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Introduction: Effective underwater vision is critical for real-time marine

ecosystem observation and conservation, especially for autonomous

underwater vehicles (AUVs) operating in challenging oceanic environments.

Methods:Wepropose a novel underwater image enhancement framework tailored

for smart robotic systems used in biodiversity monitoring, habitat mapping, and

environmental sensing. Our method integrates a Denoising Diffusion Probabilistic

Model (DDPM) for progressive image restoration with an Attention-Enhanced

Convolutional Blocks (AECB) augmented Transformer backbone. The AECB

modules provide dual channel and spatial attention, selectively amplifying features

to enhance visual quality. Additionally, a lightweight architecture combined with a

skip-sampling strategy is designed to optimize computational efficiency for

onboard deployment in AUVs and underwater drones.

Results: Experimental evaluations demonstrate that our framework achieves

superior image restoration performance while maintaining computational

efficiency, outperforming existing transformer-diffusion approaches. The dual

attention mechanism within AECB modules distinctly improves the clarity and

detail of underwater images.

Discussion: This work advances AI-driven perception systems for intelligent

ocean observation technologies, supporting improved marine biodiversity

protection. The proposed model promises practical real-time applications in

autonomous underwater exploration and monitoring. The model and code will

be made publicly available on GitHub: https://github.com/ntiwari91/DM-AECB.
KEYWORDS

oceanic underwater images, underwater image enhancement, transformer-based
denoising network, attention mechanism, channel attention, spatial attention,
diffusion model
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1 Introduction

The rapidly increasing deterioration of underwater ecosystems

such as coral reefs, oyster reefs, and deep-sea environments has

underlined the urgent necessity of intelligent, real-time monitoring

systems. Among different sensing modalities, underwater vision is a

crucial means to facilitate the autonomy and dependability of

underwater robotic systems, particularly in applications such as

offshore renewable energy exploration, aquaculture farming, marine

conservation, and environmental monitoring. Notwithstanding the

recent breakthroughs in robotic platforms and sensing hardware,

underwater imaging with quality is a basic challenge because of the

hostile physical conditions of aquatic environments.

The deterioration of underwater images is caused by several

environmental factors. First, the absorption of light by suspended

particles and water molecules creates a fast attenuation of

illumination with depth, causing loss of image contrast and

visibility. Second, scattering of light by particulate matter

contributes to additional blurring and loss of details. Third,

turbulence from water motion and currents adds geometric

distortions and visual artifacts, which make the images hard to

interpret for scientific and ecological use.

Identifying these challenges, researchers have suggested a range

of techniques for improving underwater images (Iqbal et al. (2007);

Zhao et al. (2016); Liu et al. (2019)). The techniques are designed to

eliminate the impact of absorption, scattering, and turbulence and

enhance the visual quality for future analysis (Dong et al. (2020);

Islam et al. (2020b); Wang et al. (2021)). Most of these methods are

plagued by high computational cost, reliance on handcrafted priors,

and inflexibility to diversity in underwater conditions.

In an attempt to overcome these challenges and facilitate real-

time deployment in Autonomous Underwater Vehicles (AUVs) and

underwater drones, this paper introduces a novel underwater image

enhancement framework based on recent advancements in

diffusion models and Transformer-based neural networks. Unlike

previous approaches such as the Transformer-diffusion model by

Tang et al. (2023) that primarily focus on general diffusion

techniques, our DM-AECB method distinctively integrates

Attention-Enhanced Convolutional Blocks (AECB) Woo et al.

(2018) within the Transformer architecture to provide dual

channel and spatial attention. This targeted attention mechanism

improves the denoising capability by emphasizing critical

underwater scene features while effectively suppressing noise,

addressing the complex and variable degradations inherent in

underwater imagery.

We further leverage the Denoising Diffusion Probabilistic

Model (DDPM) framework to iteratively reconstruct images by

reversing a gradual noise-injection process. The combination of

diffusion modeling with the AECB-empowered Transformer

backbone enables more precise restoration of complex underwater

scenes under challenging lighting and visibility conditions, going

beyond the scope of prior transformer51 diffusion efforts.

Our core contributions are as follows:
Frontiers in Marine Science 02
• We propose a novel attention-guided Transformer

backbone equipped with AECB modules. These blocks

enhance the model’s ability to capture spatial and spectral

correlations in underwater scenes for effective denoising.

• We integrate diffusion-based modeling with attention

mechanisms to build a robust underwater enhancement

pipeline capable of removing noise artifacts while

preserving critical structural details necessary for tasks

like object detection and ecological assessment.

• We optimize the model architecture for embedded

deployment through skip-sampling and lightweight

Transformer design, facilitating real-time image

processing onboard resource-constrained AUVs and

smart underwater monitoring platforms.
Rest of the paper is organized as follows: Section 2 describes

some recent literature, Section 3.1 explains the probabilistic

diffusion model and basic mathematics, the architecture of the

proposed model with diffusion model is covered in Section 3.

Section 4 covers different types of experiments performed with

ablation studies and result discussion, and finally conclusion is

covered in Section 5.
2 Related works

2.1 Traditional approach

Drews et al. (2016) proposed a model aimed at enhancing

underwater image accuracy, leading to the development of UDCP,

an improved version of DCP. Constructing their dataset from

outdoor landscape images, their findings demonstrate UDCP’s

superiority in improving underwater image quality compared to

DCP, MDCP, and BP. However, UDCP exhibits limitations,

particularly regarding reliability and robustness.

Song et al. (2018) trained the ULAP model to restore

underwater images. Central to their approach is determining

scene depth, vital for color and lighting correction. Their research

indicates that scene depth correlates directly with the disparity

between the maximum intensity of green-blue light and red light.

They assert that their method offers a faster means of estimating

scene depth compared to various CNN-based models.
2.2 Neural network based research

Several researchers have explored CNN-based technology (Fu

et al. (2022); Anwar et al. (2018); Zamir et al. (2022); Zhang et al.

(2018)). Anwar et al. (2018) developed an innovative CNN model

focusing not only on minimizing mapping function objectives but

also on learning discrepancies between degraded underwater

images and their cleaned versions. This technique stimulates a

diverse range of degraded underwater images for data
frontiersin.org
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augmentation, achieving superior performance in diverse color and

visibility conditions.

Most research in underwater image enhancement uses

Generative Adversarial Networks (GAN) (Fabbri et al. (2018);

Wang et al. (2019); Islam et al. (2020b); Guo et al. (2019); Ye

et al. (2018)). Fabbri et al. (2018) used CycleGAN to generate pairs

of undistorted and distorted underwater images for training to

enhance image accuracy. Wang et al. (2019) solved visibility

problems in underwater images through the use of GAN to

generate realistic images. Islam et al. (2020b) used Conditional

GAN on the EUVP dataset to produce Funie-GAN. Guo et al.

(2019) proposed a multi-scale GAN structure for UW image

enhancement. Ye et al. (2018) concentrated on co-joint haze

detection through stacked conditional GAN.

Iqbal et al. (2010) presented a new method to improve

underwater images based on unsupervised color correction

techniques. Also, Li et al. (2019) presented WaterNet, an all-

round underwater image enhancing model, whereas Liu et al.

(2019) constructed an undersea image capture system for real-

world underwater image dataset generation.

Islam et al. (2020a) proposed SESR for super-resolution

enhancement of UW images. Various color channels were also

researched (Wang et al. (2021); Zhang et al. (2022); Iqbal et al.

(2007)). Wang et al. (2021) applied red-green-blue and Hue-

saturation-value color space methods to their UIEC2-Net

architecture. Zhang et al. (2022) suggested MILLE based on the

CIELAB color space to resolve color deviation issues in underwater

images. Iqbal et al. (2007) presented a novel approach centered on

slide stretching to improve UW images.

Ancuti et al. (2017) employed white balancing and image fusion

techniques. Additionally, Ancuti et al. (2012) utilized inputs from

degraded images for enhancement. Sahu et al. (2014) explored

existing methods, including Forward Unsharp Masking (USM) and

median filters, for image enhancement.

Tang et al. (2023) proposed an underwater image enhancement

diffusion model, while Guo et al. (2020) developed a deep curve

estimation method for low-light image enhancement. In addition,

Zhuang et al. (2022) introduced a Retinex variation model inspired

by hyper-Laplacian reflectance priors.

Experiments with the use of the Dehazing algorithm have been

carried out (Dong et al. (2020); Chiang and Chen (2011). Chiang

and Chen (2011)) aimed at restoring underwater images via a

dehazing algorithm, taking into consideration attenuation

differences and artificial lighting. Sun et al. (2019) set forth a deep

pixel-to-pixel network structure for UW image improvement,

whereas Zhao et al. (2016) investigated perceptually-driven losses

for image restoration, specifically in super-resolution applications.
3 Materials and methods

3.1 Denoising Diffusion Probabilistic Model

The diffusion model is a probabilistic generative model that

aims to generate samples from a given dataset by modeling the
Frontiers in Marine Science 03
process of diffusion, where noise is gradually added to an initial

input to generate the final output. The DDPM by Ho et al. (2020) is

a new way to obtain enhanced images. It has two main parts:

forward diffusion and reverse diffusion.

Forward diffusion is like adding layers of noise to an image,

gradually making it harder to see. Reverse diffusion is like using a

special filter to remove the noise and reveal the original image.
3.2 Forward diffusion process

In this process, Gaussian noise is gradually added to an initial

image to create a sequence of intermediate images. Each step in this

process involves adding a bit of noise to the previous image, creating

a progression of images. The forward diffusion process can be

expressed as Equation 1:

I t =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − dt

p
· I 0 +

ffiffiffiffi
dt

p
·N , (1)

where IO is original image, I t is degraded image at time t, dt is

coefficient representing diffusion level at time t and N represents

random noise vector
3.3 Reverse diffusion process

This process works in the opposite direction. Given an image

from the sequence generated by the forward diffusion, the goal is to

predict the original image without noise. It involves estimating the

noise that was added at each step to remove it from the image.

The reverse diffusion process can be expressed in the following

Equation 2.

I t−1 =
1
ffiffiffiffiffiffiffiffiffiffiffi
1 − rt

p (I t − rt
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − dt

p
· E(I t , t)) + st · Z, (2)

Where I t−1 represents estimated original image at time t − 1, rt
coefficient representing reverse diffusion level at time t, E(It , t)
estimated noise by neural network, st standard deviation of noise at

time t and Z represents random noise vector.
3.4 Proposed methodology

Our proposed method consists of two main stages: noise

simulation using the Gaussian diffusion probabilistic model and

noise reduction using the proposed transformer-based neural

network which provide better results as compared to the existing

model. In the first stage, we introduce Gaussian noise to the input

image to simulate real-world noisy conditions as depicted in

Figure 1. This noise addition process follows the principles of the

Gaussian diffusion probabilistic model, which accurately models the

distribution of noise in natural images. In the second stage, we

utilize a transformer-based neural network to remove the added

noise and restore the image to its original clarity. The architecture of

our noise reduction network includes several essential components:

convolutional layers for feature extraction, normalization layers to
frontiersin.org
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enhance stability and convergence, attention blocks for capturing

long-range dependencies, and feed-forward networks for refining

features and producing the final denoised output.

Let I 0 be an input image, I t be the noisy image at step t, N ( : )

be a normal distribution function, st(t) be a time-dependent

function representing noise variance. The mathematical equation

can be represented as Equation 3:

I t = I 0 +N (st(t)), (3)

now the obtained image I t is processed for the noise reduction

i.e. denoising by using the proposed transformer-based network can

be represented in the following Equation 4.

Dt = T (F (I t , c, t)) : (4)

Where Dt represents the denoised image at step t, T (_) signifies

the transformer network, F (_) function represents the feature

extraction and processing steps before feeding the data to the

transformer network, It noisy image at step t, c represents clean

or partially denoised image, t represents time step information.
3.5 Loss function

The network is optimized during training using a loss function.

Specifically, we employ the L1 loss or mean absolute error, which

measures the difference between the predicted noisy image and the

ground truth noisy image. This loss function effectively guides the

training process to reduce the discrepancy between the output and

target images, enabling the model to produce higher-quality

restorations from degraded inputs.
Frontiers in Marine Science 04
Mathematically, the L1 loss is expressed as Equation 5:

Ls = X̂ t − Ĥq(X t ,C, t)
�� ��, (5)

where Ls represents the loss function, X̂ t denotes the actual

noisy image at timestep t, Ĥ q(X t ,C, t) signifies the predicted noisy

image produced by the network given the input noisy image, and

∥ · ∥ denotes the L1 norm, computing the absolute difference

between the predicted and actual noisy images.

While perceptual and SSIM-based loss functions are known to

enhance visual fidelity in image restoration tasks, we excluded them

in this work to maintain computational efficiency and stability

during training. Our empirical evaluations showed that L1 loss

alone sufficed to achieve a balance between qualitative and

quantitative performance, especially when combined with the

attention mechanisms and diffusion framework. Incorporating

these additional losses could be explored in future work to

potentially further improve perceptual quality.
3.6 Restoration through transformer-based
network

In this paper, we present a novel transformer-based network

tailored for noise reduction in noisy images which is given in

Figure 2. Our network offers a more efficient noise reduction

process compared to conventional methods by utilizing a

shallower architecture, resulting in improved image quality.

Inspired by the effectiveness of Transformer structures, we adopt

a unique approach to computing attention, focusing on channels as

well as spatial dimensions. In the attention block of the transformer,
FIGURE 1

The figure representing noise reduction through transformer model.
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we have incorporated both channel-wise and spatial attention

mechanisms. We also prioritize practicality and efficiency by

focusing on making the Transformer model lightweight and

applying the skip sampling method in our approach. This

modification reduces computational complexity and also

enhances the network’s ability to address color distortions

common in low-quality underwater images.

To prepare the input for the network, we first combine the noisy

image I t and the conditional image C using channel concatenation.

This creates a new feature map F t with n channels, where n is a

hyperparameter chosen based on the network architecture and the

desired level of feature interaction between the two input images.

The time step t is fed into a fully connected (dense) layer to encode

temporal information represented as Equations 6–8:

X t = ⊗ (jj(I t , C)), (6)

F t = Re(FC, t), (7)

FM = X t + F t : (8)

Where ⊗ ( : ) represents convolution, kk( : ) signifies

concatenation, Re represents reshape function and FC represents

fully connected, FM represents feature map.

3.6.1 Network architecture
Let FM denote the feature map resulting from the above

operation. The output achieved from the normalization block is

fed to the convolution block attention module. The Attention-

Enhanced Convolutional Block (AECB), is used to improve feature
Frontiers in Marine Science 05
representation in convolutional neural networks (CNNs). It

consumes an input feature map (FM) and produces an improved

output (FMs) by integrating two attention mechanisms: channel

attention (Mc) and spatial attention (Ms).

• Channel Attention: This module focuses on identifying

“which” information within a feature map is most important by

emphasizing informative channels and suppressing less useful ones.

To achieve this, AECB first reduces the spatial dimensions (height

and width) of the feature map using both average pooling and max

pooling. These operations yield two separate spatial context

descriptors, Fcavg and Fcmax , which capture the average and

maximum responses for each channel. Both descriptors are then

fed into a shared Multi-Layer Perceptron (MLP) to generate the

channel attention map Mc. The MLP typically includes a single

hidden layer with a reduction ratio r, controlling the size of the

hidden representation. A sigmoid activation function s is applied at

the MLP’s output, assigning each channel a weight between 0 and 1.

Greater weights point to more informative channels. The

mathematical expression for the same is Equation 9:

FMc = Mc(FM), (9)

where FMc is the feature map through channel attention andMc

is the function for channel attention applied over the feature map

(FM).

• Spatial Attention: This module is concerned with “where”

informative features are positioned in the spatial domain of the

feature map. Here, AECB employs average pooling and max

pooling along the channel dimension to pool channel-wise

information. This yields two feature maps (Fs _ avg and Fs _max)

that correspond to the average and maximum activations at a given
FIGURE 2

The proposed architecture is working of transformer using attention-enhanced convolutional. Block (AECB) with the sequential working of
(a) Effective Channel Attention Module and (b) Spatial Attention Module.
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spatial position. These maps are concatenated and passed to a

typical convolution layer having a filter size of 7� 7. The sigmoid

activation function (s ) is once again applied to the output of the

convolutional layer, which produces a 2D spatial attention map

(Ms). The regions needing greater attention are represented by

values closer to 1 in Ms, and those needing suppression are

represented by values closer to 0. The mathematical formula for

the same is Equation 10:

FMs = Ms(FMc), (10)

where FMs is output from the spatial attention and Ms is

function to which FMc is applied.

• Overall Attention Process: The channel attention map (Mc) is

transmitted along the spatial axes in order to perform element-wise

multiplication with the initial feature map (FM). This enhances the

feature map according to channel-wise importance. The ensuing

attention-weighted feature map (F0) is then element-wise multiplied

with the spatial attention map (Ms). This again refines the feature

map by concentrating on informative spatial locations. The

resulting output (F00) is refined feature map expressed as

Equations 11, 12:

F0 = Mc(FMc) ȯ FM, (11)

F00 = Ms(F0) o ̇ F0, (12)

where Mc(F) refers to the channel attention function acted on

the feature map FM, : is the element-wise multiplication symbol

FM is the original feature map, F0 is the feature map refined after

channel attention, F00 is the final feature map refined after channel

and spatial attention, Ms(F0) refers to the spatial attention function

acted on the attention-weighted feature map F0, : is an element-wise

multiplication symbol, F0 is the attention-weighted feature map of

the previous equation.

After obtaining the refined feature map F00 from the Attention-

Enhanced Convolutional Block (AECB), the output is passed

through an addition operation and layer normalization block to

enhance feature representation and stability further. The resulting

feature map is then fed into a feedforward neural network (FFNN)

for additional refinement. Mathematically, the process can be

represented as follows Equations 13–15:

Fadd = FFM + F00, (13)

FLN = LayerNorm(Fadd), (14)

FFNN = FFNN(FLN) : (15)

Where FFM is the initial feature map resulted from the

normalization block, LayerNorm denotes the layer normalization

operation that acts on the feature map Fadd , and FFFNN denotes the

output of the feedforward neural network.

The resulting final output image is achieved through applying

another layer normalization block. This step helps ensure that the

feature map goes through extra refinement and normalization prior

to use for additional processing, further helping the overall
Frontiers in Marine Science 06
efficiency of the transformer-based network structure with

augmented attention blocks.
3.7 Enhanced skip-sampling technique

This section introduces the concept of Enhanced Probabilistic

Skip-Sampling (EPSS), a novel technique designed to improve the

efficiency of the inference process in diffusion models. It aims to

address the trade-off between theoretical optimality (large time

steps) and computational cost associated with iterative inference.

We utilize a lightweight network architecture to reduce the

computational burden within each iteration. We propose a

modification to the standard iterative diffusion process that

eliminates the random term. This modification leverages an

alternative non-Markovian process introduced by the Efficient

Method of the Iterative Implicit Probabilistic Model (DDIM)

introduced by Song et al. (2020). This allows for a deterministic

sampling approach during inference.
4 Results & discussions

This section discuss a range of experiments with dataset

description and experimental settings as follows:
4.1 Datasets

In this article, we employ two recently published datasets for

training and testing of networks i.e. Underwater Image

Enhancement Benchmark (UIEB) provided by Li et al. (2019) and

Large-Scale Underwater Image (LSUI) presented by Peng et al.

(2023). UIEB dataset consists of 890 pair images. The underwater

images are downloaded from the Internet, and the ground truth

images are created by a combination of some earlier enhancement

techniques and manual choice. In particular, several enhancement

methods are used to enhance the underwater images gathered to

create diverse improved versions of the LSUI dataset, Since the

number of training images used in earlier datasets was small, the

LSUI dataset contained a higher number of images. The LSUI

dataset contains 5004 underwater images and their respective high-

quality images, which provide a diversity of underwater views,

object types, as well as deep-sea and cave images. Here, we use

the training set of LSUI, containing 4500 pairs of images, to train

the diffusion model. We use the remaining 504 images to check our

proposed method.
4.2 Evaluation metrics

Earlier methods typically depend on subjective evaluation

metrics, including UCIQE and UIQM. These measures, however,

cannot be used to accurately evaluate performance in all scenes. In

this paper, we mainly employ two full-reference assessment
frontiersin.org
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measures: Peak Signal Noise Ratio (PSNR) and Structural Similarity

Index (SSIM). PSNR reflects how much the image content

approximates the reference, whereas SSIM computes the

structural and texture similarity.
4.3 Implementation details

The suggested strategy in this paper is utilized through

PyTorch, where the Adam optimizer is used for minimizing the

objective function. The learning rate is 1:0� 10−4. When training,

the batch size and image size are utilized at 8 and 128� 128,

respectively, in order to trade off computational efficacy and image

quality. Pixel values of images are normalized to ½−1, 1�. The
diffusion model is run at a time step of 2000, and b is linearly

sampled over the range ½10−6, 10−2�. During testing, according to the
configuration provided by Lugmayr et al. (2022), the size of the

input image is set to 256� 256. For balancing performance and

computation runtime, skip sampling strategy is utilized with 10

sampling times. In both the training and testing phases, the

hardware used is a workstation with an NVIDIA RTX 3080 GPU.
4.4 Training performance analysis

To evaluate the training performance and convergence

behavior of the different model variants, we plotted the loss

values over the training epochs (steps). Figure 3 illustrates the

loss curves for DM-AECB Large (larger model variant), DM-

AECB, DM-Trans (Tang et al. (2023)), DM-CA Only Generative

(generative variants of the proposed model having only channel

attention), and DM-AECB Generative (generative variants of the

proposed model). It should be noted that the generative diffusion

variants of the proposed models may not produce extremely

satisfying results but they are much more immune to additive
Frontiers in Marine Science 07
Gaussian noise. The loss curves provide valuable insights into the

training dynamics of each model variant.

Ideally, the loss should decrease steadily over epochs, indicating

effective learning and convergence. However, the observed loss

curves exhibit varying behaviors.

DM-AECB demonstrates a consistent and rapid decline in loss,

reaching a plateau relatively early in training. This suggests efficient

convergence and optimization. DM-AECB Large also shows a

decreasing trend but with more fluctuations and a slower

convergence rate compared to DM-AECB.

DM-Trans exhibits a more erratic loss curve with several

plateaus and spikes, indicating potential challenges in

optimization. DM-CA Only Generative and DM-AECB-

Generative show relatively high and stable loss values throughout

training, suggesting difficulties in learning the target task.

These observations indicate that DM-AECB exhibits the most

promising training behavior, followed by DM-AECB Large. DM-

Trans, DM-CA Only Generative, and DM-AECB Generative

encounter challenges during training, as evidenced by their loss curves.

Further analysis , including additional metrics and

visualizations, is necessary to gain deeper insights into the

underlying reasons for these performance differences and to

identify potential areas for improvement in the respective models.
4.5 Progressive enhancement through
AECB blocks

The progressive enhancement of images through successive

AECB stages vividly demonstrates the cumulative impact of our

model’s architectural design. By iteratively applying the AECB

module, we observe a systematic improvement in image quality,

as quantified by the increasing PSNR and SSIM values. This

quantitative evidence underscores the critical role of multiple

AECB stages in achieving superior underwater image enhancement.
FIGURE 3

Comparison of loss curves training epochs for all model variants.
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Each AECB stage contributes uniquely to the overall image

restoration process. The initial stages are primarily focused on noise

reduction and initial feature enhancement. As the process

progresses, subsequent AECB stages refine these enhancements,

targeting more subtle details and color corrections. This multi stage

approach ensures that the model comprehensively addresses the

challenges posed by underwater image degradation, resulting in a

robust and effective image restoration pipeline.

Furthermore, by decomposing the complex task of underwater

image enhancement into a series of more manageable sub-tasks, our

model exhibits improved generalization capabilities. This is evident

in its ability to handle diverse underwater imaging conditions,

including varying levels of turbidity, color distortion, and low light.

As visualized in Figure 4, the progressive enhancement of image

quality is visually apparent. The initial input image is characterized

by significant noise, color distortion, and reduced visibility. With

each successive AECB stage, these artifacts are progressively

mitigated, culminating in a restored image that closely resembles

the ground truth. This visual corroboration reinforces the efficacy of

our proposed multi-stage AECB architecture.
4.6 Quantitative comparison with leading
methods

In this paper, we compare our method with eight existing

techniques in Table 1, which include both traditional methods
Frontiers in Marine Science 08
and deep learning models. Traditional methods such as Fusion

(Ancuti et al. (2017)), MMLE (Zhang et al. (2022)), and HLRP

(Zhuang et al. (2022)) generally exhibit lower performance

compared to their deep learning counterparts, with HLRP

performing the weakest among them. Among the deep learning

models, TACL (Liu et al. (2022)) and Water-Net (Li et al. (2019))

show competitive results, but Ushape (Peng et al. (2023)) achieves

the highest PSNR and SSIM scores. Notably, our method surpasses

all these techniques, delivering PSNR values of 28.78 and 29.56, and

SSIM scores of 0.91 and 0.98 on the LSUI and UIEB datasets,

respectively, while maintaining a processing time and parameter

count comparable to leading models. This demonstrates that our

approach provides the best overall enhancement in underwater

image quality.
4.7 Statistical analysis of quantitative
results

To validate the robustness of our findings, we report the mean

and standard deviation of PSNR and SSIM (across three trials) for

all methods. Additionally, paired t-tests were performed between

the proposed DM-AECB and the strongest baseline, DM-Trans, on

both benchmarks.

As shown in Table 2, DM-AECB consistently outperformed

DM-Trans, with all paired t-tests indicating statistically significant

improvements (p< 0.05).
FIGURE 4

Progressive enhancement of underwater images through each transformer stage.
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4.8 Visual comparison

As shown in Figure 5, our method demonstrates superior

performance in enhancing underwater images compared to several

existing techniques, including both traditional methods like Fusion

(Ancuti et al. (2017)) and MILLE (Zhang et al. (2022)), and deep

learning models such as WaterNet (Li et al. (2019)), FUnIE (Islam

et al. (2020b)), Ucolor (Li et al. (2021)), and Ushape (Peng et al.

(2023)). Traditional methods, such as Fusion and MILLE, generally

fail to restore color balance effectively, often leaving images with

unnatural hues or excessive blur, as seen in the first and second

columns. Among the deep learning models, WaterNet and Ucolor

produce significant improvements in color correction and contrast

but still struggle with preserving fine details, particularly in complex

scenes, as observed in the third and fifth rows. Ushape shows

competitive results, with enhanced contrast and sharper details,

particularly in the middle rows. However, it still exhibits some

over-saturation and slight loss of texture in certain areas. Our

approach, illustrated in the second-to-last column, consistently

provides the most balanced enhancement across all sample images.

It effectively restores natural colors, enhances contrast without over-
Frontiers in Marine Science 09
saturation, and preserves fine textures, closely matching the ground

truth (GT) in the last column. This consistent performance across

diverse underwater scenes highlights the robustness and effectiveness

of our method in underwater image enhancement.
4.9 Ablation study

The ablation study unequivocally establishes DM-AECB as the

superior model variant, as detailed in the following sections.

4.9.1 Ablation study quantitative analysis
Table 3 quantitatively summarizes the individual contributions

of key components within the DM-AECB architecture by reporting

the final average PSNR values for different model variants.

DM-AECB consistently delivers significantly higher PSNR

values across all validation steps as training progresses. This

marked performance differential underscores the model’s

exceptional capability to preserve image quality while effectively

mitigating noise. In contrast, DM-AECB Large, while yielding

commendable results, slightly underperforms compared to DM-
TABLE 2 Statistical comparison between DM-AECB and DM-Trans on LSUI and UIEB datasets.

Method Dataset PSNR (mean ± std) SSIM (mean ± std) p-value (t-test)

DM-Trans LSUI 27.65 ± 0.05 0.887 ± 0.001 –

DM-AECB LSUI 28.77 ± 0.04 0.912 ± 0.008 3.5×10−5 (PSNR) 0.025 (SSIM)

DM-Trans UIEB 28.20 ± 0.02 0.943 ± 0.0002 –

DM-AECB UIEB 29.54 ± 0.02 0.979 ± 0.001 7.4×10−5 (PSNR)0.00024 (SSIM)
TABLE 1 Comparison of PSNR and SSIM values for different underwater image enhancement methods on the LSUI and UIEB datasets.

Method
Param.
(Millions)

Time (sec.)
LSUI UIEB

PSNR↑ SSIM↑ PSNR↑ SSIM↑

Ancuti et al. (2012) (Fusion) – 1.23s 17.69 0.644 18.79 0.792

Zhang et al. (2022) (MMLE) – 0.30 17.70 0.725 19.30 0.830

Zhuang et al. (2022) (HLRP) – 0.32 12.64 0.192 12.56 0.251

Liu et al. (2022) (TACL) 11 0.1 20.69 0.822 23.09 0.883

Li et al. (2019) (WaterNet) 25 0.55 22.99 0.789 20.48 0.789

Islam et al. (2020b) (FUnIE) 7 0.02 18.78 0.619 17.61 0.595

Fabbri et al. (2018) (UGAN) 57 0.06 22.79 0.754 20.59 0.682

Uplavikar et al. (2019) (UIE-DAL) 19 0.04 21.12 0.723 17.00 0.755

Li et al. (2021) (Ucolor) 157 1.87 22.91 0.890 20.78 0.872

Peng et al. (2023) (Ushape) 66 0.04 24.16 0.932 22.91 0.910

Tang et al. (2023) (DM-Trans) 10 0.13 27.65 0.8867 28.20 0.9429

Ours (DM-AECB) 10 0.14 28.78 0.91 29.56 0.98
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AECB. The performance gap between these top-tier models and the

remaining variants, including DM Trans and generative models, is

substantial, highlighting the efficacy of the DM-AECB architecture

in optimizing image restoration.

The data in Table 3 clearly indicates that the diffusion process

contributes a notable +2.0 dB boost in PSNR over the base model,

illustrating its effectiveness in noise reduction and image

restoration. Addition of Attention-Enhanced Convolutional

Blocks (AECB) further advances performance by +3.5 dB,

demonstrating the critical role of targeted dual channel and

spatial attention in emphasizing important underwater features.
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Finally, the skip-sampling technique enhances PSNR by an

additional +1.5 dB, showing its utility in refining the image

quality while optimizing computational efficiency.

These quantified improvements complement the PSNR curves

shown in Figure 6 and the visual comparisons in Figure 7, providing

robust numerical evidence of the effectiveness of each component.

This comprehensive evaluation reinforces the design rationale and

benefits of the DM-AECBmodel for underwater image enhancement.

4.9.2 Visual comparison
Visual analysis of underwater image enhancement results in

Figure 7 indicates that DM-AECB consistently generates the most

natural and visually appealing images. This variant effectively

restores colors, preserves fine details, and minimizes artifacts

across various underwater scenes. Although DM-AECB-Gen

shows potential in color correction, it introduces more artifacts

and less natural appearance compared to DM-AECB. DM-Trans

improves visibility but often causes color distortions and blurriness.

DM-CA-Gen struggles with both color correction and detail

preservation, resulting in less pleasing outputs. Generative

variants (DM-AECB-Gen and DM-CA-Gen) suffer from color

distortion but are noted for robustness to noisy inputs, as visible

in column 01. Further quantitative evaluation using metrics such as

PSNR and SSIM could provide additional insights into their

comparative performance.
TABLE 3 Performance improvements from diffusion, AECB, and skip-
sampling modules measured by final validation PSNR (dB).

Model variant
Final PSNR

(dB)
PSNR gain over previous

variant

DM AECB 02
(base)

22.5 Baseline

DM AECB
Generative

24.5 +2.0 (incorporates diffusion)

DM CA Only
Generative

28.0 +3.5 (adds AECB attention)

DM AECB 06 (full) 29.5 +1.5 (adds skip-sampling)
FIGURE 5

A visual comparison of underwater images and their corresponding enhanced results is presented. The ground truth images are shown in the
second-to-last column for reference.
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4.9.3 GPU utilization
GPU power consumption analysis from Figure 8 reveals that DM-

AECB is the most energy-efficient model, rapidly stabilizing at a low

power level without requiring additional GPU resources compared to

DM-Trans. DM-AECB Large also demonstrates controlled power usage

but consumes slightly more energy. DM-Trans exhibits fluctuating

power consumption, and both generative models show significantly

higher energy demands. These findings underscore DM-AECB’s

efficacy for cost-effective and environmentally friendly deployment.
Frontiers in Marine Science 11
5 Conclusion

In this paper, we present a novel approach for underwater image

enhancement for marine robotic systems by integrating diffusion

models with attention-enhanced convolutional blocks. Our model

incorporates both channel and spatial attention mechanisms within

the Attention-Enhanced Convolutional Block (AECB), leading to

significant improvements in image quality metrics such as PSNR and

SSIM. Extensive experiments, including ablation studies, demonstrate
FIGURE 7

Visual comparison of underwater images and enhanced outputs produced by different model variants.
FIGURE 6

Comparison of PSNR values over training epochs for all model variants.
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that the inclusion of these attention mechanisms results in substantial

enhancements over existing methods. A key aspect of our work is the

addition of denoising capabilities through generative variants of the

proposed model. It helps in achieving further clarity by effectively

reducing noise in challenging underwater environments. The ablation

studies underscore the importance of this generative component,

revealing that it plays a crucial role in improving both the perceptual

quality and the quantitative metrics of the enhanced images. This

work sets a new benchmark in underwater image enhancement,

providing a robust, practical solution for improving image quality in

difficult underwater conditions.

While demonstrating promising efficiency and quality in

controlled experiments, real-world deployment on autonomous

underwater vehicles (AUVs) requires further consideration of

inference speed, onboard computational limits, and power

consumption. Future work will optimize the model for embedded

platforms and validate performance in actual marine environments

to ensure suitability for marine conservation applications.
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