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Coastal ecosystems of sub-Antarctic islands are threatened by increasing
climate-driven changes and direct anthropogenic pressures. Significant effects
on marine communities are expected, but benthic ecosystems of these isolated
islands remain largely under-explored. Effective preservation of these nearshore
environments requires deeper ecological assessments and comprehensive
biodiversity knowledge. In this regard, this study reports findings from a survey
carried out in 2021 at two sites — Baie du Marin and Crique du Sphinx — located
on the eastern coast of lle de la Possession (sub-Antarctic Crozet archipelago,
Southern Ocean). We investigated the composition and structure of nearshore
benthic faunal communities using a quantitative fieldwork protocol and an
integrative molecular- and morphology-based taxonomic approach. A total of
124 morphotypes were identified, including a high proportion (72%) of rare
species. Both sites exhibited similar benthic invertebrate communities.
Structurally complex habitats such as hard substrates or areas dominated by
macroalgae exhibited higher species richness and diversity. The investigated
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benthic invertebrate communities are typical of the sub-Antarctic area but
featured unique structures, including dense tube-dwelling polychaete colonies.
This study will provide a baseline for future monitoring programs and for the
preservation of sub-Antarctic coastal benthic ecosystems.

KEYWORDS

Southern Ocean, shallow water, benthic fauna, community composition,

habitat complexity

1 Introduction

Marine ecosystems of the Southern Ocean are increasingly
affected by climate-driven changes and direct anthropogenic
pressures (Meélice et al., 2003; Ansorge et al., 2009; Doney et al.,
2012; Constable et al., 2014; Gutt et al., 2015; Morley et al., 2020;
Auger et al,, 2021; Cavanagh et al, 2021). Coastal benthic
communities of Antarctic and sub-Antarctic regions are
particularly sensitive to environmental disturbances (Robinson
et al., 2022; Lelievre et al., 2023). Global change may lead to
substantial alterations in community composition and structure,
including biodiversity loss and shifts driven by both habitat
extinction and expansion in response to changing local abiotic
conditions (Sahade et al., 2015; Pineda-Metz et al., 2019; Deregibus
et al,, 2023), with cascading effects on ecosystem functioning
(Hooper et al,, 2005; Cardinale et al., 2012). Despite their high
ecological and conservation value (Chown et al, 2001), sub-
Antarctic benthic habitats remain largely under-explored. A
comprehensive taxonomic investigation of these ecosystems is
thus needed to assess and monitor future impacts induced by
natural and anthropogenic stressors, and preserve these isolated
environments (Xavier et al., 2016; Cresswell et al., 2023).

Landscape heterogeneity and habitat structural complexity are
key drivers that spatially structure species occurrence and
distribution patterns (Miller and Etter, 2011; Witte et al., 2025).
Structurally complex habitats generally offer a mosaic of
microniches shaped by multiple environmental factors (e.g.,
physical and chemical conditions, water currents, substrate type
and orientation, depth), promoting the coexistence of species and
thereby, higher species diversity and abundances than in
homogeneous habitats (Hewitt et al., 2008; Henseler et al., 2019).
Habitat-forming species (e.g., faunal and macroalgal biogenic
structures) further enhance this complexity by changing local
abiotic conditions, expanding the habitat surface availability,
providing refuges from predation, and enhancing resource supply,
collectively supporting the development of benthic communities
(Jones et al., 1994; Graham et al., 2007; Rabaut et al., 2007; Van
Hoey et al., 2008; Miller et al., 2018). Through the interplay between
abiotic factors and biotic interactions (e.g., competition, predation,
facilitation), sub-Antarctic coastal marine ecosystems harbor a rich
and diverse benthic flora and fauna (Arnaud, 1974; Branch et al,,
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1993; Barnes et al., 2006; Freeman et al., 2011; Clark et al., 2019;
Lelievre et al., 2023). This habitat-driven diversity highlights
the importance of assessing and monitoring biodiversity across
multiple habitat types, providing essential knowledge for
the effective conservation and long-term protection of
subpolar ecosystems.

To preserve the biodiversity of these remote ecosystems, the
French Southern Territories National Nature Reserve (RNN) was
created in 2006, including the entire terrestrial surface of the French
Southern Territories (Crozet, Kerguelen and Saint Paul and
Amsterdam Islands) and 52.5% of their territorial waters
(approximately 15,700 km?). The RNN was extended in 2016
(reaching an area of 672,969 km®) in response to the Convention
on the Conservation of Antarctic Marine Living Resources
(CCAMLR). In 2022, it was extended to nearly 1 million km?
during the One Ocean Summit thanks to the key measures of the
French National Strategy for Protected Areas 2030. With 1.6 million
km?, the reserve is the largest marine protected area in France and
the second largest in the world. It was inscribed on the UNESCO
World Heritage List in 2019 for the preservation of unique habitats
of high conservation value. However, despite the establishment of
large-scale protection measures, benthic ecological studies remain
particularly limited in this region (Feral et al., 2021; Lelievre et al.,
2023, 2024a, 2025a; Jossart et al., 2024). This lack of data is
particularly concerning because effective conservation relies on a
detailed knowledge of biodiversity (Lelievre et al., 2025b). Without
comprehensive inventories, it remains difficult to assess ecosystem
condition and to determine how effectively marine protected areas
and conservation measures mitigate present and future threats
(Lelievre et al., 2025b).

In the Crozet islands, first marine benthic studies were
conducted during early oceanographic expeditions of the 19"
(HMS Challenger, 1872) and 20" centuries (MDO8/BENTHOS
1976 and MD30/BIOMASS 1982) (Arnaud, 1982). Most recently,
the exploration of these benthic ecosystems was undertaken in
2021, on the occasion of a submarine cable inspection and
environmental impact assessment at the International Monitoring
System Hydroacoustic Station HA04 set up at Ile de la Possession
(Crozet). This survey was conducted by the French Southern and
Antarctic Territories (TAAF) in response to the solicitation of the
Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
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The campaign aimed to assess environmental impacts and identify
potential ecological risks (e.g., habitat disturbance, biological
invasions) related to the station cable, enhancing our
understanding of Ile de la Possession nearshore marine
ecosystems. Benthic habitats and diversity were characterized by
video-imagery and biological sampling at two sites located on the
eastern coast of Ile de la Possession, at Baie du Marin and Crique du
Sphinx. Based on video-imagery data, an initial taxonomic and
functional assessment of the shallow-water marine fauna and flora
was performed by Lelievre et al. (2023, 2024, 2025), highlighting the
need for studying biological samples to improve our knowledge of
the composition and structure of benthic communities. In this
context, Jossart et al. (2024) investigated the diversity and
biogeographic affinities of the macrofauna from Ile de la
Possession using an integrative morphological and genetic
approach from specimens collected opportunistically. Although
these previous studies provided valuable information on Crozet
marine communities, video imagery and opportunistic sampling
provide only a partial view of the benthic fauna. Complementing
these former studies, the present study aims (i) to describe and
compare the composition and the diversity of shallow faunal
benthic communities at Baie du Marin and Crique du Sphinx,
based on an in situ quadrat approach and an integrative
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morphology- and molecular-based identification of the collected
organisms; and (ii) to investigate the role of substrate composition
on diversity patterns. This study provides the first quantitative
assessment of the structure and composition of Crozet benthic
communities, offering a critical baseline for future ecological
monitoring and conservation planning in these little
studied ecosystems.

2 Materials and methods
2.1 Study areas

The Crozet Islands (45°48’S - 46°26’S; 50°14’E - 52°15’°E) are
located in the south of the Indian Ocean, at 2,400 km from both
Antarctica and South Africa. The archipelago comprises five
volcanic islands scattered over 80 km from west to east: Ile aux
Cochons, Ile des Pingouins, Ilots des Apotres, Ile de la Possession and
Ile de I'Est. Ile de la Possession (46°25’S; 51°45’E; Figure la) is the
largest island with a surface area of 156 km? (approximately 18 km
in width and 15 km in length). The present study was conducted at
two sites located on the eastern coast of Ile de la Possession, at Baie
du Marin and Crique du Sphinx (Figure 1b).
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FIGURE 1

(a) Topographic map of lle de la Possession, diamonds indicating the location of Baie du Marin and Crique du Sphinx; (b) Faunal sampling (quadrat
sampling design) conducted during the HA04-Crozet-2021 campaign; Photographs of (c) Baie du Marin (photo courtesy of L. Hateau); (d) Crique du

Sphinx (photo courtesy of T. Saucéde).
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The Baie du Marin (46°25’54”S; 51°52’11”E; Figure 1c¢) is a narrow
inlet, 500 m long and 200 m wide in its shallowest part (< 20 m depth),
that opens to the ocean in a larger bay of about 2 km wide. The
coastline is mainly a rocky shore, and the seabed is dominated by
coarse sand sediments (Lelievre et al., 2024b). Two kilometres to the
north, Crique du Sphinx (46°25°08”S; 51°52’44”E; Figure 1d) is a small
cove of 250 m long and 150 m wide that opens to the northeast and is
mainly bordered by a rocky shore with a small beach of pebbles and
coarse sand. The seabed is mainly a rocky bottom with some patches of
coarse sand (Lelievre et al., 2024b).

2.3 Field sampling and laboratory
processing

Fieldwork was carried out during campaign HA04-Crozet-2021
and OP03-2021 operations implemented at Ile de la Possession by
the French Southern and Antarctic Territories (TAAF), conducted
aboard the R/V Marion Dufresne II between 4 and 9 November
2021. Sampling was performed at each site (Baie du Marin and
Crique du Sphinx) in SCUBA diving following a depth gradient
between 6 and 20 m depth, along a transect positioned in the main
axis of each bay. Invertebrates were collected using 25 x 25 cm
quadrats (representing a sampling surface area of 625 cm® per
quadrat) regularly positioned on the sea bottom (Figure 1b). The
community within each quadrat was first photographed in situ,
after which all organisms were collected by hand or scrubbed from
hard substrates. A total of eighteen quadrats were sampled along
each transect at each site (Supplementary Table S1; Figures 1B, 2).
For every quadrat, the substrate type was classified as: sand, sand
and pebbles, sand and algae, rock, and rock and algae (Figure 2).
Biological sampling was conducted in accordance with regulation
rules of the TAAF under permit A-2021-98. Once onboard the R/V
Marion Dufresne II, all samples were preserved in 96% ethanol. In
the laboratory, each sample was then sieved through a 1 mm mesh
to retrieve the macrofauna (defined as organisms >1 mm). All
individuals were sorted, assigned to a morphotype, and counted.
One or two specimens of each morphotype were then isolated for
further morphological and genetic analyses.

2.4 Species identification: DNA barcoding
and morphology

An integrative approach, combining morphological and
molecular taxonomy, was used in order to maximize the quality
of species identifications (Gostel and Kress, 2022; Jossart et al.,
2023). For each isolated specimen, DNA extractions were
performed from a small piece of tissue or from the entire body
depending on specimen size using a salting-out protocol (Sunnucks
and Hales, 1996). The barcode region of the cytochrome ¢ oxidase
subunit I (COL 658 base pairs) was then amplified, using either
universal primers or taxon-specific primers: F-polyHCO+R-
polyLCO for annelids, FLCOechlaF1+R-HCO2198 for
echinoderms, F-LCO1490+R-HCO2198 and F-LCO1490+R-
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HCO2198 and F-COI-mol+R-COI-mol for molluscs (Folmer
et al,, 1994; Carr et al.,, 2011; Layton et al., 2016). More details
and protocols can be found in Jossart et al. (2024). Purification and
Sanger sequencing were carried out by GENEWIZ® laboratories
from Azenta Life Science (Leipzig, Germany). Sequence editing was
conducted using Geneious Prime 2023.2.1 (Kearse et al., 2012), and
barcodes were compared with each other and with sequences
available in GenBank and Barcode of Life (BOLD) databases
(Ratnasingham and Hebert, 2007). The barcoded specimens were
also sent to taxonomists for morphological identification to the
lowest taxonomic level possible. These morphotypes were then
compared with those defined by Jossart et al. (2024) from former
samples in the same area. The barcodes directly contributed to the
identification process (see Results). Combined with the barcodes of
Jossart et al., 2024, a total of 234 barcodes from 91 morphotypes
were obtained. These barcodes and macro-pictures of morphotypes
were deposited in the Barcode of Life Data Systems (BOLD) under
the project “HAOIV” (Shallow benthic communities of Crozet
archipelago, boldsystems.org) and made publicly available.

2.4 Statistical analyses

Individual-based rarefaction curves were computed to assess the
sampling effort at Baie du Marin, Crique du Sphinx, and across both
sites combined. A Principal Coordinates Analysis (PCoA) was
performed on Hellinger-transformed abundance data using
Euclidean distances to investigate variations in faunal composition
among sites and quadrats. Abundance data were Hellinger-
transformed to avoid giving an excessive weight to rare species
(Legendre and Gallagher, 2001). Univariate Hill’s diversity indices
were calculated for each quadrat and each site, including species
richness (R; q=0), Shannon diversity (N; g=1) and Simpson’s inverse
(1-A g=2) (Jost, 2006). For each diversity metric, non-parametric
Kruskal-Wallis followed by Dunn’s post-hoc pairwise tests were
performed to test for significant differences among the different
substrate types, with p-values adjusted using a Bonferroni correction.
Commonness and rarity were categorized from both species
abundance and occurrence. Morphotypes were defined as: rare
(average number of individuals per quadrat <1 and occurring in <9
quadrats out of a total of 36 (i.e., <25% of quadrats); common (average
number of individuals per quadrat 22 and occurring in >27 quadrats
(ie, 275% of quadrats); or moderate (everything else) (Hewitt et al,
2016). All statistical analyses were performed using R software (version
4.2.0, R Core Team 2022). Rarefaction curves were conducted using the
package iNEXT (Hsich et al., 2016). Diversity indices and PCoA were
conducted using the vegan package (Oksanen et al., 2013).

3 Results
3.1 Overall benthic invertebrate diversity

A total of 124 benthic invertebrate morphotypes were identified
from the 11,189 individuals collected in the 36 sampling quadrats at
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FIGURE 2
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Example of quadrat sampling at Baie du Marin and Crique du Sphinx, with (a) Q11 (sand and pebble substrate); (b) Q13 (rocky substrate dominated
by Codium adhaerens); (c) Q20 (sandy substrate dominated by undetermined algae); (d) Q22 (sandy substrate dominated by undetermined algae);
(e) Q23 (sandy substrate dominated by undetermined algae); (f) Q27 (rocky substrate); (g) Q28 (rocky substrate dominated by Codium adhaerens);
(h) Q30 (sand and pebble substrate); (i) Q32 (rocky substrate dominated by undetermined algae); (j) Q34 (rocky substrate); (k) Q35 (rocky substrate);

and (1) Q36 (rocky substrate dominated by Codium adhaerens).

Baie du Marin and Crique du Sphinx. Overall, the rarefaction curves
tend to reach a plateau (Figure 3), indicating that the sampling effort
was sufficient to provide a reliable representation of faunal diversity
at both studied sites. Genetically, 62 barcodes from 35 morphotypes
were obtained. Combined with Jossart et al. (2024) barcodes from
specimens of the same areas, a total of 66 morphotypes were
successfully barcoded. Therefore, 46.8% of morphotypes were
characterized and identified only on a morphological basis while
53.2% were investigated both morphologically and genetically
(Table 1). Of the 124 morphotypes, 64 were identified to species
level, 39 to genus level, and the remaining morphotypes to family or
higher taxonomic level (Table 1; Supplementary Table S2). Among
these morphotypes, 59 were shared by the two sites, 28 were
exclusive to Baie du Marin and 37 to Crique du Sphinx. Benthic
diversity was characterized by: Annelida with 21 Polychaeta from
14 families; Arthropoda encompassing Malacostraca with 21
Amphipoda divided into 16 families, 12 Isopoda into eight
families, six Tanaidacea dispatched across five families, and 11
Pycnogonida from five families; Brachiopoda with one
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Rhynchonellata; Chordata with two Ascidiacea from two families;
Cnidaria, including four Anthozoa from the Actiniaria order, and
one Hydrozoa of the Tubulariidae family; Echinodermata with six
Asteroidea divided into three families, five Holothuroidea into two
families, three Ophiuroidea from three families, and one
Echinoidea; Mollusca, comprising 18 Gastropoda within 15
families, six Bivalvia from four families as well as three
Polyplacophora into three families; one Nemertea from the
Monostilifera order; as well as two Platyhelminthes from the
Rhabditophora subphylum (Table 1; Supplementary Table S2).
Overall, quadrat sampling at both sites exhibited a high diversity
(Figures 4a, b), with polychaetes, amphipods, isopods, tanaids,
bivalves, and gastropods being numerically dominant in terms of
abundance (Figures 4c, d).

Benthic communities were characterized by a high proportion
of rare morphotypes, reaching 72% (89 morphotypes). Among
these rare morphotypes, Amphipoda is the most represented,
comprising 14 morphotypes and accounting for 15.7% of the total
rare morphotypes, followed by Polychaeta with 13 morphotypes
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FIGURE 3

Individual-based rarefaction curves of faunal communities at Baie du Marin and Crique du Sphinx. The brown line (Total) represents the rarefaction

curve for both sites combined.

accounting for 14.6% of the total rare morphotypes, as well as
Gastropoda and Pycnogonida, each encompassing 11 morphotypes
and representing 12.4% of the total rare morphotypes. No
morphotypes defined as “common” were identified. Finally, 28%
(35 morphotypes) were defined as moderate morphotypes, with a
high number of Polychaeta, encompassing eight morphotypes and
accounting for 22.9% of the total moderate morphotypes, followed
by Gastropoda with seven morphotypes and accounting for 20% of
the total moderate morphotypes, as well as Amphipoda and
Isopoda, both encompassing six morphotypes and accounting for
17.1% of the total moderate morphotypes.

3.2 Variation in species composition
between quadrats

The PCoA showed no variation in faunal composition between
Baie du Marin and Crique du Sphinx (Figure 5). However, distinct
benthic community composition and structure were observed
across the different substrate types. The community of sandy
bottoms clearly departs from communities of other habitats and
was mainly characterized by the presence of the isopod Spinoserolis
latifrons (White, 1847), the amphipods Phoxocephalidae gen. indet.
G.O. Sars, 1891, Oedicerotidae gen. indet. sp.2 Lilljeborg, 1865 and
Oedicerotidae gen. indet. sp.3 Lilljeborg, 1865, the tanaid
Akanthophoreidae gen. indet. Sieg, 1986, as well as the polychaete
Travisia kerguelensis McIntosh, 1885. Sandy-dominated substrates
associated with pebbles and/or algae were mainly characterized by
the amphipod Prostebbingia sp. (Schellenberg, 1926), the isopod
Sphaeromatidae gen. indet. sp.2 Latreille, 1825, as well as the
gastropod Nacella delesserti (R. A. Philippi, 1849). Rocky
substrates associated with macroalgae were mainly characterized
by high abundances of the bivalve Kidderia sp. Dall, 1876, the
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gastropod Onoba cf. kergueleni (E. A. Smith, 1875), the isopods
Sphaeromatidae gen. indet. sp.1 Lilljeborg, 1865 and Santia sp.
Sivertsen & Holthuis, 1980, the tanaid Pancoloides litoralis
(Vanhoffen, 1914), the polychaete Neanthes kerguelensis
(McIntosh, 1885), and the amphipod Jassa cf. hartmannae
(Conlan, 1990). Finally, rocky substrates were mainly dominated
by the polychaetes Parasabella sp. Bush, 1905, Exogone
anomalochaeta Benham, 1921, Platynereis australis (Schmarda,
1861), and Harmothoe spp. Kinberg, 1856, the bivalve Neolepton
sp. Monterosato, 1875, the gastropod Margarella violacea (P. P.
King, 1832) and Falsimohnia albozonata (R. B. Watson, 1882), the
tanaids Tanaidacea fam. gen. sp. Dana, 1849 and Apseudes
spectabilis Studer, 1884, the isopod Iathrippa sp. Bovallius, 1886,
the pycnogonid Nymphon cf. brevicaudatum Miers, 1875, and the
amphipod Haplocheira barbimana (Thomson, 1879).

3.3 Taxonomic diversity indices

Overall, Baie du Marin and Crique du Sphinx showed similar
levels of species richness, with 87 morphotypes at Baie du Marin
and 96 morphotypes at Crique du Sphinx. However, Baie du Marin
displayed higher diversity values (N = 23.7; 1/A = 14.5) than Crique
du Sphinx (N = 21.5; 1/A = 13.6; Figure 6). The highest richness and
diversity values were found for rocky substrates (Rpean = 37.833 +
7.494; Nyoan = 12.454 + 4.280; 1/Anean = 6.673 + 2.531), followed by
rock and algae (Ryean = 26.833 + 10.053; Npean = 12.096 + 4.271; 1/
Amean = 8.023 +2.901). Sand and algae (Ryean = 17 £ 4.528; Nyyean =
8.236 + 1.271; 1/Amean = 6.350 + 1.059) and sand-pebbles habitats
(Rinean = 17.5 + 6.245; Nppean = 7.954 + 2.155; 1/Amean = 5.266 +
1.702) displayed similar species richness and diversity values.
Finally, sandy substrate was characterized by the lowest richness
and diversity values (Ryean = 3.667 * 1.732; Nean = 3.711 + 1.360;
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TABLE 1 List of the 124 taxa found at Baie du Marin (BDM) and Crique du Sphinx (CdS) on the eastern coast of lle de la Possession, ranked by
alphabetical order of phyla (then by class and family).

cds TA (%) Nquadrat
Annelida
Polychaeta

Capitellidae

Mastobranchus sp. Eisig, 1887% 18 (0.2) 8 £317 3 -

Scyphoproctus sp. Gravier, 1904* 7 (0.1) 31+10 4 -
Cirratulidae -

Cirratulidae gen. indet. Ryckholt, 1851* 5(<0.1) 22+133 1 -

Cirriformia sp. Hartman, 1936* 71 (0.6) 31.6 +97.7 6 -
Lumbrineridae

Lumbrineris sp. Blainville, 1828* 16 (0.1) 7.1 349 3 HAOIV268-24
Maldanidae

Microclymene sp. Arwidsson, 1906* 104 (0.9) 46.2 + 159.7 7 -
Nephtyidae

Aglaophamus sp. Kinberg, 1866* 2(<0.1) 0.9 +37 2 HAOIV266-24
Nereididae

Neanthes kerguelensis (McIntosh, 1885) 61 (0.5) 27.1 £ 50.6 17 HAOQOIV033-24

Platynereis australis (Schmarda, 1861) 81 (0.7) 36 +43 22 HAOIV046-24
Polynoidae

Harmothoe spp. Kinberg, 1856 95 (0.8) 422 + 60.4 21 HAOIV066-24
Phyllodocidae

Eulalia sp. Savigny, 1822 9(0.1) 4+14 5 HAOIV228-24

Lugia sp. Quatrefages, 1866* 5(<0.1) 22+68 4 -

Phyllodoce sp. Lamarck, 1818* 3(<0.1) 1.3 +45 3 -
Sabellidae

Parasabella sp. Bush, 1905 166 (1.5) 72.9 +209.1 5 -
Serpulidae

Spirobranchus sp. Blainville, 1818 36 (0.3) 16 + 59 6 -
Spionidae

Malacoceros sp. Quatrefages, 1843* 155 (1.4) 68.9 + 233.4 11 HAOIV270-24
Syllidae

Exogone anomalochaeta Benham, 1921* 273 (2.4) 121.3 + 189.6 22 -

Syllis prolixa Ehlers, 1901* 1(<0.1) 04 +27 1 -
Terebellidae

Neoleprea streptochaeta (Ehlers, 1897) 8 (0.1) 3.6+ 122 4 HAOIV028-24

Thelepus spectabilis Ehlers, 1897 11 (0.1) 49 + 142 5 -
Travisiidae

Travisia kerguelensis McIntosh, 1885* 16 (0.1) 7.1 234 4 -
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TABLE 1 Continued

TA (%) Nquadrat
Arthropoda
Malacostraca
Akanthophoreidae
Akanthophoreidae gen. indet. Sieg, 1986 . 3(<0.1) 1.3 £45 3 -
Apseudidae .
Apseudes spectabilis Studer, 1884 . . 75 (0.7) 33.3 £139.7 7 HAOIV167-24
Arcturidae
Neastacilla cf. kerguelensis (Vanhoffen, 1914)* . 18 (0.2) 8 +29.8 4 -
Calliopiidae
Oradarea cf. unidentata Thurston, 1974 . . 11 (0.1) 49 +14.2 4 HAOIV007-24
Conicostomatidae
Stomacontion pepinii (Stebbing, 1888)* . . 7 (0.1) 31+162 2 -
Corophiidae
Haplocheira barbimana (Thomson, 1879) . . 740 (6.6) 328.9 + 850.4 15 HAOIV219-24
Iphimediidae
Iphimediella paracuticoxa Andres, 1988 . 2(<0.1) 09 +3.7 2 -
Ischyroceridae
Ischyrocerus sp. Kroyer, 1838 . . 12 (0.1) 5.3 +20.6 3 -
Jassa cf. hartmannae Conlan, 1990 . . 895 (8) 397.8 + 576.9 26 HAOIV004-24
Janiridae
Iathrippa sp. Bovallius, 1886 . . 51 (0.5) 22.7 + 42 11 HAOIV147-24
Neojaera sp. Nordenstam, 1933* . 5(<0.1) 22+95 2 -
Joeropsididae
Joeropsis curvicornis (Nicolet, 1849)* . . 40 (0.4) 17.8 + 42.6 11 HAOIV256-24
Kergueleniidae
Kerguelenia antiborealis Bellan-Santini & Ledoyer,
1987* . 3(<0.1) 13+8 1 -
Lysianassidae
Parawaldeckia kidderi (S.1. Smith, 1876) . 2(<0.1) 09 +53 1 HAOIV001-24
Maeridae
Elasmopus sp. A. Costa, 1853% . 9(0.1) 4+24 1 HAOIV213-24
Munnidae
Munna sp. Kroyer, 1839* . . 7 (0.1) 31+92 5 HAOQOIV255-24
Nototanaidae
Nototanais dimorphus (Beddard, 1886) . 6 (0.1) 2.7 + 135 2 -
Oedicerotidae
Oedicerotidae gen. indet. sp.1 Lilljeborg, 1865* . 1(<0.1) 04 +27 1 -
Oedicerotidae gen. indet. sp.2 Lilljeborg, 1865* . 20 (0.2) 8.9 +30.2 5 HAOIV212-24
Oedicerotidae gen. indet. sp.3 Lilljeborg, 1865 . 8(0.1) 3.6+ 213 1 -

(Continued)
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TABLE 1 Continued

TA (%) Nquadrat
Arthropoda

Pagetinidae

Pagetina monodi (Nicholls, 1938) . . 51 (0.5) 22.7 £ 56.3 9 -
Paramunnidae

Cryosignum lunatum (Hale, 1937) . 8 (0.1) 3.6+ 188 2 HAOIV137-24
Phoxocephalidae

Phoxocephalidae gen. indet. G.O. Sars, 1891* . 20 (0.2) 8.9 +21.1 8 HAOIV210-24
Pleustidae

Pleusymtes sp. J.L. Barnard, 1969* . 1(<0.1) 04 +27 1 -
Podoceridae

Podocerus capillimanus (Nicholls, 1938) . 22 (0.2) 9.8 +£334 3 HAOIV012-24
Pontogeneiidae

Atyloella cf. magellanica (Stebbing, 1888) . 1(<0.1) 04 +27 1 HAOIV002-24

Eusiroides georgiana K.H. Barnard, 1932* . . 125 (1.1) 55.6 + 154.6 10 HAOIV215-24

Prostebbingia sp. Schellenberg, 1926 . . 800 (7.1) 355.6 + 833.1 14 HAOIV013-24
Serolidae

Septemserolis septemcarinata (Miers, 1875) . . 27 (0.2) 12 £ 58.7 5 -

Spinoserolis latifrons (White, 1847) . . 50 (0.4) 22.2 + 389 17 HAOIV139-24
Santiidae

Santia sp. Sivertsen & Holthuis, 1980* . . 118 (1.1) 52.4 + 90 18 HAOIV254-24
Sphaeromatidae

Cassidinopsis emarginata (Gueérin-Méneville, 1843) . 32 (0.3) 14.2 + 48.7 9 HAOIV143-24

Sphaeromatidae sp.1 Latreille, 1825 . . 99 (0.9) 44 + 86.6 15 -

Sphaeromatidae sp.2 Latreille, 1825 . . 511 (4.6) 227.1 £ 614.1 21 HAOIV257-24
Stenothoidae

Proboloides sp. Della Valle, 1893 . . 51 (0.5) 22.7 + 63.5 5 -
Tanaidacea

Tanaidacea fam. gen. sp. Dana, 1849 . . 991 (8.9) i41?834 17 -
Tanaididae

Pancoloides litoralis (Vanhéften, 1914) . . 617 (5.5) 274.2 + 466.3 24 HAOIV168-24

Tanaididae gen. indet. Nobili, 1906 . 1(<0.1) 04+27 1 -
Tryphosidae

Tryphosella sp. Bonnier, 1893 . . 12 (0.1) 53 +294 2 HAOIV027-24

Pycnogonida

Ammotheidae

Tanystylum antipodum Clark, 1977% . . 4(<0.1) 1.8 £5.1 4 -

Tanystylum neorhetum Marcus, 1940 . . 5(<0.1) 22+78 3 -
Austrodecidae

(Continued)
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TABLE 1 Continued

TA (%) Nquadrat
Arthropoda
Austrodecus fagei Stock, 1957* . 1(<0.1) 04 +27 1 -
Austrodecus cf. tristanense Stock, 1955* . 1(<0.1) 04 +27 1 -
Endeidae
Endeis viridis Pushkin, 1976 . 1(<0.1) 0.4 +27 1 HAOIV166-24
Nymphonidae
Nymphon sp.1 Fabricius, 1794* . 1(<0.1) 04 +27 1 -
Nymphon sp.2 Fabricius, 1794* . 1(<0.1) 04 +27 1 -
Nymphon brevicaudatum Miers, 1875 . . 19 (0.2) 8.4 + 305 6 HAOIV165-24
Nymphon glabrum Child, 1995* . 1(<0.1) 04 +27 1 -
Nymphon paucidens Gordon, 1932* . 1(<0.1) 04+27 1 -
Pycnogonidae
Pycnogonum platylophum Loman, 1923* . 1(<0.1) 0427 1 -

‘ Brachiopoda

Rhynchonellata

Terebratellidae

Aerothyris kerguelensis (Davidson, 1878) . 1(<0.1) 04 +27 1 -

‘ Chordata

Ascidiacea

Holozoidae

Sycozoa cf. gaimardi (Herdman, 1886) . 4(<0.1) 1.8 +£10.7 1 -

Polyclinidae
Aplidium variabile (Herdman, 1886) . . 27 (0.2) 12 + 40 5 -

Cnidaria

Anthozoa

Actiniaria

Actinijaria fam. gen. sp.1 Hertwig, 1882 . 16 (0.1) 7.1 +374 3 -
Actiniaria fam. gen. sp.2 Hertwig, 1882 . 4(<0.1) 1.8 £ 64 3 -

Actiniaria fam. gen. sp.3 Hertwig, 1882 . 15 (0.1) 6.7 +32.3 3 -

Actiniaria fam. gen. sp.4 Hertwig, 1882 . 1(<0.1) 04 +27 1 -

Hydrozoa

Tubulariidae

Tubulariidae gen. indet. Goldfuss, 1818 . 22 (0.2) 9.8 +£26.3 5 HAOIV233-24

Echinodermata

Asteroidea
Asteriidae
Anasterias antarctica (Liitken, 1857) . . 15 (0.1) 6.7 +12.3 10 HAOIV098-24
Asteriidae gen. indet. Gray, 1840 . . 14 (0.1) 6.2 +18.1 7 HAOIV090-24

(Continued)
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TABLE 1 Continued

TA (%) Nquadrat
Echinodermata
Diplasterias meridionalis (Perrier, 1875) . 1(<0.1) 04 +27 1 HAOIV088-24
Astropectinidae
Leptychaster kerguelenensis E. A. Smith, 1876 . 3(<0.1) 1.3+£59 2 HAOIV095-24
Echinasteridae
Henricia obesa (Sladen, 1889) . 1(<0.1) 0.4 +27 1 HAOIV084-24
Henricia cf. spinulifera (E. A. Smith, 1876) . . 2(<0.1) 09 +3.7 2 HAOIV078-24
Echinoidea
Temnopleuridae
Pseudechinus cf. marionis (Mortensen, 1936) . 1(<0.1) 0.4 +2.7 1 HAOIV116-24
Holothuroidea
Chiridotidae
Scoliorhapis massini O'Loughlin & VandenSpiegel,
2010 . 1(<0.1) 04 +27 1 HAOIV172-24
Cucumariidae
Echinopsolus splendidus (Gutt, 1990) . 1(<0.1) 04 +27 1 HAOIV130-24
Cladodactyla crocea var. croceoides (Vaney, 1908) . . 3(<0.1) 1.3 +59 2 HAOIV129-24
Pentactella intermedia (Théel, 1886)* . 6 (0.1) 27 +11.8 2 -
Pentactella laevigata Verrill, 1876 . 1(<0.1) 04 +27 1 HAOIV135-24
Ophiuroidea
Amphiuridae
Amphiura tomentosa Lyman, 1879% . 16 (0.1) 7.1 %297 2 HAOIV263-24
Ophiacanthidae
Ophiosabine vivipara (Ljungman, 1871) . . 28 (0.3) 124 +39.2 5 HAOIV158-24
Ophiopyrgidae
Ophioplinthus sp. Lyman, 1878* . 2(<0.1) 09 +53 1 HAOIV260-24
Mollusca
Bivalvia
Gaimardiidae
Kidderia sp. Dall, 1876 . . 823 (7.4) 365.8 + 948.3 24 -
Limidae
Limatula sp. S. V. Wood, 1839* . 1(<0.1) 04 +27 1 -
Neoleptonidae
Neolepton sp. Monterosato, 1875* . . 823 (7.4) 3658 23 HAOIV231-24
+1224.7
Philobryidae
Lissarca sp. E. A. Smith, 1877 . . 925 (8.3) 411.1 + 2094 13 HAOQOIV103-24
Philobrya sp.1 ]. G. Cooper, 1867* . . 28 (0.3) 124 + 694 2 -
Philobrya sp.2 J. G. Cooper, 1867* . 2 (<0.1) 09 +53 1 -
(Continued)
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TABLE 1 Continued

TA (%) Nquadrat
Mollusca
Gastropoda

Aeolidiidae

Aeolidiidae gen. indet. Gray, 1827 . 3(<0.1) 1.3 +£59 2 HAOIV151-24
Calliostomatidae

Margarella violacea (P. P. King, 1832) . . 96 (0.9) 42.7 +90.8 15 -
Cingulopsidae

Skenella sp. Pfeffer, 1886* . . 90 (0.8) 40 + 171.8 6 HAOIV237-24
Cominellidae

Pareuthria sp. Strebel, 1905* . 1(<0.1) 04 +27 1 -
Diaphanidae

Diaphana paessleri (Strebel, 1905)* . 3(<0.1) 13+59 2 -
Eatoniellidae

Eatoniella caliginosa (E. A. Smith, 1875) . . 405 (3.6) 180 + 452.3 20 HAOIV249-24
Littorinidae

Laevilacunaria pumilio (E. A. Smith, 1877) . . 73 (0.7) 324 +91.3 10 HAOIV242-24

Pellilitorina setosa (E. A. Smith, 1875) . . 40 (0.4) 17.8 + 88.9 3 HAOQOIV245-24
Muricidae

Enixotrophon declinans (R. B. Watson, 1882)* . 1(<0.1) 04 +27 1 HAOIV239-24
Nacellidae

Nacella delesserti (R. A. Philippi, 1849) . . 65 (0.6) 289 +71.6 13 -
Newtoniellidae

Cerithiella sp. A. E. Verrill, 1882* . . 6(0.1) 2.7 +8.1 4 HAOQOIV236-24
Omalogyridae

Omalogyra sp. Jeffreys, 1859* . 2(<0.1) 0.9 +37 2 HAOIV240-24
Prosiphonidae

Falsimohnia albozonata (R. B. Watson, 1882) . . 30 (0.3) 133 £ 474 6 HAOIV252-24

Fusinella jucunda (Thiele, 1912) . 11 (0.1) 49 +21.2 2 HAOIV118-24

Prosipho sp. Thiele, 1912* . 4(<0.1) 1.8 +84 2 HAOQOIV234-24
Raphitomidae

Xanthodaphne translucida (R. B. Watson, 1881) . . 24 (0.2) 10.7 + 50.7 5 -
Rissoidae

Onoba cf. kergueleni (E. A. Smith, 1875)* . . 806 (7.2) 358.2 + 559.2 21 HAOIV241-24
Velutinidae

Marseniopsis sp. Bergh, 1886 . 1(<0.1) 04 +27 1 HAOIV126-24

Polyplacophora

Chitonida

Chitonida fam. gen. sp. Thiele, 1909* . 15 (0.1) 6.7 +32.3 3 -

(Continued)
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TABLE 1 Continued

Taxa BDM CdS TA (%) D Ngquadrat BOLD
Mollusca
Hemiarthridae
Hemiarthrum sp. P. P. Carpenter, 1876 . . 77 (0.7) 342 +91.6 14 HAOIV110-24
Leptochitonidae
Leptochiton laurae Schwabe & Sellanes, 2010* . 3(<0.1) 13 +45 3 HAOIV232-24
Nemertea
Monostilifera
Monostilifera fam. gen. sp. Brinkmann, 1917 . . 12 (0.1) 53+ 14.8 7 HAOIV258-24
Platyhelminthes
Rhabditophora
Rhabditophora fam. gen. sp.1 Ehlers, 1985* . 1(<0.1) 04 +27 1 HAOIV264-24
Rhabditophora fam. gen. sp.2 Ehlers, 1985% . 1(<0.1) 0.9 +5.3 1

(*) New morphotypes compared to Lelievre et al. (2023, 2025a) and Jossart et al. (2024). TA: Total abundance (% of the total abundance among all taxa), D: mean density per quadrat + standard
deviation (indiv. m™), Nguadrae: number of quadrat occupied by the taxa, BOLD: public accession number that indicates that at least one COI barcode is available for that taxon (HAOIV project
“Shallow benthic communities of Crozet archipelago”).

1/Amean = 3.365 + 1.344; Figures 6, 7). Overall, significant variation = and was performed by hand picking, increasing the probability of
in species richness was observed among substrates (Kruskal-Wallis ~ missing rare species and small organisms.
x> = 27.16, df = 4, p < 0.001). Post-hoc comparisons revealed that Overall, Baie du Marin and Crique du Sphinx showed similar
species richness was significantly lower on pure sand bottoms  composition and structure of invertebrate communities, which can
compared to rock (p < 0.001) and rock-algae substrates  be explained by the close proximity (~2 km) of the two locations.
(p < 0.001; Figure 7a). A similar pattern was observed for the = The identified benthic invertebrates are typical of sub-Antarctic and
Shannon diversity index (Kruskal-Wallis x> = 22.40, df = 4,  Antarctic waters (Arnaud, 1974; Branch et al., 1993; Freeman et al.,
p < 0.001), with significantly lower values on pure sand bottoms  2011; Clark et al., 2019; Lelievre et al., 2023; Jossart et al., 2024), with
compared to rock (p < 0.001) and rock-algae substrates (p < 0.001;  the presence of rich and diverse taxonomic groups of annelids
Figure 7b). Finally, the same overall trend was found for the  (polychaetes), arthropods (amphipods, isopods, pycnogonids,
Simpson diversity index (Kruskal-Wallis x> = 16.15, df = 4, tanaids), brachiopods, chordates (ascidians), cnidarians
p < 0.001), with significantly lower diversity on pure sand (anemones, tubularids), echinoderms (asteroids, echinoids,
compared to rock-algae substrates (p < 0.001; Figure 7c¢). holothurids, ophiuroids), molluscs (bivalves, gastropods),
nemerteans and platyhelminths. Former studies showed that
amphipods (Dauby et al., 2001; Ameéziane et al., 2011; De Broyer
4 Discussion et al, 2014) and molluscs (bivalves and gastropods) (Linse et al.,
2006; Rosenfeld et al., 2015, 2023; Amsler et al., 2022) are among the
4.1 Crozet taxonomic benthic diversity and most abundant and species-rich components of Crozet benthic
structure communities. Despite the high number of species shared with other
sub-Antarctic regions (Jossart et al.,, 2024), some faunal
This study provides the first quantitative description of subtidal ~ dissimilarities were also noticed. Mussel beds are very common in
benthic communities in the Crozet archipelago. It constitutes a  intertidal and subtidal nearshore marine ecosystems of the
taxonomic and molecular baseline, which is particularly valuable in ~ Kerguelen Islands and of the Magellanic Province (Arnaud, 1974;
this relatively understudied region of the Southern Ocean impacted ~ Feral et al., 2019; Fraisse et al., 2021; Bahamonde et al., 2022) but
by global change (Auger et al., 2021; Nel et al,, 2023). Compared to  unexpectedly, they seem to be absent from the study sites of Crozet.
former benthic studies conducted at Ile de la Possession (Lelievre  Barnacles are reported in high abundance in the New Zealand sub-
et al,, 2023, 2025a; Jossart et al., 2024), 57 new morphotypes were ~ Antarctic islands but were not found at Crozet (Freeman et al,
identified (see Table 1). Such differences between studies may be ~ 2011). Sponges were also absent in the present study, although some
related to the different sampling method conducted. In Lelievre  taxa were previously identified on Crozet hard substrates by Lelievre
et al. (2023, 2024), the use of imagery only allowed the observation et al. (2023, 2024, 2025) based on image analyses. Most subtidal
of the fauna of sufficient size (> 1 cm) to be detected from images  environments from the Kerguelen Islands are dominated by
(Beisiegel et al., 2017; Hanafi-Portier et al., 2021), while in Jossart ~ sponges that locally constitute a significant part of the benthic
et al. (2024) biological sampling followed an opportunistic design  biomass (Ameéziane et al., 2011). At Prince Edwards Islands, hard
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substrates are also dominated by sponges, along with bryozoans and
cnidarians (Branch et al., 1993). Crozet submarine images (Lelievre
et al,, 2024a) and biological sampling seem to indicate that sponges
are not as abundant in the Crozet shallow waters. This suggests
contrasting diversity patterns among sub-Antarctic islands, and the
importance of local environmental conditions in the composition
and structure of species assemblages. Therefore, pursuing
taxonomic investigations around Crozet and characterizing local
abiotic conditions is important for advancing the understanding of
the composition and distribution of benthic communities.

4.2 Relationships between substrate type
and diversity patterns

Variations in faunal composition among quadrats were closely
related to the nature of the sea bottom. Diversity levels varied
according to substrate type, the lowest values being measured from
sandy bottoms, moderate values from sandy areas associated with
pebbles and/or macroalgae, and the highest values from rocky
substrates. Our results suggest that hard substrates and the
presence of ecosystem engineers (e.g., macroalgae) promote high
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diversity levels (Gambi et al., 1994; Amsler et al., 1995; Levin et al.,
20105 Lelievre et al., 2023). Structurally complex environments offer
a wider range of microhabitats that differ with each other in terms of
environmental conditions and resources, thereby driving the
occurrence of species with contrasting ecological requirements.
Hard substrates provide stable settlement surfaces for sessile
organisms, promoting the establishment and development of rich
and diverse benthic communities (Lelievre et al., 2023). The
assessment performed in the first high sea Marine Protected Area
(MPA), in the South Orkney Islands, also indicated that local
variation in seafloor substrate was an important factor influencing
taxa distribution, community composition, and abundance (Brasier
et al,, 2018). Substrate, together with location and depth, was
similarly highlighted as a key driver of benthic assemblages across
other Antarctic regions and environments (shallow waters, shelf,
and slope areas) such as in the Ross Sea (Cummings et al., 2006),
King George Island and the South Orkneys (Richardson, 1979;
Quartino et al., 2001).

Biogenic habitats formed by macroalgae play a central role in
structuring nearshore habitats (Teagle et al., 2017; Miller et al,
2018). The marine flora may exert a significant influence on local
environmental conditions (Teagle et al., 2017; Noisette et al., 2022),
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FIGURE 5

Principal Coordinates Analysis (PCoA) highlighting the variation in the composition and structure of faunal communities between quadrats and sites.
Circles and triangles correspond to quadrats sampled at Baie du Marin and Crique du Sphinx, respectively. Colors correspond to substrate types,
including: sand (orange), rock (purple), rock and algae (green), sand and pebbles (dark pink), as well as sand and algae (pink). The first two canonical

axes account together for 37.1% of the total variance.

including on light penetration (Graham et al., 2007), flow dynamics
(Gaylord et al., 2007; Rosman et al., 2010, 2013), sediment transport
and stabilization (Marin-Diaz et al, 2020), nutrient cycling and
resources (Leclerc et al.,, 2013), substratum nature (Christie et al.,
2007, 2009), as well as through biotic (e.g., predation, facilitation)
and trophic interactions (Leclerc et al., 2013). By promoting habitat
heterogeneity and complexity, hard substrates and the marine flora
promote higher diversity levels, influencing the composition and
structure of benthic communities.

In contrast, the low diversity levels observed in sandy bottom
environments is likely due to a low structural complexity, which
provides organisms with few habitats for shelter and attachment.
However, although sandy bottoms exhibited lower overall species
richness compared to more structurally complex substrates, our
findings highlight their ecological importance as they host distinct
communities that contribute to the overall benthic diversity of
Crozet. As reported by Lelievre et al. (2025a), soft sediments were
associated to the occurrence of the isopod Spinoserolis latifrons.
Future investigations of infaunal assemblages are needed, as these
communities may be especially abundant and contribute
significantly to the benthic diversity of sandy bottoms (Filgueiras
et al., 2007).
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4.3 Some guidelines for conservation and
future research

Effective protection measures such as the creation of the French
Southern Territories National Nature Reserve are valuable for the
preservation of marine ecosystems but conservation strategies
usually suffer from persistent knowledge gaps, in particular when
considering benthic marine diversity. In the present work, we
provide a detailed inventory of the composition of nearshore
benthic communities of Ile de la Possession, which will constitute
a critical baseline for future conservation studies and management
policies. Our results highlight the importance of structuring
elements such as hard substrates and the marine flora, which
promote seascape heterogeneity, habitat complexity, and thereby
high diversity levels. Conservation efforts should therefore prioritize
areas with high structural complexity to monitor environmental
changes and design conservation strategies. A comprehensive
characterization of the benthic abiotic environment is also
essential to improving our understanding of drivers shaping the
identified diversity patterns. Among macroalgal habitats, kelp
forests are of particular interest as they sustain a high diversity
enhanced by structural complexity. Future studies should
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FIGURE 6

Univariate Hill's diversity indices calculated for each quadrat and site (Baie du Marin (BDM) and Crique du Sphinx (CdS)). Diversity indices are
taxonomic richness (R; q=0), Shannon diversity (N; g=1) and Simpson diversity (1/A; q=2).

investigate their spatial and ecological dynamics with regards to
current environmental changes as any decline of these habitats may
have important cascading effects on diversity levels, community
composition, and overall coastal ecosystem functioning.

Rare species are the main component of the diversity of ecological
assemblages (Gaston, 1994), including in Southern Ocean marine
ecosystems (Hogg et al, 2011). Crozet communities were also
characterized by a high number of rare species. Future studies should
investigate the role of rare species within benthic communities,
particularly their functional contributions. These rare species may
have more significant functions than their local abundance or
regional occupancy suggest (Mouillot et al., 2013). The loss of rare
species can thus affect local and key ecosystem processes (e.g.,
productivity, ecosystem resilience) (Zavaleta and Hulvey, 2004;

Bracken and Low, 2012). At Ile de la Possession, Lelievre et al. (2023)
showed that a large part of the functional space was occupied by rare
species with rare functional traits. We here suggest that the
conservation of rare species should be another priority when
planning for the long-term maintenance of ecosystem functioning.
This would increase the level of functional diversity within
communities, which in turn sustains local ecosystem processes and
allows better resilience under changing environmental conditions.
Finally, two sites only were investigated on the eastern coast of
Ile de la Possession, leaving vast portions of the island largely
unknown, and other islands of the Crozet archipelago still
unexplored. Local variations in abiotic conditions may generate
distinct diversity patterns, which could have important implications
for conservation. Improving biodiversity inventories across these
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FIGURE 7

Comparison of Hill's diversity indices, including (a) species richness (q=0); (b) Shannon diversity (q=1); and (c) Simpson diversity (q=2) between
substrate types. Lowercase letters above confidence intervals indicate which groups are statistically different based on Dunn tests with Bonferroni

adjustments.
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under-studied islands would provide a stronger baseline and more
effective conservation measures.

5 Conclusion

The present work advances our understanding of the
composition and structure of coastal benthic communities of Ile de
la Possession, in the sub-Antarctic Crozet archipelago. Overall, species
composition of Ile de la Possession is similar to benthic assemblages
identified in other sub-Antarctic islands but for some unique
community structures such as dense tube-dwelling polychaete
colonies that cover hard substrates in Crozet. At small spatial scale,
results showed that species composition and community structure are
closely related to substrate types and habitat complexity, hard
substrates and habitat-forming species enhancing seascape
heterogeneity and habitat complexity, which in turn support a rich
and diverse local biodiversity. These findings highlight the value of
the integrative taxonomic approach, particularly for investigating
little known areas such as Crozet benthic habitats. The approach
allowed establishing a reference framework for species identification
as well as reference genetic resources that may prove useful for future
ecological and biogeographical studies, and for monitoring the
impacts of natural and anthropogenic disturbances (e.g. climate
change, ocean warming and acidification, non-native and potential
invasive species) on marine environments of the Crozet archipelago.
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