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Mitochondrial Quality Control (MQC) is the core mechanism for ensuring

mitochondrial quality and maintaining cellular function. Marine algae and their

bioactive compounds represent a huge treasure trove of natural medicines. In

recent years, research on the regulation of mitochondrial biogenesis,

mitochondrial dynamics, mitophagy, and mitochondrial protein balance by

marine algae has continuously emerged, and their mechanisms of action have

gradually become clearer. Bioactive compounds are thematerial basis for marine

algae to exert this regulatory function. Based on their chemical structures, they

can be classified into types such as marine algal polysaccharides, marine algal

carotenoids, marine algal proteins, and marine algal peptides. Based on the

analysis of the chemical structures of these compounds, we believe that

structural differences, including planarity, degree of sulfation, and

stereoisomerism, may help explain their regulatory effects on MQC.

Furthermore, numerous scholars have demonstrated through preclinical

studies, using animal or cell models, that marine algae and their bioactive

compounds can improve muscle function, treat tumors, type 2 diabetes

mellitus, and nervous system diseases, among other effects, by regulating

MQC. Currently, this interdisciplinary field holds significant potential for

development. This review primarily incorporates literature published between

2019 and 2025 that is highly relevant to the mechanisms of MQC regulation by

marine algae and their bioactive compounds. It analyzes the latest research

progress from three dimensions: mechanisms of action, molecular structures,

and therapeutic applications. Furthermore, it identifies potential challenges and

future research directions in the field, aiming to provide support for future drug

development and treatment strategies.
KEYWORDS

marine algae, bioactive compounds, mitochondrial quality control, structure-activity
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1 Introduction

Mitochondria are the center of cellular energy metabolism and

are known as the “energy factory” of cells. In the past century,

mitochondrial related research has won the Nobel Prize five times,

fully demonstrating its core position in the field of cellular biology

(Xu et al., 2024). Mitochondria are multifunctional semi-

autonomous organelles capable of energy production, substance

synthesis, and metabolic signaling. Their dysfunction mainly leads

to the production of excessive reactive oxygen species (ROS) and

triggers oxidative stress, resulting in cell damage and death (Kenny

and Birsoy, 2024; Li Y. et al., 2024). In addition, mitochondrial

dysfunction can trigger inflammatory responses by activating

damage associated molecular patterns (DAMPs), inflammasomes,

and immune cells involved in inflammation (Xu et al., 2025).

Mitochondrial Quality Control (MQC) is a comprehensive

mitochondrial quality surveillance system and an indispensable

cell-autonomous mechanism that ensures mitochondrial

functional integrity and equilibrium (Zhang H. et al., 2024). This

network comprises a set of interrelated mechanisms that coordinate

mitochondrial biogenesis, dynamics (fusion/fission), mitophagy,

and protein balance. Together, these processes effectively repair or

eliminate damaged mitochondria, ensuring the population remains

sufficient in quantity and high in quality (Iovine et al., 2021; Ma

et al., 2025). MQC can achieve continuous turnover of new and old

mitochondria, to maintain an overall balance in mitochondrial

quantity and quality, which in turn affects the stability of cell

structure and function. At present, scholars generally believe that

MQC imbalance plays a critical role in the initiation and

progression of aging, type 2 diabetes mellitus (T2DM),

Parkinson’s disease (PD), myocardial ischemia, tumor and other

diseases. For example, T2DM is often accompanied by pathological

mechanisms of decreased mitophagy, increased mitochondrial

fission, and decreased fusion (Belosludtsev et al., 2021; Zhou

et al., 2024); Secondly, during the aging process, the efficiency of

the MQC regulatory pathway gradually decreases, which results in

diminished mitochondrial mass and reduced neuromuscular

function in the elderly (Marzetti et al., 2016; Picca et al., 2023); In

addition, Chen et al.’s study found that in dopaminergic neurons of

PD patients, the abundance of key proteins involved in mitophagy

and mitochondrial protein balance was significantly reduced (Chen

et al., 2023).

Marine algae, as a widely distributed biological group in nature,

are not only an important component of marine ecosystems, but

also have both edible and medicinal value in human diet. Marine

algae is mainly divided into four major categories based on their

pigment characteristics, including brown algae (such as

Ascophyllum Nodosum, Fucus vesiculosus, and Sargassum

filipendula), red algae (such as Porphyra and Gracilaria

vermiculophylla), green algae (such as Ulva lactuca Linnaeus and

Caulerpa racemosa), and blue-green algae (such as Spirulina
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platensis). Among them, red algae are the largest group of marine

algae with the highest proportion of bioactive compounds, and are

also the main source of carrageenan and agar, occupying an

important position in the field of biomedicine (Khotimchenko

et al., 2020; Carpena et al., 2022). Brown algae, distributed in the

global ocean, contain various beneficial components for the human

body, such as polysaccharides, polyphenols, and carotenoids. They

have medicinal values such as reducing blood sugar and lipid levels,

anti-inflammatory, and antioxidant properties (Hwang et al., 2022).

Green algae are rich in various proteins, peptides, polysaccharides,

and pigments, making them a prolific source of biologically active

molecules. However, the discovery of new secondary metabolites in

green algae is still relatively limited (Liao et al., 2024). Unlike the

other three types of eukaryotic algae, blue-green algae (also known

as cyanobacteria) belong to prokaryotes and are bacteria capable of

photosynthesis. They are abundant in protein and essential

vitamins and are often used as healthy food supplements (Zhong

et al., 2024). Moreover, specific species of blue-green algae are

capable of generating bioactive constituents, demonstrating

considerable promise for drug discovery and development.

Marine algae are a typical source of various natural bioactive

compounds, such as polysaccharides, proteins, peptides,

polyphenols, fibers, and minerals (Hwang et al., 2022). Multiple

biologically active compounds in marine algae have been proven to

have good effects in protecting mitochondrial function. For

example, fucoidan restores mitochondrial function in COVID-19

patients’ peripheral blood mononuclear cells, while also

ameliorating mitochondrial dysfunction in both SH-SY5Y

neurons and dopaminergic neurons of rat models (Zueva et al.,

2023). Zhang et al.’s cell experiments show that astaxanthin

nanoparticles can significantly inhibit oxidative stress-induced

ROS generation and mitochondrial depolarization (Zhang X.

et al., 2023). Chuang et al. engineered Car-Lec-PPy composite

microparticles from carrageenan, calcium peroxide, and

polypyrrole, which under near-infrared irradiation generate a

photothermal effect elevating local temperature to 47.8°C and

subsequently activate mitochondrial biogenesis pathways to

markedly enhance mitochondrial activity (Chuang et al., 2025).

According to statistics, there were 229 million people with type

2 diabetes globally in 2021, a number projected to reach 1.31 billion

by 2050; in 2023, worldwide new cancer cases stood at 18.5 million,

with projections indicating a rise to 30.5 million by 2050 (Ong et al.,

2023; Force et al., 2025). Major diseases, including type 2 diabetes

and cancer, constitute a leading portion of the global disease

burden. Addressing these pressing challenges may hinge on

identifying their shared pathological basis. MQC imbalance is a

common pathological basis for various major diseases, and finding

safe and effective MQC modulators is a topic that requires

continuous research. Marine algae, as a rich and relatively

underdeveloped source of bioactive compounds, have unique

advantages in multi-target and safety aspects, and have enormous
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research and application potential. Currently, there has been

extensive research on the regulation of mitochondrial function by

marine algae and their bioactive compounds, with a primary focus

on mechanisms such as mitochondrial energy metabolism (e.g.,

AMPK/ACC signaling pathways and GSH/GSSG ratio), oxidative

stress (e.g., Nrf2/HO-1 and Nrf2/ARE signaling pathways),

inflammatory responses (e.g., NF-kB/NLRP3 and JAK-STAT3

signaling pathways), and apoptosis (e.g., the Bcl-2/Bax/Cyto C/

Caspase-3 pathway) (Zheng et al., 2024; Firdaus et al., 2025; Hou

et al., 2025; Lee et al., 2025; Liang et al., 2025; Shangguan et al., 2025;

Wu et al., 2025). In comparison, direct studies on MQC remain

relatively limited, and there is a need for a systematic review to

summarize the existing research at this stage. This study reviews the

current mechanisms of action, chemical molecular structures, and

therapeutic potential of marine algae and their bioactive substances

(including extracts or natural compounds from brown, red, green,

and blue-green algal species) in regulating key processes of MQC,

and discusses future research directions and challenges.
Frontiers in Marine Science 03
2 The mechanism of marine algae and
their bioactive compounds regulating
key links in MQC

Marine algae and their bioactive components, as novel MQC

regulators, have demonstrated significant effects on various

mechanisms of MQC (Figure 1). Based on existing research

findings, we will elucidate the mechanisms by which different

types of marine algae and their bioactive compounds regulate

MQC, focusing on its key processes.
2.1 Promoting mitochondrial biogenesis

Mitochondrial biogenesis is a process driven by energy demand

that enhances productivity by increasing the number and volume of

mitochondria (Lou et al., 2024). This highly complex process
FIGURE 1

The mechanism by which marine algae and their bioactive compounds regulate key processes of MQC. Based on the classification of red algae,
brown algae, green algae, and blue-green algae, marine algae and their bioactive compounds that regulate this mechanism above panels (a-d) are
displayed. (a) Mitochondrial biogenesis regulated through the PGC-1a-centered pathway; (b) Mitochondrial dynamics, including the cycle of
mitochondrial fusion and fission, as well as the IMM fusion and OMM fusion processes during mitochondrial fusion; (c) Mitophagy pathways
(ubiquitin-dependent and ubiquitin-independent); (d) Mitochondrial protein balance, including UPRmt, molecular chaperones, and protease system.
Image was created by the authors with BioRender.com.
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requires coordinated assembly of over 1100 proteins encoded by

both nuclear and mitochondrial genomes; However, since the

mitochondrial genome encodes only 37 proteins, the vast

majority of mitochondrial proteins are nuclear genome-

dependent (Calvo et al., 2016).

The nuclear transcription factors first discovered to be involved in

regulating mitochondrial biogenesis are Nuclear Respiratory Factor 1

(Nrf1) and Nuclear Respiratory Factor 2 (Nrf2) (Popov, 2020). The

activation of Nrf1 initiates the transcriptional activation of

mitochondrial transcription factor A (TFAM), mitochondrial

transcription factor B1 (TFB1M), and B2 (TFB2M) genes (Li et al.,

2025). The products of these genes are key regulatory factors that

directly regulate mitochondrial DNA (mtDNA) transcription,

activating mtDNA transcription and maintaining its stability. In

most cases, the promoter region of the mitochondrial transcription

factor TFAM contains binding sites for both Nuclear Respiratory

Factor 1 (NRF-1) and NRF-2. These two factors act synergistically

through these adjacent sites to co-activate TFAM transcription,

thereby coordinating the expression of the nuclear and

mitochondrial genomes during mitochondrial biogenesis (Scarpulla,

2008; Chen et al., 2025). Currently, multiple studies have shown that

marine algae and their bioactive compounds can regulate the

expression of these key genes and promote mitochondrial

biogenesis. For example, the animal experiment results of Ahn et al.

show that the mitochondrial volume of gastrocnemius muscle in mice

fed with extract of Undaria pinnatifida was larger than that in the

control group, and the mRNA and protein expression levels of TFAM

and Nrf2 were increased; The cell experiment results show that the

Nrf2 protein level in C2C12 cells treated with Undaria pinnatifida

extract increased compared to the control group (Ahn et al., 2020).

Following a 6-week dietary supplementation with Gracilaria

vermiculophylla in Zucker fa/fa obese rats, González Arceo et al.

observed upregulated gene expression of Nrf1 and TFAM in the liver,

demonstrating that low-dose supplementation of this alga promotes

mitochondrial biogenesis (González-Arceo et al., 2024).

Peroxisome Proliferator-Activated Receptor Gamma

Coactivator-1 Alpha (PGC-1a) is a transcription co-regulatory

factor that serves as the core of mitochondrial biogenesis. It can

translocate to the nucleus, trigger the activation of Nrf1 and Nrf2, and

enhance the expression of TFAM and various mitochondrial

respiratory chain genes, thereby regulating the transcription and

replication of mtDNA and ultimately inducing mitochondrial

biogenesis (Ye et al., 2025). The study by Oriquat et al. shows that

gavage of Spirulina platensis suspension significantly increased the

expression of PGC-1a and TFAM in the liver of T2DM rats induced

by high-fat diet combined with low-dose streptozotocin, and

increased the copy number of mtDNA, thereby promoting

mitochondrial biogenesis (Oriquat et al., 2019). It is worth noting

that AMP-activated protein kinase (AMPK) is a key regulatory factor

in mitochondrial biogenesis, and its active state can promote the

activity of silencing information regulatory factor 1 (SIRT1) and

PGC-1a (Dong et al., 2020; Liu et al., 2024). Jing et al. find through

cell experiments that fucoidan extracted from Undaria pinnatifida

can activate the AMPK/SIRT1/PGC-1a signaling pathway,

promoting mitochondrial biogenesis induced by ultraviolet
Frontiers in Marine Science 04
radiation in HaCaT cells (Jing et al., 2021). Wu et al. delved into

the protective effect of sulfated fucoidan (SFG) from Laminaria

japonica on hydrogen peroxide (H2O2)-induced failure of MIN6

and pancreatic beta cells, and their results show that SFG promotes

the activation of the SIRT1/PGC-1a signaling pathway and

upregulates the transcription of downstream factors Nrf2 and

TFAM (Wu et al., 2022). Peroxisome Proliferator-Activated

Receptors (PPARs) are key transcriptional regulators that integrate

metabolic signals and control diverse cellular processes by binding to

ligands. Their critical role is evidenced in animal models of

neurodegenerative diseases, where they potentiate the PGC-1a
pathway and stimulate mitochondrial biogenesis (Corona and

Duchen, 2016; Jamwal et al., 2021). In addition, although estrogen

related receptor alpha (ERR alpha) was initially thought to regulate

lipid b-oxidation and estrogen-mediated pathways, subsequent

investigations have further revealed its critical role in PGC-1a
mediated mitochondrial biogenesis (Zhang W. et al., 2024).

Numerous genes encoded by the mitochondrion contain

recognition sequences for ERRa, and thus following ERRa
knockdown, mitochondrial biogenesis mediated through PGC-1a
also decreases (Liu et al., 2023). Kim et al.’s study show that compared

to rats provided only with a diet high in fat, sucrose, and cholesterol,

rats supplemented with fucoxanthin had significantly increased

expression of TFAM, ERRa, and PGC-1a, along with elevated

mtDNA content in their soleus muscle tissue (Kim et al., 2022).

In addition to the aforementioned studies, brown algae

polyphenols extracted from Ishige okamurae , sulfated

polysaccharides extracted from Caulerpa racemosa, and extracts

from Codium fragile and Gloiopeltis tenax have also been shown to

enhance mitochondrial biogenesis (Ahn et al., 2021; Hyun et al.,

2023; Mayulu et al., 2023; Kim et al., 2024).
2.2 Regulating mitochondrial dynamics

Mitochondrial dynamics mainly reshapes its inner membrane

(IMM) and outer membrane (OMM) through fusion and fission

processes to respond to increased energy demand and promote

mitochondrial homogenization (Tábara et al., 2021). Among them,

fusion denotes the process of two or more mitochondria merging to

form a larger organelle, while fission describes the process by which

a mitochondrion constricts and breaks apart to produce smaller

organelles (Quintana-Cabrera and Scorrano, 2023). The cycle of

fusion and fission is modulated by a suite of mitochondrial

morphological regulatory proteins, which are the core of

mitochondrial dynamics.

Mitochondrial fusion involves fusing multiple small

mitochondria together through Optic Atrophy 1 (OPA1) and

Mitofusin gene 1/2 (MFN1/2), among which MFN1 and MFN2

are the main regulatory factors for vertebrate OMM fusion (Tábara

et al., 2025). In fruit flies, the orthologous protein of MFN is called

“Fzo protein”, while in yeast and Caenorhabditis elegans, the

orthologous proteins are Fzo1p and Fzo1, which act as integrated

outer membrane proteins mediating outer membrane fusion (Hales

and Fuller, 1997; Santel and Fuller, 2001). OPA1 is the main
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regulatory factor for mitochondrial IMM fusion (Tábara et al.,

2025). In vitro studies have shown that OMM fusion occurs before

IMM fusion, and this fusion sequence is coordinated by the trans

interactions or oligomerization of MFN1, MFN2, and OPA1

(Meeusen et al., 2004). Natural active substances from various

sources of marine algae can affect mitochondrial dynamics by

modulating expression levels of these key proteins. For example,

Wu et al.’s study find that fucoxanthin extracted from dried

Hincks ia mitche l lae can significant ly upregulate the

transcriptional output of MFN1, MFN2, and OPA1 in white

adipose tissue of the groin and epididymis of mice fed a high-fat

diet (Wu et al., 2014). At the same time, Huang et al. find that

astaxanthin (derived from Haematococcus pluvialis) significantly

increased the expression levels of MFN1, MFN2, and OPA1

proteins in APP/PS1 transgenic mice, promoting mitochondrial

fusion (Huang et al., 2021).

The executor of mitochondrial fission is a GTPase in the

Dynamin Superfamily of Proteins (DSPs), called Dynamin

Related Protein 1 (DRP1) (Kraus et al., 2021). Mitochondrial

fission is the process of dividing mitochondria into independent

daughter mitochondria mediated by DRP1. Once recruited to

OMM, DRP1 forms a helical oligomer, inducing membrane

constriction and rupture (Wang N. et al., 2025). The absence of

DRP1 can trigger the loss of inhibition of mitochondrial fusion,

resulting in highly elongated mitochondria (Kamerkar et al., 2018).

In addition, in cells, DRP1 requires specific adapter proteins to

anchor to OMM (Kamerkar et al., 2025). Therefore, the adapter

protein, like DRP1 itself, is an essential component of fission.

Mitochondrial anchorage and functional engagement of DRP1

require mediation by fission protein 1 (FIS1) and mitochondrial

fission factor (MFF) (Jin et al., 2021). Cell experiments by Gao et al.

show that C-phycocyanin from Spirulina platensis improves

mitochondrial dynamics in OGD/R-induced H9c2 cells. The

mechanism involves upregulating fusion proteins (MFN1, MFN2,

OPA1) and downregulating fission proteins (DRP1, FIS1) (Gao

et al., 2019). Furthermore, studies show that type II fucoidan from

Fucus vesiculosus can ameliorate mitochondrial dysfunction in

Parkinson’s disease models. This improvement is achieved by

restoring the expression of key mitochondrial function genes

(MFN1, MFN2, DRP1, OPA1), which are downregulated in the

brains of MPTP-induced mice and in MPP+-treated primary

neurons (Xing et al., 2023). It is worth noting that post-

translational modifications (including phosphorylation,

ubiquitination, S-nitrosylation, etc.) can occur individually or

simultaneously on the DRP1 molecule, thereby achieving tighter

regulation of mitochondrial division (Jin et al., 2021). It is currently

known that DRP1-Ser616 phosphorylation enhances DRP1

function, driving excessive mitochondrial fission; Phosphorylation

at Ser637 site inhibits division (Ko et al., 2021).

In addition, relevant studies have demonstrated that fucoidans

derived from Sargassum filipendula, carrageenan derived from red

algae, and lagunamide D (a cyclic peptide compound) isolated from

blue-green algae also have the ability to regulate mitochondrial

dynamics (Gupta et al., 2020; Luo et al., 2023; Wu et al., 2023).
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2.3 Regulating mitophagy

Mitophagy is an evolutionarily conserved selective autophagy

process that eliminates damaged mitochondrial proteins or parts of

the mitochondrial network through autophagosomes to regulate

mitochondrial quantity and optimize mitochondrial quality.

Damaged mitochondria recruit autophagosomes through

ubiquitin-dependent or ubiquitin-independent pathways to engulf

and degrade themselves.

Proteins related to the ubiquitin-dependent pathway include

PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase (Parkin)

(Zhao et al., 2024). The accumulation of PINK1 on depolarized

mitochondria initiates a self-reinforcing cycle by phosphorylating

Parkin and ubiquitin at Ser65, which activates Parkin, triggers its

cytosolic translocation, and induces extensive ubiquitination of

OMM substrates, thereby further promoting PINK1 activity (Heo

et al., 2015; Schubert et al., 2017; Yi et al., 2024; Clague and Urbé,

2025). After Parkin is maximally activated, with the help of

autophagy-associated scaffolding proteins, mitochondria are

enveloped by autophagosomes alongside microtubule-binding

protein 1 light chain 3 (LC3) (Nguyen et al., 2016). In addition,

while its absence fails to modulate the induction of the PINK1/

Parkin pathway, the autophagy receptor p62/SQSTM1—which

selectively bridges ubiquitinated mitochondrial proteins to

autophagosomes—is nevertheless essential for mitochondrial

elimination (Yamada et al., 2019; Wang et al., 2020). Some

studies have confirmed that natural bioactive substances derived

from marine algae can promote mitophagy. For example, Zhang

et al. find that fucoxanthin promoted mitophagy in endothelial cells

after traumatic brain injury (TBI) by upregulating the expression of

PINK1, Parkin, and LC3 proteins. They also find that the

mitophagy inhibitor, mitochondrial fission inhibitor-1 (Mdivi-1),

can partially reverse the cytoprotective effect of fucoxanthin on the

blood-brain barrier after TBI (Zhang L. et al., 2023). At the same

time, studies have found that after cisplatin induced HK-2 cell

damage, the expression level of PINK1/Parkin increases. However,

pre-treatment with fucoidan/proanthocyanidins nanoparticles can

further increase the gene expression of PINK1/Parkin, enhance

mitophagy, clear damaged mitochondria, and reduce mitochondrial

DNA (mtDNA) leakage (Gao et al., 2023). In addition, the study by

Nawrocka et al. shows that metabolic stress can damage

mitochondria, triggering excessive activation of the PINK1/Parkin

pathway and exacerbating mitochondrial network imbalance.

Conversely, Spirulina platensis extract counteracts this by

reducing PINK1/Parkin mRNA expression, thereby inhibiting the

pathway’s excessive activation, protecting mitochondrial function,

and ultimately alleviating cellular damage (Nawrocka et al., 2017).

Certain mitochondrial receptor proteins are capable of direct

interaction with LC3 via their intrinsic LC3 interaction region

(LIR), init iat ing mitophagy without Parkin mediated

ubiquitination. The related proteins of this ubiquitin-independent

pathway include Bcl-2 interacting protein 3 (BNIP3), NIP3 like

protein X (NIX), and FUN14 domain containing protein 1

(FUNDC1) (Yuan et al., 2017; Li et al., 2021; Onishi et al., 2021;
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Liao et al., 2025). BNIP3 and NIX have certain homology in

mammals and fall into a subfamily of the Bcl2 protein family.

The C-terminus of BNIP3 is anchored to OMM by means of a

transmembrane domain, while the N-terminus is the main region

responsible for promoting mitophagy (Chinnadurai et al., 2008).

The structure of NIX is highly similar to BNIP3, and

Phosphorylation at Ser34/Ser35, residues flanking the LIR

domain, drives high-affinity LC3 engagement (Rogov et al., 2017).

In oxygen-deprived environments, the Ser81 site of NIX is

phosphorylated by hypoxia-inducible factor-1 a (HIF-1a),
thereby promoting its molecular interaction with LC3 (Yuan

et al., 2017). Finally, FUNDC1 is specifically localized in OMM,

mediating hypoxia-stress-induced mitophagy in mammals. The

promot ion of mi tophagy i s media ted through dua l

phosphorylation at Ser13 and Tyr18 adjacent to the LIR domain

(Lv et al., 2017; Liu H. et al., 2022). The study by Yue et al. revealed

that in a dexamethasone-induced mouse skeletal muscle atrophy

model, the key mitophagy-related proteins BNIP3 and the LC3B-II/

I ratio were significantly upregulated, while astaxanthin

supplementation dose-dependently reduced the expression of

both. The study identified BNIP3 as a pivotal mediator of

dexamethasone-induced adverse effects and demonstrated that

astaxanthin protects mitochondrial function by inhibiting the

mitophagy pathway, including BNIP3 (Yue et al., 2025). It is

important to emphasize that BNIP3, NIX, and FUNDC1

constitute a functionally synergistic and complementary network

in regulating mitophagy. For instance, research by Lampert et al.

found that the transcriptional levels of BNIP3 and NIX are co-

upregulated, while FUNDC1 is also specifically activated in this

process. Functionally, they exhibit significant interrelation: when

any single receptor is individually inhibited, the others demonstrate

compensatory upregulation to maintain pathway function.

However, mitophagy induced by differentiation is markedly

blocked only when both BNIP3L/NIX and FUNDC1 are

simultaneously inhibited, which strongly demonstrates that they

work synergistically and are indispensable in executing this

programmed process (Palikaras et al., 2018; Lampert et al., 2019).

At present, there is still significant research opportunities in the

field of regulating mitophagy by marine algae and their bioactive

compounds. While most studies on marine algae and their bioactive

compounds have focused on the PINK1/Parkin-mediated

ubiquitin-dependent pathway, researchers have also actively

explored the ubiquitin-independent pathways mediated by

BNIP3, NIX, and FUNDC1. In an enlightening development, a

recent study using primary grass carp hepatocytes has

demonstrated that cyanobacterial-derived Microcystin-LR (MC-

LR) induces ultrastructural alterations in hepatocytes, manifesting

as mitochondrial membrane rupture, vacuolization, and mitophagy.

The underlying toxicity mechanism involves significant suppression

of genes related to mitochondrial biogenesis and dynamics.

Although the classical PINK1/Parkin pathway remains unaffected,

transmission electron microscopy morphological evidence indicates

that MC-LR may activate non-canonical pathways of mitophagy,

ultimately leading to cell death (He et al., 2025).
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2.4 Maintaining mitochondrial protein
balance

Given the dual genome (nuclear genome and mitochondrial

genome) co-coding characteristics of mitochondrial proteins,

maintaining a homeostatic equilibrium between mitochondrial

protein expression and degradation is crucial for monitoring

mitochondrial function and rapidly responding to mitochondrial

stress (Song et al., 2021). The accumulation of excessive unfolded or

misfolded proteins in cells can impair cellular function, while

molecular chaperones, proteases, and mitochondrial unfolded

protein response (UPRmt) can alleviate this effect (Nouri et al.,

2020). Among them, UPRmt is a reverse signal transduction

cascade. UPRmt is a protective transcriptional program activated by

proteotoxic stress. It employs retrograde signaling through key factors

to induce nuclear-encoded mitochondrial proteostasis factors—such

as chaperones and proteases—thereby restoring organellar function

(Liu J. et al., 2022). Appropriate levels of mitochondrial reactive

oxygen species (mtROS) are required for UPRmt activation.

However, when the stress level exceeds the protective capacity of the

system of UPRmt, misfolded proteins will accumulate excessively and

affect operation of the respiratory chain complexes, exacerbating

oxidative stress and inducing mitophagy (Zhou et al., 2022; Sutandy

et al., 2023). In mammalian systems, the classic UPRmt cascade is

modulated by activating transcription factor 4/5 (ATF4/5) and

CCAAT/enhancer binding protein (C/EBP) homologous protein

(CHOP), which drives the transcriptional upregulation of

mitoprotective genes such as mitochondrial chaperones and

proteases (Jadiya and Tomar, 2020). The molecular chaperone

proteins associated with human mitochondrial protein balance are

mainly heat shock protein (HSP) 60 and mitochondrial heat shock

protein (mtHSP) 70, which facilitate the proper folding of proteins

and safeguard against harmful aggregation (Anderson and Haynes,

2020). Proteases, mainly including ClpP/LON proteases in the matrix

and m-AAA/i-AAA proteases on the membrane, can clear impaired

or malformed proteins, maintain the formation and activity of key

parts including the electron transport chain and inner membrane

cristae (Song et al., 2021). Of these, ClpPmaintainsmatrix proteostasis

by regulating the turnover of the RNA chaperone ERAL1, thereby

controlling mitochondrial ribosome assembly and translation.

Meanwhile, LON, a core matrix protease, fine-tunes mitochondrial

genome expression by degrading TFAM that is not bound to mtDNA.

Furthermore, the inner membrane-anchored AAA+ proteases act as

central regulators of mitochondrial proteostasis. Notably, the m-AAA

protease ensures proper assembly of the mitochondrial calcium

uniporter to prevent calcium overload, whereas the i-AAA protease

dynamically adjusts mitochondrial protein import capacity (Deshwal

et al., 2020; Poveda-Huertes et al., 2020). Previous studies have shown

that two natural marine bioactive compounds, iezoside (isolated from

blue-green algae) and biselyngbyaside (isolated from green algae), can

effectively inhibit SERCA1a, trigger UPRmt, and along with calcium

uptake, thereby activating the pro-apoptotic signaling pathway

(Luesch et al., 2025). Li et al. demonstrated that phycoerythrin

exerts anti-cancer effects by reshaping the HSP network in SW480
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cells. The treatment not only downregulated mtHSP70 to impair

cellular stress protection, but also upregulated HSP60, consequently

inducing cell cycle arrest and apoptosis (Li et al., 2016).

Currently, mitochondrial protein balance and the specific

mechanisms involving its substrate proteins have garnered

widespread attention, presenting significant research opportunities

(Liu et al., 2024). Promoting future studies on the regulation of

mitochondrial protein balance by marine algae and their bioactive

compounds may contribute to the advancement of related therapies.
3 Structure-activity relationships of
marine algal compounds in
modulating MQC

Marine algal compounds are characterized by their distinct

chemical structures, which are thought to act as unique “identity

markers” and allow them to be categorized into groups such as
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polysaccharides, carotenoids, proteins, and peptides. Studies

suggest that these structural features may help elucidate how

marine algae and their bioactive compounds regulate MQC. In

light of this, we will attempt to explore potential structure-activity

relationships from various perspectives, including marine algal

polysaccharides, carotenoids, proteins, and peptides. It is hoped

that this exploration will contribute to future efforts to interpret the

regulatory effects of marine algal compounds on MQC from a

structural standpoint. (Figure 2).
3.1 Marine algal polysaccharides

Marine algal polysaccharides—primarily those derived from

brown, red, green, and blue-green algae—are a major class of

biologically active constituents. Marine algal polysaccharides

usually contain sulfate groups, and sulfation treatment can

enhance their biological activity (Zhou and Li, 2024). This

enhancement occurs because the introduced sulfate groups
FIGURE 2

The planar structure of marine algal compounds. This image shows the planar molecular structures of key marine algal compounds in this study.
(A) Fucoidan; (B) Carrageenan; (C) Characteristic monosaccharide/oligosaccharide units from the sulfated polysaccharides of Caulerpa racemosa;
(D) Fucoxanthin; (E) Astaxanthin; (F) Phycoerythrobilin, the characteristic chromophore of phycoerythrin; (G) Phycocyanobilin, the characteristic
chromophore of C-phycocyanin; (H) Lagunamide D; (I) 5-Bromoprotocatechualdehyde; (J) Dimethylsulfoniopropionate; (K) Phytosphingosine;
(L) Iezoside; (M) Biselyngbyaside. These structures were obtained from PubChem and visualized using ChemDraw (v23.1.1).
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(-OSO3
-) carry strong negative charges under physiological

conditions. Their high charge density enables them to directly

mediate biological functions through electrostatic interactions.

Concurrently, the incorporation of sulfate groups can alter the

three-dimensional conformation and flexibility of polysaccharide

chains, which may affect their spatial compatibility with receptors

while being capable of significantly enhancing hydrophilicity and

solubility. Ultimately, the specific positioning of sulfate groups on

the sugar rings can play a decisive role in bioactivity (Li et al., 2018;

Sankaranarayanan et al., 2018; Gupta et al., 2020).

Fucoidan (Figure 2A) is a sulfated polysaccharide rich in L-

fucose, mainly isolated from the extracellular matrix of brown algae,

which are non-toxic and almost non-irritating, and has excellent

biocompatibility and biodegradability (Usoltseva et al., 2021).

Fucoidan is mainly composed of L-fucose and sulfate groups, and

usually has two types of skeletal structures: type I is composed of

repeated (1→3) - L-pyranose fucose units; Type II is characterized

by alternating reiterative (1→3) - and (1→4) - L-pyranose fucose

units (Usoltseva et al., 2019). Of significance is that fucoidans from

distinct marine algae sources have varied structural characteristics

and molecular weights. Some researchers suggest that low

molecular weight polysaccharides exhibit enhanced bioactivity

and superior bioavailability compared to their high molecular

weight counterparts, though the relationship between molecular

weight and biological activity is not yet clear (Li et al., 2018).

According to Gupta et al., the cell death mechanisms of fucoidans

depend on their structure: whereas the highly sulfated, spherical

Fucus vesiculosus fucoidan reduces cellular uptake by causing

aggregation and limiting interaction sites, the linear Sargassum

filipendula fucoidan increases uptake by exposing more binding

sites (Gupta et al., 2020).

Carrageenan (Figure 2B) is a linear sulfated polysaccharide

mainly derived from red algae. Its basic structural units are

mainly composed of D-galactose and 3,6-dehydrated D-galactose,

which are alternately connected by a -1,3 and b -1,4-glycosidic

bonds (Jiang et al., 2024). The number and position of sulfate

groups (-OSO3-) attached to the sugar ring determine the main

types of carrageenan (such as k-, i-, and l-) (Makshakova and Zuev,

2022). In addition, under suitable conditions, carrageenan

molecular chains tend to form ordered helical conformations

(Pradhan and Ki, 2023). The spiral structure and high degree of

sulfation enable carrageenan to be recognized by pattern

recognition receptors on the surface of immune cells, triggering

intracellular signaling cascades and leading to the release of

inflammatory mediators (O’Callaghan et al., 2018). In biomedical

research, carrageenan is often used as a tool to induce inflammatory

responses. For example, Wu et al. injected carrageenan into the

prostate and successfully induced prostate inflammation by

upregulating the expression of mitochondrial dynamic markers

and other key pathway proteins (Wu et al., 2023).

In addition, the sulfated polysaccharides (Figure 2C) derived

from Caulerpa racemosa mentioned earlier are composed of three

characteristic monosaccharide/oligosaccharide units, including 2,3-

di-O-methyl-1,4,5-tri-O-acetyl arabitol, 2,3,4,6-tetra-O-methyl-D-

mannopyranoside, and B-type sulfated glucuronic acid (Pistia and
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Hollingsworth, 2000). Among them, 2,3-di-O-methyl-1,4,5-tri-O-

acetyl arabitol and 2,3,4,6-tetra-O-methyl-D-mannopyranoside

promote polysaccharide interactions with cell membranes or

enzyme active sites and enhance metabolic regulation. In contrast,

B-type sulfated glucuronic acid provides strong negative charges,

improving binding to positively charged biomolecules (Mayulu

et al., 2023).
3.2 Marine algal carotenoids

Marine algae cells are rich in high value-added natural pigments

such as carotenoids, phycobilins, and chlorophyll, which have

important application value in the field of biomedicine (Cao

et al., 2023). Among them, natural carotenoids have relatively

high content in marine algae and have antioxidant, inflammation-

inhibiting, and anti-neoplastic effects. The core of a carotenoid

molecule is a long polyene chain composed of conjugated double

bonds. The atoms within this conjugated system tend to align in the

same plane, and this planar configuration is essential for its ability

to capture light energy and exert antioxidant functions (Yukihira

et al., 2017; Sandhiya and Zipse, 2021; Kulawik et al., 2024).

Fucoxanthin (Figure 2D) is a natural oxygenated carotenoid

found in brown algae, which has unique structural features

including propadiene bonds, epoxy groups, and acetyl groups

(Lau and Kwan, 2022). Among them, the linear arrangement of

propadiene bonds can form a molecular curvature of about 110°,

disrupting molecular planarity to improve steric accessibility and

target protein compatibility; Epoxy groups are located at the

molecular end and can increase polarity, consequently enhancing

water solubility and transmembrane permeability; Acetyl groups

serve as hydrophobic anchors bridging polyene chains, providing

hydrophobic anchoring sites to enhance the binding of fucoxanthin

to biofilms (Takaichi, 2011). The structure of fucoxanthin, which is

conducive to exerting biological activity, may be an important

reason for its regulation of multiple MQC pathways. As

mentioned earlier, many studies have demonstrated the role of

fucoxanthin in regulating mitochondrial biogenesis, mitochondrial

dynamics, and mitophagy (Kim et al., 2022; Zhang L. et al., 2023).

Astaxanthin (Figure 2E) is also an oxygenated carotenoid, mainly

derived from Haematococcus pluvialis (Pereira et al., 2021). The

astaxanthin derived from natural marine algae is mainly in the 3S,

3’S configuration (left-handed), with 11 conjugated double bonds in

the center of the molecule, and one ketone and hydroxyl group at

each end of the molecule. It also has both hydrophobic (central long

chain) and hydrophilic (terminal group) regions (Ambati et al.,

2019). The specific left-handed configuration and unique

transmembrane amphiphilic structure of marine algae derived

astaxanthin endow it with good lipid solubility, biocompatibility,

and utilization. For example, in Huang et al.’s study, the 3S, 3’S

structure and amphiphilic structure of astaxanthin serve as key

physical foundations, enabling it to cross the blood-brain barrier

and affect multiple molecular targets such as MFN1, MFN2, and

OPA1 proteins in the central nervous system, ultimately exerting

neuroprotective effects (Huang et al., 2021).
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3.3 Marine algal protein

Phycoerythrin is a type of phycobiliprotein found in red algae. It

is a covalent product formed by a thioether bond between an

apoprotein and phycoerythrobilin (Figure 2F), and can emit

orange fluorescence (Bermejo et al., 2003). Among these,

phycoerythrobilin serves as the active center of phycoerythrin. It

is a planar tetrapyrrole ring system that facilitates light energy

capture and electron transfer while also forming the structural basis

for its fluorescence (Dagnino-Leone et al., 2017). Therefore,

phycoerythrin has long been used as a photosensitizer or

fluorescent probe for disease treatment. Moreover, Li et al.’s study

confirmed its anti-cancer effect through regulating mitochondrial

protein balance (Li et al., 2016). Similar to phycoerythrin, C-

phycocyanin, mainly derived from Spirulina platensis, is an

oligomeric protein formed by covalent binding of apoprotein and

phycocyanobilin (Figure 2G) through thioether bonds.

Phycocyanobilin is also a tetrapyrrole chromophore with a planar

structure. The core structural feature of C-phycocyanin is a disc-

shaped hexamer structure (Citi et al., 2024). As mentioned earlier, it

has been proven to maintain the balance of mitochondrial dynamics

by enhancing mitochondrial fusion and restraining mitochondrial

fission (Gao et al., 2019).
3.4 Marine algal cyclic peptide

Most marine algal cyclic peptides form stable structures

through macrocyclic lactones/peptide scaffolds (Al-Awadhi et al.,

2018). Among them, the rigid circular structure can resist enzyme

degradation and improve stability, while the hydrophobic cavity

formed by specific folding can enhance its binding to the target. As

mentioned earlier, the blue-green algae cyclic peptide compound

lagunamide D (Figure 2H), which regulates mitochondrial

dynamics, naturally exists in the form of a 26 membered

macrocyclic peptide. It can be converted into a 24 membered ring

(lagunamide D ‘) through acyl migration, but ring contraction

significantly reduces its activity (Luo et al., 2019).
3.5 Other compounds derived from marine
algae

A polyphenolic compound, 5-Bromoprotocatechualdehyde

(BPCA) (Figure 2I), isolated from red algae, is a novel natural

monomeric polyphenol that can regulate mitophagy and improve

mitochondrial dysfunction. The core of its planar structure is the

benzene ring, which includes the aldehyde group at position C1, the

ortho dihydroxy group at positions C3 and C4, and the bromine

atom at position C5 (Cha et al., 2021). The introduction of bromine

atoms confers enhanced hydrophobicity and reactivity to molecules

(Wang S. et al., 2025). Similarly, Dimethylsulfoniopropionate

(DMSP) (Figure 2J) derived from marine algae is a biogenic

sulfur compound that is the primary precursor for the climate-

active gas dimethyl sulfide (DMS). It has a zwitterionic structure,
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including a trimethylthio cation on one side and a propionate anion

on the other side, and can also regulate mitophagy (Li H. et al.,

2024). In addition, Sphingosine is the basic structural unit of

sphingolipids, composed of an 18 carbon long-chain alkyl

skeleton, containing hydroxyl groups at C1 and C3 positions and

amino groups at C2 position (Gomez-Larrauri et al., 2025). Li et al.

use metabolomics technology to detect chemical substances in the

exudate of Microcystis aeruginosa and find that phytosphingosine

(PHS) (Figure 2K) is one of its most abundant compounds. Its

uniqueness lies in the C-4 position of the long chain base of PHS,

which has a hydroxyl group. They further demonstrate that PHS

promotes apoptosis via mitophagy regulation, suggesting its

potential as an anti-cancer agent (Li et al., 2022). Finally, iezoside

(Figure 2L) and biselyngbyaside (Figure 2M) mentioned earlier

belong to glycosylated macrolides, which are complex molecules

with both sugar and ester characteristics (Luesch et al., 2025).

Among them, iezoside has one sugar unit and multiple double

bonds. The glycosyl moiety is likely implicated in solubility, cellular

permeability, as well as interactions with the biological target

(Kurisawa et al., 2022; Garcıá-Cervantes et al., 2025). Similar to

iezoside, biselyngbyaside is an 18 membered macrocyclic lactone,

which contains a sugar moiety and multiple double bonds in its

structure. Sato et al. demonstrated that protecting the hydroxyl

groups on the glycosyl moiety of biselyngbyaside with triethylsilyl

groups completely abolished its bioactivity, indicating that both the

presence of the sugar unit and the exposure of its free hydroxyls are

critical for binding to the biological target (Sato et al., 2017).
4 The role of marine algae and their
bioactive compounds in disease
models through the regulation of
MQC

We attempt to elucidate current research findings and

methodologies from the perspective of different diseases,

encompassing fundamental studies, clinical research, toxicology,

and pharmaceutical approaches. We have also categorized and

summarized relevant experimental modeling methods in tabular

form, with the aim of providing references and assistance for future

research (Table 1).
4.1 Improvement effect on muscle function

Enhancingmuscle function is one of the critical objectives in health

care, encompassing the prevention of progressive decline in muscle

strength, reduction in muscle mass, and deterioration of physical

function (Grima-Terrén et al., 2024). The pathological mechanisms

involved are closely associated with MQC. Some studies have

demonstrated that marine algae and their bioactive compounds

exhibit therapeutic potential in this field by modulating MQC.

Yang et al. find that the fucoidan extract derived from Undaria

pinnatifida increased the distance run daily and the mass of muscle
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by 25.5% and 10.4%. At the mechanistic level, supplementing

fucoidan can significantly increase beneficial gut microbiota,

improve gut microbiome health, and upregulate mRNA

expression levels of mitochondrial biogenesis, thereby enhancing

muscle performance (Yang et al., 2024). In a randomized controlled

trial involving individuals aged 50–85, Hyun et al. found that daily

supplementation with Ishige okamurae (IO) extract at a dose of 500

mg per 60 kg of body weight significantly improved lower limb

quadriceps strength in the experimental group compared to the

control group after 12 weeks. This improvement was particularly

notable in the subgroup under 61 years of age. Additionally, animal

studies have demonstrated that Ishige okamurae extract upregulates

mitochondrial biomarkers in skeletal muscle and improves grip

strength deficits, muscle regeneration-related parameters, and age-

related muscle loss in mice (Hyun et al., 2023). Similarly, the study

by Kim et al. found that in obese mice, fucoxanthin

supplementation had only minor effects on liver and adipose

tissue inflammation but significantly boosted mitochondrial

biogenesis and mtDNA copy number in the soleus muscle,

enhancing its metabolic capacity (Kim et al., 2022). In addition,

Codium fragile extract promotes mitochondrial biogenesis and

oxidative fiber formation via the PGC-1a pathway, enhancing

exercise endurance and muscle mass in mice, thereby conferring

protection against sarcopenia (Ahn et al., 2021). At the same time,

Spirulina platensis extract has also been demonstrated to stimulate

mitochondrial biogenesis related genes in the soleus muscle and

extensor digitorum longus muscle, enhance antioxidant defense

capabilities, reduce inflammation, and improve muscle recovery

speed and endurance (Vignaud et al., 2025).

The aforementioned research provides examples of how marine

algae and their bioactive compounds modulate MQC to exert

beneficial effects on muscle function. Although most of the

evidence comes from in vitro studies and preclinical animal

models, the results are encouraging. It should be noted that future

studies should further clarify the specific active constituents or

prioritize evaluating the effects of isolated compounds.
4.2 Protective effect on the nervous
system

Neurological disorders have perennially attracted significant

research attention, including PD, Alzheimer’s disease (AD), and

cognitive impairment. Existing research has explored the defensive

activities of marine algae and their bioactive metabolites on the

nervous system from multiple perspectives of MQC.

There are research results indicating that fucoxanthin can

improve neurological dysfunction after traumatic brain injury,

reduce brain edema, shrink cortical injury volume, and inhibit

blood-brain barrier leakage by activating mitophagy (Zhang L. et al.,

2023). By regulating the mitochondrial fusion/division balance in

MPTP-induced PDmice, Fucus vesiculosus-derived type II fucoidan

is found by Xing et al. to significantly improve mitochondrial

dysfunction, prevent neuronal apoptosis and dopaminergic

neuron loss, and ameliorate motor deficits, positioning it as a
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promising candidate for PD treatment (Xing et al., 2023). The

research report by Huang et al. states that following 21 days of

treatment with astaxanthin (10 mg/kg/day), the compound can

enhance synaptic plasticity in 8-month-old APP/PS1 transgenic

mice, while elevating the levels of proteins involved in

mitochondrial fusion and synapse-related proteins, but reducing

the levels of proteins involved in mitochondrial fission,

consequently improving the learning and memory abilities of

these AD model mice (Huang et al., 2021). In addition, studies

have utilized computational tools and techniques such as molecular

docking and molecular dynamics to screen 1110 marine algal

compounds. The lead compound BS052 shows strong binding

affinity with PPAR-g, a key signaling molecule involved in

mitochondrial biogenesis, and exhibits superior lipid solubility,

indicating its potential to be developed as a novel PPAR-g
agonist, thus playing an important therapeutic role in Alzheimer’s

disease (Kotha et al., 2021). Further in vitro and in vivo studies are

necessary to confirm its effects.

Although the aforementioned fundamental research evidence

can define the roles of algal compounds, further studies are required

to confirm their efficacy, safety, and mechanisms in humans.

Additionally, the study on the lead compound BS052

demonstrates the inspirational role of bioinformatics technologies

such as molecular docking and molecular dynamics in this field

of research.
4.3 The role of anti-tumor therapy

Malignant tumors comprise “carcinomas” (originating from

epithelial tissue, e.g., colorectal carcinoma, nasopharyngeal

carcinoma) and “sarcomas” (originating from mesenchymal

tissue, e.g., osteosarcoma), whose pathological mechanisms are

closely associated with MQC (Chen et al., 2024; Guo et al., 2024;

Arcos et al., 2025). Evidence shows that seaweed and its bioactive

compounds exert therapeutic effects against tumors by

modulating MQC.

There are studies comparing the anticancer activity of crude

fucoidan extracted from both diatoms, such as Fucus vesiculosus

and Sargassum filipendula, as well as the effects of low, medium, and

high molecular weight components of Sargassum filipendula

fucoidan on osteosarcoma cells. The results indicate that fucoidan

inhibits osteosarcoma cell proliferation and adhesive plaque

formation in a dose-dependent manner by selectively inducing

apoptosis or necrosis. This process begins with the disruption of

mitochondrial dynamics, leading to fragmentation or swelling, loss

of membrane potential, and impaired energy metabolism. Notably,

Fucus vesiculosus fucoidan and high molecular weight Sargassum

filipendula fucoidan exhibited the strongest effects (Gupta et al.,

2020). Li et al.’s research has shown that phycoerythrin can induce

programmed cell death and block the cell cycle of SW480 by

regulating signaling pathways such as those involving

mitochondrial protein balance, which inhibits cell proliferation

(Li et al., 2016). Meanwhile, Luo et al.’s study shows that

lagunamide D can regulate mitochondrial dynamics, alter
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TABLE 1 Research on marine algae and their bioactive compounds regulating MQC: experimental models, molecular targets, and therapeutic applications.

Marine algae and their bioactive compounds Experimental model Target spots Applications Reference

Enhancing exercise performance (Yang et al., 2024)

Improving muscle function (Kim et al., 2022)

PARd Improving exercise endurance (Ahn et al., 2021)

rf2 Enhancing muscle recovery (Vignaud et al., 2025)

Neuroprotection after TBI (Zhang L. et al., 2023)

OPA1 Parkinson’s disease (Xing et al., 2023)

Alzheimer’s disease (Huang et al., 2021)

Da) Colon Cancer (Li et al., 2016)

Colorectal cancer (Luo et al., 2023)

Potential anti-cancer effects (Li et al., 2022)

T2DM (Oriquat et al., 2019)

b-cell protection (Cha et al., 2021)

AM Improving b-cell function (Wu et al., 2022)
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Improvement effect on muscle function

Fucoxanthin
(from Undaria pinnatifida)

Male and female C57BL/6J mice aged 4 weeks PGC-1a,PPARg

Fucoxanthin
C57BL/6J mice were maintained on either a (HFC)
diet or a (HFS) diet

PGC-1a,TFAM,ERRa

Codium fragile
(extract components)

19-week-old adult male C57BL/6 mice Sirt1,PGC-1a,ERRa,P

Spirulina
(extract components)

3-week-old male Wistar rats AMPK,PGC-1a,Nrf1,

Protective effect on the nervous system

Fucoxanthin
Male ICR mice subjected to (CCI);
Stretch-induced bEnd.3 cell

PINK1,Parkin,LC3

Fucoidan
(from Fucus vesiculosus)

MPTP-induced 3-month-old male C57BL/6 mice;
MPP+-induced primary midbrain and cortical
neurons and SH-SY5Y cells

MFN1, MFN2, DRP1

Astaxanthin 8-month-old transgenic mice expressing APP/PS1 MFN1,MFN2,OPA1

The role of anti-tumor therapy

Phycoerythrin
(from Gracilaria lemaneiformis)

The human colon cancer SW480 cell line HSP60,mtHSP70 (75k

Lagunamide D
(from encrusting cyanobacterial tufts)

HCT116 colorectal cancer cells OPA1

Phytosphingosine CNE-2 cells PINK1,Parkin

Protective effects on T2DM and pancreatic beta cells

Spirulina Platensis
(aqueous suspension)

Wistar rats induced by HFD combined with low
dose STZ

AMPK,PGC-1a,
PPAR-a,TFAM

5-Bromoprotocatechualdehyde
(from Polysiphonia japonica)

Palmitate-induced rat pancreatic b-cell line—Ins-1
cells

Parkin

Sulfated Fucogalactan
(from Laminaria Japonica)

H2O2-induced MIN6 cells Sirt1,PGC-1a,Nrf2,TF
N
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TABLE 1 Continued

Marine algae and their bioactive compounds Experimental model Target spots Applications Reference

Ischemic Cardiomyocyte Damage (Gao et al., 2019)

Cardiometabolic Syndrome (Mayulu et al., 2023)

Cisplatin-induced acute kidney injury (Gao et al., 2023)

Inducing inflammation model of
prostate and bladder in rats

(Wu et al., 2023)

1,MFN2
PARg,ERRa

Obesity (Wu et al., 2014)

GC-1a Obesity (Sanayei et al., 2022)

Hepatoprotection (Napolitano et al., 2020)

FAM Hepatoprotection (González-Arceo et al., 2024)

C-1a UV-irradiated skin photoaging (Jing et al., 2021)

EMS (Nawrocka et al., 2017)

Anti-aging (in C. elegans) (Li H. et al., 2024)

igh Fat Diet; STZ, Streptozotocin; T2DM, Type 2 Diabetes Mellitus; OGD/R, Oxygen–Glucose Deprivation/
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Protective effect on cardiovascular system

C-Phycocyanin OGD/R-induced H9c2 cells
OPA1,MFN1,
MFN2,FIS1,
DRP1(DLP-1)
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Other functions
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mitochondrial function, and trigger downstream cell death, thereby

exhibiting significant anti-proliferative activity against HCT116

colorectal cancer cells (Luo et al., 2023). The study by Luesch

et al. shows that iezoside isolated from blue-green algae and

biselyngbyaside isolated from green algae can effectively inhibit

SERCA1a, trigger UPRmt, and induce mitochondrial calcium

uptake, which activates the apoptotic signaling pathway and

exerts anticancer effects (Luesch et al., 2025). In addition, PHS

derived from Microcystis aeruginosa can induce excessive

generation of ROS in CNE-2 cells, disrupt mitochondrial

structure, and block PINK1/Parkin mediated mitophagy, thereby

accelerating mitochondria-mediated endogenous apoptosis (Li

et al., 2022). Although the primary objective of this study is to

elucidate the ecotoxicity of PHS, its molecular mechanism can be

interpreted as a potential anticancer pathway, which may provide

valuable insights for future anticancer research.
4.4 Protective effects on T2DM and
pancreatic beta cells

T2DM is a widespread metabolic condition resulting from

insufficient insulin secretion, which can be absolute or relative,

with the core pathology being dysfunction of pancreatic beta cells.

Therefore, in addition to blood glucose indicators, relevant studies

mainly explore the protective effects of marine algae and their

bioactive metabolites on pancreatic b cells.

The study by Oriquat et al. finds that Spirulina platensis at a

dose of 750 mg/kg had the best effect on most indicators, activating

the liver mitochondrial biogenic pathway, enhancing liver

mitochondrial function, and significantly improving glucose and

lipid metabolism disorders in T2DM rats. Its efficacy is comparable

to metformin and can be used as a complementary therapeutic

agent to traditional hypoglycemic drugs (Oriquat et al., 2019). In

addition, Cha et al. find that BPCA isolated from Polysiphonia

japonica can maintain Parkin protein expression, improve

mitochondrial fragmentation and dysfunction, and protect

pancreatic beta cells from palmitic acid-induced lipotoxic damage.

Interestingly, in vivo using zebrafish, BPCA also shows a protective

role against beta cell dysfunction elicited by palmitic acid (Cha et al.,

2021). These data offer compelling evidence for BPCA as a

candidate drug for future T2DM therapies. Finally, research has

explored the protective effect of SFG on H2O2-induced pancreatic

beta cell failure. The results indicate that SFG activates key signaling

pathways involved in mitochondrial biogenesis, improves

mitochondrial dysfunction, promotes pancreatic beta cell

proliferation and enhances its function, and alleviates H2O2-

induced pancreatic beta cell failure (Wu et al., 2022).
4.5 Protective effect on cardiovascular
system

Research has shown that C-phycocyanin significantly improves

mitochondrial dynamic imbalance induced by oxygen glucose
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deprivation/reoxygenation (OGD/R) in H9c2 cells, dose

dependently reducing cell apoptosis and decreasing intracellular

ROS generation, thereby protecting cardiomyocytes from ischemic

injury (Gao et al., 2019). The study by Mayulu et al. demonstrates

that sulfated polysaccharides from Caulerpa racemosa can alleviate

obesity-induced cardiovascular metabolic syndrome in high-fat diet

rats. The treatment promoted mitochondrial biogenesis, regulated

gut microbiota, and improved key metabolic parameters, including

lipid profile and blood glucose. Additionally, it reduced levels of

TNF-a and PRMT-1 while increasing IL-10, SOD activity, and

DDAH-II levels (Mayulu et al., 2023). However, its efficacy still

needs to be further validated in clinical trials.

The studies above, employing cell-based and animal

experimental approaches respectively, have demonstrated that C-

phycocyanin and sulfated polysaccharides derived from Caulerpa

racemosa protect the cardiovascular system by modulating MQC.

While both studies are valuable, standalone cell experiments in

preclinical research may suffer from dissociation from complex

biological environments, whereas isolated animal studies often face

challenges in elucidating precise mechanisms. Integrating these two

experimental methodologies could achieve complementary

advantages, thereby circumventing these limitations.
4.6 Bidirectional effects on the urinary and
reproductive systems

Research shows that fucoidan/proanthocyanidin nanoparticles

protect against cisplatin-induced acute kidney injury. They act by

activating mitophagy and inhibiting mtDNA release, which in turn

reduces the accumulation of blood urea nitrogen and serum

creatinine and prevents death in human renal proximal tubular

epithelial cells (HK-2) (Gao et al., 2023). In addition to therapeutic

effects, natural biological compounds derived from marine algae

have been shown to induce inflammatory response models in the

prostate and bladder of rats. To establish a prostate and bladder

inflammatory model, Wu et al. injected carrageenan into the

prostate gland, which induced the upregulation of several

markers: mitochondrial dynamics proteins (Drp-1, MFN-2),

NLRP3, Substance P, and its receptor component CGRP-RCP

(Wu et al., 2023). It should be noted that Zhu et al. treated

granulosa cells with 0–1 mM MC-LR for 24 h and observed

altered mitochondrial cristae morphology by transmission

electron microscopy, accompanied by upregulation of DRP1

expression, indicating disrupted mitochondrial dynamics.

Biochemical assays further demonstrated that MC-LR

downregulated GLUT1 and GLUT4 expression, thereby inhibiting

glucose uptake. The results suggest that MC-LR mediates its toxicity

in granulosa cells by inducing mitochondrial fragmentation and

impairing glucose metabolism, providing new evidence for

elucidating the mechanisms of its female reproductive toxicity

(Zhu et al., 2021).

While the studies on carrageenan andMC-LR in this section are

not intended to demonstrate therapeutic effects, they may

nevertheless provide new research perspectives for us in the areas
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of experimental model construction and investigations into drug

side effects.
4.7 The role of obesity management

Obese patients often exhibit elevated serum glucose and lipid

levels, along with reduced antioxidant capacity and downregulation

of PGC-1a. A study investigated the effects of Caulerpa lentillifera

extract on metabolic parameters in high-fat diet-induced obese rats.

Forty male Rattus norvegicus were divided into a control group, a

high-fat diet group, and two Caulerpa lentillifera intervention groups

(150 and 450 mg/kg). After four weeks of intervention, compared

with the high-fat diet group, Caulerpa lentillifera extract significantly

reduced blood glucose levels, improved total cholesterol, and both

doses showed comparable effects. The 150 mg/kg dose was

particularly effective in elevating PGC-1a levels (Manoppo et al.,

2022). Fucoxanthin significantly upregulates the expression levels of

mitochondrial biogenesis and fusion related mRNA in the white

adipose tissue of mice fed with high-fat diet, thereby reducing the

accumulation of white adipose tissue and increasing oxygen

consumption and carbon dioxide production in mice. This proves

that dietary supplementation with fucoxanthin can enhance

metabolic rate and reduce adipose tissue quality (Wu et al., 2014).

In the animal experiments conducted by Lu et al., TPSP2, a

polysaccharide macromolecule containing fucoidan, significantly

alleviated high-fat diet induced weight gain, hyperlipidemia, and

liver steatosis in mice by enhancing mitophagy mediated by PINK1/

Parkin in the ubiquitin-dependent pathway, thereby exerting anti-

obesity and obesity-related metabolic disorders (Lu et al., 2025). In

terms of clinical research, an 8-week randomized trial involving 46

overweight/obese women demonstrated that the group combining

high-intensity interval training (HIIT) with Chlorella vulgaris (CV)

supplementation experienced a significant reduction in fat mass, an

increasing trend in body water and PGC-1 levels, as well as notable

improvements in peak oxygen uptake and Bruce metabolic

equivalents. The study confirmed that CV and HIIT exhibit a

synergistic effect in enhancing metabolic equivalents (Sanayei et al.,

2022). Interestingly, although MC-LR released by cyanobacteria

poses threats to the environment and health, the study by Duan

et al. revealed that it inhibits adipogenesis in stromal vascular fraction

(SVF) cells by depleting ATP, inducing oxidative stress, impairing

mitochondrial function, and subsequently activating mitophagy. This

finding provides a mechanistic basis for elucidating the role of MC-

LR in obesity and related metabolic disorders (Duan et al., 2025).

Furthermore, in a 4-week randomized double-blind controlled trial,

daily supplementation with 1.68 g per 70 kg of Caulerpa racemosa

extract significantly improved multiple metabolic parameters relative

to placebo: blood glucose decreased by approximately 29.8%, total

cholesterol by 23.7%, and both LDL and triglycerides also showed

significant reductions. At the same time, levels of high-density

lipoprotein and the key regulatory factor PGC-1a were markedly

elevated. The study also noted significant improvements in body

weight, waist circumference, and waist-to-hip ratio among the

participants, with no adverse effects reported, thereby confirming
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Caulerpa racemosa as a safe and effective anti-obesity functional food

(Permatasari et al., 2022).
4.8 Other functions

In addition to the above-mentioned disease areas, marine algae and

their bioactive compounds also exhibit protective effects on the liver

and skin by regulating mitochondrial biogenesis mechanisms. In

addition, some studies have focused on horses and Caenorhabditis

elegans(C. elegans) as research subjects, suggesting the therapeutic

promise of marine algae and their bioactive constituents to

ameliorate analogous disorders by regulating mitophagy.

Research has shown that dietary supplementation with 1% dry

Chlorella sorokiniana can affect the key regulatory factors of thyroid

hormone-induced mitochondrial biogenesis, maintain mitochondrial

function, prevent the increase of indicators of oxidative damage and

foundational metabolic expenditure, and effectively reduce

hyperthyroidism-induced liver oxidative damage in hyperthyroidism

rats (Napolitano et al., 2020). González Arceo et al. find that dietary

supplements of Gracilaria vermiculophylla can reduce the

concentration of non esterified fatty acids in the liver, improve

oxidative stress and inflammatory parameters, and ultimately

exerting a protective effect in the liver by inhibiting de novo fat

synthesis and promoting mitochondrial biogenesis in Zucker fa/fa

obese rats (González-Arceo et al., 2024). At the same time, Jing et al.’s

study demonstrates that fucoidan purified from Undaria pinnatifida

can promote mitochondrial biogenesis induced by ultraviolet

radiation in HaCaT cells, alleviate mitochondrial dysfunction,

inhibit ROS production, and ultimately protect against UV induced

skin photoaging (Jing et al., 2021). Concurrently, some studies on

other animals may provide potential value for the prevention and

treatment of related clinical diseases. For example, studies have found

that horses fed Spirulina platensis-supplemented feed experienced

weight loss and improved insulin sensitivity. Further research has

confirmed that Spirulina platensis extract can regulate mitophagy,

thereby reducing mitochondrial dysfunction, cellular oxidative stress,

and inflammation, and promoting the morphological and functional

recovery of ADSCs and IECs derived from individuals with metabolic

syndrome (Nawrocka et al., 2017). The research results support that

Spirulina platensis can be a promising method for routine treatment of

equine metabolic syndrome. Similarly, DMSP can significantly

upregulate the expression of autophagy and mitophagy related

genes, reduce mitochondrial content while improving mitochondrial

function in aged C. elegans, thereby delaying the physiological aging

process of C. elegans, demonstrating its potential value in promoting

longevity and preventing aging (Li H. et al., 2024).
5 Future directions

In recent years, MQC systems have become an important

research field of great concern in academia. At the same time, as

marine algae is an important source of natural bioactive substances,

its role in regulating MQC requires more extensive and in-depth
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research. On one hand, significant progress has been made in

current research on the improvement of mitochondrial

dysfunction by marine algae and their bioactive compounds.

Studies focusing on MQC as the core mechanism are gaining

increasing attention. Although most evidence derives from in

vitro experiments and preclinical animal models, the findings

hold considerable significance and value for the advancement of

this field. On the other hand, based on existing research, we propose

the following recommendations for future studies to address certain

issues: (i) Current basic research predominantly employs crude

algal extracts, failing to precisely identify the active compounds,

which limits the accuracy and depth of related studies. Therefore,

we hope future research will focus more on specific compounds or

elucidate the effective substances. (ii) Most studies have not

thoroughly revealed the precise interaction patterns between algal

compounds and key MQC targets. Hence, advanced chemical

biology techniques such as Limited Proteolysis Mass

Spectrometry (LiP-MS) could be actively adopted in the future to

accurately identify the binding targets and sites of algal compounds.

(iii) The majority of current studies are preclinical. Although some

clinical studies and integrated clinical-basic research have emerged,

they remain relatively limited. Thus, future work should further

conduct clinical trials to verify the efficacy and safety of these

interventions. (iv) Additionally, it is noteworthy that mitochondrial

biogenesis, dynamics (fission/fusion), mitophagy, and protein

balance do not operate in isolation but function as an integrated

network. Therefore, future research should emphasize exploring the

crosstalk and coupling relationships among various mitochondrial

processes, expanding from studies on marine algae and their

bioactive agents regulating individual MQC mechanisms to the

broader scope of multiple mitochondrial behaviors.

Marine algae and their bioactive compounds represent a vast

medicinal resource, and future efforts should actively promote related

clinical or clinical translation research. In this regard, the following

points may be worth considering: (i) Future research could prioritize

focusing on cardiovascular, endocrine, or kidney diseases, screening

promising marine algal bioactive compounds based on preclinical

findings, and gradually advancing to small-scale human trials. (ii) For

clinical translation, reliable standards for compound purity and

structural identification should be established, while scalable

cultivation and extraction technologies (e.g., bioreactor-based

processes) should be developed to ensure consistent raw material

quality and stable supply. Using proteomics andmetabolomics, Arora

et al. discovered that under mixotrophic conditions, Chlorella

synergistically utilizes exogenous glucose and light. This synergistic

utilization optimizes carbon and nitrogen metabolism, enhances lipid

synthesis and packaging, and improves stress tolerance and redox

homeostasis, ultimately yielding higher biomass and lipid production

(Arora and Philippidis, 2021). (iii) Integrated omics technologies

(such as multi-omics correlation analysis and single-cell sequencing)

should be employed to systematically delineate compound-regulated

networks across tissues, with priority given to techniques like LiP-MS

for high-throughput identification of protein targets and precise

binding site mapping. (iv) In terms of model development, it is

recommended to construct more predictive models (e.g., organoids
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and humanized animal models, particularly high-fat diet-induced

diabetes or aging models) to enhance clinical relevance. (v)

Comprehensive in vivo pharmacokinetic studies must be conducted

to establish PK/PD models for clinical dosing guidance. Key

parameters include: oral bioavailability, gut microbiota-mediated

degradation, blood-brain barrier penetration, metabolite

identification, and excretion pathways. (vi) Clinical trials should

follow standardized phases: Phase I focusing on safety and

pharmacokinetics, Phase II adopting randomized double-blind

placebo-controlled designs to explore efficacy and determine

dosage, and Phase III confirming effectiveness and safety through

large-sample, multicenter trials. Furthermore, nanotechnology offers

a viable strategy to significantly enhance the bioavailability of marine

algae and their bioactive compounds. Khalil et al. employed ball

milling to prepare nano-spirulina particles, which are spherical with a

particle size of approximately 68 nm. This process is designed to

increase the specific surface area and improve bioavailability. Acute

toxicity tests demonstrated exceptionally high safety, laying a crucial

safety foundation for subsequent in vivo efficacy studies (Khalil

et al., 2025).
6 Conclusions

This review systematically elaborates on the critical role and

therapeutic potential of marine algae and their bioactive compounds

as novel modulators in MQC. Research indicates that various active

components derived from brown algae, red algae, green algae, and

blue-green algae (such as fucoidan, fucoxanthin, phycoerythrin, etc.)

can regulate the four interconnected core processes of MQC:

mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and

mitochondrial protein balance. Interestingly, the bioactivity of these

compounds is likely associated with their unique molecular structures.

Features such as planarity, degree of sulfation, and stereoisomeric

configuration collectively form the material basis for their regulatory

functions. These findings and insights may provide valuable

inspiration for future in-depth research. At the application level,

marine algae and their bioactive compounds demonstrate clear

potential in various disease models, including improving muscle

function, protecting the nervous system, exerting anti-tumor effects,

and managing T2DM and obesity. However, certain limitations persist

in this field, such as unidentified active constituents, unclear precise

interaction patterns with molecular targets, and a lack of clinical

translation evidence. These issues potentially constitute core

bottlenecks hindering its advancement. Furthermore, this narrative

review also has certain limitations: (i) While this review primarily

focuses on marine algae, given the high relevance of the chemical

structures andmechanisms of action of their key bioactive constituents

to the core themes discussed, we have opted to include the two

freshwater algal species—Spirulina platensis and Haematococcus

pluvialis—with well-defined modulatory effects on MQC, even

though this might cause some potential misunderstanding. (ii)

Although this review does not present direct structure-activity

relationships, the indirect perspectives and evidence compiled

remain valuable and also highlight a promising direction for future
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investigations. (iii) This narrative review carries an inherent risk of

potential selection bias. Nonetheless, we believe the objectives of this

review have been largely achieved. Therefore, future research should

build upon the current foundation to further address these problems.

In conclusion, marine algae, as a vast natural medicinal repository,

hold great promise in preventing and treating diseases through the

regulation of MQC. Realizing this potential and translating it into

tangible human health benefits necessitates interdisciplinary

integration and rigorous clinical translation research.
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Glossary

AD Alzheimer’s Disease
Frontiers in Marine Sc
ADSCs Adipose-Derived Mesenchymal Stromal Cells
ATF4/5 Activating Transcription Factor 4/5
AMPK AMP-Activated Protein Kinase
BPCA 5-Bromoprotocatechualdehyde
BNIP3 Bcl-2 Interacting Protein 3
C/EBP CCAAT/Enhancer Binding Protein
CHOP C/EBP Homologous Protein
C. elegans Caenorhabditis Elegans
CGRP-RCP Calcitonin Gene-Related Peptide Receptor Component Protein
CCI Controlled Cortical Impact
DMSP Dimethylsulfoniopropionate
DAMPs Damage Associated Molecular Patterns
DDAH-II Dimethylarginine Dimethylaminohydrolase II
DRP1 Dynamin Related Protein 1
DSPs Dynamin Superfamily of Proteins
EMS Equine Metabolic Syndrome
ERRa Estrogen Related Receptor Alpha
FIS1 Fission Protein 1
FUNDC1 FUN14 Domain Containing Protein 1
HIF-1a Hypoxia-Inducible Factor-1 a
HSP Heat Shock Protein
HFC High-Fat, High-Sucrose, and High-Cholesterol
HFD High Fat Diet
HFS High-Fat and High-Sucrose
IL-10 Interleukin-10
IECs Intestinal Epithelial Cells
IMM Inner Membrane
LC3 Microtubule-Binding Protein 1 Light Chain 3
LiP-MS Limited Proteolysis Mass Spectrometry
LIR LC3 Interaction Region
Mdivi-1 Mitochondrial fission inhibitor-1
MC-LR Microcystin-LR
MFN1/2 Mitofusin Gene ½
MQC Mitochondrial Quality Control
MFF Mitochondrial Fission Factor
ience 20
MPP+ 1-methyl-4-phenylpyridine
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mtDNA Mitochondrial DNA
mtHSP Mitochondrial Heat Shock Protein
mtROS Mitochondrial Reactive Oxygen Species
NLRP3 NOD Like Receptor Thermal Domain Associated Protein 3
Nrf1 Nuclear Respiratory Factor 1
Nrf2 Nuclear Respiratory Factor 2
NIX NIP3 Like Protein X
OGD/R Oxygen Glucose Deprivation/Reoxygenation
OMM Outer Membrane
OPA1 Optic Atrophy 1
Parkin E3 Ubiquitin Ligase
PD Parkinson’s Disease
PGC-1a Peroxisome Proliferator-Activated Receptor Gamma

Coactivator-1 Alpha
PHS Phytosphingosine
PINK1 PTEN-Induced Kinase 1
PPARs Peroxisome Proliferator-Activated Receptors
PPAR-g Peroxisome Proliferator-Activated Receptor Gamma
PRMT-1 Protein Arginine Methyltransferase 1
PK Pharmacokinetics
PD Pharmacodynamics
ROS Reactive Oxygen Species
SOD Superoxide Dismutase
SFG Sulfated Fucoidan
SIRT1 Silencing Information Regulatory Factor 1
Substance P Sensory Neuropeptide Substance P
STZ Streptozotocin
TNF-a Tumor Necrosis Factor Alpha
TBI Traumatic Brain Injury
T2DM Type 2 Diabetes Mellitus
TFAM Mitochondrial Transcription Factor A
TFB1M Mitochondrial Transcription Factor B1
TFB2M Mitochondrial Transcription Factor B2
UPRmt Mitochondrial Unfolded Protein Response.
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