
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

David Alberto Salas de León,
National Autonomous University of Mexico,
Mexico

REVIEWED BY

Hao Wang,
Laoshan National Laboratory, China
Yize Wang,
Waseda University, Japan

*CORRESPONDENCE

Xianpeng Shi

xpsh@ndsc.org.cn

RECEIVED 04 September 2025
REVISED 31 October 2025

ACCEPTED 04 November 2025
PUBLISHED 20 November 2025

CITATION

Chen D, Shi X, Liu M, Qiu S and Zhou Z
(2025) Deep-sea organism detection method
based on the SDA-HTransYOLOv8n model.
Front. Mar. Sci. 12:1697267.
doi: 10.3389/fmars.2025.1697267

COPYRIGHT

© 2025 Chen, Shi, Liu, Qiu and Zhou. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Technology and Code

PUBLISHED 20 November 2025

DOI 10.3389/fmars.2025.1697267
Deep-sea organism detection
method based on the SDA-
HTransYOLOv8n model
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and Zihan Zhou3

1National Deep Sea Center, Qingdao, China, 2The College of Ocean Science and Engineering,
Shandong University of Science and Technology, Qingdao, China, 3College of Mathematics and
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Deep-sea organism detection is one of the key technologies in deep-sea

resource research and conservation. However, challenges such as low

recognition accuracy and insufficient robustness arise due to issues like dim

lighting, severe water scattering, and blurred target features in the deep-sea

environment. To address these issues, this study proposes a deep-sea organism

recognition method based on an improved SDA-HTransYOLOv8n model. The

model introduces significant improvements to the neck network structure of

YOLOv8n. First, it replaces the traditional upsampler with an improved point

sampling dynamic sampler, which adaptively adjusts the sampling rate based on

the target size, reducing redundant information interference and enhancing the

efficiency of image feature extraction. Second, a Semantics and Detail Infusion

module (SDI) is designed to adaptively fuse feature map information across

different scales, addressing the issue of small deep-sea organisms being easily

overlooked while enhancing the edge and detail features of deep-sea organisms.

Third, a HyperTransformer-based HT_C2f module is designed to dynamically

adjust attention weights, enhancing the model’s ability to capture target

organism features in complex deep-sea environments and improving

sensitivity to blurry and low-contrast targets. Fourth, an improved

downsampling convolution module (ADown) is introduced to reduce the

dimension of feature maps while retaining more key feature information,

avoiding feature loss in deep-sea organism images caused by information

compression during sampling. Experimental results demonstrate that, on the

deep-sea organism dataset obtained by the Jiaolong manned submersible in the

western Pacific Ocean, the SDA-HTransYOLOv8n model developed in this study

achieves a precision of 87.6%, a mAP50 of 67.7%, and a mAP50–95 of 51.6%,

respectively, representing improvements of 8.9%, 2.8%, and 1.8% compared to

the original YOLOv8n model, significantly enhancing the accuracy of deep-sea

organism recognition. This study effectively meets the target detection

requirements in complex deep-sea environments, providing technical support

for deep-sea exploration and underwater operations. Code and models are

available at https://github.com/Riokuli/SDA-HTransYOLOv8n-Model.
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1 Introduction

The deep sea, as both a frontier for earth science research and a

treasure trove of strategic resources, has elevated the capability to

explore and develop it into one of the core indicators for gauging a

country’s scientific and technological prowess (Costa et al., 2020).

As a pivotal technology for researching and conserving deep-sea

biodiversity, underwater object detection faces numerous technical

challenges. The unique characteristics of the deep-sea environment,

including low illumination, light attenuation, color distortion, and

low contrast, severely compromise the quality of underwater images

and thereby impair the accuracy and robustness of existing

detection algorithms (Xie et al., 2022). Furthermore, the scarcity

of deep-sea image data and the exorbitant cost of image acquisition

make data collection and annotation more arduous, further

constraining the generalization capacity of models. Meanwhile,

many existing detection models typically pursue higher accuracy

at the expense of increased computational complexity, rendering

them difficult to deploy effectively in resource-constrained deep-sea

exploration systems. Therefore, how to boost detection accuracy

while reducing model computational complexity and ensuring real-

time performance and efficiency in deep-sea detection tasks has

emerged as a critical issue demanding urgent resolution in this field.

In recent years, scholars have conducted extensive research on

underwater biological detection algorithms. Current deep learning

algorithms have revealed significant limitations when addressing

the challenges of complex deep-sea environments: In traditional

CNN models, the fixed receptive field design fails to dynamically

adapt to targets of varying sizes and background distractors, leading

to insufficient feature discrimination capability for deep-sea images

(Han et al., 2020). YOLOv5 relies on the Focus structure and

traditional convolution-dominated feature extraction, a reliance

that cannot effectively address the blurred features of small targets

caused by low-light conditions in deep seas (Kim et al., 2022).

Although YOLOv8 is equipped with the C2f module and a dynamic

detection head, it exhibits insufficient ability to distinguish low-

contrast targets and incomplete capture of features of crustaceans

with significant morphological variations (Wu and Dong, 2023).

YOLOv10 centers on a decoupled detection head and Layer-wise

Feature Aggregation, yet it struggles to adapt to the blurred feature

hierarchy issue in highly turbid deep-sea environments (Hu et al.,

2025). While YOLOv11 enhances detailed feature extraction

through the Spatial Pyramid Pooling-Feature Pyramid Network

enhancement module, it still adopts a local convolution-based core

architecture, which prevents the complete capture of the global

morphology of soft-bodied organisms (Cheng et al., 2025). Anchor-

free models such as CenterNet rely on feature pyramids for key

point regression; they show poor adaptability to inter-layer feature

confusion induced by low light in deep seas, lack a mechanism for

dynamically adjusting feature hierarchies, and are prone to key

point localization deviations (Duan et al., 2019). R-CNN depends

on preset anchor boxes, making it difficult to adapt to the diverse

morphologies of deep-sea organisms and liable to misjudgment in

dense scenarios (Bharati and Pramanik, 2019). The Region Proposal

Network of Faster R-CNN generates candidate regions based on
Frontiers in Marine Science 02
preset anchor boxes; it lacks an effective recognition mechanism for

densely distributed similar features and tends to misclassify dense

background distractors as target clusters (Sisodiya and Bhoite,

2025). Although Swin Transformer and Vision Transformer

models possess global perception advantages, Swin Transformer

uses a fixed 9×9 window for attention computation—this window

size cannot be adaptively adjusted according to target size.

Additionally, its static weight update mechanism fails to respond

in real time to dynamic scene changes, reducing recognition

stability (Wei et al., 2024). The self-attention mechanism of ViT

models has not been optimized for special deep-sea environments

(e.g., low light), resulting in insufficient perception capability for

regions with weak features (Li et al., 2025).

In the latest underwater recognition research, scholars have

overcome environmental constraints from the perspectives of data

augmentation and cross-modal fusion. WaterCycleDiffusion is an

underwater image enhancement method driven by vision-text fusion;

it guides the diffusion model to generate enhanced images consistent

with real scenarios via text descriptions, effectively mitigating the loss

of image details under low light. However, this method does not

undergo end-to-end joint optimization with downstream detection

tasks, leading to a mismatch between the enhanced image features

and the feature requirements of the detection network (Wang et al.,

2025). The enhancement algorithm that combines histogram

similarity-based color compensation with multi-attribute

adjustment dynamically corrects color distortion and contrast

attenuation of underwater images, improving the discriminability

between targets and the background. Nevertheless, this method has

insufficient adaptability to dynamic changes in water scattering

coefficients, limiting its enhancement effect in highly turbid deep-

sea regions (Wang et al., 2023). In research on integrated detection

and tracking, the integrated detection and tracking paradigm for

Compact High-Frequency Surface Wave Radar based on

reinforcement learning optimizes the fusion strategy of radar data

and visual data through reinforcement learning, enhancing the

continuous tracking capability of dynamic targets. However, this

paradigm is more suitable for long-range monitoring of medium-to-

large marine organisms; it suffers from insufficient precision in close-

range fine detection of small deep-sea organisms. Moreover, the

modal differences between radar and visual features cause

information redundancy and loss during the fusion process (Li

et al., 2025) (Li et al., 2024).

To address these limitations, this paper proposes an enhanced

detection model for deep-sea scenarios, SDA-HTransYOLOv8n

(S: Semantics and Detail Infusion module; D: Dynamic Sampling

Module; A: Adaptive Downsampling Module; HTrans:

HyperTransformer Module; YOLOv8n: You Only Look Once 8n),

with innovative breakthroughs in three dimensions:
1. Designing a cross-domain adaptable Transformer module

that uses an environment-aware dynamic attention

mechanism to achieve precise focusing on target features

under low signal-to-noise ratio conditions;

2. Constructing a SDI multi-level feature fusion architecture,

which enhances the consistency of multi-scale feature
frontiersin.org

https://doi.org/10.3389/fmars.2025.1697267
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2025.1697267

Fron
information through dynamic scale alignment and cross-

level feature product interaction, thereby improving the

feature consistency of multi-scale target recognition;

3. Innovating the DySample dynamic sampling and ADown

enhanced downsampling mechanisms, which enhance the

retention rate of small target features while reducing the

loss of critical information during the dimensionality

reduction process.
Experimental results on the deep-sea biological dataset obtained

by the Jiaolong manned submersible in the western Pacific Ocean

indicate that the model achieves improvements of 8.9%, 2.8%, and

1.8% in precision and mean average precision (mAP50, mAP50-95)

compared to the original YOLOv8n model, providing technical

support for deep-sea resource exploration and ecological monitoring.
2 Method

2.1 YOLOv8n network structure

The YOLO series is celebrated for its exceptional efficiency and

accuracy in object detection (Wang et al., 2022). The YOLOv8n

model (Chen et al., 2025), building on the achievements of

YOLOv5n, introduces significant improvements. Specifically, it

replaces the conventional C3 module with the more sophisticated

C2f module, thereby refining residual learning and facilitating

improved gradient propagation via an optimized bottleneck

module. Moreover, the model incorporates a novel image
tiers in Marine Science 03
segmentation algorithm that synergistically combines deep

learning with an adaptive threshold function (Deng et al., 2023),

resulting in a lightweight framework that effectively captures

gradient stream data (Shi and Wang, 2023). The input image is

sequentially processed through multiple convolutional layers and

C2f modules to extract feature maps at varying scales, which are

then refined by an SPPF module prior to being forwarded to the

detection head. This detection head seamlessly integrates anchor-

free and decoupled-head strategies, while the loss function (Hu

et al., 2024) leverages binary cross-entropy for classification

alongside regression losses based on the CIOU and VFL.

Additionally, the frame matching process has been improved with

the Task-Aligned Assigner, further enhancing detection accuracy.
2.2 Improved YOLOv8n model— SDA-
HTransYOLOv8n model

The SDA-HTransYOLOv8n model structure proposed in this

paper is shown in Figure 1. Its core lies in a completely new

improvement to the neck network of YOLOv8n, achieving a

breakthrough in performance through the collaborative design of

four key modules: First, the traditional sampler is replaced with an

improved point sampling dynamic sampler (Liu et al., 2023). This

module adaptively adjusts the sampling rate based on the size

characteristics of the target, effectively filtering out redundant

information interference while significantly enhancing the

efficiency of image feature extraction; Second, an innovative

multi-level feature fusion module (SDI) is constructed (Yang
FIGURE 1

Overall structure diagram and basic modules of SDA-HTransYOLOv8n (All modules within the neck were designed by the authors).
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et al., 2021), which introduces an adaptive fusion mechanism to

enable deep interaction between feature maps of different scales,

thereby enhancing the representation of target edges and detailed

features; Third, a HyperTransformer-based HT_C2f module is

designed (Dong et al., 2024). This module dynamically adjusts

attention weight distributions to enhance the model’s ability to

capture target biological features in complex deep-sea

environments, particularly improving sensitivity to blurry and

low-contrast targets; Finally, an improved downsampling

convolution module (ADown) is introduced (Wen et al., 2025).

This module compresses feature map dimensions while retaining

more critical feature information, effectively avoiding feature loss in

deep-sea biological images caused by information compression

during sampling. The organic integration of these improved

modules significantly enhances the model’s adaptability to

extreme deep-sea environments, providing a reliable foundation

for the efficient identification of diverse deep-sea organisms.
2.3 Dynamic sampling module

To address issues such as blurred features, diverse morphologies

(e.g., posture distortion of soft-bodied organisms and blurred edges

of transparent organisms) in deep-sea biological images, as well as

low discriminability of local features caused by low illumination,

this paper designs a dynamically adaptive upsampling module. This

module achieves dynamic alignment and enhancement of features
Frontiers in Marine Science 04
by learning pixel-level offsets, thereby effectively capturing the key

features of deep-sea organisms.

The core of the DySample module is to predict offsets through

1×1 convolution, generate dynamic sampling coordinates in

combination with the initial reference grid, and finally complete

feature resampling via bilinear interpolation. Its overall structure is

shown in Figure 2, and the specific working principles are

as follows:

First, the offset layer predicts the base offsets. For the lp mode

(from low resolution to high resolution), which is applicable to super-

resolution feature enhancement of deep-sea images, the number of

output channels is 2� groups� scale2 (where 2 corresponds to

offsets in x=y directions, groups is the number of groups, and scale

is the sampling scaling factor). For the pl mode (from high resolution

to low resolution), which is suitable for retaining key information

during feature dimension reduction, the number of output channels

is 2� groups. Meanwhile, to avoid excessive offsets caused by deep-

sea noise, an optional scope layer is set. When scope=True, an offset

scaling factor is generated through sigmoid activation to dynamically

control the offset amplitude. The offset formulas are shown in

Equations (1) and (2).

p0 = f( i
scale

,
j

scale
)ji, j ∈ ½− scale − 1

2
,
scale − 1

2
�g (1)

Dp =
(O(x) · d (S(x))) · 0:5 + p0, (scope = True)

O(x) · 0:25 + p0, (scope = False)

(
(2)
FIGURE 2

Structure diagram of dynamic sampling module.
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Among them, p0 is the initial reference grid; O(x) is the output

of the offset layer; S(x) is the output of the scope layer; d is the

sigmoid function.

The dynamic sampling process is implemented through the

sample function. Its core lies in fuse the predicted offsets with the

original coordinates, generate normalized sampling coordinates,

and then complete feature resampling via bilinear interpolation.

The specific formulas are shown in Equations (3) and (4).

coordsraw = (x + 0:5, y + 0:5) (3)

coordsnorm = 2 ·
coordsraw + Dp

(W,H)
− 1 (4)

Among them, coordsraw is the generated original pixel center

coordinate; ðx, yÞ is the pixel index; (W,H) is the size of the input

feature map.

The DySample module adaptively handles feature variations in

deep-sea biological images through dynamic sampling by selectively

employing two sampling modes. This module not only reduces

computational load but also enhances feature diversity. It breaks

through the limitations of traditional fixed-grid sampling, enabling

sampling points to actively converge in high-information regions

and improving the discriminability of feature representation.
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2.4 SDI multi-level feature fusion module

As a spatial dimension interaction module, the SDI module can

effectively address challenges such as low illumination and high

noise in deep-sea biological image recognition through its unique

multi-scale feature fusion mechanism, thus demonstrating

significant advantages in deep-sea biological recognition tasks.

The SDI module enhances the semantic and detailed information

in images by integrating the hierarchical feature maps generated by

the encoder. It specifically consists of three parts: feature extraction

and integration of deep-sea biological images, fusion of high-level

and low-level features at different levels, and feature transmission

and segmentation. Its structure is shown in Figure 3.

To address the issue of low signal-to-noise ratio in deep-sea image

features, the SDI module achieves effective integration through multi-

scale feature extraction and noise suppression. The formula for multi-

scale basic feature extraction are shown in Equations (5)–(7).

Fl = Backbone(I)∈RCl�Hl�Wl , (l∈ 1, 2,…, L) (5)

Hl =
H

2l−1
(6)

Wl =
W

2l−1
(7)
FIGURE 3

The structural diagram of the SDI multi - level feature fusion module.
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Among them, I∈R3�H�W represents the original deep-sea image;

Cl denotes the number of channels of the feature map at the l-th layer;

F1 stands for low-level features (such as edges and textures); FL refers

to high-level features (semantics and robustness).

The SDI module performs scale alignment and convolution

purification on the extracted features. The integrated formulas are

shown in Equations (8) and (9).

Fint =
YL
l=1

(Wl ∗Align(Fl ,Hl ,Wl) + bl) (8)

Align(Fl ,Hl ,Wl) =
BI(Fl ,Hl ,Wl),     (l > 1, upsamplingÞ
Fl ,  (l = 1,   baseline sizeÞ

(
(9)

Among them, Align( · ) is the scale alignment function;Wl ∗ ( · ) +
bl refers to the noise filteringtemplate learned by the convolutional layer

for noise filtering; BI( · ) denotes bilinear interpolation.

Deep-sea biological recognition requires simultaneous

consideration of low-level features and high-level features. SDI

achieves the fusion of high-level and low-level features at different

levels through hierarchical interaction, as shown in Equation (10).

Ffusion =
YL
l=1

(al · (Wl ∗Align(Fl ,Hl ,Wl) + bl)) (10)

Among them, al satisfies oal = 1. For small deep-sea

organisms a1 and a2, it is increased (to enhance details); for large

organisms aL−1 and aL, it is increased (to enhance semantics).

In the deep-sea biological segmentation task, the features fused by

SDI module need to guide pixel-level classification through a

transmission mechanism. The fused features are transmitted to the

original imagesize throughFfusion upsampling, as showninEquation(11).

Fseg = BI(Ffusion,H,W)∈ R3�H�W (11)

Then, for each pixel (i, j), its biological category k is predicted by

the classifier, as shown in Equations (12) and (13).

P(k i, j) = Softmax (Wseg  *Fseg ½:, i, j� + bseg)k
�� (12)

M(i, j) = argmax P(k i, j)j (13)

Among them, Wseg is the convolution weight of the

segmentation head; Fseg is the fused feature map transmitted to

the segmentation head; bseg is the bias term of the segmentation

head; M(i, j) represents the value of the segmentation mask at pixel

(i, j); and argmaxis the index function corresponding to taking the

maximum value.

Meanwhile, to improve the segmentation accuracy of low-

illumination regions, a confidence-weighted loss based on SDI

module features is introduced, as shown in Equation (14).

ς = −o
i,j
log P(M*(i, j)ji, j) · 1

Zo
L

l=1

Align(Fl ,H,W)½:, i,j�k k2 (14)

Among them, M* is the annotation mask; Z is the

normalization constant.
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The SDI module adapts to the low illumination and scale

differences of deep-sea images through multi-scale product fusion.

Its core formulas suppress noise during the feature extraction stage,

balance details and semantics in the hierarchical fusion stage, and

achieve accurate pixel classification through feature transmission in

the segmentation stage, providing a mathematically rigorous

solution for deep-sea biological recognition.
2.5 HT_C2f module based on
HyperTransformer

Biometric recognition in deep-sea environments faces

significant challenges such as low light levels, high noise, low

contrast between targets and backgrounds, and complex spatial

relationships. Traditional convolutional neural networks are limited

by their local receptive fields and struggle to effectively capture

global context dependencies, while pure Transformer architectures

suffer from high computational costs and loss of local details. To

address these issues, this paper introduces an HT_C2f module

based on a hybrid architecture, inspired by the C2f structure in

YOLOv8 (as shown in Figure 4). By integrating the local feature

extraction capabilities of convolutional neural networks with the

global modelling capabilities of Transformers, the module achieves

efficient enhancement and modelling of target features in deep-

sea images.

The core improvement of the HT_C2f module lies in the use of an

“alternating replacement” strategy to reconstruct the feature processing

chain, forming a hybrid feature interactionmode of “Conv-Bottleneck-

Transformer.” Among these, the HyperTransformer serves as the core

enhancement unit, consisting of three key components: the Hyper

Edge feature extraction submodule (Wazirali and Chaczko, 2016), the

Transformer global modelling submodule (Wang et al., 2023), and

feature fusion and residual connection (Fu et al., 2025).

The Hyper Edge feature extraction submodule captures local

spatial features through 3×3 convolutions, introduces nonlinear

transformations via the GELU activation function (Lee, 2023), and

then compresses the feature dimensions to hyper_dim through 1×1

convolutions, thereby retaining key details while reducing the

computational complexity of the Transformer. Its feature

transformation process is shown in Equation (15).

hyper _ feat = Conv1�1(GELU(Conv3�3(x))) (15)

Among them, x∈ RB�C�H�Wrepresents the input feature; hyper _

feat∈ RB�K�H�W(K is hyper _ dim) denotes the output low-

dimensional local feature.

The Transformer global modeling submodule flattens the

feature map output by the Hyper Edge into a sequence form

(with the dimension converted to HW � B� K), and captures

the global context dependencies through the Transformer encoder

layer. The multi-head self-attention mechanism of Transformer is

shown in Equations (16)–(18).

MultiHead(Q,K ,V) = Concat(head1,⋯ headh)W
O (16)
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headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (17)

Attention(Q,K ,V) = softmax (
QKTffiffiffiffiffi

dk
p )V (18)

Among them, headi denotes the output of the i-th attention

head;WO is the output projection matrix;WQ
i ,W

K
i , andW

V
i are the

projection matrices of the i-th head, which project Q, K , and V into

the low-dimensional subspace, respectively.

The feature sequence processed by the Transformer is reshaped

back to the original spatial dimension, resulting in the globally

enhanced feature trans _ feat∈ RB�K�H�W .

The feature fusion and residual connection concatenate local feature

hyper _ feat and global feature trans _ feat along the channel dimension

(with the dimension being B� 2K �H �W), compress them to the

input dimension C through convolution 1� 1, and perform residual

fusion with the original input x, as shown in Equation (19).

output = x + Conv1�1(Concat(hyper _ feat, trans _ feat)) (19)

In the HT_C2f module, the aforementioned HyperTransformer

units and original Bottlenecks are arranged alternately, with each

HyperTransformer processing only half of the channels (C2==2).

This design ensures global modeling capability while maintaining

computational efficiency. In deep-sea biological recognition, this

design can not only effectively extract detailed features of blurred

targets but also model the correlation between targets and complex

backgrounds through global attention, significantly enhancing the

feature expression ability for complex deep-sea scenes.
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2.6 Adaptive downsampling-ADown

The ADown module is a lightweight downsampling module

designed for the characteristics of deep-sea environments such as

low illumination, high noise, and blurred targets. This module

adopts a dual-path feature parallel processing mechanism, which

achieves 2x spatial downsampling while effectively preserving subtle

features and edge information in deep-sea biological images.

ADown module enhances the representation ability for weak

textures and small targets through multi-scale feature fusion, and

at the same time controls computational complexity to meet the

requirements of practical deep-sea biological image recognition.

The structural design of ADown follows the logic of “feature

divide-and-conquer -parallel enhancement - fusion output”, which

is specifically divided into three parts: input preprocessing, dual-

path feature transformation, and feature fusion. Its structure is

illustrated in Figure 5.

In the input preprocessing stage, first, average pooling with no

size change is performed on the input feature map to suppress high-

frequency noise in deep-sea images, as shown in Equation (20).

X
0
= AvgPool2d(X; k = 1, s = 1, p = 0) (20)

Among them, the pooling kernel k = 1; the stride s = 1; the

padding p = 0; and the output is X 0 ∈ Rb�c1�h�w.

Then, the input channels are split: X 0 is evenly divided into two

branches along the channel dimension (dim=1) to achieve

differentiated feature processing, as shown in Equation (21)

X1,X2 = torch:chunk(X 0, chunks = 2, dim = 1) (21)
FIGURE 4

Structure diagram of the HT_C2f module based on HyperTransformer.
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Among them, X1,X2∈ Rb�(c1=2)�h�ware respectively routed to

two distinct feature transformation branches.

In the dual-path feature transformation stage, the two paths are

designed for different feature types of deep-sea images, forming

complementary feature sets. First, for small targets and weak texture

features in deep-sea images, fine-grained information is preserved

through spatial partitioning-channel concatenation operations, as

shown in Equations (22) and (23).

X1 →

XL1

XL2

XL3

XL4

8>>>>><
>>>>>:

(22)

Xsea
1 = torch:sea(½XL1,XL2,XL3,XL4�, dim = 4) (23)

Among them, XL ∗ refers to 4 regional sizes h=2� w=2; the

number of channels is c1=2; X
sea
1 ∈ Rb�2c1�h=2�w=2 with the number

of channels being 2c1 = 4� ðc1=2Þ.
Then, the BaseConv module is used to compress and activate

the channels, as shown in Equation (24).

Y1 = dSiLU (BN(Xsea
1 ∗W1)) (24)

Among them, W1∈ Rðc2=2Þ�2c1�1�1 is the convolution kernel;

dSiLU (x) = x · d (x), d are Sigmoid functions; Y1∈ Rb�(c2=2)�h=2�w=2

is the output.
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The second stage is the salient feature enhancement path with

max pooling. For relatively clear targets in deep-sea environments,

local salient features are strengthened through max pooling, as

shown in Equation (25)

Xpool
2 = MaxPool2d(X2; k = 3, s = 2, p = 1) (25)

Then, the Conv module is used to compress and activate the

channels, as shown in Equation (26)

Y2 = dSiLU (BN(Xpool
2 ∗W2)) (26)

Among them, W2∈ R(c2=2)�(c1=2)�1�1 is the convolution kernel;

Y2 ∈ Rb�(c2=2)�h=2�w=2 is the output.

Finally, the outputs of the two paths are concatenated along the

channel dimension to fuse detailed features and salient features, as

shown in Equation (27)

Y = torch:sea(½Y1,Y2�, dim = 1) (27)

Among them, Y∈ Rb�c2�h=2�w=2 is the final output.

The ADown module achieves a balance between detail

preservation and salient feature enhancement in the downsampling

task of deep-sea images through its dual-path parallel design and

refined feature processing (He et al., 2025). With its mathematically

rigorous dimension transformation and scenario-adaptive design, it

serves as an effective component for improving feature representation

capabilities in deep-sea image recognition models. This module can be

embedded into backbone networks or feature pyramid structures to

optimize the performance of multi-scale feature extraction.
FIGURE 5

Structural diagram of adaptive downsampling.
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3 Experiments and results

3.1 Dataset establishment and processing

This experimental dataset was derived from real video data

captured by Jiaolong (Shi et al., 2019), a manned submersible of the

7000 m underwater class in the western Pacific Ocean, and the

process shown in Figure 6 below was used to construct the deep-sea

biological dataset. Firstly, the video key frame images were

intercepted to obtain the deep-sea organism images, then the

images were expanded by rotating, inverting, noise addition, and

other data enhancement methods (Cheung and Yeung, 2023), and

finally, the organism images were annotated using the traditional

labeling tool to obtain 5002 images and the corresponding labels.

During the annotation process, all image organisms were

categorized according to their biological phyla, totaling eight

phyla, as illustrated in Figure 7, which include Coral Polyp,

Crinoid, Starfish, Crustacean, Ray-Finned Fish, Sea Urchin, Sea

Cucumber, and Hexactinellida.
3.2 Experimental environment and
parameter configuration

The experiments in this paper use Ubuntu 20.04 as the

operating system, PyTorch as the deep learning framework, and

the experimental platform uses Python 3.8.19 and torch2.0.1

+cuda11.8. The graphics card model is (NVIDIA GeForce

RTX4090, 24GB). The detailed production parameters of the

experiment are shown in Table 1.
3.3 Evaluation criteria

In this study, the performance of the improved YOLOv8n

model was evaluated using the precision (Hestness et al., 2019)

and mean average precision (mAP) as the evaluation metrics. For

details, see Equations (28)–(31).
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P =
TP

TP + FN
(28)

R =
TP

TP + FP
(29)

AP =
Z 1

0
P · RdR (30)

mAP =
o
N

i=1
APi

N
� 100% (31)

where P represents the precision of the described model, i.e., what

percentage of instances predicted by the model to be positive

instances are actually positive instances. R represents the ratio of

the instances of correctly identified deep-sea organisms to all the

annotated instances of deep-sea organisms. TP denotes the number of

accurate identifications of deep-sea organism detections made by the

YOLOv8n network model. FP denotes the number of inaccurate

identifications of deep-sea organism detections made by the

YOLOv8n network model. AP is the mean average precision. AP50

is the mean average precision for this category of samples when the

threshold value of the IoU of the confusion matrix is taken to be 0.5.

mAP is the precision of the samples of all the categories averaged,

which reflects the trend of the model’s precision with the recall rate;

the higher the value, the easier it is for the model to maintain a high

precision at a high recall rate. mAP50–95 represents the averagemAP

value over different IoU thresholds (from 0.5 to 0.95 in steps of 0.05).

N represents the number of categories.

In model evaluation metrics, the precision is a crucial indicator

for assessing the accuracy of the model recognition, while the mean

average precision serves as a comprehensive performance metric that

aggregates multiple precision values across different recall rates. As a

key evaluation criterion, the mAP holds even greater significance. It

not only reflects the model’s precision in recognizing positive samples

but also provides a comprehensive evaluation of all the object

detections. The mAP plays a pivotal role in assessing the model

effectiveness and selecting the optimal model.
FIGURE 6

Flowchart of dataset production.
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3.4 Experimental results and analysis

3.4.1 Experimental comparison before and after
model improvement

Figure 8 shows the precision, mean average precision at

IoU=0.5, and mean average precision at IoU=0.5–0.95 of the

original YOLOv8n model and the SDA-HTransYOLOv8n model

af ter 100 tra ining i terat ions . Spec ifica l ly , the SDA-

HTransYOLOv8n model exhibits better precision when trained
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on the deep-sea organism dataset. In terms of the mAP50 and

mAP50–95 metrics, the SDA-HTransYOLOv8n model has

maintained a leading position after iteration, and it shows a

significant advantage especially in mAP50. This indicates that the

SDA-HTransYOLOv8n model not only has improved detection

accuracy but also demonstrates stronger robustness under different

IoU thresholds. To more intuitively compare the detection effects of

YOLOv8n and SDA-HTransYOLOv8n on samples not involved in

training, Figure 9 presents some detection results covering different

deep-sea organisms. Compared with the YOLOv8n model, the

SDA-HTransYOLOv8n model proposed in this paper performs

better in terms of accuracy and recognition error rate. Especially in

the complex deep-sea environment, the SDA-HTransYOLOv8n

model has higher confidence and more stable detection

performance. Although YOLOv8n can also accurately identify

deep-sea organisms, SDA-HTransYOLOv8n shows stronger

robustness under different deep-sea backgrounds, reduces

interference from the complex deep-sea environment, and

exhibits higher accuracy.

3.4.2 Ablation experiments
To comprehensively evaluate and verify the effectiveness of the

improved model, ablation experiments were conducted. Under the
TABLE 1 Detailed hyperparameters of the experiment.

Parameters Value or type

Epochs 100

Batch size 8

Optimizer SGD

Image size 640� 640

Initial learning rate 0:01

Optimizer momentum 0:937

Weight decay 5� 10−4
FIGURE 7

The Jiaolong dataset contains eight phyla of organisms: (a) Coral Polyp; (b) Crinoid; (c) Starfish; (d) Crustacean; (e) Ray-Finned Fish; (f) Sea Urchin;
(g) Sea Cucumber; (h) Hexactinellida.
FIGURE 8

Comparison of indicators before and after model improvement.
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premise of keeping the environment and training parameters

consistent, the optimization effects of adding different modules of

YOLO or different combinations on deep-sea biological detection

were analyzed. The results are shown in Table 2 below.

3.4.3 Comparative tests of different models
In order to fully evaluate the performance of the SDA-

HTransYOLOv8n model, the same dataset is used as a sample
Frontiers in Marine Science 11
and it is analyzed in comparison with a series of target detection

models, which include SSD, YOLOv3, YOLOv5, YOLOv7,

YOLOv8n, and YOLOv11 five models. The results are shown in

Table 3, and SDA-HTransYOLOv8n excels in all performance

metrics. Its model reaches 87.6%, 67.7%, and 51.6% in Precision,

and mean average precision (mAP50,mAP50-95), respectively,

which fully proves its strong ability in accurately identifying and

localizing targets.
FIGURE 9

YOLOv8n (a) vs. SDA-HTransYOLOv8n (b) detection results for different organisms.
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4 Conclusion

In response to the challenges faced by image recognition in

deep-sea environments, such as dim light, severe water scattering,

and blurred target features, this paper proposes an improved

YOLOv8n model: SDA-HTransYOLOv8n. By introducing the

HyperTransformer module, SDI multi-level feature fusion

module, DySample dynamic sampling mechanism, and ADown

downsampling module, the model achieves collaborative

optimization in the links from feature capture, fusion, and
Frontiers in Marine Science 12
extraction to dimensionality reduction. Compared with the

YOLOv8n model, the SDA-HTransYOLOv8n model has achieved

significant improvements in Precision, mean average precision

(mAP50, mAP50-95), reaching 87.6%, 67.7%, and 51.6%

respectively. Meanwhile, when comparing SDA-HTransYOLOv8n

with SSD, YOLOv3, YOLOv5, YOLOv7, and YOLOv11, the SDA-

HTransYOLOv8n model shows more prominent advantages in

detection accuracy. The research method in this paper plays an

important technical supporting role in deep-sea biodiversity

investigation and assessment, as well as marine ecological

environment protection. By improving the accuracy and efficiency

of deep-sea biological detection, this study can help scientists gain a

more comprehensive understanding of deep-sea ecosystems and

provide reliable data support for the sustainable utilization of

marine resources and ecological environment protection.
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TABLE 2 Ablation experiments.
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