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The accuracy and interpretability of ship energy consumption prediction results

are important for ship energy efficiency optimization. In order to improve the

accuracy of ship energy consumption prediction and enhance the model

interpretability, this paper proposes a ship energy consumption prediction

method based on Stacking and SHAP. Firstly, based on Stacking theory,

multiple heterogeneous and complementary base models were selected using

residual correlation analysis methods to construct a fusion model. And then, to

address the “black box” characteristics of the fusion model, SHAP is used to

analyze the base model and energy consumption impact characteristics of the

fusionmodel in terms of their interpretability. A large container ship is used as the

research object to verify the effectiveness and interpretability of the proposed

method. The experimental results show that, in terms of accuracy, compared

with the best single model (RF), the mean absolute error (MAE), mean square

error (MSE), and root mean square error (RMSE) of the Stacking fusion model are

reduced by 4.1%, 16.1%, and 8.3%, respectively, and the R² is improved by 1.5%.

Meanwhile, in terms of interpretability, SHAP reveals that Random Forest (RF), k-

Nearest Neighbor (KNN), and Gradient Boosting (GB) models play a dominant

role in the fusion model, with a total contribution value of about 67%. In addition,

sailing speed, mean draft, and trim are the main factors affecting the energy

consumption of a ship, and the contribution value of each influential feature can

be quantitatively measured. The proposed method ensures the prediction

accuracy while enhancing the model interpretability, which can provide more

reliable and transparent decision support for ship energy efficiencymanagement.
KEYWORDS

maritime big data, ship energy consumption prediction, fusion modeling, explainable
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1 Introduction

1.1 Background

Maritime transportation plays a crucial role in international

trade (Cret et al., 2024), however, inevitably produces a large

amount of greenhouse gases (GHGs), which bring serious harm

to the global environment. According to statistics provided by the

International Maritime Organization (IMO), carbon dioxide (CO2)

emitted from ships was about 1 billion tons in 2018, which is

equivalent to about 2.9% of the cumulative global CO2 emissions. In

response to this problem, the International Maritime Organization

(IMO) has proposed a series of measures to address it (Zhang et al.,

2024) and developed an initial strategy to reduce GHG emissions.

The IMO’s Greenhouse Gas Strategy, published in 2018, sets out a

commitment to reduce total annual GHG emissions to 50 percent of

2018 levels by 2050 (Bai et al., 2025). In addition, shipping

companies have attempted to adopt various operational solutions

(Jahagirdar et al., 2025), including route and speed optimization

methods to achieve the goal of reducing energy consumption of

ships and reducing GHG emissions (Zhou et al., 2024). For

example, Ma et al. (2021) proposed a multi-objective strategy

model that simultaneously optimizes speed and route, balancing

fuel efficiency, sailing time, and carbon emissions, providing an

operational optimization solution for green shipping strategies.

Ship energy consumption prediction is the basis and

prerequisite for ship energy efficiency optimization, which is

crucial for optimizing energy efficiency and reducing emissions in

the shipping industry (Yan et al., 2024). However, ship energy

consumption is significantly nonlinear and complex due to the

coupled influence of various factors such as GPS speed, draft,

weather conditions, and marine environment, leading to

significant challenges in accurately predicting ship energy

consumption. In addition, since most of the current data-driven

ship energy consumption prediction models are black-box models,

their prediction results are not interpretable, limiting the practical

application of the models. Therefore, high-precision and

interpretable prediction of ship operating energy consumption is

a practical problem that needs to be solved urgently in the shipping

industry (Shu et al., 2024).
1.2 Literature review

1.2.1 Ship energy consumption prediction
methods

Ship energy efficiency optimization is the core link in the

construction of green shipping system, and the key lies in the

establishment of high-precision energy consumption prediction

models. Ship energy consumption prediction methods can be

mainly classified into three categories: ship mechanism-based

energy consumption prediction models, data-driven energy

consumption prediction models, and ship energy consumption

prediction models based on fusion models.
Frontiers in Marine Science 02
In ship mechanism-based energy prediction models, the

theoretical computational model solves for the hull resistance

through the Navier-Stokes equations and combines the propeller

thrust-torque characteristics to establish the energy consumption

equation, which is calculated by means of an empirical formula.

This type of model is derived from first principles of ship resistance

and propulsive efficiency and is often referred to as white box

modeling. Holtrop and Mennen (1982) empirical formulas are used

to calculate the ship’s resistance in calm water, and then balance-of-

motion theory is applied to determine the amount of power

required to operate the ship. However, since ships in practice do

not always sail in calm water, they are often affected by

environmental factors such as wind, waves and currents during

the voyage, resulting in changes in energy consumption. Therefore,

Kim et al. (2023) developed a ship energy consumption prediction

model that effectively takes into account the effects of external

environmental factors by using an empirical method to calculate the

ship’s resistance during navigation based on the ship’s speed,

loading conditions, and environmental factors (e.g., wind, waves,

and currents). This approach provides reliable energy consumption

prediction by integrating ship operational data and environmental

conditions, which supports the optimization of energy efficiency in

the global fleet. Liu et al. (2024) and (Yang et al., 2024) consider

complex marine environmental parameters and model the energy

consumption of ships, thus more accurately reflecting the actual

operational energy consumption conditions during navigation.

Due to the large spatial and temporal variations in the factors

affecting ship energy consumption, it is challenging to realize

accurate prediction of ship energy consumption through models

based on physical-logical relationships and empirical formulas

under complex and variable conditions (Wang et al., 2024b), and

the simplifications made in the mechanistic modeling often result in

the model failing to reflect the actual conditions completely, which

leads to a usually lower prediction accuracy.

With the continuous development of the Internet of Things

(IoT) technology, data related to ship energy consumption are

continuously collected, and data-driven energy consumption

prediction models based on data have begun to be widely studied.

Early data-driven models are mainly based on traditional machine

learning methods, such models do not require complex physical

analysis, the model building is relatively simple, practical, can more

comprehensively consider the factors affecting the fuel

consumption, and the use of measured data to build the model,

the resulting model has a higher accuracy rate. For example (Agand

et al., 2023), utilized XGBoost, MLR, Decision Tree (DT) and

Artificial Neural Networks (ANN) to predict the energy

consumption of a passenger ferry, and the results show that the

integrated model based on XGBoost performs the best in terms of

prediction accuracy (Lin and Wang, 2025). presented a model

combining LASSO and Bayesian Ridge Regression (Voting-BRL)

integrated model with feature selection by Analysis of Variance

(ANOVA), which effectively reduces the data dimensionality and

noise interference, thus improving the prediction accuracy. In

addition (Liu et al., 2024), proposed an energy consumption
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prediction method based on the TGMAmodel, which optimizes the

model inputs through feature selection to further improve the

prediction accuracy. Meanwhile, Ma et al. (2023a) proposed a

path decision method based on intelligent mapping group

optimization algorithm for ship route planning, which showed

good stability and energy saving effect under complex

sea conditions.

With the continuous development of deep learning, researchers

have begun to explore more complex models to capture the

nonlinear relationship between ship energy consumption and

multiple factors, so as to provide a reliable basis for optimizing

ship energy consumption. Chen et al. (2025) The reconstructed

trajectory was gradually shortened by using a bidirectional gate-

recurrent unit (GRU) network to simultaneously train on the

historical trajectory data, thus improving the ship energy

consumption The accuracy of ship energy consumption

prediction is improved. Wang et al. (2023b). A ship energy

consumption model based on Genetic Algorithm with Long and

Short-Term Memory (GA-LSTM) is proposed, which shows good

prediction accuracy as low as 0.29% compared with traditional

models such as Back Propagation (BP), Support Vector Regression

(SVR), and Autoregressive Integrated Moving Average (ARIMA).

Zhang et al. (2024) A bi-directional long- and short-term memory

network (Bi-LSTM) model incorporating an attention mechanism

is proposed, which significantly improves the accuracy of fuel

consumption prediction under real operating conditions based on

multi-source information such as sensor data, voyage reports, and

meteorological data. Wang et al. (2024c) A self-attention

mechanism-based long- and short-term memory network (SA-

LSTM) model, performed well in predicting fuel consumption

and carbon intensity indices, with a 12% reduction in mean

absolute percentage error (MAPE) compared to traditional

LSTM models.

From the early days of traditional machine learning methods to

the application of deep learning techniques, the prediction accuracy

of data-driven based models has been continuously improved.

However, data-driven models are highly dependent on the quality

and completeness of the training data, and the predictive stability of

the models decreases significantly when the data are scarce or of

poor quality (Zhang et al., 2024). Meanwhile, data-driven energy

consumption prediction studies tend to model ship energy

consumption based on a certain algorithm, which can only

analyze the energy consumption data from a specific perspective

or structure, which also limits the prediction performance of ship

energy consumption models (Hu et al., 2025a).

Fusion modeling refers to the modeling of ship energy

consumption by fusing several different algorithms with the aim

of improving the performance of ship energy consumption

prediction (Hu et al., 2025b). Ma et al. (2024) suggests that

combining multiple models by stacking fusion method can

effectively improve the performance of ship fuel consumption

prediction. Hu et al. (2025b) further develops this method by

applying stacking method in the stacking method is applied to

the energy consumption prediction of large container ships by

integrating multiple single models to establish a hybrid energy
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consumption prediction model, and the experimental results show

that the accuracy of the hybrid model is better than that of a single

model. Ma et al. (2023b) addressed the multiple objectives of voyage

scheduling, fuel efficiency, and regulatory compliance in ship energy

consumption prediction. They constructed an energy efficiency

decision support system integrating emission control and

scheduling strategies, providing an effective path for energy

consumption optimization in actual operations and laying the

foundation for decision-making based on integrated modeling.

Cheng et al. (2024) systematically compared seven feedforward

neural network models using different datasets and multiple error

evaluation metrics, revealing the direct linkage mechanism based on

the RVFL fusion model and confirming its key role in enhancing

model representation ability and generalization performance,

thereby providing a robust and reliable prediction solution. Wang

et al. (2024b) used the Stacking method to combine multiple single

models into an ensemble model. The experimental results showed

that the ensemble model significantly improved prediction

accuracy, with a 66.7% reduction in MSE and a 12.7% reduction

in MAE compared to the best single model. Lan et al. (2024)

constructed a fusion model based on the Blending method, and the

experimental results showed that the proposed fusion model has

higher accuracy in fuel consumption prediction. The above studies

indicate that the fusion model method can achieve good prediction

accuracy in ship energy consumption modeling. Meanwhile, the

multi-model fusion approach has also proved its advantages in

other fields. For electric vehicle energy consumption prediction,

Mubarak et al. (2023) proposed a model based on stacked integrated

learning, which combines basic machine learning algorithms such

as Decision Trees (DT), Random Forests (RF), and K Nearest

Neighbors (KNN), and significantly improves the accuracy and

stability of prediction. In addition, the advantages of the fusion

modeling approach have been validated in various fields such as

earthquake casualty prediction (Wang et al., 2025), wind power

prediction (Wang et al., 2024a) and building energy consumption

prediction (Gupta et al., 2023).

1.2.2 Interpretability of ship energy consumption
models

In the practical application scenario of ship energy

consumption, decision makers are not only concerned with the

accuracy of ship energy consumption prediction, but also with the

process and results of the prediction model being interpretable and

trustworthy. In ship energy consumption prediction, models are

usually classified into white-box models, black-box models and

gray-box models (Fan et al., 2025). However, BBM and GBM based

on the black-box nature lack good interpretability to provide

transparent ship energy consumption analysis for shipping

companies or maritime organizations, resulting in difficulties for

relevant technicians to trust the final prediction results (Wang et al.,

2023a). Recent studies have explored the use of Explainable

Artificial Intelligence (XAI) techniques to improve the

transparency and interpretability of predictive models. For

example, Chen et al. (2024) proposed a stacked model for flow

prediction with enhanced interpretability through feature
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contribution analysis. Cui et al. (2024) combined SHAP with data-

driven predictive control of models to improve the interpretability

of neural networks in building energy systems. Baraheni et al.

(2024) applied LIME and SHAP to interpret household energy

consumption predictions, identifying key features contributing to

the predictions. Shen et al. (2024) In a related study, SHAP was used

to model the interpretability of multi-source input features of a

stacked integration model, and successfully revealed the relative

contribution of each feature to the prediction results, realizing the

unity of accuracy and interpretability. In addition, Zhu et al. (2024)

developed a framework combining the stacked integration

approach with XAI tools such as SHAP and LIME for financial

fraud detection, achieving high accuracy and interpretability. The

above studies show that interpretable methods (especially SHAP

and LIME) are interpretable and effective in various application

scenarios such as building and home energy management, traffic

flow prediction, and financial fraud detection.
1.3 Research gap and contributions

Although existing research has achieved some results in the field

of ship energy consumption prediction, there are still some

shortcomings. First, there are deficiencies in multi-model fusion

methods: first, existing fusion methods mostly rely on

homogeneous model combinations (e.g., multiple tree models or

neural networks of the same type), and lack a systematic evaluation

of the synergistic effect of heterogeneous models (Ma et al., 2024).

Second, current research relies heavily on the researcher’s empirical

judgment or intuitive comparison of the performance of a single

model when selecting the base models involved in fusion. This

highly subjective selection method lacks a quantitative basis (Fan

et al., 2024); Second, there are deficiencies in predictive model

interpretability: first, most of the current data-driven models are

black-box models, which do not have interpretability; second, when

the fusion includes complex base models (e.g., deep neural

networks), its internal decision-making process is highly complex

and nonlinear, resulting in shipping managers and decision-makers

being unable to know how different input features will be

interpreted from the prediction results alone. The limitations of

inexplicability constrain the application of ship energy

consumption models in actual ship operations (Ma et al., 2023c).

To address the above shortcomings, this paper proposes a

hybrid framework that combines heterogeneous multi-model

fusion with interpretability. The specific contributions are

as follows:
Fron
1. Construct a Stacking fusion model that integrates multiple

heterogeneous and complementary base models. The

fusion model can integrate the advantages of linear

models, tree models and neural networks to enhance the

generalization ability and prediction accuracy of the model.

2. A ship energy consumption fusion model based on residual

correlation is proposed. The model is based on a

mainstream single model, and six different model
tiers in Marine Science 04
combinations are designed by utilizing the residual

correlation among models.

3. A two-layer interpretability strategy for the ship energy

consumption fusion model was constructed. The base

model contribution and the contribution of influential

features of the ship energy consumption fusion model

were quantitatively evaluated.

4. Simulation experiments are carried out on real container

ship operation data to verify the effectiveness and feasibility

of the proposed method.
The remainder of this paper is organized as follows: section 2

introduces the research methodology, including the introduction of

the Stacking fusion model, the SHAP interpretability method, and

the model performance evaluation index. Section 3 elaborates the

source of the case ship dataset, data processing methods and data

analysis. Section 4 presents the experimental results, focusing on the

selection method of the base model in the Stacking fusion model,

the comparison before and after model hyperparameter

optimization, and the superior prediction performance of the

Stacking fusion model over the single model. Furthermore, the

SHAP interpretability method is applied to analyze the prediction

results of the Stacking fusion model from both local and global

perspectives. Section 5 summarizes the main findings and proposes

future research directions.
2 Methodology

2.1 Overall framework

In this study, from data collection and processing, data

modeling, performance analysis of the model to the

interpretability analysis of the model, the accurate prediction of

ship energy consumption and interpretability is gradually realized,

and the specific technical roadmap is shown in Figure 1.

Step 1: Data collection and processing. Through the collection

of multi-source data such as main engine energy consumption,

navigation status and maritime environment. Subsequently,

frequency synchronization, data cleaning and feature processing

are carried out to construct a unified dataset, which lays a solid data

foundation for subsequent modeling.

Step 2: Data modeling. Data modeling is the core step in the

technical route. First, the current mainstream ship energy modeling

methods (10 different single models) are selected. Then, based on

the residual correlation among the ten models, six groups of weakly

correlated heterogeneous model combinations (A-F) were selected

from 240 possible combinations as base models by setting a

correlation coefficient threshold (<0.8). Finally, Ridge regression

(Ridge) is selected as the meta-model of Stacking fusion model,

which improves the prediction performance of the model through

the fusion mode of two-layer prediction.

Step 3: Model performance analysis. The model performance

analysis quantitatively measures the prediction performance of the

model through four performance indicators: MAE, MSE, RMSE, and
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R², and verifies the performance advantages of the Stacking model

compared with a single model in energy consumption prediction.

Step 4: Model interpretability analysis. The SHAP

interpretability method is used to analyze the ship energy

consumption fusion model at two levels, and to analyze the

specific contributions of different base models and different input

features to ship energy consumption.
2.2 Fusion model based on the stacking
framework

Stacking fusion model is a multilevel machine learning

framework, which aims to improve the generalization ability and

prediction accuracy of the model through the combination of

multiple Base Learners and a Meta Learner. The core idea is to

utilize the diversity of different Base Learners so that each of them

learns different features of the data, and synthesize the outputs of

each base model through the Meta Learner to obtain the final

prediction results. The working principle and process of the

Stacking fusion model specific to this study is shown in Figure 2.

In the workflow of Stacking, firstly, the input data is divided into

training set and test set, and the training set is further split by means

of K fold cross-validation to ensure that the base model is not
Frontiers in Marine Science 05
overfitted, as shown in Figure 3. In each cross-validation, K − 1

fold data is used for training and the remaining portion is used for

validation, where each base model is trained on a different data

division and predictions are generated. Subsequently, the predicted

outputs of all base learners are stacked to form a new feature set that

consists of the predicted values of each base model on the training

data, while the true labels remain unchanged. This new feature set is

used to train the meta-learner, whose role is to learn the relationships

between the base models and generate the final predictions. In the

testing phase, the test data is first passed through the trained base

learner to generate multiple predictions, which are then averaged and

connected to form a new test set, and then the trained meta-learner is

used to predict the new test set, which ultimately generates more

accurate predictions. The advantage of Stacking method is that it can

combine different types of models, such as linear regression, decision

tree, neural network, etc., so as to give full play to their respective

advantages and avoid the limitations of single model.

The Stacking fusion model in this study consists of a training

process and a testing process. Training process.

1. The ship energy consumption data N � F (N is the number

of samples, F is the number of features) is divided into a training set

P and a test set M (where M = N − P).

2. Using K fold cross validation for each base model, the data

are divided into K mutually exclusive subsets, where K − 1 subsets
FIGURE 1

Technical roadmap.
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are used as the training set and 1 subset is used as the validation set.

Each base learner is trained on these K − 1 training sets and

predicted on the corresponding validation sets, thus obtaining the

prediction results of each model on the K validation sets.

Subsequently, these predictions are stacked by rows to obtain the

new feature vectors of the training set Ai � 1(i = 1, 2, 3, 4, 5).

3. Splice the new feature vector Ai � 1(i = 1, 2, 3, 4, 5) to get the

feature matrix A
P�V

(P is the number of training samples, V is the

number of base learners).

4. Train the meta-learner with the new spliced feature matrix

and labels to get the final model. Testing process.

1. Calculate the prediction results of the samples in the test set

using the previously trained model to form a 1-dimensional M line

prediction vector Bi � 1(i = 1, 2, 3, 4, 5).

2. Average the prediction results of each model, and then stack

the outputs of these models in columns to form a new data in M �
V dimensions (M represents the number of test samples, V

represents the number of base learners), and the next layer of

models (meta-learners) will be further trained based on them.

3) Calculate the prediction results of M � V using the Stacking

fusion learning model obtained in the training phase, where M � 1

is the test result of the stacking fusion learning model.
2.3 SHAP interpretability

The SHAP (SHapley Additive exPlanations) algorithm is a

powerful and widely used tool for interpreting the outputs of

complex models, helping to understand how the model arrives at

its predictions, and improving the transparency of the model. SHAP

originates from cooperative game theory. Its core idea is to consider

all possible combinations of features, calculate the contribution of

each feature to the predicted value in different combinations, then

weight the average of these marginal contributions, and finally

obtain the SHAP value of the feature. In ship energy consumption
Frontiers in Marine Science 06
prediction, SHAP algorithm can be used to explain the contribution

of different factors, such as wind speed and GPS speed, to make the

prediction results more interpretable. Shapley value is defined

as follows:

Let the feature set S = 1, 2,…, df g, the Shapley value fj of

feature j calculate its marginal contribution expectation before

and after adding S⊆ S jf gj :

fj = o
S⊆ S ∖ jf g

Sj j ! (d − Sj j − 1) !
d !

½v(S ∪ jf g) − v(S)�

where, d is the set of all features, S is any subset of d that does

not contain the feature j, v(S) is the predicted value of the model

that only contains the subset S of, v(S ∪ jf g) is the predicted value

of the model after adding the feature j to the subset S, Sj j denotes the
size of the subset S, and d ! is the factorial of the total number of

features d to denote the full arrangement of features.

The predicted values of the model are decomposed by SHAP

into the baseline values and feature contribution values, and the

formula is as follows.

f (x) = f0 +o
d

j=1
fj, f0 = E½f (x)�

where, f (x) is the predicted value of the model, f0 is the baseline
value, fj is the SHAP value of the j th feature, E½f (x)� is the

expectation of the predicted value of all possible samples.
2.4 Evaluation criteria

In order to quantitatively measure the difference in prediction

performance between the Stacking fusion model and the base

model, four types of metrics, Mean Absolute Error (MAE), Mean

Square Error (MSE), Root Mean Square Error (RMSE), and

Coefficient of Determination (R²), are used in this study.
FIGURE 2

The diagram of the stacking model framework.
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1. Mean Absolute Error (MAE).

MAE is defined as the arithmetic mean of the absolute deviation

between the predicted value and the real value, and its mathematical

expression is:

MAE =
1
No

N

i=1
yi − byij j

Where yi is the real energy consumption value of the first i

sample, y∧i is the predicted value of the model, and N is the total

number of samples. MAE directly reflects the average absolute

deviation between the predicted value of the model and the real

energy consumption value, and the unit is consistent with the

energy consumption scale.
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2. Mean Squared Error (MSE).

Mean Squared Error (MSE) is the average of the squared error

between the predicted value and the true value of the sample, which

is defined as:

MSE =
1
No

N

i=1
(yi − ŷ i)

2

The unit of MSE is the square of the energy consumption

measure, and the smaller its value is, the closer the model prediction

is to the real value; the larger the value is, the larger the prediction

deviation is. The significance of the symbols in the formula is the

same as the mean absolute error (MAE).

3. Root Mean Squared Error (RMSE).
FIGURE 3

K-fold cross-validation plot in Stacking. * indicates matrix multiplication in the context of the machine learning model structure. It represents the
operation between matrices during the stacking ensemble process.
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RMSE is the square root of MSE, and its expression is:

RMSE =
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(yi − byi)2

s

The unit scale of RMSE is consistent with the original data,

reflecting the degree of deviation of the predicted value from the

true value, the value range is [0, +∞), the smaller the value indicates

that the model prediction accuracy is higher.

4. Coefficient of Determination (R2).

The degree of fit R2 is defined as the proportion of the total

variance explained by the model to the total variance of the data,

and its calculation formula is:

R2 = 1 −
o
N

i=1
(yi − byi)2

o
N

i=1
(yi − �y)2

where �y is the mean value of the true energy consumption. R2It

is the core indicator of the model’s goodness of fit, and its value

ranges from R2 ∈ ½0, 1�, and the closer the value is to 1, the stronger
the model’s ability to explain the variance of the data.

3 Case study

3.1 Data sources

In order to evaluate the effectiveness of the proposed method, a

representative 10,000-unit class container ship is selected as the object

of this study, and the specific information of the container ship,

see Table 1.

A total of 24,386 operational data were collected for the study

object from September 14, 2017 to September 25, 2018, which were

used to carry out the modeling analysis of the ship’s main engine

energy consumption. Compared with the auxiliary engine and boiler

system, which have stable energy consumption characteristics, the

dynamic characteristics of main engine energy consumption have

more significant research value for fuel efficiency optimization and

operation cost control.
3.2 Data processing

To establish a high-precision ship energy consumption

prediction model, the construction of a high-quality ship energy
Frontiers in Marine Science 08
consumption dataset is an important prerequisite. Therefore, a

universal ship energy consumption data processing method is

designed, from the init ia l data integration and time

synchronization, to the feature conversion of energy consumption

data, as well as the processing of null, noise and anomaly data, to the

final feature selection, and finally obtain the high-quality ship

energy consumption dataset, as shown in Figure 4, the formula in

Figure 4 refers to Table 2.

3.2.1 Data integration and time synchronization
First, data from different sources, including host fuel

consumption, navigation parameters, and environmental

conditions, are collected at different frequencies, resulting in

different amounts of feature data that cannot be directly used for

modeling. Therefore, a key step is to ensure that all data streams are

temporally consistent. Given that the host’s energy consumption

data is recorded at 15-minute intervals, all other relevant feature

data is synchronized with this frequency to construct a unified

dataset, as shown Table 3. The dataset adopts a standardized 15-

minute collection frequency, which completely records the core

parameters including main engine energy consumption, rotational

speed, and ground speed, and at the same time covers multi-

dimensional navigational environment parameters such as bow/

transom draught, marine meteorology (wind direction/wind speed/

current speed), and sea state (wave height/direction), so as to ensure

the consistency of the data and the continuity of the time series.

To further illustrate the distribution characteristics of the

collected dataset, Figure 5 presents the boxplot visualization of

the main input variables. The figure shows that GPS speed, mean

draft, and trim have relatively concentrated distributions, while

environmental factors such as wind and wave direction exhibit

wider ranges and larger variability, reflecting the complex and

dynamic nature of marine conditions. The range of main engine

(ME) consumption also demonstrates clear fluctuations, consistent

with the variations in vessel speed and sea states. Overall, this

visualization helps to provide an intuitive understanding of the

dataset and supports the subsequent model analysis and validation.

3.2.2 Data characterization
In order to construct more meaningful feature variables for the

ship energy consumption prediction model of this study, the

features of main engine energy consumption, bow and stern

drafts, as well as meteorological information (wind direction) and

sea state information (wave direction and current direction) are

converted by combining the data features in Table 2.

3.2.3 Data processing
The data preprocessing procedure in this study mainly follows

the framework proposed by (Hu et al., 2022), which has been widely

applied in ship energy consumption and trim optimization

research. To ensure data quality and consistency, all sensor data

with different sampling frequencies were synchronized to a 15-

minute interval. Missing values in key parameters such as main

engine energy consumption and GPS speed were filled using a

moving average interpolation.
TABLE 1 Container ship information.

Parameter
Numerical

value
Parameter

Numerical
value

Length(m) 349 TEU 10060

Width(m) 46 Gross tonnage(t) 114394

Design speed(kn) 24.8 Year 2007

Maximum
draught(m)

14.5
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FIGURE 4

Ship energy consumption data processing flow.
TABLE 2 Data feature conversion.

Data feature conversion Characteristic conversion formula
Formula conformity

interpretation

Characteristic conversion of main engine energy consumption MCd =
MCa � 60

15
� 24

MCd is the daily energy consumption, M
Cais the main engine energy consumption
of the container ship in every 15 minutes

Bow and Stern Draft
Characteristic
Conversion

Mean draft Dmean Dmean =
(DA + DF )

2
DF is the bow draft, DA is the stern draft

Trim Tr Tr =
(DA − DF )

2

Conversion of wind,
wave and current
relative direction
characteristics

Wind, Wave
fRW =

360 − fW − fHj j, fW − fHj j > 180

fW − fHj j,         fW − fHj j ≤ 180

8<:
fW is the true direction of wind, fH is the
sailing direction, i.e., the direction of bow

to

Currents fRC =
fC − fHj j − 180, fC − fHj j > 180

180 − fC − fHj j, fC − fHj j ≤ 180

8<: fC is the true direction of current
F
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Outliers were detected through a rate-of-change threshold and

the interquartile range (IQR) method and were corrected or

removed after cross-validation with ship operation logs. Noise

caused by sensor drift or sea-state interference was filtered using

a sliding window smoothing technique. To guarantee physical

rationality, samples violating the basic relationship between ship

speed and energy consumption were excluded.

Directional features such as wind and current directions were

decomposed into sine and cosine components to maintain

continuity. All numerical variables were normalized to [0,1] using

the min–max method. Feature selection was carried out using a

two-step process combining Pearson correlation and Variance

Inflation Factor (VIF) analysis to remove weakly related or highly

collinear variables (VIF< 5).

This workflow ensures statistical robustness and physical

interpretability of the processed data. The general data alignment

logic also refers to (Xiao et al., 2025), which provides a consistent

approach for maritime multi-source data handling.

3.2.4 Data feature selection
To improve the accuracy and interpretability of ship energy

consumption prediction models, it is necessary to screen out input

features that have a significant impact on main engine energy

consumption from numerous variables. The selection of input

features was guided by both statistical measures and domain

knowledge to enhance model performance and interpretability. A

two-step feature screening methodology was employed. First,

Pearson correlation analysis was conducted to identify variables

exhibiting a strong linear relationship (|r| > 0.6) with ship energy

consumption. Subsequently , to mit igate the issue of

multicollinearity, the Variance Inflation Factor (VIF) was

calculated, and features with a VIF value exceeding 5 were

eliminated. This rigorous process ensured that the final feature set

was not only statistically predictive but also physically meaningful

and non-redundant, providing a robust foundation for

model training.

Combining the theory of ship propulsion, domain knowledge

and previous research experience, nine types of input features are

preliminarily selected as the basis of data modeling, as shown

in Table 4.

The output characteristic is daily main engine fuel

consumption (ME consumed). The above features cover two

categories: ship operating parameters and environmental

factors. This set of selected features aims to capture the most

important factors affecting ship energy consumption. For the

specific feature selection method, please refer to the reference (Hu

et al., 2022).
3.3 Data analysis

After the data processing Data processing, a total of 7493 valid

records were retained. In order to analyze the effect of input

variables on the main engine fuel consumption (ME consumed),
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this paper shows the relationship between the combination of five

groups of variables and the energy consumption in a three-

dimensional surface diagram, as shown in Figure 6.

Figure 6a shows the effect of GPS speed and mean draft on main

engine energy consumption. The daily main engine energy

consumption of the ship is mainly concentrated in 100–140 tons/

day, and the speed is concentrated in the range of 17–20 knots.

With the increase of speed, the energy consumption shows a steep

upward trend, which is in line with the physical law of the speed-

cubic relationship; under the same draft condition, the effect of

speed on energy consumption is particularly significant, and the

overall energy consumption level is higher under high draft

condition (>11 m). Figure 6b shows the relationship between

mean draft and trim on fuel consumption. At greater drafts (e.g.,

11 m or more), when the trim is negative (bow trim), energy

consumption increases significantly; whereas when the trim is close

to zero or slightly positive (stern trim), energy consumption is

relatively low under the same draft conditions. Figure 6c shows the

effect of wind speed and relative wind direction on the fuel

consumption of the main engine. When wind speeds exceed 15

m/s, the main unit’s energy consumption increases significantly.

However, within the mainstream wind speed range of

approximately 8 m/s, energy consumption remains relatively

stable, indicating that wind direction has a limited impact on

energy consumption under moderate to low wind speed

conditions. Figure 6d shows the three-dimensional relationship

between wave height and relative wave direction on energy

consumption. When the wave height exceeds 2.0 m, the energy

consumption shows a significant increasing trend. Most of the data

are distributed in the range of 0-1.0 m. The energy consumption of

the main engine corresponding to fluctuates less, which indicates

that the energy consumption remains relatively stable in the middle

and low wave conditions. Figure 6e reveals the effects of current

speed and current direction on energy consumption. In the main

interval where the current speed is less than 0.5 knots, the energy

consumption distribution is relatively stable; however, when the

current speed is more than 1.0 knots, the energy consumption

shows a rapid increasing trend.

Overall, the changes of the ship’s own operating parameters

(e.g., speed, draft, longitudinal inclination) have a decisive effect on

the energy consumption, while the environmental factors such as

wind, waves, and currents have a certain influence on the energy

consumption under a specific combination of intensity

and direction.
4 Results and discussion

All experiments in this study were conducted based on Python

version 3.12 running on a 64-bit Windows 11 operating system, a

12th Gen Intel(R) Core (TM) i5-12500H 2.50 GHz CPU processor

and 16.0 GB of RAM. The version of sklearn primarily used for

modeling is 1.5.2, the version of Optuna is 4.1.0, and the version of

SHAP is 0.46.0.
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4.1 Stacking base model and meta-model
selection

4.1.1 Selection of base model
In the fusion modeling framework, Stacking combines the

predictions of multiple base models by combining the predictions

of multiple base models and then using meta-models to predict the

results of the base models again. However, the selection of base
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models needs to balance the accuracy and diversity of model

predictions (Baraheni et al., 2024) in order to avoid overfitting

and enhance the fusion effect. In this study, we introduce the

residual correlation analysis method (Wang and Chi, 2024) to

quantify ten mainstream machine learning models (Tufail et al.,

2023): linear regression LR, ridge regression Ridge, decision tree

DT, random forest RF, gradient boosting GB, support vector

regression SVR, k-nearest neighbor KNN, multilayer perceptron
TABLE 3 Container ship energy consumption raw data sample.

Feathers Unite
Input/
output

2017.9.14
11:45

…
2017.9.14
13:00

2017.9.14
13:15

2017.9.14
13:30

…

Main engine energy
consumption

t/15min Output 0.3837 … 0.3284 0.3120 0.3123 …

Main engine speed rmp Input 42.3084 … 42.5711 42.5593 42.5811 …

GPS speed kn Input 11.0420 … 11.9879 11.9701 11.9760 …

Mean draft m Input 9.69292 … 9.59618 9.59026 9.59124 …

Trim m Input 0.766985 … 0.766 0.771923 0.772913 …

Wind speed m/s Input 0.697667 … 2.32159 1.79544 1.61577 …

wind direction ° Input 199.2 … 310.5 310.5 310.5 …

wave height m Input 0.8000 … 1.1000 1.1000 1.1000 …

wave direction ° Input 228.5000 … 242.8000 242.8000 242.8000 …

Current speed kn Input 0.2 … 0.1 0.1 0.1 …

current direction ° Input 129 … 101.7 101.7 101.7 …
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MLP, XGBoost and Convolutional Neural Network CNN (Cira

et al., 2023), whose results are shown in Figure 7.

The residual correlation matrix reflects the degree of linear

correlation between the prediction errors of different models. If the

residuals of two models are highly correlated (e.g., the correlation

coefficient of LR and Ridge is 1.00), it indicates that their error

patterns are highly convergent, and it is difficult to improve the

performance through fusion after combination; on the contrary,

low-correlation models (e.g., the correlation coefficient of KNN and

CNN is 0.28) may enhance the generalization ability and prediction

accuracy of the fusion model due to the complementarity of errors.

By setting a correlation coefficient threshold (<0.8) (Kuncheva

and Whitaker, 2003; Brown et al., 2005), six sets of weakly

correlated heterogeneous model combinations (A-F) were

screened out from 240 possible combinations, covering linear

models, tree models, and neural networks, which to some extent

solves the problem of the subjectivity of the selection of the base

model in the traditional approach. Taking Combination B (Ridge,

GB, MLP, KNN, RF) as an example, the residual correlation

coefficients of the base models are between 0.17 (KNN and Ridge)

and 0.76 (GB and RF), which contains both high-precision models

(GB and RF) and achieves complementary errors by introducing the

low-correlation KNN and MLP. Similarly, the combination F (LR,

DT, SVR, KNN, XGBoost) covers multiple learning mechanisms

while maintaining diversity by fusing linear models (LR), tree

models (DT, XGBoost) and kernel methods (SVR). Through the

above selection strategy, six representative combinations (A-F) are

finally selected and their composition is shown in Table 5.

In order to evaluate the performance of the six Stacking

combinations, and then select the base model combination with

the best prediction effect, this experiment uses MAE, MSE, RMSE,

and R² as the performance evaluation indexes, and compares their

prediction accuracies and stabilizations in six independent

repetitive experiments. Taking the R² performance index as an

example, through the bar chart of model performance comparison,

the bar represents the combination, the dots above it indicate the

results of a single experiment, and the error bars reflect the standard

deviation of the mean of the six experiments, as shown in Figure 8.

The experimental comparison results are clearly visible in the figure.

Combination B shows the best performance, with an R² mean of

0.98632, higher than other combinations (such as combination F

with R² = 0.98630). Therefore, Combination B (Ridge, GB, MLP,

KNN, RF) was chosen as the base model in the Stacking fusion

model of this study.
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As shown in Figure 8, the R² performance of Combination A is

slightly lower than that of the other model groups. This can be

attributed to the fact that several models in Combination A (such as

LR and DT) exhibit highly correlated residuals, resulting in

redundant error patterns and reduced ensemble diversity. In

contrast, Combination B was constructed under a residual

correlation threshold (< 0.8), integrating heterogeneous and

complementary models including Ridge, GB, MLP, KNN, and RF.

This improved diversity leads to better error compensation among

base learners and thus a higher overall R² (0.9863).

4.1.2 Selection of meta model
In Stacking fusion model, the metamodel should be as simple as

possible and have certain stability and generalization ability (Wang

et al., 2024d). Ridge regression integrates the base model prediction

by linear weighting, and at the same time prevents overfitting

effectively with the help of L2 regularization, which improves the

stability of the model (Huang et al., 2024). Therefore, the Ridge

regression was chosen as the meta-model in this study.

To verify the rationality of selecting Ridge as the meta-learner,

additional comparative experiments were conducted using two

nonlinear alternatives—Multilayer Perceptron (MLP) and Decision

Tree (DT)—under identical base-model configurations and

experimental settings. The results (as shown in Table 6)

demonstrated that the Ridge-based stacking model consistently

achieved the best overall performance, with lower MAE, MSE, and

RMSE values and higher R² compared to the nonlinear counterparts.

This indicates that the linear Ridge meta-learner offers more stable

aggregation of the base-model predictions and effectively mitigates

overfitting, thereby providing an optimal trade-off between model

accuracy, robustness, and interpretability. Consequently, Ridge was

selected as the final meta-model in the proposed stacking framework.
4.2 Comparison before and after
hyperparameter optimization

Hyperparameter optimization is crucial for model prediction

accuracy and generalization ability. To enhance the prediction

accuracy and generalization capability of the Stacking fusion model,

a structured hyperparameter optimization strategy was implemented.

The optimization process was conducted using the Optuna

framework, which employs a Bayesian optimization algorithm with

the Tree-structured Parzen Estimator (TPE) as the sampling method.

The objective was set to minimize the Root Mean Square Error

(RMSE) on the validation set. This approach efficiently explores the

hyperparameter space by leveraging past evaluation outcomes, thus

accelerating convergence and mitigating the risk of settling into local

optima, a common limitation of grid or random search techniques.

Considering the high cost of tuning, this study focuses on key

hyperparameters. Based on the results of Stacking base model and

meta-model selection chapter, the base model in the B combination

(Ridge GB MLP KNN RF) is selected for hyperparameter
TABLE 4 Input Characteristics.

Sailing environment
parameters

Input characteristics

Vessel operating parameters GPS speed, Mean draft, Trim

Marine meteorological parameters
Wind speed, wind direction, wave height,

wave direction

Ocean current information Current speed, current direction
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optimization, and the parameter details of the related base model

are shown in Table 7.

This experiment optimizes the hyperparameters of the B

combination experiment model using Optuna’s Bayesian optimization.

By comparing the results before and after hyperparameter optimization,

we verify its improvement in ship energy consumption prediction

performance and visualize the four performance indicators before and

after hyperparameter optimization, as shown in Figure 9.

As can be seen from the figure, after the hyperparameter

optimization, the mean absolute error (MAE) of the fusion model

is reduced from 0.0699 to 0.0692, a decrease of 1.00%; the mean

square error (MSE) is optimized from 0.0142 to 0.0135, a decrease of

4.39%; the root mean square error (RMSE) is reduced from 0.1190 to
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0.1161, a decrease of 2.44%; the coefficient of determination (R²) is

improved from 0.9856 to 0.9986, an improvement of 1.32%. The

above results show that after the hyper-parameter optimization

method (Optuna), five base models (Ridge, GB, MLP, KNN, RF)

and one fusion model, Stacking, have been improved to some extent

in four performance metrics (MAE, MSE, RMES, R²).
4.3 Comparison of prediction performance
results of different models

In order to verify the effectiveness of the established Stacking

fusion model, the prediction performance of different models was
FIGURE 6

(a–e) Container ship characteristic data distribution.
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compared and analyzed, as shown Figure 10. All the performance

results are the average values of six experiments.

From Figure 10, Stacking reduces 75.9%, 12.6%, 36.7%, 9.3%,

and 4.1% at the MAE level compared to Ridge, GB, MLP, KNN, and

RF, respectively. At the MSE level compared to Ridge, GB, MLP,

KNN, and RF are 89.1%, 21.1%, 46.2%, 34.5%, and 16.1% lower,

respectively. At the RMSE level it is 67.0%, 11.1%, 26.6%, 19.0%,
Frontiers in Marine Science 14
and 8.3% lower compared to Ridge, GB, MLP, KNN, and RF,

respectively. At the R² level it improves 14.2%, 1.6%, 2.5%, 2.0%,

and 1.5% compared to Ridge, GB, MLP, KNN, and RF, respectively.

In light of the model comparison results presented in Figure 10

above, the corresponding data are summarized in Table 8.

Based on the analysis of the above experimental data, Stacking

further improves the accuracy of ship energy consumption

prediction compared to the traditional single prediction model at

the level of four performance indicators. Therefore, the Stacking

fusion model constructed in this study has a certain degree

of effectiveness.
4.4 SHAP interpretable model analysis

In Section 4.3, the predictive performance of the model was

quantitatively evaluated using four performance metrics: MAE,

MSE, RMSE, and R². This validated the advantages of the

Stacking model in energy consumption prediction. However, it

remains unclear how the Stacking model obtains its predictive

results and how different input features influence the final output

of the ensemble model. Therefore, the SHAP interpretability

method is utilized to analyze the interpretability of the Stacking

model at. In the following, a two-layer interpretability analysis will

be performed globally and locally.

4.4.1 Global interpretability
Global interpretability refers to the explanation of the behavior

and decision logic of the whole model, which provides a macro view

to help understand how the model works as a whole.
FIGURE 7

Residual correlation matrix of different models.
TABLE 5 Stacking portfolio composition and selection basis.

Portfolio
Model

composition
Selection basis

A
LR DT SVR KNN

CNN

Fusion of linear, tree, kernel methods and
neural networks with residual correlation

coefficients ranging from 0.17-0.74

B
Ridge GB MLP

KNN RF

Fusion of regularized linear, integrated
learning and neural network models, Ridge
controls overfitting, RF and GB provide

integration benefits

C
DT GB SVR MLP

XGB

Tree modeling and gradient boosting are at
the core, with SVR and MLP enhancing

nonlinear fitting capabilities

D
LR KNN GB
XGB CNN

Mixed linear and nonlinear models, CNN
extracts higher order features, XGB

optimizes tree fusion

E
Ridge DT RF
MLP CNN

Ridge regression constrains overfitting, RF
and CNN enhance classification and

feature learning respectively

F
LR DT SVR KNN

XGB

Multi-mechanism fusion, XGB and SVR to
handle structured and unstructured data

respectively
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4.4.1.1 Interpretability analysis of the contribution of the
base model

In this study, the SHAP values were used to comprehensively

analyze the contribution of the base models to ship energy

consumption. Through two visualization methods, SHAP

Beeswarm plots and SHAP Bar plots, the contributions of each

base model and their impact on the prediction results were revealed,

as shown in Figure 11.

As can be seen from Figure 11a, the SHAP Beeswarm plot

shows the distribution of SHAP values predicted by each base

model for ship energy consumption. The horizontal axis indicates

the magnitude of SHAP values, and the color reflects the high or low

prediction value of the base model (red high and blue low). It can be

clearly seen from the figure that the distribution of SHAP values for

different base models shows significant differences. The SHAP

values of the Random Forest (RF) model are widely distributed

with large positive and negative fluctuations, indicating that it has

an important role in determining the predicted value of ship energy

consumption, while the distribution of the Ridge regression (Ridge)

model is concentrated, with a smaller contribution and a more

stable influence. Figure 11b. The RF model has the highest absolute

average SHAP value (0.2536) and the strongest influence; KNN

(about 0.2448) is the second highest; the GB model (0.1721) also

plays an important role; MLP (0.0728) has relatively small

influence; the Ridge model has the lowest average SHAP value

(0.0110), the weakest contribution, may only provide stability or

auxiliary support.
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4.4.1.2 Interpretability analysis of input feature
contributions

In the experiment to study the contribution of input features to

ship energy consumption, two visualization effect plots, SHAP

Beeswarm plot and SHAP Bar plot, are also used. These input

features cover the ship’s own operating parameters as well as

environmental factors, and the SHAP analysis and visualization

effects are shown to reveal the role of each feature in the model and

its contribution to the prediction of ship’s energy consumption, as

shown in Figure 12.

As can be seen from Figure 12a, the SHAP Beeswarm plot

shows the distribution of the influence of the input features on the

prediction of ship energy consumption. The horizontal axis

indicates the size of the SHAP value and the color represents the

feature taking high or low values (red high and blue low). It can be

seen that GPS speed has the greatest influence on the model output,

and the distribution of SHAP values shows obvious positive and

negative poles, with high-speed corresponding to larger positive

SHAP values and low speed corresponding to negative values,

indicating that it has a key role in energy consumption prediction

under different sailing conditions. Mean draft and Trim also show

strong effects, with high values corresponding to positive SHAP

values, which increase energy consumption, and low values

corresponding to negative values, which help to reduce energy

consumption. In contrast, the distribution of SHAP values for

environmental factors such as wind direction, wave height, and

flow direction is more scattered, and the overall values are small,

contributing less and having a more stable effect.

Figure 12b shows the SHAP bar plot, which further quantifies

the importance of the input features. GPS speed has the highest

average SHAP value (0.4399), with the strongest influence; draft

depth and trim come next, with average values of 0.1395 and 0.1116,

respectively; and the rest of the environmental features, such as

wave direction (0.0297) and wind direction (0.0288) have limited

influences, with average SHAP values generally lower than 0.03.

Overall, the distribution of environmental factors, such as wave
FIGURE 8

Comparison of R² performance of six combinations.
TABLE 6 Comparative experiment of meta-model.

Model meta_model MAE MSE RMSE R²

Stacking

Ridge 0.0661 0.0114 0.107 0.9894

MLP 0.0676 0.0117 0.1084 0.9891

DT 0.0878 0.0195 0.1398 0.9818
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TABLE 7 Hyperparameter optimization information in the B-combination model.

Models Hyperparameter Default value Optimization range

Ridge Ridge 1.0 0.001 - 100

KNN n_neighbors 5 n_neighbors 1 - 20

RF
n_estimators 100 n_estimators 50 - 300

max_depth max_depth 5 - 50

n_estimators

n_estimators 100 n_estimators 50 - 300

learning_rate 0.1 0.01 - 1.0

max_depth 1 - 10 1 - 10

MLP

hidden_layer_sizes (100), (50), (100), (150),

alpha 0.0001 0.00001 - 0.01

learning_rate_init 0.001 0.0001 - 0.01
F
rontiers in Marine Science
 16
FIGURE 9

(a–d) Comparison of performance indicators before and after hyperparameter optimization.
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height and current direction, is more dispersed, with overall values

of less than 0.03, and their influences are more stable. On the whole,

the ship’s own operating conditions contribute significantly to the

energy consumption prediction, while the environmental factors

play a relatively minor role.

The SHAP results indicate that sailing speed is by far the most

dominant factor influencing ship energy consumption. This is

physically consistent with the cubic relationship between

propulsion power and vessel speed: as speed increases, the

required engine power and thus fuel consumption rise

exponentially. This also explains why the modern shipping
Frontiers in Marine Science 17
industry increasingly advocates “slow steaming,” which effectively

reduces fuel consumption and greenhouse gas emissions by

operating at moderate speeds.

In addition, the longitudinal trim also exhibits a significant

impact. A negative trim (bow-down condition) increases hull

resistance and propeller load, thereby elevating the overall energy

consumption, whereas maintaining near-neutral or slightly stern

trim can improve hydrodynamic efficiency. These results not only

validate the reliability of the SHAP-based interpretation but also

provide practical guidance for operational optimization and energy-

efficient navigation management.

4.4.2 Local interpretability
Local interpretability refers to the explanation of the prediction

results of a specific sample in the ship energy consumption model,

and focuses on the decision-making process of the model on a

specific sample. Global interpretability provides a macroscopic

understanding of the overall performance of the model, while

local interpretability provides a refined explanation of

individual decisions.

Two samples are randomly selected as examples of local

interpretability, and force diagrams are used to visualize the

contribution of each input feature to the predicted value of ship
FIGURE 10

(a–d) Comparison of prediction performance results of different models.
TABLE 8 Performance comparison of stacking vs. base models.

Model MAE MSE RMSE R²

Stacking 0.0692 0.0135 0.1161 0.9986

Ridge 0.2886 0.1241 0.3522 0.8746

GB 0.0791 0.0171 0.1306 0.9837

MLP 0.1094 0.0251 0.1582 0.9746

KNN 0.0763 0.0206 0.1434 0.9791

RF 0.0722 0.0161 0.1266 0.9837
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energy consumption, thus making the predicted value of the black-

box model more transparent and interpretable. For example,

Figure 13 In Sample 1, the actual value of SHAP is 126.7600, the

predicted value is 128.4861, and the baseline value is 119.0899, with

an absolute value of error of 1.7261. The GPS speed (20.4179) is the

most dominant positive influencing factor (in red) in this sample,

which dramatically improves the predicted value, due to the

sample’s speed being higher than the average sailing speed in the

dataset (18.2598 Kn). In addition, wave height, mean draft, wind

speed, and wave direction all contributed positively, increasing ship

energy consumption; trim and current direction contributed

negatively, reducing ship energy consumption values.

Figure 14 shows that the actual value of SHAP in Sample 2 is

100.9620, the predicted value is 101.8414, and the baseline value is

119.0892, with an absolute value of error of 0.8794. The main factor

influencing the predicted value of the samples is the GPS speed

(17.4493), which reduces the predicted value considerably due to

the fact that the ship’s speed is lower than the average speed in the

dataset (18.2598 Kn). This is due to the lower speed of the ship than

the average speed in the dataset (18.2598 Kn), followed by trim

(-0.9477) and mean draft (11.5241) which also reduce the

predicted values.

In order to present more clearly the contribution of different

features to the prediction of energy consumption of the ship, all the
Frontiers in Marine Science 18
input feature SHAP values for both samples are presented in the

table, such as Table 9. A positive SHAP value indicates a positive

effect and a negative one a negative effect. In Sample 1, the GPS

speed of 20.4179 has a SHAP value of 8.4009, which is the largest

positively influenced feature; the wind direction (84.4) and current

direction (4.4111) contribute -0.1146 and -0.3203, respectively,

which are negatively influenced. The total SHAP value of the nine

features is 9.3968, and the baseline value is 119.0899, which results

in a predicted value of 128.4861. The total SHAP value of the 9

features is -17.2479, and the baseline value of 119.0892 gives a

predicted value of 101.8414. The predicted value is 101.8414.

In addition to interpreting the SHAP results, it is also important

to verify the robustness of feature importance to ensure reliable

interpretation. Hu et al. (2021) in the previous study, environmental

features such as wind, wave, and current were examined through

comparative modeling under different input combinations. The

findings indicated that excluding these environmental variables

led to only a slight reduction in prediction accuracy and did not

alter the dominant influence of speed and trim on fuel

consumption. This consistency supports the reliability and

physical validity of the SHAP-derived feature importance

obtained in the present work. Nevertheless, we recognize the

necessity of a more systematic assessment, and future research

will include feature-dropping and substitution sensitivity tests to
FIGURE 11

(a, b) Base model contribution value.
FIGURE 12

(a, b) Input feature contribution value.
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quantitatively evaluate the model’s stability and robustness under

varying feature sets.
5 Conclusion

In order to improve the accuracy and model interpretability of

ship energy consumption prediction, this study proposes a ship

energy consumption prediction framework based on the Stacking

fusion model and SHAP interpretability analysis, which improves

the overall prediction performance of the model by combining the

advantages of multiple single models, and at the same time adopts
Frontiers in Marine Science 19
the SHAP interpretability analysis to further improve the

transparency of the prediction results of the ship energy

consumption model, and to increase its credibility. A large

container ship is taken as the research object to verify the

effectiveness of the proposed model, and the experimental results

and conclusions obtained are as follows:
1. In terms of model prediction accuracy, the energy

consumption prediction model based on Stacking fusion

constructed in this paper effectively improves the model

performance by introducing heterogeneous base models

such as Ridge, GB, MLP, KNN and RF, and integrating
FIGURE 13

SHAP force plot (sample 1).
FIGURE 14

SHAP force plot (sample 2).
TABLE 9 SHAP values of two samples.

Sample 1 Sample 2

Feature values SHAP values Feature values SHAP values

GPS speed=20.4179 8.4009 GPS speed=17.4493 -9.6778

Mean draft=9.4846 0.9589 Mean draft=11.5241 -3.7973

Trim=-0.9151 -1.8046 Trim=-0.9477 -4.0276

Wind speed=20.6297 0.6408 Wind speed=6.5043 -0.6910

Wind direction=84.4000 -0.1146 Wind direction=0.0000 -0.8641

Wave height=3.4000 0.9872 Wave height=0.0000 0.4409

Wave direction=175.2111 0.5737 Wave direction=56.8165 0.4324

Current speed=0.2000 0.0748 Current speed=0.0000 0.1192

Current direction=4.4111 -0.3203 Current direction=123.1835 0.8174
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modeling with Ridge as the meta-learners, combined with

Optuna for hyper-parameter optimization. The

experimental results show that the optimized model

achieves 0.0692, 0.0135, 0.1161, and 0.9986 in the four

metrics of MAE, MSE, RMSE, and R², respectively, which

are 4.1%, 16.1%, 8.3%, and 1.5% higher than the optimal

single model RF. Compared with the base models such as

Ridge, GB, and MLP, the Stacking model achieves the

maximum improvement of 75.9%, 89.1%, 67.0%, and

14.2% in the four metrics, respectively. The above results

show that Stacking overcomes the problems of overfitting

and bias accumulation of a single model by complementing

multiple models, and significantly improves the accuracy of

energy consumption prediction while ensuring stability.

2. In terms of model prediction interpretability, in order to

enhance the transparency and credibility of the model, this

paper adopts the SHAP method to analyze the global and

local two-layer interpretability of the Stacking fusion

model. At the base model level, the average SHAP values

of RF, KNN, and GB are 0.2536, 0.2448, and 0.1721,

respectively, with a total contribution of more than 67%,

which is the core support of the fusion model; while the

contributions of MLP (0.0728) and Ridge (0.0110) are

relatively low. At the level of input characteristics, GPS

speed (0.4399), mean draft (0.1395) and longitudinal

inclination (0.1116) are the top three main influences,

accounting for 69.1%, which is in line with ship

propulsion theory. In terms of local interpretation, SHAP

seeks to clearly reveal the positive and negative influence

paths of individual features on the single-sample predicted

values, realizing the visual deconstruction of the black-box

model. The analysis provides quantitative basis and

transparent support for model credibility validation and

energy efficiency optimization in shipping management.
The method proposed in this paper not only achieves better

improvement in prediction accuracy, but also enhances the

interpretability of the model, which provides a theoretical basis

and practical path for constructing a high-performance and high-

transparency ship energy consumption prediction system.

Nevertheless, several limitations should be acknowledged. The

current model was developed and validated using operational data

from a single post-Panamax container vessel within one year, which

may introduce vessel-specific or temporal bias and thus limit its

generalization. Although cross-validation and repeated experiments

were conducted to mitigate possible overfitting, the model may still

capture route- or ship-dependent characteristics. Furthermore,

potential data quality issues—such as sensor noise, missing

records, or inconsistencies in environmental parameters—may

affect prediction reliability.
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To address these limitations, future research will focus on

expanding the database by continuously collecting operational

and energy-consumption data from a wider range of vessels,

routes, and operational conditions. This will support

comprehensive model validation under dynamic, multi-vessel,

multi-route, and multi-year scenarios. In addition, integrating

real-time data streams, uncertainty quantification, and dynamic

weighting mechanisms will further enhance the adaptability and

robustness of the proposed framework in practical maritime

applications. Transparent disclosure of these limitations and

continuous data-driven refinement will contribute to the long-

term reliability and applicability of this research.
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