assessment framework for microplastics. In
addition, the spatio-temporal scale of ecotoxicology research
should be expanded to promote the transformation from short-
term experiments to long-term, cross-generational, and
multitrophic ecotoxicity assessments.
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