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Fostering a dynamic innovation ecosystem is a key strategic challenge for China’s

marine industry, yet organizations and policymakers lack a clear understanding of

what types of collaborative structures truly drive performance. This study moves

beyond traditional single-layer analyses to construct a comprehensive multilayer

network of inter-organizational collaboration, knowledge flows, and

technological evolution, using patent data from 2000 to 2024. The research

analyzes the structural characteristics and evolution trend of the multilayer

network to reveal the longitudinal dynamics of the China’s marine industry’s

collaborative innovation landscape. A negative binomial regression is used to

examine the effect of network characteristics on organizational innovation

performance. Findings reveal that while both broad and deep partnerships

significantly boost innovation, this effect is mediated by knowledge diversity.

The positive impact is contingent on the organizational knowledge assets.

Organizations with unique knowledge gain more from broad, shallow ties,

compared to deep and intensive collaborations. For highly knowledgeable

organizations, occupying too many strategic network positions can lead to

information overload and diminishing innovation performance. This research

provides an evidence-based framework for managers to optimize their R&D

collaboration strategies and for policymakers to designmore effective innovation

policies, ensuring a more robust and dynamic marine innovation ecosystem.
KEYWORDS

marine industry, innovation performance, multilayer networks, co-evolution,
patent analysis
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1 Introduction

As global economic development confronts challenges of land

resource scarcity and the contraction of traditional growth avenues,

the ocean, with its vast resource potential and commercial value, is

emerging as a key engine for economic growth (Wang and Sheng,

2021; Xie and Li, 2024). China has elevated marine economy

development to strategic importance. In 2024, China’s gross

ocean product (GOP) reached 10.54 trillion yuan, accounting for

5.9 percentage of the national gross domestic product, highlighting

the significant vitality of the marine economy as a new growth

driver. China’s 2025 government work report designates deep-sea

technology as a key strategic emerging industry. Furthermore, the

sixth meeting of the central financial and economic affairs

commission in 2025 explicitly called for “enhancing the

independent innovation capability of marine science and

technology, and expanding marine industries,” establishing

technological innovation as the core pathway to become a

maritime power.

Extensive research shows that innovation significantly drives

the upgrading of industrial structures and economic growth within

marine economy and industry (Zeyringer et al., 2018; Yu and Zou,

2020; Ren and Ji, 2021; Shao et al., 2021). Compared to purely

material capital investment, intellectual support centered on science

and technology is increasingly imperative to the future growth of

the marine industry (Shao et al., 2021). As the marine industry is a

comprehensive system involving 15 sub-sectors and intricate value

chains, its innovation activities are inherently cross-organizational

and interdisciplinary (Ding and Zhang, 2022). Consequently, it is

difficult for any single entity to undertake complex innovation tasks

independently. Building collaborative innovation networks to

integrate technological resources across organizational

boundaries, coordinate on key challenges, and accelerate the

commercialization of research outcomes has become an essential

routine for cultivating innovation capabilities in China’s

marine industry.

Given the inherent complexities of China’s marine industry,

academics are actively exploring its innovation landscape. Research

on innovation of marine industry can be classified into three

categories. The first stream of research focuses on the

measurement and evaluation of marine industry’s innovation

efficiency (Li et al., 2021; Sheng et al., 2021; Zhang and Wang,

2021; Fu et al., 2022; Li et al., 2025). For example, (Li et al., 2021)

employed stochastic frontier analysis to quantify the efficiency of

marine innovation in China, subsequently dissecting its regional

disparities and influencing factors. On the other hand, a growing

stream of research examines marine industry innovation through

the lens of an open and complex system. Xu et al. (2024) quantified

the synergistic relationship among China’s marine economy,

innovation, and ecology. Wan et al. (2023) proposed a tripartite

collaborative innovation system by analyzing the coordination of

relationships, resource sharing, and cooperative activities. Building

on the network perspective, Ma and Hou (2024) further detailed the

innovation process by establishing a technological innovation chain

that links enterprises with academic and financial institutions. The
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third category of studies focus on the innovation dynamics within

China’s marine industry and the role of its networks within specific

sectors of the marine industry (Zhang et al., 2019; Fu et al., 2023) or

particular regions (Wang et al., 2016). Utilizing social network

analysis, Zhang et al. (2019) established an industry-university-

research network grounded in collaborative patents within the

marine biomedical industry, demonstrating that greater

collaborative breadth and depth enhance innovation performance.

Additionally, Fu et al. (2023) revealed that increased local clustering

within collaborative networks positively impacts the innovative

output of the marine biomedical industry.

While existing research has progressively deepened in

granularity, expanding its scope from macro-level measurement

of innovation efficiency to the exploration of evolutionary

mechanisms of marine industrial innovation from a complex

systems perspective, and further delving into the structural

characteristics of innovation networks at the organizational level,

the extant literature still presents several limitations and

research gaps.

First, existing studies often fail to comprehensively capture the

interdisciplinary and holistic nature of China’s marine industry.

Their investigative scope is frequently confined to specific sub-

sectors, such as the marine biomedical (Zhang et al., 2019; Fu et al.,

2023) or new materials industries (Cui et al., 2025), or limited to

provincial regions (Wang et al., 2016). Given the current trend of

increasing cross-industry and inter-regional cooperation, an

analysis of the innovation development pathways and

evolutionary patterns of China’s marine industry from a

systematic perspective is urgently required.

Second, the influence of knowledge resources on innovation

collaboration within the marine industry has yet to be thoroughly

examined. Breakthroughs in strategic emerging marine industries,

which are poised to become pillar industries for China’s future

marine economy, are more critically dependent on unique and

inimitable knowledge resources compared to traditional marine

industries. Investigating the role of knowledge resources in

collaborative innovation can provide deeper insights into the

intrinsic mechanisms driving organizational innovation.

Third, despite the high growth potential, strategic emerging

marine industries face critical bottlenecks in core technological

areas, leaving them vulnerable to external constraints (Yin et al.,

2024). The trajectory of technological evolution in these industries

is pivotal in determining their competitive standing within global

industrial and value chains. Therefore, exploring the technological

evolution paths of China’s marine industry can identify essential

technologies needed for current industrial development, clarify the

core directions for innovation cooperation, and avert the

misallocation of innovation resources.

Furthermore, the mechanisms that how topological features of

the innovative networks impact the innovation performance of

organizations in China’s marine industry remain critical yet

underexplored questions. Current studies concerning China’s

marine industry have predominantly focused on the role of

organizational collaboration networks in enhancing innovation

performance, primarily by facilitating inter-organizational
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information exchange (Guo et al., 2023; Fu et al., 2023; Zhang et al.,

2019). However, such a singular-level network analysis overlooks

crucial dimensions of knowledge flow and technological lineage that

are fundamentally intertwined in both innovation processes and

organizational collaboration, and which collectively determine the

success of technological innovation.

Indeed, knowledge resources are the indispensable

underpinning of innovation. Innovation can be conceptualized as

a process of combining or recombining existing knowledge

elements (Fleming, 2001). Collective innovation, therefore, is

embedded not only within social networks but also within

knowledge networks. An organization’s knowledge base can be

viewed as a network formed by the coupling relationships among

its knowledge elements. These relationships signify the historical

associations between knowledge elements during past innovation

processes, thereby guiding potential future recombination of

knowledge (Yayavaram and Ahuja, 2008; Wang et al., 2014; Yan

and Guan, 2018; Sui et al., 2025).Patents serve as externalized

manifestations of innovative outcomes. Patent citations, in

particular, represent the spillover effects of an organization’s

explicit knowledge. While citations are used to measure the

inflow of knowledge from other technologies (Kim et al., 2014),

the frequency with which a patent is cited is indicative of its

inventive quality and technological importance (Yayavaram and

Ahuja, 2008). Moreover, patent citations can reflect the inheritance

and evolutionary path of technical knowledge (Wang et al., 2025b).

It is crucial to note that organizations can acquire knowledge from

others, and subsequently enhance their own innovation

performance, through patent citation networks even when there is

no direct collaborative link (no connection in social cooperation

networks). This indirect knowledge transfer pathway is often

obscured in analyses focusing solely on cooperation networks,

leading to an incomplete explanation of the mechanisms

influencing innovation performance. Therefore, understanding

innovation as a complete process, from the recombination of an

organization’s knowledge elements to cross-boundary collaboration

between organizations, and finally to the output and recognition of

innovation outcomes, is essential. This comprehensive view directly

corresponds to the multilayered network approach adopted in this

study, which integrates knowledge networks, cooperation networks,

and patent citation networks.

Based on collaborative patent data of China’s marine industry

from 2000 to 2024, this research integrates three distinct yet

interrelated dimensions: knowledge combination, organizational

collaboration, and technological flow, into a unified analytical

framework and analyzes the dynamic evolution of the multilayer

network of China’s marine industry. Leveraging social network

analysis, we apply structural indicators to trace the network’s

trajectory and visualize its shifting configurations across various

stages, thereby revealing its complex collaborative dynamics over

time. Subsequently, we aggregate the characteristics from the

knowledge element layer and the patent citation layer to their

corresponding organizations in the collaborative innovation layer.

Building upon this structural analysis, the paper uses negative
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binomial regression to examine how an organization ’s

embeddedness of the multilayer network impacts its innovation

performance of China’s marine industry. Particularly, this research

investigates the following research questions.
1. What collaboration patterns are effective for improving

innovation performance in the marine industry?

2. How can organizations strategically leverage their

knowledge assets within the innovation network?

3. What are the hidden risks of certain network positions that

organizations should be aware of?
The remainder of this paper is structured as follows. Section 2

details the research design. Section 3 analyzes the evolutionary and

structural characteristics of the multilayer networks. Section 4

presents and discusses the empirical results. Finally, Section 5

concludes the paper with a summary of findings, implications,

and directions for future research.
2 Research design

2.1 Patent analysis

In existing studies, two primary methodologies are commonly

employed to measure innovation dynamics. One prominent

method is patent analysis. The novelty and originality required

for patent applications serve as a direct and objective manifestation

of innovative outcomes (Ardito et al., 2018). A patent typically

comprises technical embodiments, technology classification codes,

citation information, and ownership details (Park et al., 2018). This

detailed information about the invention and its background

(Griliches, 1998) enables clear identification of technological

fields, making patents widely used to analyze technological

development trends and track dynamics within specific industries

(Fontana et al., 2009; Ardito et al., 2018; Hu et al., 2024; Lee, 2024;

Wang et al., 2025b). Scholars frequently utilize the information

contained in patents to construct innovation networks, thereby

analyzing their structures and the role of collaboration on

innovation performance (Barbosa et al., 2024). The other primary

measurement involves market-oriented indicators, such as the

proportion of revenue from new products. This approach is

valuable because not all inventions meet patentability

requirements, and some companies opt for trade secret protection

over patenting. Market-oriented indicators can cover a broader

range of innovation outcomes and more directly reflect the

economic value of new products.

Crucially, for the Chinese marine industry context, there is a

significant lack of publicly available, granular data on organization-

level market-oriented indicators such as new product revenue.

Given this data constraint, and consistent with numerous

previous studies (Guo et al., 2023; Fu et al., 2023; Zhang et al.,

2019) that face similar challenges, our study adopts patent

information to construct the multilayer networks.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1692004
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2025.1692004
2.2 Construction of multilayer networks

Social network analysis (SNA) is a powerful quantitative

method employed to measure the relationships (ties) among

different nodes, thereby enabling the interpretation of network

structure and the attributes of constituent actors (Hanneman and

Riddle, 2005). Given that many forms of data can naturally be

formulated as network tasks, network analysis has garnered

escalating research attention across various disciplines (Zhang

and Lauw, 2021; Li et al., 2024; Chen et al., 2020a; Chen et al.,

2020b). Innovative collaboration forms the fundamental nexus of

sharing and connection among actors, which gradually evolves into

a collaboration network (Jia et al., 2025). As innovative

collaboration becomes increasingly complex and involves growing

diversity of information, the analytical framework has necessarily

been extended from single-layer networks to multilayer networks.

Multilayer networks are particularly adept at accommodating both

intra-layer and inter-layer information (Zhao et al., 2024). The

concept of interdependent multilayer networks was first formally

introduced by Buldyrev et al. (2010). Such networks are

characterized by homogeneous nodes within a single layer and

heterogeneous nodes across different layers, with connections

between nodes across different layers established based on various

relationships, such as membership, dependency, or shared

attributes. Several studies illustrate the utility of multilayer

network approaches in innovation research. Brennecke and Rank

(2017) constructed a multilayer network model integrating

knowledge elements and inventors to investigate how a firm’s

knowledge network influences work-related interactions.

Similarly, Wang et al. (2025b) proposed a multilayer network

framework based on patent technical information, citation data,

and collaboration among patentees to identify and evaluate

potential R&D partners for unmanned marine vessels. This

framework specifically acknowledges that analyzing knowledge

distribution and technology diffusion provides a more

comprehensive understanding of the information dynamics

within collaborative networks and the factors influencing

innovative performance.

We construct the multilayer network composed of three

interconnected layers to analyze the innovation of China’s marine

industry, providing an intuitive understanding of the organization’s

innovative collaborations, the distribution of knowledge, as well as

technology flow. The knowledge network (KN) captures the

combinative relationships of knowledge elements. We define the

international patent classification (IPC) codes within a patent as its

knowledge elements. A tie is established between any two

knowledge elements if they co-occur in the same patent, thus

mapping the architecture of the knowledge base. The

collaborative innovation network (CIN) represents the social

structure of innovation. In this layer, nodes are the applicant

organizations, and a tie is formed between any two organizations

co-authoring a patent. The patent citation network (PCN)

illustrates the flow of technology. This network consists of the

collaborative patents from the CIN, as well as all patents that cite

them (forward citations) and are cited by them (backward
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citations). The links in the PCN represent these citation

relationships. To ensure that the constructed patent citation

network accurately reflects existing citation relationships and

knowledge flow pathways within a specific time window, we

employ a precise temporal criterion. Specifically, the application

date of the citing patent is selected as the core timestamp. This

means that time windows are delineated based on the application

dates of citing patents, and the appearance of a citation link within

the PCN is determined by this point in time. This methodology

allows for a more accurate capture of the dynamic processes of

technological innovation and knowledge diffusion. It effectively

mitigates potential network structural distortions that could arise

from the inherent lag in the publication of citation data. The data of

the CIN and the KN is presented into weighted, undirected

adjacency matrix, and the data of PCN is shown as a weighted,

directed edge list.

In our analytical framework, the CIN functions as the central

layer. To examine how an organization’s embeddedness impacts its

innovation performance, we integrate information from the KN and

the PCN to the CIN through specific interlayer connections.

Specifically, a link is established between an organization in the

CIN and a knowledge element in the KN, signifying that the

organization possesses that particular knowledge element.

Similarly, a link between an organization in the CIN and a patent

in the PCN indicates the organization’s authorship of that

invention. The structure allows us to attribute knowledge and

technological dynamics characteristics to each organization,

providing a comprehensive view of its position in the innovation

system. The detailed construction process is illustrated in Figure 1.
2.3 Theoretical analysis and research
hypotheses

2.3.1 The collaborative innovation network and
innovation performance

Embeddedness theory (Granovetter, 1985) posits that

competitive advantage is derived from social capital gained

through both the quality of relat ionships (relat ional

embeddedness) and strategic network position (structural

embeddedness). Metrics such as degree centrality and clustering

coefficient measure structural embeddedness, while tie strength

indicates relational embeddedness. Social networks play a pivotal

role in promoting innovation performance by providing extensive

access to heterogeneous information, facilitating resource sharing,

enabling joint problem-solving, and fostering the development of

reciprocity (Ahuja, 2000; Afuah, 2013; Wang et al., 2014, 2019;

Barbosa et al., 2024).

Degree centrality, defined as the number of direct ties an

organization maintains, serves as a primary indicator of the

breadth of its collaborative engagement (Hanneman and Riddle,

2005). It characterizes a focal ego’s information advantage relative

to other nodes and reflects the organization’s prominence within

the network (Kilduff and Tsai, 2003). Consequently, a high degree

of centrality is able to exert a positive effect on innovation by
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supplying a rich array of resources and information. Furthermore, a

broad collaborative network, evidenced by high degree centrality,

allows an organization to more effectively search for and acquire

complementary information. This enhanced access to diverse

knowledge critically supports the exploration of new technological

trajectories (Belso-Martinez and Diez-Vial, 2018).

Tie strength refers to the frequency of collaboration between an

actor and its partners, thus characterizing the depth of cooperative

engagement. Tie strength refers to the frequency, emotional

intensity, and reciprocal services characterizing the relationship

between an actor and its partners, thereby encapsulating the depth

of cooperative engagement (Granovetter, 1973). This concept

typically classifies into strong and weak ties. Strong ties are

characterized by frequent interaction, mutual affection, and long-

term cooperative relations. In contrast, weak ties involve infrequent

contact, weaker emotional bonds, and shorter-term cooperative
Frontiers in Marine Science 05
relations (Granovetter, 1973). Existing studies indicate that while

weak ties are able to provide access to novel and non-redundant

information, collaborations lacking mutual trust and assurance can

struggle to create significant value and foster innovation (Edwards

et al., 2011; Liu et al., 2017). Repeated collaborations can mitigate

opportunistic risks and therefore lay the foundation for stable, long-

term knowledge-sharing channels. Within these trusting

relationships, organizations are more willing to share complex

and even tacit knowledge and therefore shorten cognitive distance

and enhance their absorptive capacity (Nooteboom et al., 2007;

Wang et al., 2020). Furthermore, sustained interaction fosters a

shared vision and common norms, reduced communication costs,

and ultimately, a higher success rate for joint innovation (Valkokari

et al., 2017).

The clustering coefficient quantifies the degree to which an

actor’s neighbors are connected to each other, thereby reflecting the
FIGURE 1

Construction process of the multilayer network.
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local cohesion or cliquishness within a network (Wasserman and

Faust, 1994). This network metric has the potential to influence

innovation performance through two opposing mechanisms. On

the one hand, a low clustering coefficient indicates a loosely

connected network where the absence of dense local ties can lead

to high coordination costs and an increased risk of innovation

failure. Conversely, in a network with a relatively high level of

clustering, each member is more likely to receive communications

regarding an innovation from multiple network members. Such

information flow increases awareness, concentrates peer influence,

and accelerates the learning rate among participants (Muller and

Peres, 2019). On the other hand, an excessively high clustering

coefficient can also exert a negative impact on innovation. Over-

embeddedness in a highly cohesive and homogeneous network can

lead to the formation of an insular clique (Burt, 2004). Such limited

access to heterogeneous information results in a narrow knowledge

base, which significantly impedes the generation of novel ideas.

Furthermore, dense networks can reinforce organizational inertia

and path dependency. The resulting information redundancy can

trap organizations in existing technological trajectories and

cognitive patterns, ultimately hindering their long-term

innovation capacity (Ahuja, 2000; Shi et al., 2021). For these

reasons, we hypothesize H1a, H1b, and H1c.

H1a. Degree centrality positively associated with organizational

innovation performance in China’s marine industry.

H1b. Relational embeddedness positively associated with

organizational innovation performance in China’s marine industry.

H1c. The clustering coefficient exhibits an inverted U-shaped

relationship with organizational innovation performance in China’s

marine industry.

2.3.2 The knowledge network and innovation
performance

The knowledge-based view (KBV) posits that competitive

advantage originates from the effective integration and application

of a firm’s knowledge assets (Grant, 1996). Within this framework,

knowledge diversity, defined as the variety and heterogeneity of

knowledge elements possessed by an organization, emerges as a

critical dimension of its knowledge stock. This diversity is often

rooted in the organization’s embeddedness within knowledge

networks (Fleming et al., 2007). The Schumpeterian perspective

on innovation emphasizes that new ideas are generated through the

recombination of existing knowledge. Organizations with a diverse

knowledge base are better positioned to explore a wider spectrum of

novel combinations, thereby discovering breakthrough innovations

at a lower trial-and-error cost (Zhao et al., 2023). However, it is

noteworthy that Walrave et al. (2024) emphasized that knowledge

diversity proves beneficial for recombinatory purposes only if these

varied pieces of knowledge are actively exchanged among groups.

Inter-organizational collaborative networks provide essential”

social infrastructure” for knowledge diffusion (Paruchuri and

Awate, 2017). An organization’s position within such a

collaborative network is a primary determinant for acquiring new

information and knowledge elements (Tojeiro-Rivero and Moreno,

2019). By engaging in extensive or intensive interactions with other
Frontiers in Marine Science 06
organizations, a firm can complement its own knowledge with

elements from its partners’ knowledge reservoirs (Crescenzi et al.,

2016). This process helps overcome cognitive lock-in and enables

the generation of alternative approaches to problem-solving (Boh

et al., 2014; Wang et al., 2025a). In view of this, knowledge diversity

likely serves as a key mediating mechanism through which an

organization’s embeddedness in collaborative innovation networks

promotes innovation performance. Specifically, a high degree

centrality offers broad access to diverse external knowledge, while

strong tie strength facilitates the transfer of tacit knowledge through

trusting relationships with specific partners.

Knowledge uniqueness refers to expertise held by only a limited

number of entities within a specific domain, representing

knowledge unfamiliar to the broader population (Brennecke and

Rank, 2017). It is often conceptualized by the number of

organizations a specific knowledge element linking with. The

impact of knowledge uniqueness on innovation outcomes has

long been a subject of scholarly debate. From the perspective of

breadth of collaboration, a unique knowledge element may reside at

the periphery of an organization’s internal knowledge structure,

making it easily overlooked or underexploited (Yayavaram and

Ahuja, 2008). Engaging in broad collaborations with external

partners enable the organization to search for complementary

knowledge bases. By effectively recombining these external

insights with its internal unique experiences or knowledge, the

organization can unlock and realize their inherent value.

Furthermore, organizations possessing unique knowledge

elements may signify their advanced capabilities in specific fields

(Zhao et al., 2021), or that such elements represent highly complex

technical knowledge (Tian et al., 2024). When dealing with such

unique knowledge, the absence of established evaluation

frameworks and foundational understanding necessitates a

significant investment of time and cognitive resources for an

organization to digest unique knowledge elements solely on its

own (Tian et al., 2024). Additionally, the R&D process involving

novel knowledge is inherently complicated and highly vulnerable to

technological changes and market risks (Cheah et al., 2021).

Therefore, to gain a competitive advantage, organizations are

motivated to proactively collaborate with those possessing unique

know l e d g e e l emen t s t o s h a r e a nd l e v e r a g e s u c h

specialized resources.

Regarding the depth of collaboration, the trust and high-

bandwidth communication fostered by deep, recurring

relationships are beneficial to convey tacit information

(Tortoriello et al., 2012; Uzzi, 2018) and unlock the latent value

of unique knowledge assets (Brennecke and Rank, 2017). However,

organizations might be hesitant about engaging in deep, exclusive

collaborations with any single partner when unique knowledge is

involved. This reluctance stems from intellectual property

protection concerns, as deep ties could risk the replication of

their unique competitive advantages (Zhao et al., 2021).

Moreover, uniqueness might also indicate that a particular

knowledge element is of limited importance or utility to a firm’s

innovative activities (Yayavaram and Ahuja, 2008). In such cases,

deep collaboration between an organization and its partners on this
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specific knowledge might lead to outputs that are not well-received

by the market, thereby negatively impacting innovation

performance. This leads to hypothesis H2a, H2b, H3a, and H3b.

H2a. Knowledge diversity mediates the relationship between an

organization’s degree centrality and its innovation performance.

H2b. Knowledge diversity mediates the relationship between an

o r g a n i z a t i o n ’ s r e l a t i o n a l emb e d d e d n e s s a n d i t s

innovation performance.

H3a. Knowledge uniqueness positively moderates the positive

relationship between degree centrality and organizational

innovation performance.

H3b. Knowledge uniqueness moderates the positive

relationship between relational embeddedness and organizational

innovation performance.

2.3.3 The patent citation network and innovation
performance

An organization’s knowledge diversity is fundamental to its

capacity for innovative breakthroughs. By integrating knowledge

from varied technological fields, organizations can produce pivotal

inventions that bridge disparate technological domains. Such

patents naturally occupy structural holes within the patent

citation network. For an organization with a homogeneous

knowledge base, its patent portfolio that spans structural holes

can act as a knowledge broker, providing access to non-redundant

information and opportunities. This influx of external information

effectively stimulates the firm’s internal expertise, enabling it

overcome path dependency and enhance innovation performance.

However, a countervailing effect emerges when an organization

already possesses a highly diversified internal knowledge base. In

this context, occupying structural holes can suppress, rather than

promote, innovation performance. First, managing internal

knowledge diversity demands significant cognitive resources for

integration. When a patent portfolio also spans numerous structural

holes, the organization is forced to process simultaneous

information flows from many disconnected external domains.

This can lead to information overload, a state where the

organization cannot deeply engage any single knowledge area,
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ultimately undermining innovation efficiency (Long et al., 2013).

Second, while structural holes present numerous opportunities,

they may induce an organization to pursue too many new

directions at once, resulting in strategic defocus (Zhao et al.,

2025). Spreading limited R&D resources across multiple projects

makes organizations impossible for any single one to receive

enough investment for success. Consequently, the organization

fails to translate its knowledge diversity into focused innovative

output. Therefore, we hypothesize H4.

H4. The structural hole characteristics of the PCN negatively

moderate the positive relationship between an organization’s

knowledge diversity and its innovation performance.

The framework of the research is outlined in Figure 2.
3 Analysis of the evolutionary and
structural characteristics of multilayer
networks

3.1 Data sources

The patent data for this study are sourced from the Incopat

database. Our initial sample is constructed by identifying patents

corresponding to the 15 marine-related industries defined in the

National Standard of Industrial Classification for Ocean Industries

and their Related Activities, issued by China’s ministry of natural

resources. Specifically, we retrieved patents whose titles contained

keywords related to these industries and set the temporal span of

our data from 2000 to 2024. The year 2000 is selected as the starting

point due to the limited number of relevant patents in prior years.

From the initial pool, we first exclude patents with individual

applicants and then identify patents with two or more co-

applicants as collaborative patents. The screening process yields

12,992 patents for the construction of the CIN and the KN.

Furthermore, we begin with the set of cooperative patents and

then retrieve both its backward citations and its forward citations to

construct the PCN, which consists of 43,725 patents.
FIGURE 2

Research framework.
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3.2 Evolution of the multilayer network

3.2.1 Wave of collaborative innovation
To analyze the development of collaborative innovation in

China’s marine industry, we divided time span into three phases:

the initial period (2000-2007), the growth period (2008-2015), and

the expansion period (2016-2024). This division is based on the

number of collaborative patents and innovative entities.

As shown in Figure 3, the initial period is characterized by low

levels of collaborative activity. Both the number of collaborative

patents and unique innovators showed only minor fluctuations,

indicating a nascent stage of collaborative innovation.

The growth period began in 2008, driven by significant national

policy shifts. In 2008, China’s state council issued the Outline of the

National Ocean Development Plan. This landmark document was

the first master plan for the marine sector and explicitly called for

strengthening independent innovation. The 12th Five-Year Plan for

Marine Science And Technology Development is released in 2011,

dramatically activating innovation. By 2015, the number of

collaborative patents and innovative organizations had surged to

21.19 and 22.58 times their 2008 levels, respectively. The expansion

period starts after 2016, driven by China’s strategic goal of maritime

power. This national strategy emphasized a shift toward an

innovation-led development of marine science and technology.

Consequently, both collaborative patents and the organizations

experiences a significant growth. By the end of 2023, China had

established a robust infrastructure for marine science and

technology, comprising 2 national laboratories in the marine field,
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16 national key laboratories, 86 provincial key laboratories, and 6

specialized marine universities, significantly promoting the

technological advancement of the China’s marine industry.

3.2.2 Analysis of topological structure of
multilayer networks

To track the characteristics and evolution of the CIN, the KN,

and the PCN of China’s marine industry from 2000 to 2024, we

visualize the multilayer networks using Gephi (Figure 4) and

employ Python 3.13 to calculate the metrics of the multilayer

network of 3 periods (Table 1 (a) (b) (c)).

The number of nodes in the CIN increases from 50 to 2844,

indicating a substantial rise in organizations participating in

collaborative innovation within China’s marine industry.

Concurrently, the number of edges grows from 36 to 4406. The

network density decreased from 0.029 to 0.001, suggesting that as

the network rapidly expands, the connections between nodes

become sparser. On the other hand, the average centrality of the

CIN rises from 2.76 to 16.60. This increase suggests that

organizations are establishing more partnerships, which in turn

widens the channels for information and resource circulation. The

average clustering coefficient decreased from 0.066 to 0.003, while

the number of cohesive subgroups increased from 20 to 423,

indicating a weakening of aggregation. The CIN evolves from

small-scale clustering to cross-group connections, characterized

by a reduction in closed-loop structures and an increase in

openness. During the expansion period (2016-2024), the largest

cohesive subgroup grew to encompass 1,787 nodes, accounting for
FIGURE 3

The number of collaborative patents and organizations in 2000-2024.
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62.83 percentage of the total nodes. This highlights the formation of

a dominant organizational group that functions as the primary hub

for information and resources.

In the initial period (2000-2007), the PCN of China’s marine

industry comprises only 25 patents and 17 citation relationships.

The network contains 8 independent cohesive subgroups with a

loose and fragmented structure, suggesting that in the early stages

the technological directions of China’s marine industry were

isolated. The average clustering coefficient is 0, signifying the

absence of triangular closed-loop structures (e.g., A cited B, B

cited C, and C cited A). Consequently, the flow of technology is

unidirectional. Such a structure indicates a lack of cross-validation

and technology integration, thereby preventing the formation of a

mainstream technology path. From 2008 to 2015, the number of

nodes and edges increases by nearly 200 times. A key change is the

emergence of a largest cohesive subgroup with 385 nodes. This

development signals the beginning of technology aggregation,

where patent citations start to form local intersections. At the

same time, the technological fields continue to diverge, with the

number of clustering groups rising to 683. During the expansion

period (2016-2024), the PCN of China’s marine industry develops a

complex structure, consisting of a central core surrounded by

specialized subfields. The largest cohesive subgroup expands to

12,110 nodes, accounting for 29.84 percentage of the entire

network. This scale suggests that most innovations in the marine

industry revolve around this core. Moreover, the diameter of this

subgroup increases to 71, indicating that the internal structure of

the mainstream technology system is becoming more complex.

From 2000 to 2007, each node of the KN of China’s marine

industry connects to an average of 2.7 other nodes. The network

contains 17 cohesive subgroups, however, the largest knowledge

cluster comprises only 8 elements, suggesting that a comprehensive

knowledge framework has not formed at this stage. During the

growth period, the number of knowledge elements expand rapidly.

Moreover, the largest cohesive subgroup grows to 537 nodes,

accounting for nearly half (48.6%) of the entire network. This

signifies the formation of a core knowledge system. In the

expansion phase, the average centrality increases to 22.66.
Frontiers in Marine Science 09
Knowledge recombination becomes increasingly frequent, as more

knowledge elements are connected within a single patent. The

largest cohesive subgroup expands to 5,414 nodes, encompassing

91.31% of the elements in the knowledge network, indicating that

the knowledge system of China’s marine industry becomes highly

integrated. Notably, despite an tenfold increase in the size of the

largest cohesive subgroup, its diameter (23) remains almost
TABLE 1 Topological structure of the multilayer network in 2000-2024.
.

(a) Knowledge network

No. of nodes
2000-2007 2008-2015 2016-2024

60 1,104 5,929

No. of edges 76 2,455 32,450

Density 0.043 0.004 0.002

Avg. centrality 2.733 7.411 22.665

Avg. clustering coefficient 0.352 0.011 0.004

No. of cohesive groups 17 183 196

Size of max cohesive subgroup 8 537 5,414

Diameter of max cohesive subgroup 3 21 23

(b) Collaborative innovation network

No. of nodes
2000-2007 2008-2015 2016-2024

50 557 2,844

No. of edges 36 596 4,406

Density 0.029 0.004 0.001

Avg. centrality 2.760 13.433 16.601

Avg. clustering coefficient 0.066 0.009 0.003

No. of cohesive groups 20 152 423

Size of max cohesive subgroup 6 166 1,787

Diameter of max cohesive subgroup 7 60 159

(Continued)
fro
FIGURE 4

Evolution of the multilayer network in 2000-2024.
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unchanged from the previous stage (21), demonstrating a typical

small-world characteristic. This phenomenon can be attributed to

certain highly centralized knowledge elements acting as network

hubs. By connecting a wide range of diverse knowledge, these hubs

enhance the efficiency of knowledge recombination and

technological innovation.
3.3 Evolution of the CIN

3.3.1 Analysis of key communities of the CIN
We investigated the evolution of key collaborative communities

by applying the Louvain algorithm to identify the 10 most active

communities in each period. The resulting network visualization is

presented in Figure 5. In this figure, nodes are colored to indicate

their membership in these top communities: purple nodes belong to

one of the top 10 communities, while yellow nodes do not. Node

size is scaled by degree centrality, and link thickness is weighted to

represent the strength of collaboration between organizations.

During the initial phase (2000-2007), the collaborative network

was sparse, dominated by small, elite alliances. A major community,

focused on oil and gas exploitation, was comprised of the industry
Frontiers in Marine Science 10
leader, China national offshore oil corporation (CNOOC), the top-

tier university, Shanghai Jiao Tong university, and the national

research institute, Chinese academy of sciences (CAS). This was

complemented by smaller, regional communities addressing local

environmental or scientific issues. Other communities were smaller

in scale and consisted of regional alliances, concentrating on local

maritime issues. The growth phase (2008-2015) was characterized

by industry-led consolidation. The network’s center of gravity

shifted to a vertically integrated community orchestrated by

CNOOC, which encompassed the entire oil and gas value chain:

from upstream exploration and design (research institutes),

through midstream equipment manufacturing, to downstream

engineering services (e.g., CNOOC’s service subsidiaries).

Concurrently, a second major community led by the state grid

corporation of China (SGCC) took shape. This faction, comprising

SGCC and its provincial subsidiaries in partnership with top

electrical engineering universities like Tsinghua university and

North China Electric Power university, concentrated on the

critical challenge of offshore energy transmission and distribution.

From 2016 to 2024, the collaboration network evolved into a dual-

core landscape where two super-communities coexist and

interpenetrate. The first is a marine renewable energy innovation

consortium centered on SGCC and China Huaneng group. The

second is expanded offshore oil, gas, and marine engineering

innovative community, which continues to be led by CNOOC.

Critically, we observe significant cross-community collaboration

and knowledge integration. Top-tier universities, such as Shanghai

Jiao Tong university and Harbin Engineering university, have

become crucial bridging nodes connecting these two ecosystems,

facilitating knowledge spillovers and synergistic innovation across

different domains. This signals that innovation in China’s marine

industry has entered a new stage of highly networked and

systematic cooperation.

3.3.2 Analysis of collaborative relationships of the
CIN

To further investigate the dynamics of different collaborative

relationships, this section examines the evolution of collaboration
TABLE 1 Continued

(c) Patent citation network

No. of nodes
2000-2007 2008-2015 2016-2024

25 4,684 40,579

No. of edges 17 4,550 44,517

Density 0.057 0.000 0.000

Avg. centrality 1.440 2.076 2.310

Avg. clustering coefficient – 0.008 0.007

No. of cohesive groups 8 683 3,575

Size of max cohesive subgroup 7 385 12,110

Diameter of max cohesive subgroup 4 30 71
FIGURE 5

Evolution of collaborative innovation network in 2000-2024.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1692004
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2025.1692004
types across three periods (Figure 6). In the initial phase (2000-

2007), the dominant collaboration modes were industry-research

institute (I-R) and industry-university (I-U), indicating a reliance

on external knowledge sourcing by firms with limited internal R&D

capabilities. The growth stage (2008-2015) witnessed a structural

transformation. industry-led collaborations (I) surged to become

the dominant category (from 4 to 1,305, 76,05%), driven by the need for

supply chain integration in large-scale marine engineering and energy

projects. During this period, I-U (from 7 to 204) and I-R (from 11 to

123) partnerships also became regularized and scaled up, signifying the

systematic embedding of academia and research institutions into the

industrial ecosystem. During the expansion period (2016-2024), while

industry-led innovation continued its growth (to 7,542), a notable surge

in university-research (U-R) Institute collaborations (from 24 to 860)

occurred. This new trend suggests a proactive shift by academic and

research institutions towards forming strategic alliances to tackle

fundamental, frontier technologies underpinning the transformation

of China’s marine industry. Moreover, the concurrent rise of multi-

stakeholder partnerships (e.g., industry-university-research institute)

further signals the deepening of trust and integrative capacity within

the entire innovation system.
3.4 Evolution of the KN

In this section, we identified the 25 most frequent knowledge

elements and present their degree centrality across three periods

(Figure 7). By interpreting the descriptions of these IPC codes, we

map out the evolutionary path of core technologies in China’s

marine industry.

The initial period (2000-2007) was dominated by foundational

technologies essential for survival and basic development. The

knowledge network was highly centralized around two core
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themes: seawater desalination (C02F103/08, 0.102) and the

construction of basic offshore platforms (E02B17/00, 0.051),

reflecting a primary focus on securing freshwater resources and

establishing a physical presence at sea.

The growth period (2008-2015) marked a significant

diversification, driven by the rise of marine energy. The focus

shifted towards more complex engineering, such as multi-purpose

floating platforms for oil and gas (B63B35/44, 0.024), and the

construction of foundations for offshore wind turbines (E02D27/

42, 0.013) and Submerged foundations (E02D27/52, 0.013).

Critically, technologies related to power transmission and grid

connection (H02J3/38, 0.003 and H02J3/36, 0.002) began to

emerge, signaling a move towards systemic marine energy

development. While foundational technologies like seawater

desalination (C02F103/08, 0.063) remained important, the

network structure of KN became multipolar, with energy

exploitation serving as the new primary engine of innovation.

The expansion period (2016-2024) is characterized by a

profound shift towards digitalization and intelligentization. The

network’s core is dominated by technologies related to design

optimization, simulation, condition monitoring, and intelligent

diagnostics. The centrality of technologies related to design

optimization, verification or simulation (G06F30/20, 0.028),

monitoring or testing of wind motors (F03D17/00, 0.035), force

analysis or force optimization (G06F119/14, 0.021), and forecasting

or optimization for management purposes (G06Q10/04, 0.018)

surged from zero to prominent levels, indicating that the

industry’s focus has shifted towards improving design efficiency,

ensuring operational safety, and reducing maintenance costs.

Furthermore, the technological frontier has expanded to new

application areas, such as deep-sea aquaculture and marine

ranching (A01K61/60, 0.0202), indicating a more diversified and

sophisticated innovation landscape.
FIGURE 6

Structure of collaborative relationships of organizations.
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3.5 Evolution of the PCN

Figure 8 visualizes the global patent citation network of China’s

marine industry. To improve readability in this scale-free network,

only patents with an in-degree greater than 2 are displayed. Node

color indicates the application year on a blue-to-purple gradient,

while edge color matches the cited patent. The network is

characterized by a multi-centric, uneven structure with several

technological clusters. The left side of network is composed of

foundational technologies from the 2000–2010 period (blue nodes),

which serve as the primary knowledge base for subsequent

innovations. A small subset of these can be identified as

foundational pioneers whose work seeded major technological

trajectories. The network’s right side is populated by recent

innovations (2020-2024) that demonstrate a dual evolutionary

logic: exploitative innovations that build upon and refine the
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established patents, and exploratory innovations that form new

clusters in emerging technological fields. This dynamic strongly

confirms a process of path dependency, where the technological

paradigm consolidated during the 2010–2015 period became deeply

entrenched, shaping the direction of nearly all future R&D. The rare

citations, pointing from recent (purple) to early (blue) patents, are

also significant. They potentially indicate the reuse of overlooked

early technologies and represent a promising avenue for

future research.

To identify key bridging technologies, we analyzed patents

based on their structural hole scores (see Table 2 for the top 10).

The firs t ca tegory (CN102337460A, CN102888560A,

CN101928498A, and CN101967316A), advanced materials,

demonstrates how foundational technologies bridge diverse

application domains. By offering solutions to the common

problems of marine corrosion and stress, innovations in steel and
FIGURE 8

Evolution of patent citation network in 2000-2024.
FIGURE 7

Degree centrality of top 25 knowledge elements in 2000-2024.
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coatings connect multiple downstream manufacturing communities

(shipbuilding, energy, etc.), thereby facilitating knowledge spillovers

across previously isolated sectors. The second category

(CN103979729A, CN104843927A, CN101172719A, and

CN111171340A) is related to environmental technologies,

highlighting how shared external pressures drive technological

convergence. Water treatment and zero discharge systems address a

sustainability challenge mandated by regulations. These technologies

act as bridges by providing a common solution platform, indicating a

paradigm shift towards an eco-friendly industrial model. The final

category (CN102250595A and CN110122386A) shows

interdisciplinary synthesis, serving as critical links in the science-to-

industry innovation chain. Collectively, our structural hole analysis

suggests that the most crucial bridging innovations are platform

technologies that successfully integrate disparate fields of knowledge.
4 Empirical tests and results analysis
of the impact of multilayer network
on innovation performance

In this section, we investigate the mechanisms of how an

organization’s embeddedness in multilayer network influences its

innovation performance, this study employs regression analysis.

Following previous studies (Zhang et al., 2019; Fu et al., 2023), we
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construct the multilayer network using a three-year time window

and therefore generate 8 multilayer networks snapshots, spanning

from 2000-2002, 2003-2005, 2006-2008,……, 2021–2023. Each

time window is denoted as Y to Y + 2. Then we calculate the

values of the network metrics corresponding to the 8 periods.

Acknowledging the time lag between innovative cooperation and

patenting, we match network indicators from the Y to Y + 2 period

with organization innovation performance data lagged by one year,

that is from the Y + 1 to Y + 3 period. For instance, independent and

control variables measured in the 2000–2002 time window are

matched with dependent variables from the subsequent 2001–2003

period. After excluding samples with missing values, the final

dataset comprises 5,044 observations.

We employed Stata 17 and adopted a negative binomial

regression model with individual and year fixed effects to examine

the impact of multilayer network embeddedness on organizational

innovation performance for two main reasons. First, the dependent

variable, measured by organizational co-applied patents is non-

negative count data exhibiting significant overdispersion, as its

standard deviation is more than double the mean. Second, it is

necessary to control for individual and year fixed effects to account

for differences across organizations and time periods that could

otherwise affect the accuracy of the empirical results.
4.1 Variable description and model
construction

The dependent variable, organizational innovation

performance (OIP), is the count of an organization’s jointly filed

cooperative patents. From the CIN, we derive several independent

variables. Degree centrality (DC) captures the breadth of

engagement (number of partners). Tie strength (TS) measures the

depth of collaboration, calculated as the average cooperation

frequency with partners over a three-year window. Clustering

coefficient (CC) measures the interconnectedness of an

organization’s partners. Knowledge attributes were also measured.

Knowledge diversity (KD) is the number of knowledge elements

(IPC codes) in an organization’s portfolio. Knowledge uniqueness

(KU) is calculated as the opposite number of sum of organizations

tied to a knowledge element owned by a given organization (

(Brennecke and Rank, 2017)). Last, we measure patent structural

holes (PSH) using effective size metric. We first calculated effective

size for each patent in the PCN and then aggregated this to the

organizational level by averaging the scores of all patents an

organization owns. Effective size reflects access to non-redundant

information. Following previous studies (Zhang et al., 2019), we

choose the average path length (PL), network structural hole (SH),

and network density (Density) of the CIN as control variables. The

specific calculation of indicators is shown in Table 3.

To test hypotheses H1a, H1b, and H1c, we construct Equations

1–3, which are formulated as follows:

OIPi,Y+1(2,3) = exp(b0 + b1DCi,Y +obkControlsi,Y + ei,Y ) (1)
TABLE 2 Top 10 patents by structural hole score in 2000-2024.

Patent
code

Effective
size

Description

CN101967316A 174.00
Nontoxic antifouling paint for oceanographic
ship and facilities and method for preparing
paint

CN104843927A 78.65
Desulfurization waste water zero discharging
process and system

CN103979729A 73.46
Desulfurization waste water recycling and
zero discharge system and method

CN102337460A 68.94
Ultrahigh-strength structural steel board for
ocean engineering and production method
thereof

CN102250595A 59.97
Drilling fluid used for active mud shale
drilling

CN111171340A 55.00
PVA hydrogel-based photo-thermal
evaporation material and preparation and
application thereof

CN110122386A 51.00
Method suitable for culturing Penaeus
vannamei in high-salinity seawater

CN102888560A 48.00
Large-thickness quenched and tempered
high-strength steel plate for ocean
engineering and production method thereof

CN101928498A 47.00
Fluorosilicone-modified acrylic resin
hydrophobic anti-corrosion paint

CN101172719A 43.95
Dirty blocking inhibitor and application in
water treatment thereof
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OIPi,Y+1(2,3) = exp(b0 + b1TSi,Y +obkControlsi,Y + ei,Y ) (2)

OIPi,Y+1(2,3) = exp(b0 + b1CCi,Y + b2CC _ sqi,Y

+obkControlsi,Y + ei,Y ) (3)

We use the causal steps approach to test whether organizational

knowledge diversity mediates two relationships: (1) the impact of

degree centrality on organization innovation performance, and (2)

the impact of tie strength on organization innovation performance.

As the mediating variable, organizational knowledge diversity, is

non-negative count data, we utilize a negative binomial regression

model when testing the path from the independent variables to

knowledge diversity. Equations 4–7 are specified as follows:

KDi,Y+1(2,3) = exp(b0 + b1DCi,Y +obkControlsi,Y + ei,Y ) (4)

OIPi,Y+1(2,3) = exp(b0 + b1DCi,Y + b2KDi,Y +obkControlsi,Y

+ ei,Y ) (5)

KDi,Y+1(2,3) = exp(b0 + b1TSi,Y +obkControlsi,Y + ei,Y ) (6)

OIPi,Y+1(2,3) = exp(b0 + b1TSi,Y + b2KDi,Y +obkControlsi,Y

+ ei,Y ) (7)

To test the moderating effects of knowledge uniqueness and

structural holes of patent citation network on organization

innovation performance, we add the moderating variables and

their corresponding interaction terms to Equations 1, 2. This

process resulted in Equations 8–10, which are formulated as follows:

OIPi,Y+1(2,3) = exp(b0 + b1DCi,Y + b2KUi,Y + b3DCi,Y � KUi,Y

+o
k

bkControlsi,Y + ei,Y )​ (8)
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OIPi,Y+1(2,3) = exp   (b0 + b1TSi,Y + b2KUi,Y + b3TSi,Y � KUi,Y

+o
k

bkControlsi,Y + ei,Y ) (9)

OIPi,Y+1(2,3) = exp(b0 + b1KDi,Y + b2PSHi,Y + b3KDi,Y

� PSHi,Y +o
k

bkControlsi,Y + ei,Y ) (10)
4.2 Empirical results and analysis

4.2.1 Descriptive statistics and correlation
Table 4 reports the descriptive statistics and correlation analysis

for the main variables. According to the results, the coefficients

between the independent variables are all less than 0.6. We further

examine multicollinearity using the variance inflation factor (VIF).

All VIF scores ranged between 1.05 and 2.88 (mean = 1.81), falling

below the critical value of 10. Thus, multicollinearity does not pose

a threat to the regression results.
4.2.2 Regression results
The fixed-effects negative binomial regression model is

employed to test the main effects. The results are shown in

(Figures 9a, b). The coefficients for both degree centrality and tie

strength are significantly positive, thus supporting H1a and H1b.

Consistent with previous research (Zhang et al., 2019; Fu et al.,

2023), organizations of China’s marine industry can significantly

enhance its innovation performance by broadening its range of

cooperative partners and deepening its existing collaborative ties.

This provides strong evidence for a dual-pronged collaboration

strategy for marine industry organizations that simultaneously

explore for new knowledge through a wide network while exploit
TABLE 3 Variable description.

Variable type Variable Abbr. Variable formula Description

Independent variable DC DCi =on
i=1xij , i ≠ j

n represents the total number of nodes in the network. If node i is connected to node j,
the degree centrality is 1, otherwise, 0.

Variable description TS TSi = (on
i=1Pi)=n

n is the total of number of collaborative partners, and Pi is the number of cooperation
relationship of node i with the other entities.

Variable type CC CCi =
2E(i)

k(i)� (k(i) − 1)

E(i) is the actual number of edges that exist between the partners of organization i. k(i) is
the number of partners of organization i. k(i)×(k(i)-1) is the maximum possible number
of edges that could exist between the partners of organization i.

Mediating variable KD KDi =okxik
i represents an organization and k represents a knowledge element. If organization i
possesses knowledge element k, xik is 1, otherwise, 0.

Moderating variable KU KUi = −okoixki
n

k is the index for a specific knowledge element possessed by organization i. xki represents
the number of organizations connected to knowledge element k. n is the total count of
knowledge elements held by organization i.

Variable Abbr. PSH
PSHi =

oloj(1 −okpjk � plk)

n

j is all direct citation of patent l. k is a mutual citation of both l and j. pjk is the
proportion of j’s ties that are to k. Plk is the proportion of l’s ties that are to k. n denotes
the number of patents owned by an organization i.
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existing knowledge through trusted partnerships. As a focal point of

national strategy, the marine industry innovation landscape is

shaped by resource allocation. Organizations at the center of the

network are often the most direct recipients of major national R&D

projects, research funding, and policy dividends. Furthermore, these

central organizations command higher industry prestige, enabling

them to attract top-tier talents, thereby creating talent hubs that

further drive innovation. Additionally, many sectors of China’s

marine industry, such as marine engineering, are typically complex

product systems, which demand the transfer of substantial tacit

knowledge and deep, synergistic collaboration. Such intricate

coordination necessitates the high-bandwidth communication and

unconditional trust that strong ties provide. Concurrently, marine

technology R&D is characterized by long cycles and high risks.

Strong ties offer a risk-sharing mechanism, emboldening partners to

collectively tackle frontier technologies that are truly disruptive but

also have a high probability of failure.

As (Figure 9b) shows, the coefficient for clustering coefficient is

significantly positive, while the coefficient for the squared term is

significantly negative (To mitigate potential multicollinearity of

Equation 3, the clustering coefficient and its squared term were

mean-centered prior to the analysis). This confirms an inverted U-

shaped relationship between the clustering coefficient and

innovation performance, validating H1c. This finding implies that

a moderate level of network closure fosters an environment of trust

and efficient communication, which is vital for solving complex

engineering problems. However, excessive closure carries the risk of

insularity. Redundant information circulates internally while the

organization becomes resistant to novel external knowledge, leading

to technological lock-in and rigidity.

The results for the mediation analysis are presented in Table 5

and Table 6. First, to test Hypothesis H2a, we examine the

mediating effect of knowledge diversity between degree

centrality and organization innovation performance. The results

confirm the presence of a significant indirect effect. As shown in

Equation 4, degree centrality has a significant positive effect on

knowledge diversity (the a path). Equation 5 shows that when

both degree centrality and knowledge diversity are included,

knowledge diversity has a significant positive effect on

innovation performance (the b path). The coefficient for degree

centrality remains significant but is reduced compared to its effect

in Equation 1, indicating partial mediation. The results support

H2a. Similarly, Equation 6 shows that tie strength is a significant

predictor of knowledge diversity (the a path). In Equation 7,

knowledge diversity significantly predicts organization innovation

performance (the b path), and the coefficient for tie strength, while

still significant, is smaller than in Equation 2. This pattern

confirms another partial mediation, therefore supporting H2b.

Knowledge diversity acts as a mediator in the positive relationship

between both degree centrality and tie strength and innovation

performance. Broad ties expose the organization to a wide array of

information and novel ideas from various partners, thus enriching

its external knowledge pool. Simultaneously, strong ties foster

trust and sustained interaction, which are crucial for the transfer

of complex and tacit knowledge that is deeply embedded in
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routines and experiences. Once acquired, these diverse knowledge

elements are not merely passively accumulated. Instead, they

activate critical internal organizational processes of knowledge

recombination. This micro-level transformation involves

individuals and teams within the organization actively

synthesizing disparate pieces of information, merging different

perspectives, and combining newly acquired external knowledge

with existing internal expertise. This internal integration step is
Frontiers in Marine Science 16
vital for transforming external network benefits into

organizational capabilities. Ultimately, the successful integration

and recombination serve as the foundation for fostering new

collaborative innovation outputs, such as co-patents.

The results for the moderating effects of knowledge uniqueness

are presented in Figure 10. The coefficient for the interaction term of

Equation 8 is significantly positive, suggesting that extensive

cooperative ties enable an organization to more effectively translate
TABLE 5 Results of mediation analysis for degree centrality.

Variables
Y+1 Y+2 Y+3

(4) (5) (4) (5) (4) (5)

DC 0.167*** 0.028*** 0.169*** 0.029*** 0.141*** 0.025***

(0) (0) (0) (0) (0) (0)

KD 0.008*** 0.008*** 0.007***

(0) (0) (0)

PL -0.014 0.003 -0.012 0.019 -0.034* 0.005

(0.401) (0.837) (0.471) (0.436) (0.087) (0.843)

SH 0.786*** 0.127 0.779** 2.048** 0.920** 1.237

(0.010) (0.789) (0.019) (0.016) (0.022) (0.143)

Density -7.226*** -2.141 -14.060** 60.800 -20.070*** 54.280

(0) (0.404) (0.0127) (0.149) (0.002) (0.179)

cons 1.143*** -0.002 1.126** -3.024** 1.513** -2.184

(0.008) (0.998) (0.029) (0.038) (0.017) (0.133)
p value in parentheses, ∗∗∗p< 0.01, ∗∗p< 0.05, ∗p< 0.1.
FIGURE 9

Results of regression analysis.
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its unique knowledge into innovation. H3a is supported. Knowledge

uniqueness acts as an amplifier for the benefits of network centrality.

A central organization that also controls a unique technology gains an

irreplaceable status, compelling others to initiate collaboration and

thereby magnifying the strategic value of its central network position.

Supporting H3b, the coefficient for the interaction term in Equation 9

is significantly negative. This finding suggests that when an

organization engages in exclusive collaboration with a limited

number of partners, it may become trapped in an environment that

fosters cognitive lock-in. Furthermore, the inherent demand for deep

knowledge sharing and sustained reciprocity characteristic of strong
Frontiers in Marine Science 17
ties can create a substantial risk of technology leakage. Such overly

deep collaboration potentially exposes an organization’s unique

technologies, thereby weakening its long-term competitive advantage.

The moderating effects of the structural holes of the patent citation

network on the relationship between knowledge diversity and

organization innovation performance are shown in Figure 11. The

coefficient for the interaction term is significantly negative in Equation

10, supporting for H4. An explanation is that when an organization

possesses a diverse knowledge base and at the same time its technologies

occupy structural holes, it faces a significant challenge in integrating

disparate information flows from different technological domains.
FIGURE 10

The moderating effects of knowledge uniqueness.
TABLE 6 Results of mediation analysis for tie strength.

Variables
Y+1 Y+2 Y+3

(6) (7) (6) (7) (6) (7)

TS
0.097*** 0.030*** 0.100*** 0.029*** 0.083*** 0.019***

(0) (0) (0) (0) (0) (0)

KD
0.008*** 0.008*** 0.018***

(0) (0) (0)

PL
-0.059*** 0.023 -0.046*** -0.024* -0.070*** -0.417***

(0.001) (0.472) (0.007) (0.082) (0.001) (0)

SH
2.672*** 2.074* 2.908*** 0.312 3.210*** -10.009***

(0) (0.073) (0) (0.578) (0) (0)

Density
-5.125*** 69.250 5.231 -5.563 -2.337 -139.400***

(0.001) (0.241) (0.610) (0.558) (0.826) (0)

_cons
-0.845* -2.885 -1.387** 0.213 -1.188 20.570***

(0.084) (0.149) (0.029) (0.801) (0.116) (0)
p value in parentheses, ∗∗∗p< 0.01,∗∗ p< 0.05,∗p< 0.1.
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4.2.3 Robustness tests
To overcome the limitations of the causal steps approach (low

statistical power and the prerequisite of a significant total effect), we

test the mediation effects using a 5,000-resample bootstrap

procedure (Hayes, 2017). As shown in Table 7, the indirect effects

of knowledge diversity were significant for both pathways: the one

linking degree centrality to innovation performance, and the one

linking tie strength to innovation performance. In both cases, the

95% confidence intervals do not contain zero, thus the indirect

effect is statistically significant. The results confirm the presence of

mediation effects, providing further support for H2a and H2b.

To ensure the robustness of our findings, we replace the

negative binomial regression model used in the main analysis

with a Poisson regression model. Although the assumption that

the mean equals the variance of the Poisson model is not met in

practice, it serves as a valid tool for robustness checks (Xu et al.,

2021; Guo et al., 2024). The results were highly consistent with our

primary analysis.

Further, to address concerns regarding the temporal scope of

network construction, we conducted a comprehensive robustness

test by altering the time window for our multilayer network

snapshots. Our primary analysis utilized a three-year time

window; however, a longer period may better capture the

evolving nature of innovation and the dynamic interplay between

network layers. Therefore, we reconstructed all multilayer networks
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using an extended five-year rolling window (2000-2004, 2001-2005,

…, 2019-2023). This modification not only mitigates potential

sensitivities arising from the arbitrary selection of a shorter time

frame but also allows for a more comprehensive observation of

long-term innovation dynamics and the cumulative effects of layer

interactions. The results of re-estimated all hypotheses indicate that

all key findings, including the significance and direction of the

coefficients for degree centrality, tie strength, knowledge diversity,

and their moderating effects, remain consistent with those obtained

from the original three-year time window. This high degree of

consistency across different time window specifications strongly

affirms the reliability of our conclusions regarding the impact of

multilayer network structures on innovation performance in

China’s marine industry.
5 Conclusion and policy implications

Innovation is of paramount importance for China’s strategic

goal of maritime power. This study constructs a multilayer network

by comprising an organizational cooperative innovation network, a

knowledge network, and a patent citation network to depict the

evolution and topological structures of China’s marine industry. By

investigating the impact of network embeddedness on organization

innovation performance, we find that innovation is a dynamic
TABLE 7 Bootstrap results for the indirect effects.

Independent variable Mediating path Observed coefficient Bootstrap S.E.
95% Bias-corrected CI

LLCI ULCI

OIPY + 1 1.172 0.175 0.829 1.516

OIPY + 2 DC 1.230 0.167 0.903 1.558

OIPY + 3 1.353 0.251 0.862 1.844

OIPY + 1 0.597 0.096 0.410 0.785

OIPY + 2 TS 0.665 0.094 0.481 0.848

OIPY + 3 0.753 0.150 0.459 1.048
FIGURE 11

Results of moderating effects of patent structural holes.
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process shaped by complex interactions across social, knowledge,

and technological network layers. An organization’s innovative

advantage stems not merely from its network connections, but

from its abil ity to adjust i ts embeddedness in these

multidimensional networks based on its knowledge and

technological positioning. The main findings and practical

insights for both organizational managers and policymakers of

this research are as follows:
Fron
1. Both broadening network breadth and deepening

cooperative connections are crucial for enhancing

organizational innovation performance. Successful

innovators do not view these as a trade-off but as

complementary strategies, with the synergy between

broad connectivity and deep relationships serving as a

fundamental innovation engine. However, a delicate

balance is essential. while moderate cohesion is beneficial,

excessive levels can lead to stagnation.

2. Marine industry firms should proactively manage their

external cooperation networks, continuously broadening

knowledge access channels while strategically deepening

core partnerships. Crucially, collaborative innovation

strategies must be tailored to an organization’s knowledge

assets. Those possessing unique knowledge should

prioritize protection and value capture, acting as

technology suppliers to a broad set of partners through

weaker ties. Conversely, organizations lacking unique

knowledge should prioritize knowledge co-creation

through deep, trust-based collaborations.

3. A superior network position primarily functions as a portal

for accessing diverse external knowledge, with its

contribution to innovation realized only through effective

internal knowledge conversion. Knowledge uniqueness

presents a dual effect: it amplifies innovation benefits

from broad collaborations by transforming connections

into technological power amplifiers, yet it diminishes

advantages from deep collaborations due to increased

technology leakage risks. Furthermore, for organizations

already occupying a structural hole, the benefits of

knowledge diversity for innovation are reduced. Complex

innovation, particularly in sectors like the marine industry,

relies on integrating heterogeneous knowledge rather than

merely exchanging information.

4. Consequently, government policy must adopt a diagnostic

approach to foster collaborative innovation. Acknowledging

that a one-size-fits-all strategy is inefficient, government

agencies should help organizations assess their knowledge

assets and network positions to offer customized support. For

instance, organizations with unique core technologies could

receive specialized subsidies or tax incentives for broadening

access to global partners. Conversely, policies should facilitate

deep alliances for SMEs lacking unique knowledge through

structured matchmaking and co-funding joint R&D projects

to absorb critical knowledge effectively.
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5. To enhance the innovation ecosystem, government policy

should actively encourage cross-boundary collaborations.

This involves establishing specialized funds (like 500 million

annually) to support major cross-regional and interdisciplinary

projects. Eligibility would prioritize diverse consortia from

different regions and disciplines, with outcome evaluation

including publications, patents, and quantifiable economic

impacts within 3–5 years. Furthermore, it is crucial to deepen

benefit-sharing and risk-sharing mechanisms for industry-

university-research collaborations by issuing clear, legally

binding national guidelines on ownership, profit distribution,

and risk liability in long-term partnerships, thereby fostering

stable and trust-based relationships
In conclusion, this study makes threefold contributions to the

existing literature on innovation dynamics, particularly within the

context of China’s marine industry.
1. We introduce and construct a novel multilayer network

framework that uniquely integrates knowledge networks,

inter-organizational collaboration networks, and patent

citation networks. This approach fundamentally shifts

from treating these aspects as isolated channels, which is

common in extant literature (Zhang et al., 2019; Fu et al.,

2023; Guo et al., 2023), to analyzing their concurrent

evolution. By capturing the intertwined knowledge

elements and technological linkages that flow between

organizations, our framework provides a holistic and

unprecedented depiction of innovation information flows,

thereby advancing the understanding of complex

collaborative innovation ties.

2. Theoretically, we significantly refine the understanding of

network embeddedness by unveiling the complex and

contingent effects of knowledge uniqueness and structural

hole positions on innovation performance.

3. Practically, this research delivers distinctive and granular

recommendations for managers and policymakers in the

marine industry. These recommendations are specifically

designed to enhance collaborative innovation and drive

high-quality development, moving beyond generic advice

by providing customized strategies based on organizations’

specific knowledge resources and network configurations.
This study has several limitations as well. First, our data is

sourced from patents, which does not capture non-patented forms

of innovation. Future research could incorporate market-oriented

indicators and complementary data, such as surveys, interviews,

technical standards, and software copyrights, for a more

comprehensive validation. Second, this study does not explore the

micro-level motivations and processes behind the formation of

cooperative ties. Therefore, future work could expand the research

perspective by combining quantitative network analysis with

qualitative case studies. An in-depth analysis of the mechanisms

behind key innovation achievements will provide more
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comprehensive insights for the development of China ’s

marine economy.
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