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Deep-sea organism detection is one of the key technologies in deep-sea
resource research and conservation. However, challenges such as low
recognition accuracy and insufficient robustness arise due to issues like dim
lighting, severe water scattering, and blurred target features in the deep-sea
environment. To address these issues, this study proposes a deep-sea organism
recognition method based on an improved SDA-HTransYOLOv8n model. The
model introduces significant improvements to the neck network structure of
YOLOV8n. First, it replaces the traditional upsampler with an improved point
sampling dynamic sampler, which adaptively adjusts the sampling rate based on
the target size, reducing redundant information interference and enhancing the
efficiency of image feature extraction. Second, a Semantics and Detail Infusion
module (SDI) is designed to adaptively fuse feature map information across
different scales, addressing the issue of small deep-sea organisms being easily
overlooked while enhancing the edge and detail features of deep-sea organisms.
Third, a HyperTransformer-based HT_C2f module is designed to dynamically
adjust attention weights, enhancing the model's ability to capture target
organism features in complex deep-sea environments and improving
sensitivity to blurry and low-contrast targets. Fourth, an improved
downsampling convolution module (ADown) is introduced to reduce the
dimension of feature maps while retaining more key feature information,
avoiding feature loss in deep-sea organism images caused by information
compression during sampling. Experimental results demonstrate that, on the
deep-sea organism dataset obtained by the Jiaolong manned submersible in the
western Pacific Ocean, the SDA-HTransYOLOv8n model developed in this study
achieves a precision of 87.6%, a mAP50 of 67.7%, and a mAP50-95 of 51.6%,
respectively, representing improvements of 8.9%, 2.8%, and 1.8% compared to
the original YOLOv8n model, significantly enhancing the accuracy of deep-sea
organism recognition. This study effectively meets the target detection
requirements in complex deep-sea environments, providing technical support
for deep-sea exploration and underwater operations. Code and models are
available at https://github.com/Riokuli/SDA-HTransYOLOv8n-Model.
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1 Introduction

The deep sea, as both a frontier for earth science research and a
treasure trove of strategic resources, has elevated the capability to
explore and develop it into one of the core indicators for gauging a
country’s scientific and technological prowess (Costa et al., 2020).
As a pivotal technology for researching and conserving deep-sea
biodiversity, underwater object detection faces numerous technical
challenges. The unique characteristics of the deep-sea environment,
including low illumination, light attenuation, color distortion, and
low contrast, severely compromise the quality of underwater images
and thereby impair the accuracy and robustness of existing
detection algorithms (Xie et al., 2022). Furthermore, the scarcity
of deep-sea image data and the exorbitant cost of image acquisition
make data collection and annotation more arduous, further
constraining the generalization capacity of models. Meanwhile,
many existing detection models typically pursue higher accuracy
at the expense of increased computational complexity, rendering
them difficult to deploy effectively in resource-constrained deep-sea
exploration systems. Therefore, how to boost detection accuracy
while reducing model computational complexity and ensuring real-
time performance and efficiency in deep-sea detection tasks has
emerged as a critical issue demanding urgent resolution in this field.

In recent years, scholars have conducted extensive research on
underwater biological detection algorithms. Current deep learning
algorithms have revealed significant limitations when addressing
the challenges of complex deep-sea environments: In traditional
CNN models, the fixed receptive field design fails to dynamically
adapt to targets of varying sizes and background distractors, leading
to insufficient feature discrimination capability for deep-sea images
(Han et al, 2020). YOLOV5 relies on the Focus structure and
traditional convolution-dominated feature extraction, a reliance
that cannot effectively address the blurred features of small targets
caused by low-light conditions in deep seas (Kim et al, 2022).
Although YOLOVS is equipped with the C2f module and a dynamic
detection head, it exhibits insufficient ability to distinguish low-
contrast targets and incomplete capture of features of crustaceans
with significant morphological variations (Wu and Dong, 2023).
YOLOV10 centers on a decoupled detection head and Layer-wise
Feature Aggregation, yet it struggles to adapt to the blurred feature
hierarchy issue in highly turbid deep-sea environments (Hu et al.,
2025). While YOLOv11 enhances detailed feature extraction
through the Spatial Pyramid Pooling-Feature Pyramid Network
enhancement module, it still adopts a local convolution-based core
architecture, which prevents the complete capture of the global
morphology of soft-bodied organisms (Cheng et al., 2025). Anchor-
free models such as CenterNet rely on feature pyramids for key
point regression; they show poor adaptability to inter-layer feature
confusion induced by low light in deep seas, lack a mechanism for
dynamically adjusting feature hierarchies, and are prone to key
point localization deviations (Duan et al., 2019). R-CNN depends
on preset anchor boxes, making it difficult to adapt to the diverse
morphologies of deep-sea organisms and liable to misjudgment in
dense scenarios (Bharati and Pramanik, 2019). The Region Proposal
Network of Faster R-CNN generates candidate regions based on
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preset anchor boxes; it lacks an effective recognition mechanism for
densely distributed similar features and tends to misclassify dense
background distractors as target clusters (Sisodiya and Bhoite,
2025). Although Swin Transformer and Vision Transformer
models possess global perception advantages, Swin Transformer
uses a fixed 9x9 window for attention computation—this window
size cannot be adaptively adjusted according to target size.
Additionally, its static weight update mechanism fails to respond
in real time to dynamic scene changes, reducing recognition
stability (Wei et al.,, 2024). The self-attention mechanism of ViT
models has not been optimized for special deep-sea environments
(e.g., low light), resulting in insufficient perception capability for
regions with weak features (Li et al., 2025).

In the latest underwater recognition research, scholars have
overcome environmental constraints from the perspectives of data
augmentation and cross-modal fusion. WaterCycleDiffusion is an
underwater image enhancement method driven by vision-text fusion;
it guides the diffusion model to generate enhanced images consistent
with real scenarios via text descriptions, effectively mitigating the loss
of image details under low light. However, this method does not
undergo end-to-end joint optimization with downstream detection
tasks, leading to a mismatch between the enhanced image features
and the feature requirements of the detection network (Wang et al.,
2025). The enhancement algorithm that combines histogram
similarity-based color compensation with multi-attribute
adjustment dynamically corrects color distortion and contrast
attenuation of underwater images, improving the discriminability
between targets and the background. Nevertheless, this method has
insufficient adaptability to dynamic changes in water scattering
coefficients, limiting its enhancement effect in highly turbid deep-
sea regions (Wang et al,, 2023). In research on integrated detection
and tracking, the integrated detection and tracking paradigm for
Compact High-Frequency Surface Wave Radar based on
reinforcement learning optimizes the fusion strategy of radar data
and visual data through reinforcement learning, enhancing the
continuous tracking capability of dynamic targets. However, this
paradigm is more suitable for long-range monitoring of medium-to-
large marine organisms; it suffers from insufficient precision in close-
range fine detection of small deep-sea organisms. Moreover, the
modal differences between radar and visual features cause
information redundancy and loss during the fusion process (Li
et al,, 2025) (Li et al., 2024).

To address these limitations, this paper proposes an enhanced
detection model for deep-sea scenarios, SDA-HTransYOLOv8n
(S: Semantics and Detail Infusion module; D: Dynamic Sampling
Module; A: Adaptive Downsampling Module; HTrans:
HyperTransformer Module; YOLOv8n: You Only Look Once 8n),
with innovative breakthroughs in three dimensions:

1. Designing a cross-domain adaptable Transformer module
that uses an environment-aware dynamic attention
mechanism to achieve precise focusing on target features
under low signal-to-noise ratio conditions;

2. Constructing a SDI multi-level feature fusion architecture,
which enhances the consistency of multi-scale feature
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information through dynamic scale alignment and cross-
level feature product interaction, thereby improving the
feature consistency of multi-scale target recognition;

. Innovating the DySample dynamic sampling and ADown
enhanced downsampling mechanisms, which enhance the
retention rate of small target features while reducing the
loss of critical information during the dimensionality
reduction process.

Experimental results on the deep-sea biological dataset obtained
by the Jiaolong manned submersible in the western Pacific Ocean
indicate that the model achieves improvements of 8.9%, 2.8%, and
1.8% in precision and mean average precision (mAP50, mAP50-95)
compared to the original YOLOv8n model, providing technical
support for deep-sea resource exploration and ecological monitoring.

2 Method
2.1 YOLOVS8n network structure

The YOLO series is celebrated for its exceptional efficiency and
accuracy in object detection (Wang et al., 2022). The YOLOv8n
model (Chen et al, 2025), building on the achievements of
YOLOV5n, introduces significant improvements. Specifically, it
replaces the conventional C3 module with the more sophisticated
C2f module, thereby refining residual learning and facilitating
improved gradient propagation via an optimized bottleneck
module. Moreover, the model incorporates a novel image
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segmentation algorithm that synergistically combines deep
learning with an adaptive threshold function (Deng et al., 2023),
resulting in a lightweight framework that effectively captures
gradient stream data (Shi and Wang, 2023). The input image is
sequentially processed through multiple convolutional layers and
C2f modules to extract feature maps at varying scales, which are
then refined by an SPPF module prior to being forwarded to the
detection head. This detection head seamlessly integrates anchor-
free and decoupled-head strategies, while the loss function (Hu
et al,, 2024) leverages binary cross-entropy for classification
alongside regression losses based on the CIOU and VFL.
Additionally, the frame matching process has been improved with
the Task-Aligned Assigner, further enhancing detection accuracy.

2.2 Improved YOLOv8n model— SDA-
HTransYOLOv8n model

The SDA-HTransYOLOv8n model structure proposed in this
paper is shown in Figure 1. Its core lies in a completely new
improvement to the neck network of YOLOV8n, achieving a
breakthrough in performance through the collaborative design of
four key modules: First, the traditional sampler is replaced with an
improved point sampling dynamic sampler (Liu et al., 2023). This
module adaptively adjusts the sampling rate based on the size
characteristics of the target, effectively filtering out redundant
information interference while significantly enhancing the
efficiency of image feature extraction; Second, an innovative
multi-level feature fusion module (SDI) is constructed (Yang

FIGURE 1
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et al, 2021), which introduces an adaptive fusion mechanism to
enable deep interaction between feature maps of different scales,
thereby enhancing the representation of target edges and detailed
features; Third, a HyperTransformer-based HT_C2f module is
designed (Dong et al., 2024). This module dynamically adjusts
attention weight distributions to enhance the model’s ability to
capture target biological features in complex deep-sea
environments, particularly improving sensitivity to blurry and
low-contrast targets; Finally, an improved downsampling
2025).

This module compresses feature map dimensions while retaining

convolution module (ADown) is introduced (Wen et al.,

more critical feature information, effectively avoiding feature loss in
deep-sea biological images caused by information compression
during sampling. The organic integration of these improved
modules significantly enhances the model’s adaptability to
extreme deep-sea environments, providing a reliable foundation
for the efficient identification of diverse deep-sea organisms.

2.3 Dynamic sampling module

To address issues such as blurred features, diverse morphologies
(e.g., posture distortion of soft-bodied organisms and blurred edges
of transparent organisms) in deep-sea biological images, as well as
low discriminability of local features caused by low illumination,
this paper designs a dynamically adaptive upsampling module. This
module achieves dynamic alignment and enhancement of features

10.3389/fmars.2025.1697267

by learning pixel-level offsets, thereby effectively capturing the key
features of deep-sea organisms.

The core of the DySample module is to predict offsets through
1x1 convolution, generate dynamic sampling coordinates in
combination with the initial reference grid, and finally complete
feature resampling via bilinear interpolation. Its overall structure is
shown in Figure 2, and the specific working principles are
as follows:

First, the offset layer predicts the base offsets. For the Ip mode
(from low resolution to high resolution), which is applicable to super-
resolution feature enhancement of deep-sea images, the number of
output channels is 2 x groups x scale’ (where 2 corresponds to
offsets in x/y directions, groups is the number of groups, and scale
is the sampling scaling factor). For the pl mode (from high resolution
to low resolution), which is suitable for retaining key information
during feature dimension reduction, the number of output channels
is 2 x groups. Meanwhile, to avoid excessive offsets caused by deep-
sea noise, an optional scope layer is set. When scope=True, an offset
scaling factor is generated through sigmoid activation to dynamically
control the offset amplitude. The offset formulas are shown in
Equations (1) and (2).

scale — 1 scale — 1

Gk scale scale)‘ <k 2 72 I} m
(O(x) - 6(S(x))) - 0.5 + py, (scope = True) @)
- O(x) - 0.25 + py, (scope = False)
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FIGURE 2
Structure diagram of dynamic sampling module.
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Among them, p, is the initial reference grid; O(x) is the output
of the offset layer; S(x) is the output of the scope layer; 6 is the
sigmoid function.

The dynamic sampling process is implemented through the
sample function. Its core lies in fuse the predicted offsets with the
original coordinates, generate normalized sampling coordinates,
and then complete feature resampling via bilinear interpolation.
The specific formulas are shown in Equations (3) and (4).

coords,,,, = (x+ 0.5,y +0.5) (3)

coords,,,, + Ap

A

)

coords,prm

Among them, coords,,, is the generated original pixel center
coordinate; (x,y) is the pixel index; (W, H) is the size of the input
feature map.

10.3389/fmars.2025.1697267

2.4 SDI multi-level feature fusion module

As a spatial dimension interaction module, the SDI module can
effectively address challenges such as low illumination and high
noise in deep-sea biological image recognition through its unique
multi-scale feature fusion mechanism, thus demonstrating
significant advantages in deep-sea biological recognition tasks.
The SDI module enhances the semantic and detailed information
in images by integrating the hierarchical feature maps generated by
the encoder. It specifically consists of three parts: feature extraction
and integration of deep-sea biological images, fusion of high-level
and low-level features at different levels, and feature transmission
and segmentation. Its structure is shown in Figure 3.

To address the issue of low signal-to-noise ratio in deep-sea image
features, the SDI module achieves effective integration through multi-
scale feature extraction and noise suppression. The formula for multi-
scale basic feature extraction are shown in Equations (5)—(7).

The DySample module adaptively handles feature variations in F, = Backbone(I)& ROXHix W, (€1,2,...,1) (5)
deep-sea biological images through dynamic sampling by selectively
employing two sampling modes. This module not only reduces H
computational load but also enhances feature diversity. It breaks H, = ST (6)
through the limitations of traditional fixed-grid sampling, enabling
sampling points to actively converge in high-information regions
and improving the discriminability of feature representation. W= o1 @)
é Encoder 1= 5 5’/ De coder\‘:
; — > |
| A 1=3 | : v !
E —_—> - > |
: . SDI : !
E A lz_é_> | ) * ¢ |Supervision >
5 A =1 | | L 7 b '
| —‘_—b" 1y 4.?%}
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FIGURE 3

The structural diagram of the SDI multi - level feature fusion module.
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Among them, IER>H*W represents the original deep-sea image;
C, denotes the number of channels of the feature map at the I-th layer;
F, stands for low-level features (such as edges and textures); F; refers
to high-level features (semantics and robustness).

The SDI module performs scale alignment and convolution
purification on the extracted features. The integrated formulas are
shown in Equations (8) and (9).

L
Fyy = [ [ (W1 Align(Fy, Hy, W)) + by) ()
=1

Align(Fy H, W) = { BI(F),H;, W), (I > 1,upsampling) o)
F;, (I=1, baseline size)

Among them, Align( -) is the scale alignment function; W, () +
by refers to the noise filteringtemplate learned by the convolutional layer
for noise filtering; BI( - ) denotes bilinear interpolation.

Deep-sea biological recognition requires simultaneous
consideration of low-level features and high-level features. SDI
achieves the fusion of high-level and low-level features at different
levels through hierarchical interaction, as shown in Equation (10).

L
Fpusion = | [(04 - (W) Align(Fy, Hy, W) + by) (10)

=1

Among them, o satisfies D> oy = 1. For small deep-sea
organisms ; and oy, it is increased (to enhance details); for large
organisms oy _; and ¢, it is increased (to enhance semantics).

In the deep-sea biological segmentation task, the features fused by
SDI module need to guide pixel-level classification through a
transmission mechanism. The fused features are transmitted to the
original image size through Fj,,, upsampling, as shown in Equation (11).

Fyq = BI(Fpygion, H, W)E RV

(11)

Then, for each pixel (i, j), its biological category k is predicted by
the classifier, as shown in Equations (12) and (13).

P(k

i’j) = Soft max (Wseg*Fseg[:> i),ﬂ + bseg)k (12)

M(i, j) = arg max P(k|i, ) (13)

Among them, W, is the convolution weight of the

seg
segmentation head; F,,, is the fused feature map transmitted to

the segmentation head; b, is the bias term of the segmentation

se;
head; M(i, j) represents thei/alue of the segmentation mask at pixel
(4,j); and arg maxis the index function corresponding to taking the
maximum value.

Meanwhile, to improve the segmentation accuracy of low-
illumination regions, a confidence-weighted loss based on SDI

module features is introduced, as shown in Equation (14).
* 1L .
¢=—> log P(M" (i, )i, ) 'EEHAllgn(Fz,H, Wil (14)
i =1

Among them, M* is the annotation mask; Z is the

normalization constant.
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The SDI module adapts to the low illumination and scale
differences of deep-sea images through multi-scale product fusion.
Its core formulas suppress noise during the feature extraction stage,
balance details and semantics in the hierarchical fusion stage, and
achieve accurate pixel classification through feature transmission in
the segmentation stage, providing a mathematically rigorous
solution for deep-sea biological recognition.

2.5 HT_C2f module based on
HyperTransformer

Biometric recognition in deep-sea environments faces
significant challenges such as low light levels, high noise, low
contrast between targets and backgrounds, and complex spatial
relationships. Traditional convolutional neural networks are limited
by their local receptive fields and struggle to effectively capture
global context dependencies, while pure Transformer architectures
suffer from high computational costs and loss of local details. To
address these issues, this paper introduces an HT_C2f module
based on a hybrid architecture, inspired by the C2f structure in
YOLOV8 (as shown in Figure 4). By integrating the local feature
extraction capabilities of convolutional neural networks with the
global modelling capabilities of Transformers, the module achieves
efficient enhancement and modelling of target features in deep-
sea images.

The core improvement of the HT_C2f module lies in the use of an
“alternating replacement” strategy to reconstruct the feature processing
chain, forming a hybrid feature interaction mode of “Conv-Bottleneck-
Transformer.” Among these, the HyperTransformer serves as the core
enhancement unit, consisting of three key components: the Hyper
Edge feature extraction submodule (Wazirali and Chaczko, 2016), the
Transformer global modelling submodule (Wang et al., 2023), and
feature fusion and residual connection (Fu et al., 2025).

The Hyper Edge feature extraction submodule captures local
spatial features through 3x3 convolutions, introduces nonlinear
transformations via the GELU activation function (Lee, 2023), and
then compresses the feature dimensions to hyper_dim through 1x1
convolutions, thereby retaining key details while reducing the
computational complexity of the Transformer. Its feature
transformation process is shown in Equation (15).

hyper _feat = Conv, 1 (GELU(Convsy;(x))) (15)

Among them, x& RE*CxHxW

feate REKAH*W(K is hyper _dim) denotes the output low-
dimensional local feature.

represents the input feature; hyper _

The Transformer global modeling submodule flattens the
feature map output by the Hyper Edge into a sequence form
(with the dimension converted to HW x B x K), and captures
the global context dependencies through the Transformer encoder
layer. The multi-head self-attention mechanism of Transformer is
shown in Equations (16)-(18).

MultiHead(Q, K, V) = Concat(head,, --- head,,) wo (16)
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FIGURE 4

Structure diagram of the HT_C2f module based on HyperTransformer.

head; = Attention(QW<, KWK, V) (17)

T

Attention(Q, K, V) = soft max (%

k

Among them, head; denotes the output of the i-th attention

head; WO is the output projection matrix; W2, WX, and W} are the

projection matrices of the i-th head, which project Q, K, and V into
the low-dimensional subspace, respectively.

The feature sequence processed by the Transformer is reshaped

back to the original spatial dimension, resulting in the globally
RB><K><H><W.

% (18)

enhanced feature trans _ feate

The feature fusion and residual connection concatenate local feature
hyper _ feat and global feature trans _ feat along the channel dimension
(with the dimension being B x 2K x H x W), compress them to the
input dimension C through convolution 1 x 1, and perform residual
fusion with the original input x, as shown in Equation (19).

output = x + Convy .| (Concat(hyper _ feat, trans _ feat)) (19)

In the HT_C2f module, the aforementioned HyperTransformer
units and original Bottlenecks are arranged alternately, with each
HyperTransformer processing only half of the channels (C,//2).
This design ensures global modeling capability while maintaining
computational efficiency. In deep-sea biological recognition, this
design can not only effectively extract detailed features of blurred
targets but also model the correlation between targets and complex
backgrounds through global attention, significantly enhancing the
feature expression ability for complex deep-sea scenes.
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2.6 Adaptive downsampling-ADown

The ADown module is a lightweight downsampling module
designed for the characteristics of deep-sea environments such as
low illumination, high noise, and blurred targets. This module
adopts a dual-path feature parallel processing mechanism, which
achieves 2x spatial downsampling while effectively preserving subtle
features and edge information in deep-sea biological images.
ADown module enhances the representation ability for weak
textures and small targets through multi-scale feature fusion, and
at the same time controls computational complexity to meet the
requirements of practical deep-sea biological image recognition.

The structural design of ADown follows the logic of “feature
divide-and-conquer -parallel enhancement - fusion output”, which
is specifically divided into three parts: input preprocessing, dual-
path feature transformation, and feature fusion. Its structure is
illustrated in Figure 5

In the input preprocessing stage, first, average pooling with no
size change is performed on the input feature map to suppress high-
frequency noise in deep-sea images, as shown in Equation (20).

X = AvgPool2d(X;k = 1,s = 1,p = 0) (20)

Among them, the pooling kernel k = 1; the stride s = 1; the
padding p = 0; and the output is X’ & Rb*> v,

Then, the input channels are split: X’ is evenly divided into two
branches along the channel dimension (dim=1) to achieve

differentiated feature processing, as shown in Equation (21)

X, X, = torch.chunk(X', chunks = 2, dim = 1) (21)
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FIGURE 5
Structural diagram of adaptive downsampling.

Among them, X, X,E RO*(@/2)xhxw e respectively routed to
two distinct feature transformation branches.

In the dual-path feature transformation stage, the two paths are
designed for different feature types of deep-sea images, forming
complementary feature sets. First, for small targets and weak texture
features in deep-sea images, fine-grained information is preserved
through spatial partitioning-channel concatenation operations, as
shown in Equations (22) and (23).

X1
XLZ
X, - (22)
XL3
XL4
Xieu = tOT’Ch.Se(l([XLl,XLz, XL3’ XL4}’ dim = 4) (23)

Among them, X, refers to 4 regional sizes h/2 x w/2; the
number of channels is ¢, /2; X{**€ R¥2 x<h/2xw/2 with the number
of channels being 2¢; = 4 X (¢;/2).

Then, the BaseConv module is used to compress and activate
the channels, as shown in Equation (24).

Y, = Osiu (BN(X™ = W))) (24)

Among them, W, R(@/2)x2ax1x1 i the convolution kernel;

Ssiry(x) = x- 8(x), O are Sigmoid functions; Y,E R*(@/2)xh[2xw]2

is the output.

Frontiers in Marine Science

The second stage is the salient feature enhancement path with
max pooling. For relatively clear targets in deep-sea environments,
local salient features are strengthened through max pooling, as
shown in Equation (25)

XB! = MaxPool2d(Xy; k = 3,5 = 2,p = 1) (25)

Then, the Conv module is used to compress and activate the
channels, as shown in Equation (26)

Yy = Ssipu (BN(XE™ 5 W) (26)

Among them, W,& R©/2*(/2X1x1 is the convolution kernel;
Y, € Rb*(@/2xh/2xw/2 s the output.

Finally, the outputs of the two paths are concatenated along the
channel dimension to fuse detailed features and salient features, as
shown in Equation (27)

Y = torch.sea([Y,, Y,], dim = 1) (27)

Among them, YE Rbxe2xh/2xw/2

is the final output.

The ADown module achieves a balance between detail
preservation and salient feature enhancement in the downsampling
task of deep-sea images through its dual-path parallel design and
refined feature processing (He et al., 2025). With its mathematically
rigorous dimension transformation and scenario-adaptive design, it
serves as an effective component for improving feature representation
capabilities in deep-sea image recognition models. This module can be
embedded into backbone networks or feature pyramid structures to

optimize the performance of multi-scale feature extraction.
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3 Experiments and results
3.1 Dataset establishment and processing

This experimental dataset was derived from real video data
captured by Jiaolong (Shi et al., 2019), a manned submersible of the
7000 m underwater class in the western Pacific Ocean, and the
process shown in Figure 6 below was used to construct the deep-sea
biological dataset. Firstly, the video key frame images were
intercepted to obtain the deep-sea organism images, then the
images were expanded by rotating, inverting, noise addition, and
other data enhancement methods (Cheung and Yeung, 2023), and
finally, the organism images were annotated using the traditional
labeling tool to obtain 5002 images and the corresponding labels.

During the annotation process, all image organisms were
categorized according to their biological phyla, totaling eight
phyla, as illustrated in Figure 7, which include Coral Polyp,
Crinoid, Starfish, Crustacean, Ray-Finned Fish, Sea Urchin, Sea
Cucumber, and Hexactinellida.

3.2 Experimental environment and
parameter configuration

The experiments in this paper use Ubuntu 20.04 as the
operating system, PyTorch as the deep learning framework, and
the experimental platform uses Python 3.8.19 and torch2.0.1
+cudall.8. The graphics card model is (NVIDIA GeForce
RTX4090, 24GB). The detailed production parameters of the
experiment are shown in Table 1.

3.3 Evaluation criteria

In this study, the performance of the improved YOLOv8n
model was evaluated using the precision (Hestness et al., 2019)
and mean average precision (mAP) as the evaluation metrics. For
details, see Equations (28)-(31).

Data Colloct

FIGURE 6
Flowchart of dataset production.
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T,
=—2L (28)
Tp + FN
T,
=——r (29)
Tp+ Fp
1
AP = / P Rd, (30)
0
N
S AP,
mAP ==L % 100% (31)

where P represents the precision of the described model, i.e., what
percentage of instances predicted by the model to be positive
instances are actually positive instances. R represents the ratio of
the instances of correctly identified deep-sea organisms to all the
annotated instances of deep-sea organisms. Tp denotes the number of
accurate identifications of deep-sea organism detections made by the
YOLOV8n network model. Fp denotes the number of inaccurate
identifications of deep-sea organism detections made by the
YOLOv8n network model. AP is the mean average precision. AP50
is the mean average precision for this category of samples when the
threshold value of the IoU of the confusion matrix is taken to be 0.5.
mAP is the precision of the samples of all the categories averaged,
which reflects the trend of the model’s precision with the recall rate;
the higher the value, the easier it is for the model to maintain a high
precision at a high recall rate. mAP50-95 represents the average mAP
value over different IoU thresholds (from 0.5 to 0.95 in steps of 0.05).
N represents the number of categories.

In model evaluation metrics, the precision is a crucial indicator
for assessing the accuracy of the model recognition, while the mean
average precision serves as a comprehensive performance metric that
aggregates multiple precision values across different recall rates. As a
key evaluation criterion, the mAP holds even greater significance. It
not only reflects the model’s precision in recognizing positive samples
but also provides a comprehensive evaluation of all the object
detections. The mAP plays a pivotal role in assessing the model
effectiveness and selecting the optimal model.

amplification
—_—

: A

| S

| Data
I

I

Labd and store
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(a)

FIGURE 7

(b) (d)

The Jiaolong dataset contains eight phyla of organisms: (a) Coral Polyp; (b) Crinoid; (c) Starfish; (d) Crustacean; (e) Ray-Finned Fish; (f) Sea Urchin;

(g) Sea Cucumber; (h) Hexactinellida.

TABLE 1 Detailed hyperparameters of the experiment.

Parameters Value or type

Epochs 100
Batch size 8
Optimizer SGD
Image size 640 x 640
Initial learning rate 0.01
Optimizer momentum 0.937
Weight decay 5x107*

3.4 Experimental results and analysis

3.4.1 Experimental comparison before and after
model improvement

Figure 8 shows the precision, mean average precision at
IoU=0.5, and mean average precision at IoU=0.5-0.95 of the
original YOLOv8n model and the SDA-HTransYOLOv8n model
after 100 training iterations. Specifically, the SDA-
HTransYOLOv8n model exhibits better precision when trained

(2

(e) ) (h)

on the deep-sea organism dataset. In terms of the mAP50 and
mAP50-95 metrics, the SDA-HTransYOLOv8n model has
maintained a leading position after iteration, and it shows a
significant advantage especially in mAP50. This indicates that the
SDA-HTransYOLOv8n model not only has improved detection
accuracy but also demonstrates stronger robustness under different
IoU thresholds. To more intuitively compare the detection effects of
YOLOV8n and SDA-HTransYOLOv8n on samples not involved in
training, Figure 9 presents some detection results covering different
deep-sea organisms. Compared with the YOLOv8n model, the
SDA-HTransYOLOv8n model proposed in this paper performs
better in terms of accuracy and recognition error rate. Especially in
the complex deep-sea environment, the SDA-HTransYOLOv8n
model has higher confidence and more stable detection
performance. Although YOLOV8n can also accurately identify
deep-sea organisms, SDA-HTransYOLOv8n shows stronger
robustness under different deep-sea backgrounds, reduces
interference from the complex deep-sea environment, and
exhibits higher accuracy.

3.4.2 Ablation experiments
To comprehensively evaluate and verify the effectiveness of the
improved model, ablation experiments were conducted. Under the

Precision MAP@50 mMAP@50-95
. 0.7
09 —— SDA-HTransYOLOv8&n ~—— SDA-HTransYOLOv8n
—— YOLOvBn 051 — voLovan
R
o8 0.6 e
ﬁ\ 0.4 4
0.7
0.5
g
< 3 A
g 0.6 § o % -
. &
L z
0.5
0.3 0.2
0.4
0.2
~——— SDA-HTransYOLOv8n 0.1
0.3 — ”
YOLOvVSN
o 20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100
Epochs Epochs Epochs
FIGURE 8
Comparison of indicators before and after model improvement.
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4
sea cucumbers 0.774
(oTaI polyp 70.87672‘
(b)
FIGURE 9

YOLOV8N (a) vs. SDA-HTransYOLOvV8n (b) detection results for different organisms.

premise of keeping the environment and training parameters
consistent, the optimization effects of adding different modules of
YOLO or different combinations on deep-sea biological detection
were analyzed. The results are shown in Table 2 below.

3.4.3 Comparative tests of different models
In order to fully evaluate the performance of the SDA-
HTransYOLOv8n model, the same dataset is used as a sample
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and it is analyzed in comparison with a series of target detection
models, which include SSD, YOLOv3, YOLOv5, YOLOv7,
YOLOvV8n, and YOLOv11 five models. The results are shown in
Table 3, and SDA-HTransYOLOv8n excels in all performance
metrics. Its model reaches 87.6%, 67.7%, and 51.6% in Precision,
and mean average precision (mAP50,mAP50-95), respectively,
which fully proves its strong ability in accurately identifying and
localizing targets.
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TABLE 2 Ablation experiments.

10.3389/fmars.2025.1697267

Average precision mean

YOLOv8n HT_C2f DySample ADown Precision(%)
mAP50/(%) mAP50-95/(%)
2 v x x x 82.0 65.5 49.0
3 x v x x 82.4 67.0 51.9
4 x x v x 82.2 66.9 515
5 X X X v 83.1 66.1 51.0
6 v v x x 80.4 67.2 50.4
7 v x v x 84.6 66.5 50.5
8 v x x v 84.0 67.4 50.8
9 x v v x 81.0 65.4 50.2
10 x v x v 84.6 67.3 51.0
11 x x v v 84.7 66.1 50.4
12 v v v x 82.0 63.4 420
13 v v x v 86.2 67.5 514
14 v x v v 84.7 66.1 50.4
15 x v v v 84.9 66.5 513
16 v v v v 87.6 67.7 51.6

mAP50 is the average accuracy of the IoU threshold of 0.5,and mAP50-95 is the average of the mAP when the IoU threshold is 0.50 to 0.95 and the step size is 0.05.The same below.

TABLE 3 Comparison experiments with other models.

Average precision mean

Precision(%)

mAP50-
mAP50/(%) 95/(%)
SSD 544 62.2 426
YOLOV3 457 58.5 344
YOLOVv5s 824 665 482
YOLOv7 53.6 55.1 335
YOLOv8n 78.7 64.9 49.8
YOLOv1in 85.2 63.8 493
SDA- 87.6 67.7 51.6
HTransYOLOvV8n

mAP50 is the average accuracy of the IoU threshold of 0.5,and mAP50-95 is the average of the
mAP when the ToU threshold is 0.50 to 0.95 and the step size is 0.05. The same below.

4 Conclusion

In response to the challenges faced by image recognition in
deep-sea environments, such as dim light, severe water scattering,
and blurred target features, this paper proposes an improved
YOLOv8n model: SDA-HTransYOLOv8n. By introducing the
HyperTransformer module, SDI multi-level feature fusion
module, DySample dynamic sampling mechanism, and ADown
downsampling module, the model achieves collaborative
optimization in the links from feature capture, fusion, and

Frontiers in Marine Science

extraction to dimensionality reduction. Compared with the
YOLOvV8n model, the SDA-HTransYOLOv8n model has achieved
significant improvements in Precision, mean average precision
(mAP50, mAP50-95), reaching 87.6%, 67.7%, and 51.6%
respectively. Meanwhile, when comparing SDA-HTransYOLOv8n
with SSD, YOLOv3, YOLOv5, YOLOv7, and YOLOv11, the SDA-
HTransYOLOv8n model shows more prominent advantages in
detection accuracy. The research method in this paper plays an
important technical supporting role in deep-sea biodiversity
investigation and assessment, as well as marine ecological
environment protection. By improving the accuracy and efficiency
of deep-sea biological detection, this study can help scientists gain a
more comprehensive understanding of deep-sea ecosystems and
provide reliable data support for the sustainable utilization of
marine resources and ecological environment protection.
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