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Fostering a dynamic innovation ecosystem is a key strategic challenge for China’s
marine industry, yet organizations and policymakers lack a clear understanding of
what types of collaborative structures truly drive performance. This study moves
beyond traditional single-layer analyses to construct a comprehensive multilayer
network of inter-organizational collaboration, knowledge flows, and
technological evolution, using patent data from 2000 to 2024. The research
analyzes the structural characteristics and evolution trend of the multilayer
network to reveal the longitudinal dynamics of the China’'s marine industry’s
collaborative innovation landscape. A negative binomial regression is used to
examine the effect of network characteristics on organizational innovation
performance. Findings reveal that while both broad and deep partnerships
significantly boost innovation, this effect is mediated by knowledge diversity.
The positive impact is contingent on the organizational knowledge assets.
Organizations with unique knowledge gain more from broad, shallow ties,
compared to deep and intensive collaborations. For highly knowledgeable
organizations, occupying too many strategic network positions can lead to
information overload and diminishing innovation performance. This research
provides an evidence-based framework for managers to optimize their R&D
collaboration strategies and for policymakers to design more effective innovation
policies, ensuring a more robust and dynamic marine innovation ecosystem.
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1 Introduction

As global economic development confronts challenges of land
resource scarcity and the contraction of traditional growth avenues,
the ocean, with its vast resource potential and commercial value, is
emerging as a key engine for economic growth (Wang and Sheng,
2021; Xie and Li, 2024). China has elevated marine economy
development to strategic importance. In 2024, China’s gross
ocean product (GOP) reached 10.54 trillion yuan, accounting for
5.9 percentage of the national gross domestic product, highlighting
the significant vitality of the marine economy as a new growth
driver. China’s 2025 government work report designates deep-sea
technology as a key strategic emerging industry. Furthermore, the
sixth meeting of the central financial and economic affairs
commission in 2025 explicitly called for “enhancing the
independent innovation capability of marine science and
technology, and expanding marine industries,” establishing
technological innovation as the core pathway to become a
maritime power.

Extensive research shows that innovation significantly drives
the upgrading of industrial structures and economic growth within
marine economy and industry (Zeyringer et al., 2018; Yu and Zou,
2020; Ren and Ji, 2021; Shao et al,, 2021). Compared to purely
material capital investment, intellectual support centered on science
and technology is increasingly imperative to the future growth of
the marine industry (Shao et al., 2021). As the marine industry is a
comprehensive system involving 15 sub-sectors and intricate value
chains, its innovation activities are inherently cross-organizational
and interdisciplinary (Ding and Zhang, 2022). Consequently, it is
difficult for any single entity to undertake complex innovation tasks
independently. Building collaborative innovation networks to
integrate technological resources across organizational
boundaries, coordinate on key challenges, and accelerate the
commercialization of research outcomes has become an essential
routine for cultivating innovation capabilities in China’s
marine industry.

Given the inherent complexities of China’s marine industry,
academics are actively exploring its innovation landscape. Research
on innovation of marine industry can be classified into three
categories. The first stream of research focuses on the
measurement and evaluation of marine industry’s innovation
efficiency (Li et al, 2021; Sheng et al., 2021; Zhang and Wang,
2021; Fu et al., 2022; Li et al., 2025). For example, (Li et al., 2021)
employed stochastic frontier analysis to quantify the efficiency of
marine innovation in China, subsequently dissecting its regional
disparities and influencing factors. On the other hand, a growing
stream of research examines marine industry innovation through
the lens of an open and complex system. Xu et al. (2024) quantified
the synergistic relationship among China’s marine economy,
innovation, and ecology. Wan et al. (2023) proposed a tripartite
collaborative innovation system by analyzing the coordination of
relationships, resource sharing, and cooperative activities. Building
on the network perspective, Ma and Hou (2024) further detailed the
innovation process by establishing a technological innovation chain
that links enterprises with academic and financial institutions. The

Frontiers in Marine Science

10.3389/fmars.2025.1692004

third category of studies focus on the innovation dynamics within
China’s marine industry and the role of its networks within specific
sectors of the marine industry (Zhang et al., 2019; Fu et al., 2023) or
particular regions (Wang et al., 2016). Utilizing social network
analysis, Zhang et al. (2019) established an industry-university-
research network grounded in collaborative patents within the
marine biomedical industry, demonstrating that greater
collaborative breadth and depth enhance innovation performance.
Additionally, Fu et al. (2023) revealed that increased local clustering
within collaborative networks positively impacts the innovative
output of the marine biomedical industry.

While existing research has progressively deepened in
granularity, expanding its scope from macro-level measurement
of innovation efficiency to the exploration of evolutionary
mechanisms of marine industrial innovation from a complex
systems perspective, and further delving into the structural
characteristics of innovation networks at the organizational level,
the extant literature still presents several limitations and
research gaps.

First, existing studies often fail to comprehensively capture the
interdisciplinary and holistic nature of China’s marine industry.
Their investigative scope is frequently confined to specific sub-
sectors, such as the marine biomedical (Zhang et al., 2019; Fu et al,,
2023) or new materials industries (Cui et al., 2025), or limited to
provincial regions (Wang et al., 2016). Given the current trend of
increasing cross-industry and inter-regional cooperation, an
analysis of the innovation development pathways and
evolutionary patterns of China’s marine industry from a
systematic perspective is urgently required.

Second, the influence of knowledge resources on innovation
collaboration within the marine industry has yet to be thoroughly
examined. Breakthroughs in strategic emerging marine industries,
which are poised to become pillar industries for China’s future
marine economy, are more critically dependent on unique and
inimitable knowledge resources compared to traditional marine
industries. Investigating the role of knowledge resources in
collaborative innovation can provide deeper insights into the
intrinsic mechanisms driving organizational innovation.

Third, despite the high growth potential, strategic emerging
marine industries face critical bottlenecks in core technological
areas, leaving them vulnerable to external constraints (Yin et al.,
2024). The trajectory of technological evolution in these industries
is pivotal in determining their competitive standing within global
industrial and value chains. Therefore, exploring the technological
evolution paths of China’s marine industry can identify essential
technologies needed for current industrial development, clarify the
core directions for innovation cooperation, and avert the
misallocation of innovation resources.

Furthermore, the mechanisms that how topological features of
the innovative networks impact the innovation performance of
organizations in China’s marine industry remain critical yet
underexplored questions. Current studies concerning China’s
marine industry have predominantly focused on the role of
organizational collaboration networks in enhancing innovation

performance, primarily by facilitating inter-organizational
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information exchange (Guo et al., 2023; Fu et al., 2023; Zhang et al.,
2019). However, such a singular-level network analysis overlooks
crucial dimensions of knowledge flow and technological lineage that
are fundamentally intertwined in both innovation processes and
organizational collaboration, and which collectively determine the
success of technological innovation.

Indeed, knowledge resources are the indispensable
underpinning of innovation. Innovation can be conceptualized as
a process of combining or recombining existing knowledge
elements (Fleming, 2001). Collective innovation, therefore, is
embedded not only within social networks but also within
knowledge networks. An organization’s knowledge base can be
viewed as a network formed by the coupling relationships among
its knowledge elements. These relationships signify the historical
associations between knowledge elements during past innovation
processes, thereby guiding potential future recombination of
knowledge (Yayavaram and Ahuja, 2008; Wang et al.,, 2014; Yan
and Guan, 2018; Sui et al., 2025).Patents serve as externalized
manifestations of innovative outcomes. Patent citations, in
particular, represent the spillover effects of an organization’s
explicit knowledge. While citations are used to measure the
inflow of knowledge from other technologies (Kim et al., 2014),
the frequency with which a patent is cited is indicative of its
inventive quality and technological importance (Yayavaram and
Ahuja, 2008). Moreover, patent citations can reflect the inheritance
and evolutionary path of technical knowledge (Wang et al., 2025b).
It is crucial to note that organizations can acquire knowledge from
others, and subsequently enhance their own innovation
performance, through patent citation networks even when there is
no direct collaborative link (no connection in social cooperation
networks). This indirect knowledge transfer pathway is often
obscured in analyses focusing solely on cooperation networks,
leading to an incomplete explanation of the mechanisms
influencing innovation performance. Therefore, understanding
innovation as a complete process, from the recombination of an
organization’s knowledge elements to cross-boundary collaboration
between organizations, and finally to the output and recognition of
innovation outcomes, is essential. This comprehensive view directly
corresponds to the multilayered network approach adopted in this
study, which integrates knowledge networks, cooperation networks,
and patent citation networks.

Based on collaborative patent data of China’s marine industry
from 2000 to 2024, this research integrates three distinct yet
interrelated dimensions: knowledge combination, organizational
collaboration, and technological flow, into a unified analytical
framework and analyzes the dynamic evolution of the multilayer
network of China’s marine industry. Leveraging social network
analysis, we apply structural indicators to trace the network’s
trajectory and visualize its shifting configurations across various
stages, thereby revealing its complex collaborative dynamics over
time. Subsequently, we aggregate the characteristics from the
knowledge element layer and the patent citation layer to their
corresponding organizations in the collaborative innovation layer.
Building upon this structural analysis, the paper uses negative

Frontiers in Marine Science

10.3389/fmars.2025.1692004

binomial regression to examine how an organization’s
embeddedness of the multilayer network impacts its innovation
performance of China’s marine industry. Particularly, this research
investigates the following research questions.

1. What collaboration patterns are effective for improving
innovation performance in the marine industry?

2. How can organizations strategically leverage their
knowledge assets within the innovation network?

3. What are the hidden risks of certain network positions that
organizations should be aware of?

The remainder of this paper is structured as follows. Section 2
details the research design. Section 3 analyzes the evolutionary and
structural characteristics of the multilayer networks. Section 4
presents and discusses the empirical results. Finally, Section 5
concludes the paper with a summary of findings, implications,
and directions for future research.

2 Research design
2.1 Patent analysis

In existing studies, two primary methodologies are commonly
employed to measure innovation dynamics. One prominent
method is patent analysis. The novelty and originality required
for patent applications serve as a direct and objective manifestation
of innovative outcomes (Ardito et al., 2018). A patent typically
comprises technical embodiments, technology classification codes,
citation information, and ownership details (Park et al., 2018). This
detailed information about the invention and its background
(Griliches, 1998) enables clear identification of technological
fields, making patents widely used to analyze technological
development trends and track dynamics within specific industries
(Fontana et al., 2009; Ardito et al., 2018; Hu et al., 2024; Lee, 2024;
Wang et al, 2025b). Scholars frequently utilize the information
contained in patents to construct innovation networks, thereby
analyzing their structures and the role of collaboration on
innovation performance (Barbosa et al., 2024). The other primary
measurement involves market-oriented indicators, such as the
proportion of revenue from new products. This approach is
valuable because not all inventions meet patentability
requirements, and some companies opt for trade secret protection
over patenting. Market-oriented indicators can cover a broader
range of innovation outcomes and more directly reflect the
economic value of new products.

Crucially, for the Chinese marine industry context, there is a
significant lack of publicly available, granular data on organization-
level market-oriented indicators such as new product revenue.
Given this data constraint, and consistent with numerous
previous studies (Guo et al, 2023; Fu et al., 2023; Zhang et al,
2019) that face similar challenges, our study adopts patent
information to construct the multilayer networks.
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2.2 Construction of multilayer networks

Social network analysis (SNA) is a powerful quantitative
method employed to measure the relationships (ties) among
different nodes, thereby enabling the interpretation of network
structure and the attributes of constituent actors (Hanneman and
Riddle, 2005). Given that many forms of data can naturally be
formulated as network tasks, network analysis has garnered
escalating research attention across various disciplines (Zhang
and Lauw, 2021; Li et al., 2024; Chen et al., 2020a; Chen et al,,
2020b). Innovative collaboration forms the fundamental nexus of
sharing and connection among actors, which gradually evolves into
a collaboration network (Jia et al., 2025). As innovative
collaboration becomes increasingly complex and involves growing
diversity of information, the analytical framework has necessarily
been extended from single-layer networks to multilayer networks.
Multilayer networks are particularly adept at accommodating both
intra-layer and inter-layer information (Zhao et al,, 2024). The
concept of interdependent multilayer networks was first formally
introduced by Buldyrev et al. (2010). Such networks are
characterized by homogeneous nodes within a single layer and
heterogeneous nodes across different layers, with connections
between nodes across different layers established based on various
relationships, such as membership, dependency, or shared
attributes. Several studies illustrate the utility of multilayer
network approaches in innovation research. Brennecke and Rank
(2017) constructed a multilayer network model integrating
knowledge elements and inventors to investigate how a firm’s
knowledge network influences work-related interactions.
Similarly, Wang et al. (2025b) proposed a multilayer network
framework based on patent technical information, citation data,
and collaboration among patentees to identify and evaluate
potential R&D partners for unmanned marine vessels. This
framework specifically acknowledges that analyzing knowledge
distribution and technology diffusion provides a more
comprehensive understanding of the information dynamics
within collaborative networks and the factors influencing
innovative performance.

We construct the multilayer network composed of three
interconnected layers to analyze the innovation of China’s marine
industry, providing an intuitive understanding of the organization’s
innovative collaborations, the distribution of knowledge, as well as
technology flow. The knowledge network (KN) captures the
combinative relationships of knowledge elements. We define the
international patent classification (IPC) codes within a patent as its
knowledge elements. A tie is established between any two
knowledge elements if they co-occur in the same patent, thus
mapping the architecture of the knowledge base. The
collaborative innovation network (CIN) represents the social
structure of innovation. In this layer, nodes are the applicant
organizations, and a tie is formed between any two organizations
co-authoring a patent. The patent citation network (PCN)
illustrates the flow of technology. This network consists of the
collaborative patents from the CIN, as well as all patents that cite
them (forward citations) and are cited by them (backward
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citations). The links in the PCN represent these citation
relationships. To ensure that the constructed patent citation
network accurately reflects existing citation relationships and
knowledge flow pathways within a specific time window, we
employ a precise temporal criterion. Specifically, the application
date of the citing patent is selected as the core timestamp. This
means that time windows are delineated based on the application
dates of citing patents, and the appearance of a citation link within
the PCN is determined by this point in time. This methodology
allows for a more accurate capture of the dynamic processes of
technological innovation and knowledge diffusion. It effectively
mitigates potential network structural distortions that could arise
from the inherent lag in the publication of citation data. The data of
the CIN and the KN is presented into weighted, undirected
adjacency matrix, and the data of PCN is shown as a weighted,
directed edge list.

In our analytical framework, the CIN functions as the central
layer. To examine how an organization’s embeddedness impacts its
innovation performance, we integrate information from the KN and
the PCN to the CIN through specific interlayer connections.
Specifically, a link is established between an organization in the
CIN and a knowledge element in the KN, signifying that the
organization possesses that particular knowledge element.
Similarly, a link between an organization in the CIN and a patent
in the PCN indicates the organization’s authorship of that
invention. The structure allows us to attribute knowledge and
technological dynamics characteristics to each organization,
providing a comprehensive view of its position in the innovation
system. The detailed construction process is illustrated in Figure 1.

2.3 Theoretical analysis and research
hypotheses

2.3.1 The collaborative innovation network and
innovation performance

Embeddedness theory (Granovetter, 1985) posits that
competitive advantage is derived from social capital gained
through both the quality of relationships (relational
embeddedness) and strategic network position (structural
embeddedness). Metrics such as degree centrality and clustering
coefficient measure structural embeddedness, while tie strength
indicates relational embeddedness. Social networks play a pivotal
role in promoting innovation performance by providing extensive
access to heterogeneous information, facilitating resource sharing,
enabling joint problem-solving, and fostering the development of
reciprocity (Ahuja, 2000; Afuah, 2013; Wang et al., 2014, 2019;
Barbosa et al., 2024).

Degree centrality, defined as the number of direct ties an
organization maintains, serves as a primary indicator of the
breadth of its collaborative engagement (Hanneman and Riddle,
2005). It characterizes a focal ego’s information advantage relative
to other nodes and reflects the organization’s prominence within
the network (Kilduff and Tsai, 2003). Consequently, a high degree
of centrality is able to exert a positive effect on innovation by
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FIGURE 1
Construction process of the multilayer network.

supplying a rich array of resources and information. Furthermore, a
broad collaborative network, evidenced by high degree centrality,
allows an organization to more effectively search for and acquire
complementary information. This enhanced access to diverse
knowledge critically supports the exploration of new technological
trajectories (Belso-Martinez and Diez-Vial, 2018).

Tie strength refers to the frequency of collaboration between an
actor and its partners, thus characterizing the depth of cooperative
engagement. Tie strength refers to the frequency, emotional
intensity, and reciprocal services characterizing the relationship
between an actor and its partners, thereby encapsulating the depth
of cooperative engagement (Granovetter, 1973). This concept
typically classifies into strong and weak ties. Strong ties are
characterized by frequent interaction, mutual affection, and long-
term cooperative relations. In contrast, weak ties involve infrequent
contact, weaker emotional bonds, and shorter-term cooperative

Frontiers in Marine Science

relations (Granovetter, 1973). Existing studies indicate that while
weak ties are able to provide access to novel and non-redundant
information, collaborations lacking mutual trust and assurance can
struggle to create significant value and foster innovation (Edwards
et al,, 2011; Liu et al., 2017). Repeated collaborations can mitigate
opportunistic risks and therefore lay the foundation for stable, long-
term knowledge-sharing channels. Within these trusting
relationships, organizations are more willing to share complex
and even tacit knowledge and therefore shorten cognitive distance
and enhance their absorptive capacity (Nooteboom et al., 2007;
Wang et al., 2020). Furthermore, sustained interaction fosters a
shared vision and common norms, reduced communication costs,
and ultimately, a higher success rate for joint innovation (Valkokari
et al., 2017).

The clustering coefficient quantifies the degree to which an
actor’s neighbors are connected to each other, thereby reflecting the
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local cohesion or cliquishness within a network (Wasserman and
Faust, 1994). This network metric has the potential to influence
innovation performance through two opposing mechanisms. On
the one hand, a low clustering coefficient indicates a loosely
connected network where the absence of dense local ties can lead
to high coordination costs and an increased risk of innovation
failure. Conversely, in a network with a relatively high level of
clustering, each member is more likely to receive communications
regarding an innovation from multiple network members. Such
information flow increases awareness, concentrates peer influence,
and accelerates the learning rate among participants (Muller and
Peres, 2019). On the other hand, an excessively high clustering
coefficient can also exert a negative impact on innovation. Over-
embeddedness in a highly cohesive and homogeneous network can
lead to the formation of an insular clique (Burt, 2004). Such limited
access to heterogeneous information results in a narrow knowledge
base, which significantly impedes the generation of novel ideas.
Furthermore, dense networks can reinforce organizational inertia
and path dependency. The resulting information redundancy can
trap organizations in existing technological trajectories and
cognitive patterns, ultimately hindering their long-term
innovation capacity (Ahuja, 2000; Shi et al., 2021). For these
reasons, we hypothesize Hla, H1b, and Hlc.

Hla. Degree centrality positively associated with organizational
innovation performance in China’s marine industry.

H1b. Relational embeddedness positively associated with
organizational innovation performance in China’s marine industry.

Hlc. The clustering coefficient exhibits an inverted U-shaped
relationship with organizational innovation performance in China’s
marine industry.

2.3.2 The knowledge network and innovation
performance

The knowledge-based view (KBV) posits that competitive
advantage originates from the effective integration and application
of a firm’s knowledge assets (Grant, 1996). Within this framework,
knowledge diversity, defined as the variety and heterogeneity of
knowledge elements possessed by an organization, emerges as a
critical dimension of its knowledge stock. This diversity is often
rooted in the organization’s embeddedness within knowledge
networks (Fleming et al., 2007). The Schumpeterian perspective
on innovation emphasizes that new ideas are generated through the
recombination of existing knowledge. Organizations with a diverse
knowledge base are better positioned to explore a wider spectrum of
novel combinations, thereby discovering breakthrough innovations
at a lower trial-and-error cost (Zhao et al., 2023). However, it is
noteworthy that Walrave et al. (2024) emphasized that knowledge
diversity proves beneficial for recombinatory purposes only if these
varied pieces of knowledge are actively exchanged among groups.
Inter-organizational collaborative networks provide essential”
social infrastructure” for knowledge diffusion (Paruchuri and
Awate, 2017). An organization’s position within such a
collaborative network is a primary determinant for acquiring new
information and knowledge elements (Tojeiro-Rivero and Moreno,
2019). By engaging in extensive or intensive interactions with other
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organizations, a firm can complement its own knowledge with
elements from its partners” knowledge reservoirs (Crescenzi et al.,
2016). This process helps overcome cognitive lock-in and enables
the generation of alternative approaches to problem-solving (Boh
etal, 2014; Wang et al., 2025a). In view of this, knowledge diversity
likely serves as a key mediating mechanism through which an
organization’s embeddedness in collaborative innovation networks
promotes innovation performance. Specifically, a high degree
centrality offers broad access to diverse external knowledge, while
strong tie strength facilitates the transfer of tacit knowledge through
trusting relationships with specific partners.

Knowledge uniqueness refers to expertise held by only a limited
number of entities within a specific domain, representing
knowledge unfamiliar to the broader population (Brennecke and
Rank, 2017). It is often conceptualized by the number of
organizations a specific knowledge element linking with. The
impact of knowledge uniqueness on innovation outcomes has
long been a subject of scholarly debate. From the perspective of
breadth of collaboration, a unique knowledge element may reside at
the periphery of an organization’s internal knowledge structure,
making it easily overlooked or underexploited (Yayavaram and
Ahuja, 2008). Engaging in broad collaborations with external
partners enable the organization to search for complementary
knowledge bases. By effectively recombining these external
insights with its internal unique experiences or knowledge, the
organization can unlock and realize their inherent value.
Furthermore, organizations possessing unique knowledge
elements may signify their advanced capabilities in specific fields
(Zhao et al.,, 2021), or that such elements represent highly complex
technical knowledge (Tian et al., 2024). When dealing with such
unique knowledge, the absence of established evaluation
frameworks and foundational understanding necessitates a
significant investment of time and cognitive resources for an
organization to digest unique knowledge elements solely on its
own (Tian et al., 2024). Additionally, the R&D process involving
novel knowledge is inherently complicated and highly vulnerable to
technological changes and market risks (Cheah et al., 2021).
Therefore, to gain a competitive advantage, organizations are
motivated to proactively collaborate with those possessing unique
knowledge elements to share and leverage such
specialized resources.

Regarding the depth of collaboration, the trust and high-
bandwidth communication fostered by deep, recurring
relationships are beneficial to convey tacit information
(Tortoriello et al., 2012; Uzzi, 2018) and unlock the latent value
of unique knowledge assets (Brennecke and Rank, 2017). However,
organizations might be hesitant about engaging in deep, exclusive
collaborations with any single partner when unique knowledge is
involved. This reluctance stems from intellectual property
protection concerns, as deep ties could risk the replication of
their unique competitive advantages (Zhao et al., 2021).
Moreover, uniqueness might also indicate that a particular
knowledge element is of limited importance or utility to a firm’s
innovative activities (Yayavaram and Ahuja, 2008). In such cases,
deep collaboration between an organization and its partners on this

frontiersin.org


https://doi.org/10.3389/fmars.2025.1692004
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zhou et al.

specific knowledge might lead to outputs that are not well-received
by the market, thereby negatively impacting innovation
performance. This leads to hypothesis H2a, H2b, H3a, and H3b.

H2a. Knowledge diversity mediates the relationship between an
organization’s degree centrality and its innovation performance.

H2b. Knowledge diversity mediates the relationship between an
organization’s relational embeddedness and its
innovation performance.

H3a. Knowledge uniqueness positively moderates the positive
relationship between degree centrality and organizational
innovation performance.

H3b. Knowledge uniqueness moderates the positive
relationship between relational embeddedness and organizational
innovation performance.

2.3.3 The patent citation network and innovation
performance

An organization’s knowledge diversity is fundamental to its
capacity for innovative breakthroughs. By integrating knowledge
from varied technological fields, organizations can produce pivotal
inventions that bridge disparate technological domains. Such
patents naturally occupy structural holes within the patent
citation network. For an organization with a homogeneous
knowledge base, its patent portfolio that spans structural holes
can act as a knowledge broker, providing access to non-redundant
information and opportunities. This influx of external information
effectively stimulates the firm’s internal expertise, enabling it
overcome path dependency and enhance innovation performance.

However, a countervailing effect emerges when an organization
already possesses a highly diversified internal knowledge base. In
this context, occupying structural holes can suppress, rather than
promote, innovation performance. First, managing internal
knowledge diversity demands significant cognitive resources for
integration. When a patent portfolio also spans numerous structural
holes, the organization is forced to process simultaneous
information flows from many disconnected external domains.
This can lead to information overload, a state where the
organization cannot deeply engage any single knowledge area,

Multilayer
network

10.3389/fmars.2025.1692004

ultimately undermining innovation efficiency (Long et al., 2013).
Second, while structural holes present numerous opportunities,
they may induce an organization to pursue too many new
directions at once, resulting in strategic defocus (Zhao et al,
2025). Spreading limited R&D resources across multiple projects
makes organizations impossible for any single one to receive
enough investment for success. Consequently, the organization
fails to translate its knowledge diversity into focused innovative
output. Therefore, we hypothesize H4.

H4. The structural hole characteristics of the PCN negatively
moderate the positive relationship between an organization’s
knowledge diversity and its innovation performance.

The framework of the research is outlined in Figure 2.

3 Analysis of the evolutionary and
structural characteristics of multilayer
networks

3.1 Data sources

The patent data for this study are sourced from the Incopat
database. Our initial sample is constructed by identifying patents
corresponding to the 15 marine-related industries defined in the
National Standard of Industrial Classification for Ocean Industries
and their Related Activities, issued by China’s ministry of natural
resources. Specifically, we retrieved patents whose titles contained
keywords related to these industries and set the temporal span of
our data from 2000 to 2024. The year 2000 is selected as the starting
point due to the limited number of relevant patents in prior years.
From the initial pool, we first exclude patents with individual
applicants and then identify patents with two or more co-
applicants as collaborative patents. The screening process yields
12,992 patents for the construction of the CIN and the KN.
Furthermore, we begin with the set of cooperative patents and
then retrieve both its backward citations and its forward citations to
construct the PCN, which consists of 43,725 patents.
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FIGURE 2
Research framework.
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3.2 Evolution of the multilayer network

3.2.1 Wave of collaborative innovation

To analyze the development of collaborative innovation in
China’s marine industry, we divided time span into three phases:
the initial period (2000-2007), the growth period (2008-2015), and
the expansion period (2016-2024). This division is based on the
number of collaborative patents and innovative entities.

As shown in Figure 3, the initial period is characterized by low
levels of collaborative activity. Both the number of collaborative
patents and unique innovators showed only minor fluctuations,
indicating a nascent stage of collaborative innovation.

The growth period began in 2008, driven by significant national
policy shifts. In 2008, China’s state council issued the Outline of the
National Ocean Development Plan. This landmark document was
the first master plan for the marine sector and explicitly called for
strengthening independent innovation. The 12th Five-Year Plan for
Marine Science And Technology Development is released in 2011,
dramatically activating innovation. By 2015, the number of
collaborative patents and innovative organizations had surged to
21.19 and 22.58 times their 2008 levels, respectively. The expansion
period starts after 2016, driven by China’s strategic goal of maritime
power. This national strategy emphasized a shift toward an
innovation-led development of marine science and technology.
Consequently, both collaborative patents and the organizations
experiences a significant growth. By the end of 2023, China had
established a robust infrastructure for marine science and
technology, comprising 2 national laboratories in the marine field,

10.3389/fmars.2025.1692004

16 national key laboratories, 86 provincial key laboratories, and 6
specialized marine universities, significantly promoting the
technological advancement of the China’s marine industry.

3.2.2 Analysis of topological structure of
multilayer networks

To track the characteristics and evolution of the CIN, the KN,
and the PCN of China’s marine industry from 2000 to 2024, we
visualize the multilayer networks using Gephi (Figure 4) and
employ Python 3.13 to calculate the metrics of the multilayer
network of 3 periods (Table 1 (a) (b) (c)).

The number of nodes in the CIN increases from 50 to 2844,
indicating a substantial rise in organizations participating in
collaborative innovation within China’s marine industry.
Concurrently, the number of edges grows from 36 to 4406. The
network density decreased from 0.029 to 0.001, suggesting that as
the network rapidly expands, the connections between nodes
become sparser. On the other hand, the average centrality of the
CIN rises from 2.76 to 16.60. This increase suggests that
organizations are establishing more partnerships, which in turn
widens the channels for information and resource circulation. The
average clustering coefficient decreased from 0.066 to 0.003, while
the number of cohesive subgroups increased from 20 to 423,
indicating a weakening of aggregation. The CIN evolves from
small-scale clustering to cross-group connections, characterized
by a reduction in closed-loop structures and an increase in
openness. During the expansion period (2016-2024), the largest
cohesive subgroup grew to encompass 1,787 nodes, accounting for
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FIGURE 3
The number of collaborative patents and organizations in 2000-2024.
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FIGURE 4
Evolution of the multilayer network in 2000-2024.

62.83 percentage of the total nodes. This highlights the formation of
a dominant organizational group that functions as the primary hub
for information and resources.

In the initial period (2000-2007), the PCN of China’s marine
industry comprises only 25 patents and 17 citation relationships.
The network contains 8 independent cohesive subgroups with a
loose and fragmented structure, suggesting that in the early stages
the technological directions of China’s marine industry were
isolated. The average clustering coefficient is 0, signifying the
absence of triangular closed-loop structures (e.g., A cited B, B
cited C, and C cited A). Consequently, the flow of technology is
unidirectional. Such a structure indicates a lack of cross-validation
and technology integration, thereby preventing the formation of a
mainstream technology path. From 2008 to 2015, the number of
nodes and edges increases by nearly 200 times. A key change is the
emergence of a largest cohesive subgroup with 385 nodes. This
development signals the beginning of technology aggregation,
where patent citations start to form local intersections. At the
same time, the technological fields continue to diverge, with the
number of clustering groups rising to 683. During the expansion
period (2016-2024), the PCN of China’s marine industry develops a
complex structure, consisting of a central core surrounded by
specialized subfields. The largest cohesive subgroup expands to
12,110 nodes, accounting for 29.84 percentage of the entire
network. This scale suggests that most innovations in the marine
industry revolve around this core. Moreover, the diameter of this
subgroup increases to 71, indicating that the internal structure of
the mainstream technology system is becoming more complex.

From 2000 to 2007, each node of the KN of China’s marine
industry connects to an average of 2.7 other nodes. The network
contains 17 cohesive subgroups, however, the largest knowledge
cluster comprises only 8 elements, suggesting that a comprehensive
knowledge framework has not formed at this stage. During the
growth period, the number of knowledge elements expand rapidly.
Moreover, the largest cohesive subgroup grows to 537 nodes,
accounting for nearly half (48.6%) of the entire network. This
signifies the formation of a core knowledge system. In the
expansion phase, the average centrality increases to 22.66.

Frontiers in Marine Science

Knowledge recombination becomes increasingly frequent, as more
knowledge elements are connected within a single patent. The
largest cohesive subgroup expands to 5,414 nodes, encompassing
91.31% of the elements in the knowledge network, indicating that
the knowledge system of China’s marine industry becomes highly
integrated. Notably, despite an tenfold increase in the size of the
largest cohesive subgroup, its diameter (23) remains almost

TABLE 1 Topological structure of the multilayer network in 2000-2024.

(a) Knowledge network

2000-2007 | 2008-2015 | 2016-2024
No. of nodes

60 1,104 5,929
No. of edges 76 2,455 32,450
Density 0.043 0.004 0.002
Avg. centrality 2.733 7.411 22.665
Avg. clustering coefficient 0.352 0.011 0.004
No. of cohesive groups 17 183 196
Size of max cohesive subgroup 8 537 5414
Diameter of max cohesive subgroup 3 21 23

(b) Collaborative innovation network

2000-2007 | 2008-2015 = 2016-2024
No. of nodes

50 557 2,844
No. of edges 36 596 4,406
Density 0.029 0.004 0.001
Avg. centrality 2.760 13.433 16.601
Avg. clustering coefficient 0.066 0.009 0.003
No. of cohesive groups 20 152 423
Size of max cohesive subgroup 6 166 1,787
Diameter of max cohesive subgroup 7 60 159

(Continued)
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TABLE 1 Continued

(c) Patent citation network

2000-2007 = 2008-2015 | 2016-2024
No. of nodes

25 4,684 40,579
No. of edges 17 4,550 44,517
Density 0.057 0.000 0.000
Avg. centrality 1.440 2.076 2.310
Avg. clustering coefficient - 0.008 0.007
No. of cohesive groups 8 683 3,575
Size of max cohesive subgroup 7 385 12,110
Diameter of max cohesive subgroup 4 30 71

unchanged from the previous stage (21), demonstrating a typical
small-world characteristic. This phenomenon can be attributed to
certain highly centralized knowledge elements acting as network
hubs. By connecting a wide range of diverse knowledge, these hubs
enhance the efficiency of knowledge recombination and
technological innovation.

3.3 Evolution of the CIN

3.3.1 Analysis of key communities of the CIN

We investigated the evolution of key collaborative communities
by applying the Louvain algorithm to identify the 10 most active
communities in each period. The resulting network visualization is
presented in Figure 5. In this figure, nodes are colored to indicate
their membership in these top communities: purple nodes belong to
one of the top 10 communities, while yellow nodes do not. Node
size is scaled by degree centrality, and link thickness is weighted to
represent the strength of collaboration between organizations.

During the initial phase (2000-2007), the collaborative network
was sparse, dominated by small, elite alliances. A major community,
focused on oil and gas exploitation, was comprised of the industry

FIGURE 5
Evolution of collaborative innovation network in 2000-2024.

10.3389/fmars.2025.1692004

leader, China national offshore oil corporation (CNOOC), the top-
tier university, Shanghai Jiao Tong university, and the national
research institute, Chinese academy of sciences (CAS). This was
complemented by smaller, regional communities addressing local
environmental or scientific issues. Other communities were smaller
in scale and consisted of regional alliances, concentrating on local
maritime issues. The growth phase (2008-2015) was characterized
by industry-led consolidation. The network’s center of gravity
shifted to a vertically integrated community orchestrated by
CNOOC, which encompassed the entire oil and gas value chain:
from upstream exploration and design (research institutes),
through midstream equipment manufacturing, to downstream
engineering services (e.g., CNOOC’s service subsidiaries).
Concurrently, a second major community led by the state grid
corporation of China (SGCC) took shape. This faction, comprising
SGCC and its provincial subsidiaries in partnership with top
electrical engineering universities like Tsinghua university and
North China Electric Power university, concentrated on the
critical challenge of offshore energy transmission and distribution.
From 2016 to 2024, the collaboration network evolved into a dual-
core landscape where two super-communities coexist and
interpenetrate. The first is a marine renewable energy innovation
consortium centered on SGCC and China Huaneng group. The
second is expanded offshore oil, gas, and marine engineering
innovative community, which continues to be led by CNOOC.
Critically, we observe significant cross-community collaboration
and knowledge integration. Top-tier universities, such as Shanghai
Jiao Tong university and Harbin Engineering university, have
become crucial bridging nodes connecting these two ecosystems,
facilitating knowledge spillovers and synergistic innovation across
different domains. This signals that innovation in China’s marine
industry has entered a new stage of highly networked and
systematic cooperation.

3.3.2 Analysis of collaborative relationships of the
CIN

To further investigate the dynamics of different collaborative
relationships, this section examines the evolution of collaboration
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types across three periods (Figure 6). In the initial phase (2000-
2007), the dominant collaboration modes were industry-research
institute (I-R) and industry-university (I-U), indicating a reliance
on external knowledge sourcing by firms with limited internal R&D
capabilities. The growth stage (2008-2015) witnessed a structural
transformation. industry-led collaborations (I) surged to become
the dominant category (from 4 to 1,305, 76,05%), driven by the need for
supply chain integration in large-scale marine engineering and energy
projects. During this period, I-U (from 7 to 204) and I-R (from 11 to
123) partnerships also became regularized and scaled up, signifying the
systematic embedding of academia and research institutions into the
industrial ecosystem. During the expansion period (2016-2024), while
industry-led innovation continued its growth (to 7,542), a notable surge
in university-research (U-R) Institute collaborations (from 24 to 860)
occurred. This new trend suggests a proactive shift by academic and
research institutions towards forming strategic alliances to tackle
fundamental, frontier technologies underpinning the transformation
of China’s marine industry. Moreover, the concurrent rise of multi-
stakeholder partnerships (e.g, industry-university-research institute)
further signals the deepening of trust and integrative capacity within

the entire innovation system.

3.4 Evolution of the KN

In this section, we identified the 25 most frequent knowledge
elements and present their degree centrality across three periods
(Figure 7). By interpreting the descriptions of these IPC codes, we
map out the evolutionary path of core technologies in China’s
marine industry.

The initial period (2000-2007) was dominated by foundational
technologies essential for survival and basic development. The
knowledge network was highly centralized around two core

10.3389/fmars.2025.1692004

themes: seawater desalination (C02F103/08, 0.102) and the
construction of basic offshore platforms (E02B17/00, 0.051),
reflecting a primary focus on securing freshwater resources and
establishing a physical presence at sea.

The growth period (2008-2015) marked a significant
diversification, driven by the rise of marine energy. The focus
shifted towards more complex engineering, such as multi-purpose
floating platforms for oil and gas (B63B35/44, 0.024), and the
construction of foundations for offshore wind turbines (E02D27/
42, 0.013) and Submerged foundations (E02D27/52, 0.013).
Critically, technologies related to power transmission and grid
connection (H02J3/38, 0.003 and H02J3/36, 0.002) began to
emerge, signaling a move towards systemic marine energy
development. While foundational technologies like seawater
desalination (C02F103/08, 0.063) remained important, the
network structure of KN became multipolar, with energy
exploitation serving as the new primary engine of innovation.

The expansion period (2016-2024) is characterized by a
profound shift towards digitalization and intelligentization. The
network’s core is dominated by technologies related to design
optimization, simulation, condition monitoring, and intelligent
diagnostics. The centrality of technologies related to design
optimization, verification or simulation (G06F30/20, 0.028),
monitoring or testing of wind motors (FO3D17/00, 0.035), force
analysis or force optimization (G06F119/14, 0.021), and forecasting
or optimization for management purposes (G06Q10/04, 0.018)
surged from zero to prominent levels, indicating that the
industry’s focus has shifted towards improving design efficiency,
ensuring operational safety, and reducing maintenance costs.
Furthermore, the technological frontier has expanded to new
application areas, such as deep-sea aquaculture and marine
ranching (A01K61/60, 0.0202), indicating a more diversified and
sophisticated innovation landscape.
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Degree centrality of top 25 knowledge elements in 2000-2024.

3.5 Evolution of the PCN

Figure 8 visualizes the global patent citation network of China’s
marine industry. To improve readability in this scale-free network,
only patents with an in-degree greater than 2 are displayed. Node
color indicates the application year on a blue-to-purple gradient,
while edge color matches the cited patent. The network is
characterized by a multi-centric, uneven structure with several
technological clusters. The left side of network is composed of
foundational technologies from the 2000-2010 period (blue nodes),
which serve as the primary knowledge base for subsequent
innovations. A small subset of these can be identified as
foundational pioneers whose work seeded major technological
trajectories. The network’s right side is populated by recent
innovations (2020-2024) that demonstrate a dual evolutionary
logic: exploitative innovations that build upon and refine the

FIGURE 8
Evolution of patent citation network in 2000-2024.
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established patents, and exploratory innovations that form new
clusters in emerging technological fields. This dynamic strongly
confirms a process of path dependency, where the technological
paradigm consolidated during the 2010-2015 period became deeply
entrenched, shaping the direction of nearly all future R&D. The rare
citations, pointing from recent (purple) to early (blue) patents, are
also significant. They potentially indicate the reuse of overlooked
early technologies and represent a promising avenue for
future research.

To identify key bridging technologies, we analyzed patents
based on their structural hole scores (see Table 2 for the top 10).
The first category (CN102337460A, CN102888560A,
CN101928498A, and CN101967316A), advanced materials,
demonstrates how foundational technologies bridge diverse
application domains. By offering solutions to the common

problems of marine corrosion and stress, innovations in steel and
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TABLE 2 Top 10 patents by structural hole score in 2000-2024.

Patent
code

Effective
size

Description

Nontoxic antifouling paint for oceanographic

CN101967316A | 174.00 ship and facilities and method for preparing
paint
CN104843927A | 78.65 Desulfurization waste water zero discharging
process and system
Desulfurizati li
CN103975729A | 73.46 esul Prlzatlon waste water recycling and
zero discharge system and method
Ultrahigh-strength structural steel board for
CN102337460A | 68.94 ocean engineering and production method
thereof
CN102250595A | 59.97 Dr'lll.mg fluid used for active mud shale
drilling
PVA hydrogel-based photo-thermal
CN111171340A | 55.00 evaporation material and preparation and
application thereof
CN110122386A | 51.00 Method sAu‘itablAe for ?ulfuring Penaeus
vannamei in high-salinity seawater
Large-thickness quenched and tempered
CN102888560A | 48.00 high-strength steel plate for ocean
engineering and production method thereof
CN101928493A | 47.00 Fluorosilicc?ne-xr{odiﬁed ?crylic- resin
hydrophobic anti-corrosion paint
Dirtv blocking inhibi lication i
CN101172719A  43.95 irty blocking inhibitor and application in

water treatment thereof

coatings connect multiple downstream manufacturing communities
(shipbuilding, energy, etc.), thereby facilitating knowledge spillovers
across previously isolated sectors. The second category
(CN103979729A, CN104843927A, CN101172719A, and
CNI111171340A) is related to environmental technologies,
highlighting how shared external pressures drive technological
convergence. Water treatment and zero discharge systems address a
sustainability challenge mandated by regulations. These technologies
act as bridges by providing a common solution platform, indicating a
paradigm shift towards an eco-friendly industrial model. The final
category (CN102250595A and CN110122386A) shows
interdisciplinary synthesis, serving as critical links in the science-to-
industry innovation chain. Collectively, our structural hole analysis
suggests that the most crucial bridging innovations are platform
technologies that successfully integrate disparate fields of knowledge.

4 Empirical tests and results analysis
of the impact of multilayer network
on innovation performance

In this section, we investigate the mechanisms of how an
organization’s embeddedness in multilayer network influences its
innovation performance, this study employs regression analysis.
Following previous studies (Zhang et al., 2019; Fu et al., 2023), we
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construct the multilayer network using a three-year time window
and therefore generate 8 multilayer networks snapshots, spanning
from 2000-2002, 2003-2005, 2006-2008,...... , 2021-2023. Each
time window is denoted as Y to Y + 2. Then we calculate the
values of the network metrics corresponding to the 8 periods.
Acknowledging the time lag between innovative cooperation and
patenting, we match network indicators from the Y to Y + 2 period
with organization innovation performance data lagged by one year,
that is from the Y + 1 to Y + 3 period. For instance, independent and
control variables measured in the 2000-2002 time window are
matched with dependent variables from the subsequent 2001-2003
period. After excluding samples with missing values, the final
dataset comprises 5,044 observations.

We employed Stata 17 and adopted a negative binomial
regression model with individual and year fixed effects to examine
the impact of multilayer network embeddedness on organizational
innovation performance for two main reasons. First, the dependent
variable, measured by organizational co-applied patents is non-
negative count data exhibiting significant overdispersion, as its
standard deviation is more than double the mean. Second, it is
necessary to control for individual and year fixed effects to account
for differences across organizations and time periods that could
otherwise affect the accuracy of the empirical results.

4.1 Variable description and model
construction

The dependent variable, organizational innovation
performance (OIP), is the count of an organization’s jointly filed
cooperative patents. From the CIN, we derive several independent
variables. Degree centrality (DC) captures the breadth of
engagement (number of partners). Tie strength (TS) measures the
depth of collaboration, calculated as the average cooperation
frequency with partners over a three-year window. Clustering
coefficient (CC) measures the interconnectedness of an
organization’s partners. Knowledge attributes were also measured.
Knowledge diversity (KD) is the number of knowledge elements
(IPC codes) in an organization’s portfolio. Knowledge uniqueness
(KU) is calculated as the opposite number of sum of organizations
tied to a knowledge element owned by a given organization (
(Brennecke and Rank, 2017)). Last, we measure patent structural
holes (PSH) using effective size metric. We first calculated effective
size for each patent in the PCN and then aggregated this to the
organizational level by averaging the scores of all patents an
organization owns. Effective size reflects access to non-redundant
information. Following previous studies (Zhang et al., 2019), we
choose the average path length (PL), network structural hole (SH),
and network density (Density) of the CIN as control variables. The
specific calculation of indicators is shown in Table 3.

To test hypotheses Hla, H1b, and Hlc, we construct Equations
1-3, which are formulated as follows:

OIP;y.1003) = exp(By + BiDCiy + > BiControls;y + &y) (1)
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TABLE 3 Variable description.

10.3389/fmars.2025.1692004

Description

n represents the total number of nodes in the network. If node i is connected to node j,
the degree centrality is 1, otherwise, 0.

n is the total of number of collaborative partners, and P; is the number of cooperation
relationship of node i with the other entities.

E(i) is the actual number of edges that exist between the partners of organization i. k(i) is
the number of partners of organization i. k(i)x(k(i)-1) is the maximum possible number
of edges that could exist between the partners of organization i.

i represents an organization and k represents a knowledge element. If organization i
possesses knowledge element k, x; is 1, otherwise, 0.

k is the index for a specific knowledge element possessed by organization i. xy; represents
the number of organizations connected to knowledge element k. # is the total count of

Variable type  Variable Abbr. Variable formula
Independent variable | DC DC; = E:’:lx,j,i #j
Variable description TS TS, = (EL]P,-) /n
Variable type cC - 2E()

b k() < (k() - 1)
Mediating variable KD KD; =3 xj
Moderating variable KU KU = — Dk
n

PSH; =
Variable Abbr. PSH

20 = Xl X pue)

n

knowledge elements held by organization i.

j is all direct citation of patent I k is a mutual citation of both [ and j. pjk is the
proportion of js ties that are to k. Py is the proportion of I's ties that are to k. n denotes
the number of patents owned by an organization i.

OIP;y11(23) = exp(By + B IS,y + >, Bk Controls;y + £y)  (2) OIP;y,103) = exp (By + BiTS;y + BoKU,y + BsTS;y x KU,y
+ > BiControls; y + & y) 9)
OIP,y.123) = exp(By + B1CC;y + B,CC _sq;y k
+ > BcControls;y + &,y) (3)
1 1 OIP;y,1(23) = exp(By + BiKD;y + B,PSH; y + B3KD; y
We use the causal steps approach to test whether organizational (10)

knowledge diversity mediates two relationships: (1) the impact of
degree centrality on organization innovation performance, and (2)
the impact of tie strength on organization innovation performance.
As the mediating variable, organizational knowledge diversity, is
non-negative count data, we utilize a negative binomial regression
model when testing the path from the independent variables to
knowledge diversity. Equations 4-7 are specified as follows:

X PSH;y + ' B.Controls;y + &y)
k

4.2 Empirical results and analysis

4.2.1 Descriptive statistics and correlation
Table 4 reports the descriptive statistics and correlation analysis

KD,y 123 = exp(By + BiDCiy + S BControls;y + &y)  (4) for the main variables. According to the results, the coefficients
between the independent variables are all less than 0.6. We further
OIP,y 1103 = exp(By + BiDCyy + BoKD,y + S\ BcControls; y examine multicollinearity using the variance inflation factor (VIF).
All VIF scores ranged between 1.05 and 2.88 (mean = 1.81), falling
+&y) (5)  below the critical value of 10. Thus, multicollinearity does not pose
a threat to the regression results.
KD, y4123) = exp(By + Bi TS,y + > BiControls;y + &y)  (6)
4.2.2 Regression results
OIP;y3) = exp(By + By TSy + BKDyy + X ByControls,y The fixed-effects negative binomial regression model is
+&y) (7) employed to test the main effects. The results are shown in

To test the moderating effects of knowledge uniqueness and
structural holes of patent citation network on organization
innovation performance, we add the moderating variables and
their corresponding interaction terms to Equations 1, 2. This
process resulted in Equations 8-10, which are formulated as follows:

OIP;y123) = exp(fBy + ﬁlDCi,Y + ﬁzKUi,Y + ﬁsDCi,Y x KUy

+ > BcControls;y + &y) (8)
k
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(Figures 9a, b). The coefficients for both degree centrality and tie
strength are significantly positive, thus supporting Hla and H1b.
Consistent with previous research (Zhang et al,, 2019; Fu et al,
2023), organizations of China’s marine industry can significantly
enhance its innovation performance by broadening its range of
cooperative partners and deepening its existing collaborative ties.
This provides strong evidence for a dual-pronged collaboration
strategy for marine industry organizations that simultaneously
explore for new knowledge through a wide network while exploit
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existing knowledge through trusted partnerships. As a focal point of
national strategy, the marine industry innovation landscape is
shaped by resource allocation. Organizations at the center of the
- network are often the most direct recipients of major national R&D
) projects, research funding, and policy dividends. Furthermore, these
% central organizations command higher industry prestige, enabling
- < them to attract top-tier talents, thereby creating talent hubs that
further drive innovation. Additionally, many sectors of China’s
3 (E\] marine industry, such as marine engineering, are typically complex
_ % § product systems, which demand the transfer of substantial tacit
' knowledge and deep, synergistic collaboration. Such intricate
I coordination necessitates the high-bandwidth communication and
f.a f.a *5 unconditional trust that strong ties provide. Concurrently, marine
-~ 3 3 2 technology R&D is characterized by long cycles and high risks.
Strong ties offer a risk-sharing mechanism, emboldening partners to
- %o 2‘: %o collectively tackle frontier technologies that are truly disruptive but

18 E 3|2 also have a high probability of failure.
As (Figure 9b) shows, the coefficient for clustering coefficient is
' I significantly positive, while the coefficient for the squared term is
t*g_ tﬁ g % % significantly negative (To mitigate potential multicollinearity of
S M N e B Equation 3, the clustering coefficient and its squared term were
L mean-centered prior to the analysis). This confirms an inverted U-
é é ’é é % }:% shaped relationship between the clustering coefficient and
-~ 2 3 s = = 2 innovation performance, validating Hlc. This finding implies that
a moderate level of network closure fosters an environment of trust
0 f io . and efficient communication, which is vital for solving complex
§ § 2 g a é S engineering problems. However, excessive closure carries the risk of
T O O insularity. Redundant information circulates internally while the
N sl Ly organization becomes resistant to novel external knowledge, leading

é § é % é ‘é % %‘ to technological lock-in and rigidity.

S Il el NN Ml A Ml The results for the mediation analysis are presented in Table 5
and Table 6. First, to test Hypothesis H2a, we examine the
e mediating effect of knowledge diversity between degree
t}j ;E fE *g fg é‘ g 3 g centrality and organization innovation performance. The results
S I A Il A i confirm the presence of a significant indirect effect. As shown in
Equation 4, degree centrality has a significant positive effect on
P knowledge diversity (the a path). Equation 5 shows that when
é E % % % % % § b é both degree centrality and knowledge diversity are included,
S A Mt M il Il Mt M il N knowledge diversity has a significant positive effect on
innovation performance (the b path). The coefficient for degree
R centrality remains significant but is reduced compared to its effect
;‘«'é E tﬁn %‘ *‘ij % :g % % 3 § in Equation 1, indicating partial mediation. The results support
" S I W I M M N M H2a. Similarly, Equation 6 shows that tie strength is a significant
é predictor of knowledge diversity (the a path). In Equation 7,
g knowledge diversity significantly predicts organization innovation
E’ é § % g R 5 § % % 8 § § performance (the b path), and the coefficient for tie strength, while
E S R N I I D A R B g still significant, is smaller than in Equation 2. This pattern
- confirms another partial mediation, therefore supporting H2b.
E < -3 - Knowledge diversity acts as a mediator in the positive relationship
_% g 7 2 § 2 3 2 § g ‘g:‘ ¢ g g between both degree centrality and tie strength and innovation
2 sy s 7 Y7 7 = performance. Broad ties expose the organization to a wide array of
g @ § information and novel ideas from various partners, thus enriching
« % el e 2 ; its external knowledge pool. Simultaneously, strong ties foster
E 'g &’" E: .;: SR R O N S A g 2 trust and sustained interaction, which are crucial for the transfer
< Bl © C ° " R CIXIXISIR B A8 of complex and tacit knowledge that is deeply embedded in

Frontiers in Marine Science 15 frontiersin.org


https://doi.org/10.3389/fmars.2025.1692004
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zhou et al.

10.3389/fmars.2025.1692004

1
! Y+1
| Pl 0.059 (0.055,0.063)  0.000
) DC : s NS 0.062 (0.059, 0.066)  0.000
+
| NS S 0.049 (0.044,0.054)  0.000
I
! Y+1
: \2% 0.041 (0.039,0.043)  0.000
(@3] TS 1 ye3 1O 0.040 (0.038, 0.042) 0.000
: e 0.034 (0.031,0.036)  0.000
1
T T T
-01 03 07
(a) Model 1-2
1
: ot 11.706 (10.401, 13.011)  0.000
@ I j‘;{. 13.189 (11.716, 14.661)  0.000
I
| 033 10.122 (8.344, 11.899)  0.000
|
® Y+1 |
-——e-—- | -14.161 (-16.741, -11.580) 0.000
CCsq | —Y;g -= !
- 43 | -18.189 (-21.822, -14.556) 0.000
I====®—==d : -13.798 (-17.958,-9.639)  0.000
T T I T
20 -10 0 10
(b) Model 3
FIGURE 9
Results of regression analysis.

routines and experiences. Once acquired, these diverse knowledge
elements are not merely passively accumulated. Instead, they
activate critical internal organizational processes of knowledge
recombination. This micro-level transformation involves
individuals and teams within the organization actively
synthesizing disparate pieces of information, merging different
perspectives, and combining newly acquired external knowledge
with existing internal expertise. This internal integration step is

TABLE 5 Results of mediation analysis for degree centrality.

vital for transforming external network benefits into
organizational capabilities. Ultimately, the successful integration
and recombination serve as the foundation for fostering new
collaborative innovation outputs, such as co-patents.

The results for the moderating effects of knowledge uniqueness
are presented in Figure 10. The coefficient for the interaction term of
Equation 8 is significantly positive, suggesting that extensive
cooperative ties enable an organization to more effectively translate

Variables
DC 0.167* 0.028** 0.169*** 0.029* 0.141°0* 0.025%**
(0) (0) () (0) (0) (0)
KD 0.008*** 0.008*** 0.007°*
(0) (0) (0)
PL -0.014 0.003 -0.012 0.019 -0.034* 0.005
(0.401) (0.837) (0.471) (0.436) (0.087) (0.843)
SH 0.786** 0.127 0.779** 2.048** 0.920** 1.237
(0.010) (0.789) (0.019) (0.016) (0.022) (0.143)
Density -7.226%** -2.141 -14.060** 60.800 -20.070*** 54.280
(0) (0.404) (0.0127) (0.149) (0.002) (0.179)
cons 1.143*4%* -0.002 1.126** -3.024** 1.513** -2.184
(0.008) (0.998) (0.029) (0.038) (0.017) (0.133)
p value in parentheses, s:#:#p< 0.01, #:#p< 0.05, #p< 0.1.
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TABLE 6 Results of mediation analysis for tie strength.

10.3389/fmars.2025.1692004

Variables
0.097*** 0.030*** 0.100*** 0.029*** 0.083*** 0.019***
TS
(0) (0) (0) (0) (0) (0)
0.008*** 0.008*** 0.0187*
KD
(0) (0) (0)
-0.059*+* 0.023 -0.046*** -0.024* -0.070%+* -0.417%¢
PL
(0.001) (0.472) (0.007) (0.082) (0.001) (0)
2.672%** 2.074* 2.908*** 0.312 3.210%** -10.009***
SH
(0) (0.073) (0) (0.578) (0) (0)
-5.125%%* 69.250 5.231 -5.563 -2.337 -139.400°*
Density
(0.001) (0.241) (0.610) (0.558) (0.826) (0)
-0.845* -2.885 -1.387** 0.213 -1.188 20.570*
_cons
(0.084) (0.149) (0.029) (0.801) (0.116) (0)

p value in parentheses, #ssp< 0.01,5% p< 0.05,%p< 0.1.

its unique knowledge into innovation. H3a is supported. Knowledge
uniqueness acts as an amplifier for the benefits of network centrality.
A central organization that also controls a unique technology gains an
irreplaceable status, compelling others to initiate collaboration and
thereby magnifying the strategic value of its central network position.
Supporting H3b, the coefficient for the interaction term in Equation 9
is significantly negative. This finding suggests that when an
organization engages in exclusive collaboration with a limited
number of partners, it may become trapped in an environment that
fosters cognitive lock-in. Furthermore, the inherent demand for deep
knowledge sharing and sustained reciprocity characteristic of strong

ties can create a substantial risk of technology leakage. Such overly
deep collaboration potentially exposes an organization’s unique
technologies, thereby weakening its long-term competitive advantage.
The moderating effects of the structural holes of the patent citation
network on the relationship between knowledge diversity and
organization innovation performance are shown in Figure 11. The
coefficient for the interaction term is significantly negative in Equation
10, supporting for H4. An explanation is that when an organization
possesses a diverse knowledge base and at the same time its technologies
occupy structural holes, it faces a significant challenge in integrating
disparate information flows from different technological domains.
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FIGURE 10
The moderating effects of knowledge uniqueness.
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Results of moderating effects of patent structural holes.

4.2.3 Robustness tests

To overcome the limitations of the causal steps approach (low
statistical power and the prerequisite of a significant total effect), we
test the mediation effects using a 5,000-resample bootstrap
procedure (Hayes, 2017). As shown in Table 7, the indirect effects
of knowledge diversity were significant for both pathways: the one
linking degree centrality to innovation performance, and the one
linking tie strength to innovation performance. In both cases, the
95% confidence intervals do not contain zero, thus the indirect
effect is statistically significant. The results confirm the presence of
mediation effects, providing further support for H2a and H2b.

To ensure the robustness of our findings, we replace the
negative binomial regression model used in the main analysis
with a Poisson regression model. Although the assumption that
the mean equals the variance of the Poisson model is not met in
practice, it serves as a valid tool for robustness checks (Xu et al.,
2021; Guo et al., 2024). The results were highly consistent with our
primary analysis.

Further, to address concerns regarding the temporal scope of
network construction, we conducted a comprehensive robustness
test by altering the time window for our multilayer network
snapshots. Our primary analysis utilized a three-year time
window; however, a longer period may better capture the
evolving nature of innovation and the dynamic interplay between
network layers. Therefore, we reconstructed all multilayer networks

TABLE 7 Bootstrap results for the indirect effects.

Independent variable = Mediating path

Observed coefficient

using an extended five-year rolling window (2000-2004, 2001-2005,
..., 2019-2023). This modification not only mitigates potential
sensitivities arising from the arbitrary selection of a shorter time
frame but also allows for a more comprehensive observation of
long-term innovation dynamics and the cumulative effects of layer
interactions. The results of re-estimated all hypotheses indicate that
all key findings, including the significance and direction of the
coefficients for degree centrality, tie strength, knowledge diversity,
and their moderating effects, remain consistent with those obtained
from the original three-year time window. This high degree of
consistency across different time window specifications strongly
affirms the reliability of our conclusions regarding the impact of
multilayer network structures on innovation performance in
China’s marine industry.

5 Conclusion and policy implications

Innovation is of paramount importance for China’s strategic
goal of maritime power. This study constructs a multilayer network
by comprising an organizational cooperative innovation network, a
knowledge network, and a patent citation network to depict the
evolution and topological structures of China’s marine industry. By
investigating the impact of network embeddedness on organization
innovation performance, we find that innovation is a dynamic

95% Bias-corrected ClI

Bootstrap S.E.

LLCI ULCI
OIPy + 1 1.172 0.175 0.829 1.516
OIPy + 2 DC 1.230 0.167 0.903 1.558
OIPy + 3 1.353 0.251 0.862 1.844
OIPy + 1 0.597 0.096 0.410 0.785
OIPy + 2 TS 0.665 0.094 0.481 0.848
OIPy + 3 0.753 0.150 0.459 1.048
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process shaped by complex interactions across social, knowledge,
and technological network layers. An organization’s innovative
advantage stems not merely from its network connections, but
from its ability to adjust its embeddedness in these
multidimensional networks based on its knowledge and
technological positioning. The main findings and practical
insights for both organizational managers and policymakers of
this research are as follows:

1. Both broadening network breadth and deepening
cooperative connections are crucial for enhancing
organizational innovation performance. Successful
innovators do not view these as a trade-off but as
complementary strategies, with the synergy between
broad connectivity and deep relationships serving as a
fundamental innovation engine. However, a delicate
balance is essential. while moderate cohesion is beneficial,
excessive levels can lead to stagnation.

. Marine industry firms should proactively manage their
external cooperation networks, continuously broadening
knowledge access channels while strategically deepening
core partnerships. Crucially, collaborative innovation
strategies must be tailored to an organization’s knowledge
assets. Those possessing unique knowledge should
prioritize protection and value capture, acting as
technology suppliers to a broad set of partners through
weaker ties. Conversely, organizations lacking unique
knowledge should prioritize knowledge co-creation
through deep, trust-based collaborations.

. A superior network position primarily functions as a portal
for accessing diverse external knowledge, with its
contribution to innovation realized only through effective
internal knowledge conversion. Knowledge uniqueness
presents a dual effect: it amplifies innovation benefits
from broad collaborations by transforming connections
into technological power amplifiers, yet it diminishes
advantages from deep collaborations due to increased
technology leakage risks. Furthermore, for organizations
already occupying a structural hole, the benefits of
knowledge diversity for innovation are reduced. Complex
innovation, particularly in sectors like the marine industry,
relies on integrating heterogeneous knowledge rather than
merely exchanging information.

. Consequently, government policy must adopt a diagnostic
approach to foster collaborative innovation. Acknowledging
that a one-size-fits-all strategy is inefficient, government
agencies should help organizations assess their knowledge
assets and network positions to offer customized support. For
instance, organizations with unique core technologies could
receive specialized subsidies or tax incentives for broadening
access to global partners. Conversely, policies should facilitate
deep alliances for SMEs lacking unique knowledge through
structured matchmaking and co-funding joint R&D projects
to absorb critical knowledge effectively.
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5. To enhance the innovation ecosystem, government policy
should actively encourage cross-boundary collaborations.
This involves establishing specialized funds (like 500 million
annually) to support major cross-regional and interdisciplinary
projects. Eligibility would prioritize diverse consortia from
different regions and disciplines, with outcome evaluation
including publications, patents, and quantifiable economic
impacts within 3-5 years. Furthermore, it is crucial to deepen
benefit-sharing and risk-sharing mechanisms for industry-
university-research collaborations by issuing clear, legally
binding national guidelines on ownership, profit distribution,
and risk liability in long-term partnerships, thereby fostering
stable and trust-based relationships

In conclusion, this study makes threefold contributions to the
existing literature on innovation dynamics, particularly within the
context of China’s marine industry.

1. We introduce and construct a novel multilayer network
framework that uniquely integrates knowledge networks,
inter-organizational collaboration networks, and patent
citation networks. This approach fundamentally shifts
from treating these aspects as isolated channels, which is
common in extant literature (Zhang et al., 2019; Fu et al,
2023; Guo et al, 2023), to analyzing their concurrent
evolution. By capturing the intertwined knowledge
elements and technological linkages that flow between
organizations, our framework provides a holistic and
unprecedented depiction of innovation information flows,
thereby advancing the understanding of complex
collaborative innovation ties.

. Theoretically, we significantly refine the understanding of
network embeddedness by unveiling the complex and
contingent effects of knowledge uniqueness and structural
hole positions on innovation performance.

. Practically, this research delivers distinctive and granular
recommendations for managers and policymakers in the
marine industry. These recommendations are specifically
designed to enhance collaborative innovation and drive
high-quality development, moving beyond generic advice
by providing customized strategies based on organizations’
specific knowledge resources and network configurations.

This study has several limitations as well. First, our data is
sourced from patents, which does not capture non-patented forms
of innovation. Future research could incorporate market-oriented
indicators and complementary data, such as surveys, interviews,
technical standards, and software copyrights, for a more
comprehensive validation. Second, this study does not explore the
micro-level motivations and processes behind the formation of
cooperative ties. Therefore, future work could expand the research
perspective by combining quantitative network analysis with
qualitative case studies. An in-depth analysis of the mechanisms
behind key innovation achievements will provide more
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comprehensive insights for the development of China’s
marine economy.
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