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Introduction: Effective underwater vision is critical for real-time marine
ecosystem observation and conservation, especially for autonomous
underwater vehicles (AUVs) operating in challenging oceanic environments.
Methods: We propose a novel underwater image enhancement framework tailored
for smart robotic systems used in biodiversity monitoring, habitat mapping, and
environmental sensing. Our method integrates a Denoising Diffusion Probabilistic
Model (DDPM) for progressive image restoration with an Attention-Enhanced
Convolutional Blocks (AECB) augmented Transformer backbone. The AECB
modules provide dual channel and spatial attention, selectively amplifying features
to enhance visual quality. Additionally, a lightweight architecture combined with a
skip-sampling strategy is designed to optimize computational efficiency for
onboard deployment in AUVs and underwater drones.

Results: Experimental evaluations demonstrate that our framework achieves
superior image restoration performance while maintaining computational
efficiency, outperforming existing transformer-diffusion approaches. The dual
attention mechanism within AECB modules distinctly improves the clarity and
detail of underwater images.

Discussion: This work advances Al-driven perception systems for intelligent
ocean observation technologies, supporting improved marine biodiversity
protection. The proposed model promises practical real-time applications in
autonomous underwater exploration and monitoring. The model and code will
be made publicly available on GitHub: https://github.com/ntiwari91/DM-AECB.
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1 Introduction

The rapidly increasing deterioration of underwater ecosystems
such as coral reefs, oyster reefs, and deep-sea environments has
underlined the urgent necessity of intelligent, real-time monitoring
systems. Among different sensing modalities, underwater vision is a
crucial means to facilitate the autonomy and dependability of
underwater robotic systems, particularly in applications such as
offshore renewable energy exploration, aquaculture farming, marine
conservation, and environmental monitoring. Notwithstanding the
recent breakthroughs in robotic platforms and sensing hardware,
underwater imaging with quality is a basic challenge because of the
hostile physical conditions of aquatic environments.

The deterioration of underwater images is caused by several
environmental factors. First, the absorption of light by suspended
particles and water molecules creates a fast attenuation of
illumination with depth, causing loss of image contrast and
visibility. Second, scattering of light by particulate matter
contributes to additional blurring and loss of details. Third,
turbulence from water motion and currents adds geometric
distortions and visual artifacts, which make the images hard to
interpret for scientific and ecological use.

Identifying these challenges, researchers have suggested a range
of techniques for improving underwater images (Iqbal et al. (2007);
Zhao et al. (2016); Liu et al. (2019)). The techniques are designed to
eliminate the impact of absorption, scattering, and turbulence and
enhance the visual quality for future analysis (Dong et al. (2020);
Islam et al. (2020b); Wang et al. (2021)). Most of these methods are
plagued by high computational cost, reliance on handcrafted priors,
and inflexibility to diversity in underwater conditions.

In an attempt to overcome these challenges and facilitate real-
time deployment in Autonomous Underwater Vehicles (AUVs) and
underwater drones, this paper introduces a novel underwater image
enhancement framework based on recent advancements in
diffusion models and Transformer-based neural networks. Unlike
previous approaches such as the Transformer-diffusion model by
Tang et al. (2023) that primarily focus on general diffusion
techniques, our DM-AECB method distinctively integrates
Attention-Enhanced Convolutional Blocks (AECB) Woo et al.
(2018) within the Transformer architecture to provide dual
channel and spatial attention. This targeted attention mechanism
improves the denoising capability by emphasizing critical
underwater scene features while effectively suppressing noise,
addressing the complex and variable degradations inherent in
underwater imagery.

We further leverage the Denoising Diffusion Probabilistic
Model (DDPM) framework to iteratively reconstruct images by
reversing a gradual noise-injection process. The combination of
diffusion modeling with the AECB-empowered Transformer
backbone enables more precise restoration of complex underwater
scenes under challenging lighting and visibility conditions, going
beyond the scope of prior transformer51 diffusion efforts.

Our core contributions are as follows:
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* We propose a novel attention-guided Transformer
backbone equipped with AECB modules. These blocks
enhance the model’s ability to capture spatial and spectral
correlations in underwater scenes for effective denoising.

* We integrate diffusion-based modeling with attention
mechanisms to build a robust underwater enhancement
pipeline capable of removing noise artifacts while
preserving critical structural details necessary for tasks
like object detection and ecological assessment.

e We optimize the model architecture for embedded
deployment through skip-sampling and lightweight
Transformer design, facilitating real-time image
processing onboard resource-constrained AUVs and
smart underwater monitoring platforms.

Rest of the paper is organized as follows: Section 2 describes
some recent literature, Section 3.1 explains the probabilistic
diffusion model and basic mathematics, the architecture of the
proposed model with diffusion model is covered in Section 3.
Section 4 covers different types of experiments performed with
ablation studies and result discussion, and finally conclusion is
covered in Section 5.

2 Related works
2.1 Traditional approach

Drews et al. (2016) proposed a model aimed at enhancing
underwater image accuracy, leading to the development of UDCP,
an improved version of DCP. Constructing their dataset from
outdoor landscape images, their findings demonstrate UDCP’s
superiority in improving underwater image quality compared to
DCP, MDCP, and BP. However, UDCP exhibits limitations,
particularly regarding reliability and robustness.

Song et al. (2018) trained the ULAP model to restore
underwater images. Central to their approach is determining
scene depth, vital for color and lighting correction. Their research
indicates that scene depth correlates directly with the disparity
between the maximum intensity of green-blue light and red light.
They assert that their method offers a faster means of estimating
scene depth compared to various CNN-based models.

2.2 Neural network based research

Several researchers have explored CNN-based technology (Fu
et al. (2022); Anwar et al. (2018); Zamir et al. (2022); Zhang et al.
(2018)). Anwar et al. (2018) developed an innovative CNN model
focusing not only on minimizing mapping function objectives but
also on learning discrepancies between degraded underwater
images and their cleaned versions. This technique stimulates a
diverse range of degraded underwater images for data
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augmentation, achieving superior performance in diverse color and
visibility conditions.

Most research in underwater image enhancement uses
Generative Adversarial Networks (GAN) (Fabbri et al. (2018);
Wang et al. (2019); Islam et al. (2020b); Guo et al. (2019); Ye
et al. (2018)). Fabbri et al. (2018) used CycleGAN to generate pairs
of undistorted and distorted underwater images for training to
enhance image accuracy. Wang et al. (2019) solved visibility
problems in underwater images through the use of GAN to
generate realistic images. Islam et al. (2020b) used Conditional
GAN on the EUVP dataset to produce Funie-GAN. Guo et al.
(2019) proposed a multi-scale GAN structure for UW image
enhancement. Ye et al. (2018) concentrated on co-joint haze
detection through stacked conditional GAN.

Igbal et al. (2010) presented a new method to improve
underwater images based on unsupervised color correction
techniques. Also, Li et al. (2019) presented WaterNet, an all-
round underwater image enhancing model, whereas Liu et al.
(2019) constructed an undersea image capture system for real-
world underwater image dataset generation.

Islam et al. (2020a) proposed SESR for super-resolution
enhancement of UW images. Various color channels were also
researched (Wang et al. (2021); Zhang et al. (2022); Igbal et al.
(2007)). Wang et al. (2021) applied red-green-blue and Hue-
saturation-value color space methods to their UIEC2-Net
architecture. Zhang et al. (2022) suggested MILLE based on the
CIELAB color space to resolve color deviation issues in underwater
images. Igbal et al. (2007) presented a novel approach centered on
slide stretching to improve UW images.

Ancuti et al. (2017) employed white balancing and image fusion
techniques. Additionally, Ancuti et al. (2012) utilized inputs from
degraded images for enhancement. Sahu et al. (2014) explored
existing methods, including Forward Unsharp Masking (USM) and
median filters, for image enhancement.

Tang et al. (2023) proposed an underwater image enhancement
diffusion model, while Guo et al. (2020) developed a deep curve
estimation method for low-light image enhancement. In addition,
Zhuang et al. (2022) introduced a Retinex variation model inspired
by hyper-Laplacian reflectance priors.

Experiments with the use of the Dehazing algorithm have been
carried out (Dong et al. (2020); Chiang and Chen (2011). Chiang
and Chen (2011)) aimed at restoring underwater images via a
dehazing algorithm, taking into consideration attenuation
differences and artificial lighting. Sun et al. (2019) set forth a deep
pixel-to-pixel network structure for UW image improvement,
whereas Zhao et al. (2016) investigated perceptually-driven losses
for image restoration, specifically in super-resolution applications.

3 Materials and methods
3.1 Denoising Diffusion Probabilistic Model

The diffusion model is a probabilistic generative model that
aims to generate samples from a given dataset by modeling the
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process of diffusion, where noise is gradually added to an initial
input to generate the final output. The DDPM by Ho et al. (2020) is
a new way to obtain enhanced images. It has two main parts:
forward diffusion and reverse diffusion.

Forward diftusion is like adding layers of noise to an image,
gradually making it harder to see. Reverse diftusion is like using a
special filter to remove the noise and reveal the original image.

3.2 Forward diffusion process

In this process, Gaussian noise is gradually added to an initial
image to create a sequence of intermediate images. Each step in this
process involves adding a bit of noise to the previous image, creating
a progression of images. The forward diffusion process can be
expressed as Equation 1:

I,=\/1-d, Ty ++/d,- N, (1)

where 7, is original image, 7, is degraded image at time t, d; is
coefficient representing diffusion level at time t and A represents
random noise vector

3.3 Reverse diffusion process

This process works in the opposite direction. Given an image
from the sequence generated by the forward diffusion, the goal is to
predict the original image without noise. It involves estimating the
noise that was added at each step to remove it from the image.

The reverse diffusion process can be expressed in the following
Equation 2.

1

Where Z,_; represents estimated original image at time ¢ — 1, ,

I,y = Zy-r/1-4d,-EX 1) +5,- Z, (2)

coefficient representing reverse diffusion level at time t, £(I;,t)
estimated noise by neural network, s, standard deviation of noise at
time t and Z represents random noise vector.

3.4 Proposed methodology

Our proposed method consists of two main stages: noise
simulation using the Gaussian diffusion probabilistic model and
noise reduction using the proposed transformer-based neural
network which provide better results as compared to the existing
model. In the first stage, we introduce Gaussian noise to the input
image to simulate real-world noisy conditions as depicted in
Figure 1. This noise addition process follows the principles of the
Gaussian diffusion probabilistic model, which accurately models the
distribution of noise in natural images. In the second stage, we
utilize a transformer-based neural network to remove the added
noise and restore the image to its original clarity. The architecture of
our noise reduction network includes several essential components:
convolutional layers for feature extraction, normalization layers to
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FIGURE 1
The figure representing noise reduction through transformer model.

enhance stability and convergence, attention blocks for capturing
long-range dependencies, and feed-forward networks for refining
features and producing the final denoised output.

Let Z,, be an input image, Z, be the noisy image at step t, /()
be a normal distribution function, o;(¢) be a time-dependent
function representing noise variance. The mathematical equation
can be represented as Equation 3:

I, =TI, + N(o(1), 3)

now the obtained image Z, is processed for the noise reduction
i.e. denoising by using the proposed transformer-based network can
be represented in the following Equation 4.

D, =T(F(Zyc1). 4)

Where D, represents the denoised image at step t, 7() signifies
the transformer network, F (j function represents the feature
extraction and processing steps before feeding the data to the
transformer network, I; noisy image at step t, ¢ represents clean
or partially denoised image, ¢ represents time step information.

3.5 Loss function

The network is optimized during training using a loss function.
Specifically, we employ the L1 loss or mean absolute error, which
measures the difference between the predicted noisy image and the
ground truth noisy image. This loss function effectively guides the
training process to reduce the discrepancy between the output and
target images, enabling the model to produce higher-quality
restorations from degraded inputs.
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Mathematically, the L1 loss is expressed as Equation 5:

L =X, - Ho(X,,C,t)

, (5)

where L, represents the loss function, X ¢ denotes the actual
noisy image at timestep t, H (X,, C, t) signifies the predicted noisy
image produced by the network given the input noisy image, and
[[-]l denotes the L1 norm, computing the absolute difference
between the predicted and actual noisy images.

While perceptual and SSIM-based loss functions are known to
enhance visual fidelity in image restoration tasks, we excluded them
in this work to maintain computational efficiency and stability
during training. Our empirical evaluations showed that L1 loss
alone sufficed to achieve a balance between qualitative and
quantitative performance, especially when combined with the
attention mechanisms and diffusion framework. Incorporating
these additional losses could be explored in future work to
potentially further improve perceptual quality.

3.6 Restoration through transformer-based
network

In this paper, we present a novel transformer-based network
tailored for noise reduction in noisy images which is given in
Figure 2. Our network offers a more efficient noise reduction
process compared to conventional methods by utilizing a
shallower architecture, resulting in improved image quality.
Inspired by the effectiveness of Transformer structures, we adopt
a unique approach to computing attention, focusing on channels as
well as spatial dimensions. In the attention block of the transformer,
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The proposed architecture is working of transformer using attention-enhanced convolutional. Block (AECB) with the sequential working of

(a) Effective Channel Attention Module and (b) Spatial Attention Module.

we have incorporated both channel-wise and spatial attention
mechanisms. We also prioritize practicality and efficiency by
focusing on making the Transformer model lightweight and
applying the skip sampling method in our approach. This
modification reduces computational complexity and also
enhances the network’s ability to address color distortions
common in low-quality underwater images.

To prepare the input for the network, we first combine the noisy
image 7, and the conditional image C using channel concatenation.
This creates a new feature map F; with n channels, where n is a
hyperparameter chosen based on the network architecture and the
desired level of feature interaction between the two input images.
The time step ¢ is fed into a fully connected (dense) layer to encode
temporal information represented as Equations 6-8:

X, =Q(|(Z0)), (6)
F,=Re(FC,t), 7)
FM=X,+F,. (8)

Where ®(.) represents convolution, |||[(.) signifies
concatenation, Re represents reshape function and FC represents

fully connected, M represents feature map.

3.6.1 Network architecture

Let FM denote the feature map resulting from the above
operation. The output achieved from the normalization block is
fed to the convolution block attention module. The Attention-
Enhanced Convolutional Block (AECB), is used to improve feature
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representation in convolutional neural networks (CNNs). It
consumes an input feature map (FM) and produces an improved
output (FMs) by integrating two attention mechanisms: channel
attention (Mc) and spatial attention (Ms).

o Channel Attention: This module focuses on identifying
“which” information within a feature map is most important by
emphasizing informative channels and suppressing less useful ones.
To achieve this, AECB first reduces the spatial dimensions (height
and width) of the feature map using both average pooling and max
pooling. These operations yield two separate spatial context
descriptors, Fc,,, and Fc,,,, which capture the average and
maximum responses for each channel. Both descriptors are then
fed into a shared Multi-Layer Perceptron (MLP) to generate the
channel attention map M,. The MLP typically includes a single
hidden layer with a reduction ratio r, controlling the size of the
hidden representation. A sigmoid activation function o is applied at
the MLP’s output, assigning each channel a weight between 0 and 1.
Greater weights point to more informative channels. The
mathematical expression for the same is Equation 9:

FM, = M(FM), ©))

where FM, is the feature map through channel attention and M,
is the function for channel attention applied over the feature map
(FM).

o Spatial Attention: This module is concerned with “where”
informative features are positioned in the spatial domain of the
feature map. Here, AECB employs average pooling and max
pooling along the channel dimension to pool channel-wise
information. This yields two feature maps (Fs_avg and Fs_max)
that correspond to the average and maximum activations at a given

frontiersin.org


https://doi.org/10.3389/fmars.2025.1687877
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Tiwari et al.

spatial position. These maps are concatenated and passed to a
typical convolution layer having a filter size of 7 x 7. The sigmoid
activation function (o) is once again applied to the output of the
convolutional layer, which produces a 2D spatial attention map
(Ms). The regions needing greater attention are represented by
values closer to 1 in Ms, and those needing suppression are
represented by values closer to 0. The mathematical formula for
the same is Equation 10:

FM = M(FM,), (10)

where FM; is output from the spatial attention and M; is
function to which FM, is applied.

« Overall Attention Process: The channel attention map (M,) is
transmitted along the spatial axes in order to perform element-wise
multiplication with the initial feature map (FM). This enhances the
feature map according to channel-wise importance. The ensuing
attention-weighted feature map (F') is then element-wise multiplied
with the spatial attention map (M;). This again refines the feature
map by concentrating on informative spatial locations. The
resulting output (F”) is refined feature map expressed as
Equations 11, 12:

F' = Mc(FM,) 6 FM, (11)
c

F' = Ms(F)oF, (12)

where Mc(F) refers to the channel attention function acted on
the feature map FM, . is the element-wise multiplication symbol
FM is the original feature map, F’ is the feature map refined after
channel attention, F” is the final feature map refined after channel
and spatial attention, Ms(F') refers to the spatial attention function
acted on the attention-weighted feature map F', .is an element-wise
multiplication symbol, F’ is the attention-weighted feature map of
the previous equation.

After obtaining the refined feature map F” from the Attention-
Enhanced Convolutional Block (AECB), the output is passed
through an addition operation and layer normalization block to
enhance feature representation and stability further. The resulting
feature map is then fed into a feedforward neural network (FFNN)
for additional refinement. Mathematically, the process can be
represented as follows Equations 13-15:

Foga = Fen + F', (13)
FLN = LayerNorm(F,44), (14)
FFNN = FFNN(FLN) . (15)

Where Fpy, is the initial feature map resulted from the
normalization block, LayerNorm denotes the layer normalization
operation that acts on the feature map F,;;, and FFFNN denotes the
output of the feedforward neural network.

The resulting final output image is achieved through applying
another layer normalization block. This step helps ensure that the
feature map goes through extra refinement and normalization prior
to use for additional processing, further helping the overall
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efficiency of the transformer-based network structure with
augmented attention blocks.

3.7 Enhanced skip-sampling technique

This section introduces the concept of Enhanced Probabilistic
Skip-Sampling (EPSS), a novel technique designed to improve the
efficiency of the inference process in diffusion models. It aims to
address the trade-off between theoretical optimality (large time
steps) and computational cost associated with iterative inference.
We utilize a lightweight network architecture to reduce the
computational burden within each iteration. We propose a
modification to the standard iterative diffusion process that
eliminates the random term. This modification leverages an
alternative non-Markovian process introduced by the Efficient
Method of the Iterative Implicit Probabilistic Model (DDIM)
introduced by Song et al. (2020). This allows for a deterministic
sampling approach during inference.

4 Results & discussions

This section discuss a range of experiments with dataset
description and experimental settings as follows:

4.1 Datasets

In this article, we employ two recently published datasets for
training and testing of networks i.e. Underwater Image
Enhancement Benchmark (UIEB) provided by Li et al. (2019) and
Large-Scale Underwater Image (LSUI) presented by Peng et al.
(2023). UIEB dataset consists of 890 pair images. The underwater
images are downloaded from the Internet, and the ground truth
images are created by a combination of some earlier enhancement
techniques and manual choice. In particular, several enhancement
methods are used to enhance the underwater images gathered to
create diverse improved versions of the LSUI dataset, Since the
number of training images used in earlier datasets was small, the
LSUI dataset contained a higher number of images. The LSUI
dataset contains 5004 underwater images and their respective high-
quality images, which provide a diversity of underwater views,
object types, as well as deep-sea and cave images. Here, we use
the training set of LSUI, containing 4500 pairs of images, to train
the diffusion model. We use the remaining 504 images to check our
proposed method.

4.2 Evaluation metrics

Earlier methods typically depend on subjective evaluation
metrics, including UCIQE and UIQM. These measures, however,
cannot be used to accurately evaluate performance in all scenes. In
this paper, we mainly employ two full-reference assessment
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measures: Peak Signal Noise Ratio (PSNR) and Structural Similarity
Index (SSIM). PSNR reflects how much the image content
approximates the reference, whereas SSIM computes the
structural and texture similarity.

4.3 Implementation details

The suggested strategy in this paper is utilized through
PyTorch, where the Adam optimizer is used for minimizing the
objective function. The learning rate is 1.0 x 10™*. When training,
the batch size and image size are utilized at 8 and 128 x 128,
respectively, in order to trade off computational efficacy and image
quality. Pixel values of images are normalized to [-1,1]. The
diffusion model is run at a time step of 2000, and S is linearly
sampled over the range [107%, 107%]. During testing, according to the
configuration provided by Lugmayr et al. (2022), the size of the
input image is set to 256 x 256. For balancing performance and
computation runtime, skip sampling strategy is utilized with 10
sampling times. In both the training and testing phases, the
hardware used is a workstation with an NVIDIA RTX 3080 GPU.

4.4 Training performance analysis

To evaluate the training performance and convergence
behavior of the different model variants, we plotted the loss
values over the training epochs (steps). Figure 3 illustrates the
loss curves for DM-AECB Large (larger model variant), DM-
AECB, DM-Trans (Tang et al. (2023)), DM-CA Only Generative
(generative variants of the proposed model having only channel
attention), and DM-AECB Generative (generative variants of the
proposed model). It should be noted that the generative diftusion
variants of the proposed models may not produce extremely
satisfying results but they are much more immune to additive

10.3389/fmars.2025.1687877

Gaussian noise. The loss curves provide valuable insights into the
training dynamics of each model variant.

Ideally, the loss should decrease steadily over epochs, indicating
effective learning and convergence. However, the observed loss
curves exhibit varying behaviors.

DM-AECB demonstrates a consistent and rapid decline in loss,
reaching a plateau relatively early in training. This suggests efficient
convergence and optimization. DM-AECB Large also shows a
decreasing trend but with more fluctuations and a slower
convergence rate compared to DM-AECB.

DM-Trans exhibits a more erratic loss curve with several
plateaus and spikes, indicating potential challenges in
optimization. DM-CA Only Generative and DM-AECB-
Generative show relatively high and stable loss values throughout
training, suggesting difficulties in learning the target task.

These observations indicate that DM-AECB exhibits the most
promising training behavior, followed by DM-AECB Large. DM-
Trans, DM-CA Only Generative, and DM-AECB Generative
encounter challenges during training, as evidenced by their loss curves.

Further analysis, including additional metrics and
visualizations, is necessary to gain deeper insights into the
underlying reasons for these performance differences and to
identify potential areas for improvement in the respective models.

4.5 Progressive enhancement through
AECB blocks

The progressive enhancement of images through successive
AECB stages vividly demonstrates the cumulative impact of our
model’s architectural design. By iteratively applying the AECB
module, we observe a systematic improvement in image quality,
as quantified by the increasing PSNR and SSIM values. This
quantitative evidence underscores the critical role of multiple
AECB stages in achieving superior underwater image enhancement.

_pix

— DM-AECB_Large

0.3

o

[J]
s}
(%]

0.25

0.2

0.15

0.1

0.05

B = DM-Trans = DM-CA_Only_Generative -
— DM-AECB-Generative v

FIGURE 3
Comparison of loss curves training epochs for all model variants.
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Each AECB stage contributes uniquely to the overall image
restoration process. The initial stages are primarily focused on noise
reduction and initial feature enhancement. As the process
progresses, subsequent AECB stages refine these enhancements,
targeting more subtle details and color corrections. This multi stage
approach ensures that the model comprehensively addresses the
challenges posed by underwater image degradation, resulting in a
robust and effective image restoration pipeline.

Furthermore, by decomposing the complex task of underwater
image enhancement into a series of more manageable sub-tasks, our
model exhibits improved generalization capabilities. This is evident
in its ability to handle diverse underwater imaging conditions,
including varying levels of turbidity, color distortion, and low light.

As visualized in Figure 4, the progressive enhancement of image
quality is visually apparent. The initial input image is characterized
by significant noise, color distortion, and reduced visibility. With
each successive AECB stage, these artifacts are progressively
mitigated, culminating in a restored image that closely resembles
the ground truth. This visual corroboration reinforces the efficacy of
our proposed multi-stage AECB architecture.

4.6 Quantitative comparison with leading
methods

In this paper, we compare our method with eight existing
techniques in Table 1, which include both traditional methods

AECB-4

FIGURE 4

10.3389/fmars.2025.1687877

and deep learning models. Traditional methods such as Fusion
(Ancuti et al. (2017)), MMLE (Zhang et al. (2022)), and HLRP
(Zhuang et al. (2022)) generally exhibit lower performance
compared to their deep learning counterparts, with HLRP
performing the weakest among them. Among the deep learning
models, TACL (Liu et al. (2022)) and Water-Net (Li et al. (2019))
show competitive results, but Ushape (Peng et al. (2023)) achieves
the highest PSNR and SSIM scores. Notably, our method surpasses
all these techniques, delivering PSNR values of 28.78 and 29.56, and
SSIM scores of 0.91 and 0.98 on the LSUI and UIEB datasets,
respectively, while maintaining a processing time and parameter
count comparable to leading models. This demonstrates that our
approach provides the best overall enhancement in underwater
image quality.

4.7 Statistical analysis of quantitative
results

To validate the robustness of our findings, we report the mean
and standard deviation of PSNR and SSIM (across three trials) for
all methods. Additionally, paired t-tests were performed between
the proposed DM-AECB and the strongest baseline, DM-Trans, on
both benchmarks.

As shown in Table 2, DM-AECB consistently outperformed
DM-Trans, with all paired t-tests indicating statistically significant
improvements (p< 0.05).

Progressive enhancement of underwater images through each transformer stage.
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TABLE 1 Comparison of PSNR and SSIM values for different underwater image enhancement methods on the LSUI and UIEB datasets.

D . LSUI 0] ;]
Method (Millions) Time (sec.) ,
PSNR? SSIM1t PSNR? SSIM1

Ancuti et al. (2012) (Fusion) - 1.23s 17.69 0.644 18.79 0.792
Zhang et al. (2022) (MMLE) - 0.30 17.70 0.725 19.30 0.830
Zhuang et al. (2022) (HLRP) - 032 12.64 0.192 12.56 0251
Liu et al. (2022) (TACL) 11 0.1 20.69 0.822 23.09 0.883
Li et al. (2019) (WaterNet) 25 0.55 22.99 0.789 20.48 0.789
Islam et al. (2020b) (FUnIE) 7 0.02 18.78 0.619 17.61 0.595
Fabbri et al. (2018) (UGAN) 57 0.06 22.79 0.754 20.59 0.682
Uplavikar et al. (2019) (UIE-DAL) 19 0.04 2112 0.723 17.00 0.755
Li et al. (2021) (Ucolor) 157 1.87 2291 0.890 20.78 0.872
Peng et al. (2023) (Ushape) 66 0.04 24.16 0.932 2291 0910

Tang et al. (2023) (DM-Trans) 10 0.13 27.65 0.8867 28.20 0.9429

Ours (DM-AECB) 10 0.14 28.78 091 29.56 0.98
4.8 Visual comparison saturation, and preserves fine textures, closely matching the ground

truth (GT) in the last column. This consistent performance across
As shown in Figure 5, our method demonstrates superior ~ diverse underwater scenes highlights the robustness and effectiveness

performance in enhancing underwater images compared to several of our method in underwater image enhancement.

existing techniques, including both traditional methods like Fusion

(Ancuti et al. (2017)) and MILLE (Zhang et al. (2022)), and deep .

learning models such as WaterNet (Li et al. (2019)), FUnIE (Islam 4.9 Ablation StUdy

et al. (2020b)), Ucolor (Li et al. (2021)), and Ushape (Peng et al.

(2023)). Traditional methods, such as Fusion and MILLE, generally The ablation study unequivocally establishes DM-AECB as the
fail to restore color balance effectively, often leaving images with ~ superior model variant, as detailed in the following sections.
unnatural hues or excessive blur, as seen in the first and second

columns. Among the deep learning models, WaterNet and Ucolor ~ 4.9.1 Ablation study quantitative analysis

produce significant improvements in color correction and contrast Table 3 quantitatively summarizes the individual contributions
but still struggle with preserving fine details, particularly in complex  of key components within the DM-AECB architecture by reporting
scenes, as observed in the third and fifth rows. Ushape shows  the final average PSNR values for different model variants.
competitive results, with enhanced contrast and sharper details, DM-AECB consistently delivers significantly higher PSNR
particularly in the middle rows. However, it still exhibits some  values across all validation steps as training progresses. This
over-saturation and slight loss of texture in certain areas. Our  marked performance differential underscores the model’s
approach, illustrated in the second-to-last column, consistently — exceptional capability to preserve image quality while effectively
provides the most balanced enhancement across all sample images. ~ mitigating noise. In contrast, DM-AECB Large, while yielding
It effectively restores natural colors, enhances contrast without over- ~ commendable results, slightly underperforms compared to DM-

TABLE 2 Statistical comparison between DM-AECB and DM-Trans on LSUI and UIEB datasets.

Method Dataset PSNR (mean + std) SSIM (mean + std) p-value (t-test)
DM-Trans LSUI 27.65 + 0.05 0.887 + 0.001 -
DM-AECB LSUT 28.77 + 0.04 0.912 + 0.008 3.5x107° (PSNR) 0.025 (SSIM)
DM.-Trans UIEB 28.20 + 0.02 0.943 + 0.0002 -
DM-AECB UIEB 29.54 + 0.02 0.979 + 0.001 7.4x10™° (PSNR)0.00024 (SSIM)
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A visual comparison of underwater images and their corresponding enhanced results is presented. The ground truth images are shown in the

second-to-last column for reference.

AECB. The performance gap between these top-tier models and the
remaining variants, including DM Trans and generative models, is
substantial, highlighting the efficacy of the DM-AECB architecture
in optimizing image restoration.

The data in Table 3 clearly indicates that the diffusion process
contributes a notable +2.0 dB boost in PSNR over the base model,
illustrating its effectiveness in noise reduction and image
restoration. Addition of Attention-Enhanced Convolutional
Blocks (AECB) further advances performance by +3.5 dB,
demonstrating the critical role of targeted dual channel and
spatial attention in emphasizing important underwater features.

TABLE 3 Performance improvements from diffusion, AECB, and skip-
sampling modules measured by final validation PSNR (dB).

. Final PSNR = PSNR gain over previous
Model variant :
(dB) variant
DM AECB 02 22.5 Baseline
(base)
DM AECB
,C 24.5 +2.0 (incorporates diffusion)
Generative
DM CA Onl
oy 280 +3.5 (adds AECB attention)
Generative
DM AECB 06 (full) 29.5 +1.5 (adds skip-sampling)

Frontiers in Marine Science

Finally, the skip-sampling technique enhances PSNR by an
additional +1.5 dB, showing its utility in refining the image
quality while optimizing computational efficiency.

These quantified improvements complement the PSNR curves
shown in Figure 6 and the visual comparisons in Figure 7, providing
robust numerical evidence of the effectiveness of each component.
This comprehensive evaluation reinforces the design rationale and
benefits of the DM-AECB model for underwater image enhancement.

4.9.2 Visual comparison

Visual analysis of underwater image enhancement results in
Figure 7 indicates that DM-AECB consistently generates the most
natural and visually appealing images. This variant effectively
restores colors, preserves fine details, and minimizes artifacts
across various underwater scenes. Although DM-AECB-Gen
shows potential in color correction, it introduces more artifacts
and less natural appearance compared to DM-AECB. DM-Trans
improves visibility but often causes color distortions and blurriness.
DM-CA-Gen struggles with both color correction and detail
preservation, resulting in less pleasing outputs. Generative
variants (DM-AECB-Gen and DM-CA-Gen) suffer from color
distortion but are noted for robustness to noisy inputs, as visible
in column 01. Further quantitative evaluation using metrics such as
PSNR and SSIM could provide additional insights into their
comparative performance.

frontiersin.org
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FIGURE 6
Comparison of PSNR values over training epochs for all model variants.

4.9.3 GPU utilization

GPU power consumption analysis from Figure 8 reveals that DM-
AECB is the most energy-efficient model, rapidly stabilizing at a low
power level without requiring additional GPU resources compared to
DM-Trans. DM-AECB Large also demonstrates controlled power usage
but consumes slightly more energy. DM-Trans exhibits fluctuating
power consumption, and both generative models show significantly
higher energy demands. These findings underscore DM-AECB’s
efficacy for cost-effective and environmentally friendly deployment.

DM-Trans

Input

Noisy

FIGURE 7

DM-AECB- DM-CA-
Gen

5 Conclusion

In this paper, we present a novel approach for underwater image
enhancement for marine robotic systems by integrating diffusion
models with attention-enhanced convolutional blocks. Our model
incorporates both channel and spatial attention mechanisms within
the Attention-Enhanced Convolutional Block (AECB), leading to
significant improvements in image quality metrics such as PSNR and
SSIM. Extensive experiments, including ablation studies, demonstrate

DM-AECB GT

Gen

Visual comparison of underwater images and enhanced outputs produced by different model variants.
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GPU utilization during training process.

that the inclusion of these attention mechanisms results in substantial
enhancements over existing methods. A key aspect of our work is the
addition of denoising capabilities through generative variants of the
proposed model. It helps in achieving further clarity by effectively
reducing noise in challenging underwater environments. The ablation
studies underscore the importance of this generative component,
revealing that it plays a crucial role in improving both the perceptual
quality and the quantitative metrics of the enhanced images. This
work sets a new benchmark in underwater image enhancement,
providing a robust, practical solution for improving image quality in
difficult underwater conditions.

While demonstrating promising efficiency and quality in
controlled experiments, real-world deployment on autonomous
underwater vehicles (AUVs) requires further consideration of
inference speed, onboard computational limits, and power
consumption. Future work will optimize the model for embedded
platforms and validate performance in actual marine environments
to ensure suitability for marine conservation applications.
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