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The accuracy and interpretability of ship energy consumption prediction results
are important for ship energy efficiency optimization. In order to improve the
accuracy of ship energy consumption prediction and enhance the model
interpretability, this paper proposes a ship energy consumption prediction
method based on Stacking and SHAP. Firstly, based on Stacking theory,
multiple heterogeneous and complementary base models were selected using
residual correlation analysis methods to construct a fusion model. And then, to
address the "black box” characteristics of the fusion model, SHAP is used to
analyze the base model and energy consumption impact characteristics of the
fusion model in terms of their interpretability. A large container ship is used as the
research object to verify the effectiveness and interpretability of the proposed
method. The experimental results show that, in terms of accuracy, compared
with the best single model (RF), the mean absolute error (MAE), mean square
error (MSE), and root mean square error (RMSE) of the Stacking fusion model are
reduced by 4.1%, 16.1%, and 8.3%, respectively, and the R? is improved by 1.5%.
Meanwhile, in terms of interpretability, SHAP reveals that Random Forest (RF), k-
Nearest Neighbor (KNN), and Gradient Boosting (GB) models play a dominant
role in the fusion model, with a total contribution value of about 67%. In addition,
sailing speed, mean draft, and trim are the main factors affecting the energy
consumption of a ship, and the contribution value of each influential feature can
be quantitatively measured. The proposed method ensures the prediction
accuracy while enhancing the model interpretability, which can provide more
reliable and transparent decision support for ship energy efficiency management.
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1 Introduction
1.1 Background

Maritime transportation plays a crucial role in international
trade (Cret et al,, 2024), however, inevitably produces a large
amount of greenhouse gases (GHGs), which bring serious harm
to the global environment. According to statistics provided by the
International Maritime Organization (IMO), carbon dioxide (CO,)
emitted from ships was about 1 billion tons in 2018, which is
equivalent to about 2.9% of the cumulative global CO, emissions. In
response to this problem, the International Maritime Organization
(IMO) has proposed a series of measures to address it (Zhang et al.,
2024) and developed an initial strategy to reduce GHG emissions.
The IMO’s Greenhouse Gas Strategy, published in 2018, sets out a
commitment to reduce total annual GHG emissions to 50 percent of
2018 levels by 2050 (Bai et al., 2025). In addition, shipping
companies have attempted to adopt various operational solutions
(Jahagirdar et al., 2025), including route and speed optimization
methods to achieve the goal of reducing energy consumption of
ships and reducing GHG emissions (Zhou et al., 2024). For
example, Ma et al. (2021) proposed a multi-objective strategy
model that simultaneously optimizes speed and route, balancing
fuel efficiency, sailing time, and carbon emissions, providing an
operational optimization solution for green shipping strategies.

Ship energy consumption prediction is the basis and
prerequisite for ship energy efficiency optimization, which is
crucial for optimizing energy efficiency and reducing emissions in
the shipping industry (Yan et al, 2024). However, ship energy
consumption is significantly nonlinear and complex due to the
coupled influence of various factors such as GPS speed, draft,
weather conditions, and marine environment, leading to
significant challenges in accurately predicting ship energy
consumption. In addition, since most of the current data-driven
ship energy consumption prediction models are black-box models,
their prediction results are not interpretable, limiting the practical
application of the models. Therefore, high-precision and
interpretable prediction of ship operating energy consumption is
a practical problem that needs to be solved urgently in the shipping
industry (Shu et al., 2024).

1.2 Literature review

1.2.1 Ship energy consumption prediction
methods

Ship energy efficiency optimization is the core link in the
construction of green shipping system, and the key lies in the
establishment of high-precision energy consumption prediction
models. Ship energy consumption prediction methods can be
mainly classified into three categories: ship mechanism-based
energy consumption prediction models, data-driven energy
consumption prediction models, and ship energy consumption
prediction models based on fusion models.
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In ship mechanism-based energy prediction models, the
theoretical computational model solves for the hull resistance
through the Navier-Stokes equations and combines the propeller
thrust-torque characteristics to establish the energy consumption
equation, which is calculated by means of an empirical formula.
This type of model is derived from first principles of ship resistance
and propulsive efficiency and is often referred to as white box
modeling. Holtrop and Mennen (1982) empirical formulas are used
to calculate the ship’s resistance in calm water, and then balance-of-
motion theory is applied to determine the amount of power
required to operate the ship. However, since ships in practice do
not always sail in calm water, they are often affected by
environmental factors such as wind, waves and currents during
the voyage, resulting in changes in energy consumption. Therefore,
Kim et al. (2023) developed a ship energy consumption prediction
model that effectively takes into account the effects of external
environmental factors by using an empirical method to calculate the
ship’s resistance during navigation based on the ship’s speed,
loading conditions, and environmental factors (e.g., wind, waves,
and currents). This approach provides reliable energy consumption
prediction by integrating ship operational data and environmental
conditions, which supports the optimization of energy efficiency in
the global fleet. Liu et al. (2024) and (Yang et al., 2024) consider
complex marine environmental parameters and model the energy
consumption of ships, thus more accurately reflecting the actual
operational energy consumption conditions during navigation.

Due to the large spatial and temporal variations in the factors
affecting ship energy consumption, it is challenging to realize
accurate prediction of ship energy consumption through models
based on physical-logical relationships and empirical formulas
under complex and variable conditions (Wang et al., 2024b), and
the simplifications made in the mechanistic modeling often result in
the model failing to reflect the actual conditions completely, which
leads to a usually lower prediction accuracy.

With the continuous development of the Internet of Things
(IoT) technology, data related to ship energy consumption are
continuously collected, and data-driven energy consumption
prediction models based on data have begun to be widely studied.
Early data-driven models are mainly based on traditional machine
learning methods, such models do not require complex physical
analysis, the model building is relatively simple, practical, can more
comprehensively consider the factors affecting the fuel
consumption, and the use of measured data to build the model,
the resulting model has a higher accuracy rate. For example (Agand
et al,, 2023), utilized XGBoost, MLR, Decision Tree (DT) and
Artificial Neural Networks (ANN) to predict the energy
consumption of a passenger ferry, and the results show that the
integrated model based on XGBoost performs the best in terms of
prediction accuracy (Lin and Wang, 2025). presented a model
combining LASSO and Bayesian Ridge Regression (Voting-BRL)
integrated model with feature selection by Analysis of Variance
(ANOVA), which effectively reduces the data dimensionality and
noise interference, thus improving the prediction accuracy. In
addition (Liu et al,, 2024), proposed an energy consumption
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prediction method based on the TGMA model, which optimizes the
model inputs through feature selection to further improve the
prediction accuracy. Meanwhile, Ma et al. (2023a) proposed a
path decision method based on intelligent mapping group
optimization algorithm for ship route planning, which showed
good stability and energy saving effect under complex
sea conditions.

With the continuous development of deep learning, researchers
have begun to explore more complex models to capture the
nonlinear relationship between ship energy consumption and
multiple factors, so as to provide a reliable basis for optimizing
ship energy consumption. Chen et al. (2025) The reconstructed
trajectory was gradually shortened by using a bidirectional gate-
recurrent unit (GRU) network to simultaneously train on the
historical trajectory data, thus improving the ship energy
consumption The accuracy of ship energy consumption
prediction is improved. Wang et al. (2023b). A ship energy
consumption model based on Genetic Algorithm with Long and
Short-Term Memory (GA-LSTM) is proposed, which shows good
prediction accuracy as low as 0.29% compared with traditional
models such as Back Propagation (BP), Support Vector Regression
(SVR), and Autoregressive Integrated Moving Average (ARIMA).
Zhang et al. (2024) A bi-directional long- and short-term memory
network (Bi-LSTM) model incorporating an attention mechanism
is proposed, which significantly improves the accuracy of fuel
consumption prediction under real operating conditions based on
multi-source information such as sensor data, voyage reports, and
meteorological data. Wang et al. (2024c) A self-attention
mechanism-based long- and short-term memory network (SA-
LSTM) model, performed well in predicting fuel consumption
and carbon intensity indices, with a 12% reduction in mean
absolute percentage error (MAPE) compared to traditional
LSTM models.

From the early days of traditional machine learning methods to
the application of deep learning techniques, the prediction accuracy
of data-driven based models has been continuously improved.
However, data-driven models are highly dependent on the quality
and completeness of the training data, and the predictive stability of
the models decreases significantly when the data are scarce or of
poor quality (Zhang et al., 2024). Meanwhile, data-driven energy
consumption prediction studies tend to model ship energy
consumption based on a certain algorithm, which can only
analyze the energy consumption data from a specific perspective
or structure, which also limits the prediction performance of ship
energy consumption models (Hu et al., 2025a).

Fusion modeling refers to the modeling of ship energy
consumption by fusing several different algorithms with the aim
of improving the performance of ship energy consumption
prediction (Hu et al, 2025b). Ma et al. (2024) suggests that
combining multiple models by stacking fusion method can
effectively improve the performance of ship fuel consumption
prediction. Hu et al. (2025b) further develops this method by
applying stacking method in the stacking method is applied to
the energy consumption prediction of large container ships by
integrating multiple single models to establish a hybrid energy
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consumption prediction model, and the experimental results show
that the accuracy of the hybrid model is better than that of a single
model. Ma et al. (2023b) addressed the multiple objectives of voyage
scheduling, fuel efficiency, and regulatory compliance in ship energy
consumption prediction. They constructed an energy efficiency
decision support system integrating emission control and
scheduling strategies, providing an effective path for energy
consumption optimization in actual operations and laying the
foundation for decision-making based on integrated modeling.
Cheng et al. (2024) systematically compared seven feedforward
neural network models using different datasets and multiple error
evaluation metrics, revealing the direct linkage mechanism based on
the RVFL fusion model and confirming its key role in enhancing
model representation ability and generalization performance,
thereby providing a robust and reliable prediction solution. Wang
et al. (2024b) used the Stacking method to combine multiple single
models into an ensemble model. The experimental results showed
that the ensemble model significantly improved prediction
accuracy, with a 66.7% reduction in MSE and a 12.7% reduction
in MAE compared to the best single model. Lan et al. (2024)
constructed a fusion model based on the Blending method, and the
experimental results showed that the proposed fusion model has
higher accuracy in fuel consumption prediction. The above studies
indicate that the fusion model method can achieve good prediction
accuracy in ship energy consumption modeling. Meanwhile, the
multi-model fusion approach has also proved its advantages in
other fields. For electric vehicle energy consumption prediction,
Mubarak et al. (2023) proposed a model based on stacked integrated
learning, which combines basic machine learning algorithms such
as Decision Trees (DT), Random Forests (RF), and K Nearest
Neighbors (KNN), and significantly improves the accuracy and
stability of prediction. In addition, the advantages of the fusion
modeling approach have been validated in various fields such as
earthquake casualty prediction (Wang et al.,, 2025), wind power
prediction (Wang et al., 2024a) and building energy consumption
prediction (Gupta et al., 2023).

1.2.2 Interpretability of ship energy consumption
models

In the practical application scenario of ship energy
consumption, decision makers are not only concerned with the
accuracy of ship energy consumption prediction, but also with the
process and results of the prediction model being interpretable and
trustworthy. In ship energy consumption prediction, models are
usually classified into white-box models, black-box models and
gray-box models (Fan et al., 2025). However, BBM and GBM based
on the black-box nature lack good interpretability to provide
transparent ship energy consumption analysis for shipping
companies or maritime organizations, resulting in difficulties for
relevant technicians to trust the final prediction results (Wang et al.,
2023a). Recent studies have explored the use of Explainable
Artificial Intelligence (XAI) techniques to improve the
transparency and interpretability of predictive models. For
example, Chen et al. (2024) proposed a stacked model for flow
prediction with enhanced interpretability through feature
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contribution analysis. Cui et al. (2024) combined SHAP with data-
driven predictive control of models to improve the interpretability
of neural networks in building energy systems. Baraheni et al.
(2024) applied LIME and SHAP to interpret household energy
consumption predictions, identifying key features contributing to
the predictions. Shen et al. (2024) In a related study, SHAP was used
to model the interpretability of multi-source input features of a
stacked integration model, and successfully revealed the relative
contribution of each feature to the prediction results, realizing the
unity of accuracy and interpretability. In addition, Zhu et al. (2024)
developed a framework combining the stacked integration
approach with XAI tools such as SHAP and LIME for financial
fraud detection, achieving high accuracy and interpretability. The
above studies show that interpretable methods (especially SHAP
and LIME) are interpretable and effective in various application
scenarios such as building and home energy management, traffic
flow prediction, and financial fraud detection.

1.3 Research gap and contributions

Although existing research has achieved some results in the field
of ship energy consumption prediction, there are still some
shortcomings. First, there are deficiencies in multi-model fusion
methods: first, existing fusion methods mostly rely on
homogeneous model combinations (e.g., multiple tree models or
neural networks of the same type), and lack a systematic evaluation
of the synergistic effect of heterogeneous models (Ma et al., 2024).
Second, current research relies heavily on the researcher’s empirical
judgment or intuitive comparison of the performance of a single
model when selecting the base models involved in fusion. This
highly subjective selection method lacks a quantitative basis (Fan
et al, 2024); Second, there are deficiencies in predictive model
interpretability: first, most of the current data-driven models are
black-box models, which do not have interpretability; second, when
the fusion includes complex base models (e.g., deep neural
networks), its internal decision-making process is highly complex
and nonlinear, resulting in shipping managers and decision-makers
being unable to know how different input features will be
interpreted from the prediction results alone. The limitations of
inexplicability constrain the application of ship energy
consumption models in actual ship operations (Ma et al., 2023c).

To address the above shortcomings, this paper proposes a
hybrid framework that combines heterogeneous multi-model
fusion with interpretability. The specific contributions are
as follows:

1. Construct a Stacking fusion model that integrates multiple
heterogeneous and complementary base models. The
fusion model can integrate the advantages of linear
models, tree models and neural networks to enhance the
generalization ability and prediction accuracy of the model.

2. A ship energy consumption fusion model based on residual
correlation is proposed. The model is based on a
mainstream single model, and six different model
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combinations are designed by utilizing the residual
correlation among models.

3. A two-layer interpretability strategy for the ship energy
consumption fusion model was constructed. The base
model contribution and the contribution of influential
features of the ship energy consumption fusion model
were quantitatively evaluated.

4. Simulation experiments are carried out on real container
ship operation data to verify the effectiveness and feasibility
of the proposed method.

The remainder of this paper is organized as follows: section 2
introduces the research methodology, including the introduction of
the Stacking fusion model, the SHAP interpretability method, and
the model performance evaluation index. Section 3 elaborates the
source of the case ship dataset, data processing methods and data
analysis. Section 4 presents the experimental results, focusing on the
selection method of the base model in the Stacking fusion model,
the comparison before and after model hyperparameter
optimization, and the superior prediction performance of the
Stacking fusion model over the single model. Furthermore, the
SHAP interpretability method is applied to analyze the prediction
results of the Stacking fusion model from both local and global
perspectives. Section 5 summarizes the main findings and proposes
future research directions.

2 Methodology
2.1 Overall framework

In this study, from data collection and processing, data
modeling, performance analysis of the model to the
interpretability analysis of the model, the accurate prediction of
ship energy consumption and interpretability is gradually realized,
and the specific technical roadmap is shown in Figure 1.

Step 1: Data collection and processing. Through the collection
of multi-source data such as main engine energy consumption,
navigation status and maritime environment. Subsequently,
frequency synchronization, data cleaning and feature processing
are carried out to construct a unified dataset, which lays a solid data
foundation for subsequent modeling.

Step 2: Data modeling. Data modeling is the core step in the
technical route. First, the current mainstream ship energy modeling
methods (10 different single models) are selected. Then, based on
the residual correlation among the ten models, six groups of weakly
correlated heterogeneous model combinations (A-F) were selected
from 240 possible combinations as base models by setting a
correlation coefficient threshold (<0.8). Finally, Ridge regression
(Ridge) is selected as the meta-model of Stacking fusion model,
which improves the prediction performance of the model through
the fusion mode of two-layer prediction.

Step 3: Model performance analysis. The model performance
analysis quantitatively measures the prediction performance of the
model through four performance indicators: MAE, MSE, RMSE, and
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FIGURE 1

Technical roadmap.

R? and verifies the performance advantages of the Stacking model
compared with a single model in energy consumption prediction.

Step 4: Model interpretability analysis. The SHAP
interpretability method is used to analyze the ship energy
consumption fusion model at two levels, and to analyze the
specific contributions of different base models and different input
features to ship energy consumption.

2.2 Fusion model based on the stacking
framework

Stacking fusion model is a multilevel machine learning
framework, which aims to improve the generalization ability and
prediction accuracy of the model through the combination of
multiple Base Learners and a Meta Learner. The core idea is to
utilize the diversity of different Base Learners so that each of them
learns different features of the data, and synthesize the outputs of
each base model through the Meta Learner to obtain the final
prediction results. The working principle and process of the
Stacking fusion model specific to this study is shown in Figure 2.

In the workflow of Stacking, firstly, the input data is divided into
training set and test set, and the training set is further split by means
of K fold cross-validation to ensure that the base model is not
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overfitted, as shown in Figure 3. In each cross-validation, K -1
fold data is used for training and the remaining portion is used for
validation, where each base model is trained on a different data
division and predictions are generated. Subsequently, the predicted
outputs of all base learners are stacked to form a new feature set that
consists of the predicted values of each base model on the training
data, while the true labels remain unchanged. This new feature set is
used to train the meta-learner, whose role is to learn the relationships
between the base models and generate the final predictions. In the
testing phase, the test data is first passed through the trained base
learner to generate multiple predictions, which are then averaged and
connected to form a new test set, and then the trained meta-learner is
used to predict the new test set, which ultimately generates more
accurate predictions. The advantage of Stacking method is that it can
combine different types of models, such as linear regression, decision
tree, neural network, etc., so as to give full play to their respective
advantages and avoid the limitations of single model.

The Stacking fusion model in this study consists of a training
process and a testing process. Training process.

1. The ship energy consumption data N x F (N is the number
of samples, F is the number of features) is divided into a training set
P and a test set M (where M = N — P).

2. Using K fold cross validation for each base model, the data
are divided into K mutually exclusive subsets, where K — 1 subsets
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are used as the training set and 1 subset is used as the validation set.
Each base learner is trained on these K —1 training sets and
predicted on the corresponding validation sets, thus obtaining the
prediction results of each model on the K validation sets.
Subsequently, these predictions are stacked by rows to obtain the
new feature vectors of the training set A; x 1(i = 1,2,3,4,5).

3. Splice the new feature vector A; x 1(i = 1,2,3,4,5) to get the
feature matrix A, (P is the number of training samples, V' is the
number of base learners).

4. Train the meta-learner with the new spliced feature matrix
and labels to get the final model. Testing process.

1. Calculate the prediction results of the samples in the test set
using the previously trained model to form a 1-dimensional M line
prediction vector B; x 1(i = 1,2, 3,4,5).

2. Average the prediction results of each model, and then stack
the outputs of these models in columns to form a new data in M X
V dimensions (M represents the number of test samples, V'
represents the number of base learners), and the next layer of
models (meta-learners) will be further trained based on them.

3) Calculate the prediction results of M x V using the Stacking
fusion learning model obtained in the training phase, where M x 1
is the test result of the stacking fusion learning model.

2.3 SHAP interpretability

The SHAP (SHapley Additive exPlanations) algorithm is a
powerful and widely used tool for interpreting the outputs of
complex models, helping to understand how the model arrives at
its predictions, and improving the transparency of the model. SHAP
originates from cooperative game theory. Its core idea is to consider
all possible combinations of features, calculate the contribution of
each feature to the predicted value in different combinations, then
weight the average of these marginal contributions, and finally
obtain the SHAP value of the feature. In ship energy consumption
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prediction, SHAP algorithm can be used to explain the contribution
of different factors, such as wind speed and GPS speed, to make the
prediction results more interpretable. Shapley value is defined
as follows:

Let the feature set S={1,2,...,d}, the Shapley value o of
feature j calculate its marginal contribution expectation before
and after adding SC §|{j}:

IS 1 (d —|S| - 1)!

9= dl

SCSj)

(S UA{jH - vS)]

where, d is the set of all features, S is any subset of d that does
not contain the feature j, v(S) is the predicted value of the model
that only contains the subset S of, v(S U {j}) is the predicted value
of the model after adding the feature j to the subset S, |S| denotes the
size of the subset S, and d! is the factorial of the total number of
features d to denote the full arrangement of features.

The predicted values of the model are decomposed by SHAP
into the baseline values and feature contribution values, and the
formula is as follows.

d
fx)=¢o+ >0, ¢ =E[f(x)
=1

where, f(x) is the predicted value of the model, ¢ is the baseline
value, ¢; is the SHAP value of the j th feature, E[f(x)] is the
expectation of the predicted value of all possible samples.

2.4 Evaluation criteria

In order to quantitatively measure the difference in prediction
performance between the Stacking fusion model and the base
model, four types of metrics, Mean Absolute Error (MAE), Mean
Square Error (MSE), Root Mean Square Error (RMSE), and
Coefficient of Determination (R?), are used in this study.
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K-fold cross-validation plot in Stacking. * indicates matrix multiplication in the context of the machine learning model structure. It represents the

operation between matrices during the stacking ensemble process.

1. Mean Absolute Error (MAE).

MAE is defined as the arithmetic mean of the absolute deviation
between the predicted value and the real value, and its mathematical
expression is:

1 N
MAE = — S|y, - 7,
Nzly, il

Where y; is the real energy consumption value of the first i
sample, )’i/\ is the predicted value of the model, and N is the total
number of samples. MAE directly reflects the average absolute
deviation between the predicted value of the model and the real
energy consumption value, and the unit is consistent with the
energy consumption scale.
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2. Mean Squared Error (MSE).

Mean Squared Error (MSE) is the average of the squared error
between the predicted value and the true value of the sample, which
is defined as:

2

MSE = = >(i =7

Ve

z|~

I

The unit of MSE is the square of the energy consumption
measure, and the smaller its value is, the closer the model prediction
is to the real value; the larger the value is, the larger the prediction
deviation is. The significance of the symbols in the formula is the
same as the mean absolute error (MAE).

3. Root Mean Squared Error (RMSE).
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TABLE 1 Container ship information.

Numerical Numerical
Parameter Parameter

value value
Length(m) 349 TEU 10060
Width(m) 46 Gross tonnage(t) 114394

Design speed(kn) 24.8 Year 2007

Maximum 145
draught(m) :

RMSE is the square root of MSE, and its expression is:

1 XN .
RMSE = vVMSE = ﬁg(y,. -9
i=1

The unit scale of RMSE is consistent with the original data,
reflecting the degree of deviation of the predicted value from the
true value, the value range is [0, +eo), the smaller the value indicates
that the model prediction accuracy is higher.

4. Coefficient of Determination (R?).

The degree of fit R* is defined as the proportion of the total
variance explained by the model to the total variance of the data,
and its calculation formula is:

N ~\2
0=y
2 i=1
R=1-F—
>Si-»

i=1

where ¥ is the mean value of the true energy consumption. R>It
is the core indicator of the model’s goodness of fit, and its value
ranges from R* € [0, 1], and the closer the value is to 1, the stronger
the model’s ability to explain the variance of the data.

3 Case study
3.1 Data sources

In order to evaluate the effectiveness of the proposed method, a
representative 10,000-unit class container ship is selected as the object
of this study, and the specific information of the container ship,
see Table 1.

A total of 24,386 operational data were collected for the study
object from September 14, 2017 to September 25, 2018, which were
used to carry out the modeling analysis of the ship’s main engine
energy consumption. Compared with the auxiliary engine and boiler
system, which have stable energy consumption characteristics, the
dynamic characteristics of main engine energy consumption have
more significant research value for fuel efficiency optimization and
operation cost control.

3.2 Data processing

To establish a high-precision ship energy consumption
prediction model, the construction of a high-quality ship energy

Frontiers in Marine Science

10.3389/fmars.2025.1679427

consumption dataset is an important prerequisite. Therefore, a
universal ship energy consumption data processing method is
designed, from the initial data integration and time
synchronization, to the feature conversion of energy consumption
data, as well as the processing of null, noise and anomaly data, to the
final feature selection, and finally obtain the high-quality ship
energy consumption dataset, as shown in Figure 4, the formula in
Figure 4 refers to Table 2.

3.2.1 Data integration and time synchronization
First, data from different sources, including host fuel
consumption, navigation parameters, and environmental
conditions, are collected at different frequencies, resulting in
different amounts of feature data that cannot be directly used for
modeling. Therefore, a key step is to ensure that all data streams are
temporally consistent. Given that the host’s energy consumption
data is recorded at 15-minute intervals, all other relevant feature
data is synchronized with this frequency to construct a unified
dataset, as shown Table 3. The dataset adopts a standardized 15-
minute collection frequency, which completely records the core
parameters including main engine energy consumption, rotational
speed, and ground speed, and at the same time covers multi-
dimensional navigational environment parameters such as bow/
transom draught, marine meteorology (wind direction/wind speed/
current speed), and sea state (wave height/direction), so as to ensure
the consistency of the data and the continuity of the time series.
To further illustrate the distribution characteristics of the
collected dataset, Figure 5 presents the boxplot visualization of
the main input variables. The figure shows that GPS speed, mean
draft, and trim have relatively concentrated distributions, while
environmental factors such as wind and wave direction exhibit
wider ranges and larger variability, reflecting the complex and
dynamic nature of marine conditions. The range of main engine
(ME) consumption also demonstrates clear fluctuations, consistent
with the variations in vessel speed and sea states. Overall, this
visualization helps to provide an intuitive understanding of the
dataset and supports the subsequent model analysis and validation.

3.2.2 Data characterization

In order to construct more meaningful feature variables for the
ship energy consumption prediction model of this study, the
features of main engine energy consumption, bow and stern
drafts, as well as meteorological information (wind direction) and
sea state information (wave direction and current direction) are
converted by combining the data features in Table 2.

3.2.3 Data processing

The data preprocessing procedure in this study mainly follows
the framework proposed by (Hu et al., 2022), which has been widely
applied in ship energy consumption and trim optimization
research. To ensure data quality and consistency, all sensor data
with different sampling frequencies were synchronized to a 15-
minute interval. Missing values in key parameters such as main
engine energy consumption and GPS speed were filled using a
moving average interpolation.
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Ship energy consumption data processing flow.

TABLE 2 Data feature conversion.

Data feature conversion

Characteristic conversion formula

Formula conformity

interpretation

MCyis the daily energy consumption, M

Characteristic conversion of main engine energy consumption MC, = MC, x 60 24 C,is the main engine energy consumption
15 of the container ship in every 15 minutes
Dy + D,
Bow and Stern Draft Mean draft Dyeq, D,ean = (D ) r)
Characteristic Dy is the bow draft, D, is the stern draft
Conversion Trim T (D4 = Dr)
r T, = T
¢y is the true direction of wind, @yis the
. 360 — | @y — Onls | O — B| > 180 line direction. . the direction of
Conversion of wind, Wind, Wave b = sailing direction, i.e., the direction of bow
wave and current |ow — O, |Pw — Pl < 180 to
relative direction
characteristics Currents RC = ¢cis the true direction of current
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Outliers were detected through a rate-of-change threshold and
the interquartile range (IQR) method and were corrected or
removed after cross-validation with ship operation logs. Noise
caused by sensor drift or sea-state interference was filtered using
a sliding window smoothing technique. To guarantee physical
rationality, samples violating the basic relationship between ship
speed and energy consumption were excluded.

Directional features such as wind and current directions were
decomposed into sine and cosine components to maintain
continuity. All numerical variables were normalized to [0,1] using
the min-max method. Feature selection was carried out using a
two-step process combining Pearson correlation and Variance
Inflation Factor (VIF) analysis to remove weakly related or highly
collinear variables (VIF< 5).

This workflow ensures statistical robustness and physical
interpretability of the processed data. The general data alignment
logic also refers to (Xiao et al., 2025), which provides a consistent
approach for maritime multi-source data handling.

3.2.4 Data feature selection

To improve the accuracy and interpretability of ship energy
consumption prediction models, it is necessary to screen out input
features that have a significant impact on main engine energy
consumption from numerous variables. The selection of input
features was guided by both statistical measures and domain
knowledge to enhance model performance and interpretability. A
two-step feature screening methodology was employed. First,
Pearson correlation analysis was conducted to identify variables
exhibiting a strong linear relationship (|r| > 0.6) with ship energy
consumption. Subsequently, to mitigate the issue of
multicollinearity, the Variance Inflation Factor (VIF) was
calculated, and features with a VIF value exceeding 5 were
eliminated. This rigorous process ensured that the final feature set
was not only statistically predictive but also physically meaningful
and non-redundant, providing a robust foundation for
model training.

Combining the theory of ship propulsion, domain knowledge
and previous research experience, nine types of input features are
preliminarily selected as the basis of data modeling, as shown
in Table 4.

The output characteristic is daily main engine fuel
consumption (ME consumed). The above features cover two
categories: ship operating parameters and environmental
factors. This set of selected features aims to capture the most
important factors affecting ship energy consumption. For the
specific feature selection method, please refer to the reference (Hu
et al., 2022).

3.3 Data analysis
After the data processing Data processing, a total of 7493 valid

records were retained. In order to analyze the effect of input
variables on the main engine fuel consumption (ME consumed),

Frontiers in Marine Science

10.3389/fmars.2025.1679427

this paper shows the relationship between the combination of five
groups of variables and the energy consumption in a three-
dimensional surface diagram, as shown in Figure 6.

Figure 6a shows the effect of GPS speed and mean draft on main
engine energy consumption. The daily main engine energy
consumption of the ship is mainly concentrated in 100-140 tons/
day, and the speed is concentrated in the range of 17-20 knots.
With the increase of speed, the energy consumption shows a steep
upward trend, which is in line with the physical law of the speed-
cubic relationship; under the same draft condition, the effect of
speed on energy consumption is particularly significant, and the
overall energy consumption level is higher under high draft
condition (>11 m). Figure 6b shows the relationship between
mean draft and trim on fuel consumption. At greater drafts (e.g.,
11 m or more), when the trim is negative (bow trim), energy
consumption increases significantly; whereas when the trim is close
to zero or slightly positive (stern trim), energy consumption is
relatively low under the same draft conditions. Figure 6¢ shows the
effect of wind speed and relative wind direction on the fuel
consumption of the main engine. When wind speeds exceed 15
m/s, the main unit’s energy consumption increases significantly.
However, within the mainstream wind speed range of
approximately 8 m/s, energy consumption remains relatively
stable, indicating that wind direction has a limited impact on
energy consumption under moderate to low wind speed
conditions. Figure 6d shows the three-dimensional relationship
between wave height and relative wave direction on energy
consumption. When the wave height exceeds 2.0 m, the energy
consumption shows a significant increasing trend. Most of the data
are distributed in the range of 0-1.0 m. The energy consumption of
the main engine corresponding to fluctuates less, which indicates
that the energy consumption remains relatively stable in the middle
and low wave conditions. Figure 6e reveals the effects of current
speed and current direction on energy consumption. In the main
interval where the current speed is less than 0.5 knots, the energy
consumption distribution is relatively stable; however, when the
current speed is more than 1.0 knots, the energy consumption
shows a rapid increasing trend.

Overall, the changes of the ship’s own operating parameters
(e.g., speed, draft, longitudinal inclination) have a decisive effect on
the energy consumption, while the environmental factors such as
wind, waves, and currents have a certain influence on the energy
consumption under a specific combination of intensity
and direction.

4 Results and discussion

All experiments in this study were conducted based on Python
version 3.12 running on a 64-bit Windows 11 operating system, a
12th Gen Intel(R) Core (TM) i5-12500H 2.50 GHz CPU processor
and 16.0 GB of RAM. The version of sklearn primarily used for
modeling is 1.5.2, the version of Optuna is 4.1.0, and the version of
SHAP is 0.46.0.
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TABLE 3 Container ship energy consumption raw data sample.

10.3389/fmars.2025.1679427

Feathers Input/ 2017.9.14 2017.9.14 2017.9.14 2017.9.14
output 11:45 13:00 13:15 13:30
Main engine energy t/15min Output 0.3837 0.3284 0.3120 0.3123
consumption
Main engine speed rmp Input 42.3084 42.5711 42.5593 42.5811
GPS speed kn Input 11.0420 11.9879 11.9701 11.9760
Mean draft m Input 9.69292 9.59618 9.59026 9.59124
Trim m Input 0.766985 0.766 0.771923 0.772913
Wind speed m/s Input 0.697667 2.32159 1.79544 1.61577
wind direction ° Input 199.2 310.5 310.5 310.5
wave height m Input 0.8000 1.1000 1.1000 1.1000
wave direction ° Input 228.5000 242.8000 242.8000 242.8000
Current speed kn Input 0.2 0.1 0.1 0.1
current direction ° Input 129 101.7 101.7 101.7

4.1 Stacking base model and meta-model
selection

4.1.1 Selection of base model

In the fusion modeling framework, Stacking combines the
predictions of multiple base models by combining the predictions
of multiple base models and then using meta-models to predict the
results of the base models again. However, the selection of base

models needs to balance the accuracy and diversity of model
predictions (Baraheni et al., 2024) in order to avoid overfitting
and enhance the fusion effect. In this study, we introduce the
residual correlation analysis method (Wang and Chi, 2024) to
quantify ten mainstream machine learning models (Tufail et al.,
2023): linear regression LR, ridge regression Ridge, decision tree
DT, random forest RF, gradient boosting GB, support vector
regression SVR, k-nearest neighbor KNN, multilayer perceptron
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FIGURE 5
Boxplot of data feature distributions.
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TABLE 4 Input Characteristics.

Sailing environment

parameters Input characteristics

Vessel operating parameters GPS speed, Mean draft, Trim

. . Wind speed, wind direction, wave height,
Marine meteorological parameters .
wave direction

QOcean current information Current speed, current direction

MLP, XGBoost and Convolutional Neural Network CNN (Cira
et al., 2023), whose results are shown in Figure 7.

The residual correlation matrix reflects the degree of linear
correlation between the prediction errors of different models. If the
residuals of two models are highly correlated (e.g., the correlation
coefficient of LR and Ridge is 1.00), it indicates that their error
patterns are highly convergent, and it is difficult to improve the
performance through fusion after combination; on the contrary,
low-correlation models (e.g., the correlation coefficient of KNN and
CNN is 0.28) may enhance the generalization ability and prediction
accuracy of the fusion model due to the complementarity of errors.

By setting a correlation coefficient threshold (<0.8) (Kuncheva
and Whitaker, 2003; Brown et al., 2005), six sets of weakly
correlated heterogeneous model combinations (A-F) were
screened out from 240 possible combinations, covering linear
models, tree models, and neural networks, which to some extent
solves the problem of the subjectivity of the selection of the base
model in the traditional approach. Taking Combination B (Ridge,
GB, MLP, KNN, RF) as an example, the residual correlation
coefficients of the base models are between 0.17 (KNN and Ridge)
and 0.76 (GB and RF), which contains both high-precision models
(GB and RF) and achieves complementary errors by introducing the
low-correlation KNN and MLP. Similarly, the combination F (LR,
DT, SVR, KNN, XGBoost) covers multiple learning mechanisms
while maintaining diversity by fusing linear models (LR), tree
models (DT, XGBoost) and kernel methods (SVR). Through the
above selection strategy, six representative combinations (A-F) are
finally selected and their composition is shown in Table 5.

In order to evaluate the performance of the six Stacking
combinations, and then select the base model combination with
the best prediction effect, this experiment uses MAE, MSE, RMSE,
and R” as the performance evaluation indexes, and compares their
prediction accuracies and stabilizations in six independent
repetitive experiments. Taking the R® performance index as an
example, through the bar chart of model performance comparison,
the bar represents the combination, the dots above it indicate the
results of a single experiment, and the error bars reflect the standard
deviation of the mean of the six experiments, as shown in Figure 8.
The experimental comparison results are clearly visible in the figure.
Combination B shows the best performance, with an R* mean of
0.98632, higher than other combinations (such as combination F
with R* = 0.98630). Therefore, Combination B (Ridge, GB, MLP,
KNN, RF) was chosen as the base model in the Stacking fusion
model of this study.
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As shown in Figure 8, the R* performance of Combination A is
slightly lower than that of the other model groups. This can be
attributed to the fact that several models in Combination A (such as
LR and DT) exhibit highly correlated residuals, resulting in
redundant error patterns and reduced ensemble diversity. In
contrast, Combination B was constructed under a residual
correlation threshold (< 0.8), integrating heterogeneous and
complementary models including Ridge, GB, MLP, KNN, and RF.
This improved diversity leads to better error compensation among
base learners and thus a higher overall R* (0.9863).

4.1.2 Selection of meta model

In Stacking fusion model, the metamodel should be as simple as
possible and have certain stability and generalization ability (Wang
et al,, 2024d). Ridge regression integrates the base model prediction
by linear weighting, and at the same time prevents overfitting
effectively with the help of L2 regularization, which improves the
stability of the model (Huang et al., 2024). Therefore, the Ridge
regression was chosen as the meta-model in this study.

To verify the rationality of selecting Ridge as the meta-learner,
additional comparative experiments were conducted using two
nonlinear alternatives—Multilayer Perceptron (MLP) and Decision
Tree (DT)—under identical base-model configurations and
experimental settings. The results (as shown in Table 6)
demonstrated that the Ridge-based stacking model consistently
achieved the best overall performance, with lower MAE, MSE, and
RMSE values and higher R* compared to the nonlinear counterparts.
This indicates that the linear Ridge meta-learner offers more stable
aggregation of the base-model predictions and effectively mitigates
overfitting, thereby providing an optimal trade-off between model
accuracy, robustness, and interpretability. Consequently, Ridge was
selected as the final meta-model in the proposed stacking framework.

4.2 Comparison before and after
hyperparameter optimization

Hyperparameter optimization is crucial for model prediction
accuracy and generalization ability. To enhance the prediction
accuracy and generalization capability of the Stacking fusion model,
a structured hyperparameter optimization strategy was implemented.
The optimization process was conducted using the Optuna
framework, which employs a Bayesian optimization algorithm with
the Tree-structured Parzen Estimator (TPE) as the sampling method.
The objective was set to minimize the Root Mean Square Error
(RMSE) on the validation set. This approach efficiently explores the
hyperparameter space by leveraging past evaluation outcomes, thus
accelerating convergence and mitigating the risk of settling into local
optima, a common limitation of grid or random search techniques.

Considering the high cost of tuning, this study focuses on key
hyperparameters. Based on the results of Stacking base model and
meta-model selection chapter, the base model in the B combination
(Ridge GB MLP KNN RF) is selected for hyperparameter
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(a—e) Container ship characteristic data distribution.

optimization, and the parameter details of the related base model
are shown in Table 7.

This experiment optimizes the hyperparameters of the B
combination experiment model using Optuna’s Bayesian optimization.
By comparing the results before and after hyperparameter optimization,
we verify its improvement in ship energy consumption prediction
performance and visualize the four performance indicators before and
after hyperparameter optimization, as shown in Figure 9.

As can be seen from the figure, after the hyperparameter
optimization, the mean absolute error (MAE) of the fusion model
is reduced from 0.0699 to 0.0692, a decrease of 1.00%; the mean
square error (MSE) is optimized from 0.0142 to 0.0135, a decrease of
4.39%; the root mean square error (RMSE) is reduced from 0.1190 to

Frontiers in Marine Science

13

10.3389/fmars.2025.1679427

ME consumed (tons/day

[
S

>
=]
ME consumed (tons/da;

0.1161, a decrease of 2.44%; the coefficient of determination (R?) is
improved from 0.9856 to 0.9986, an improvement of 1.32%. The
above results show that after the hyper-parameter optimization
method (Optuna), five base models (Ridge, GB, MLP, KNN, RF)
and one fusion model, Stacking, have been improved to some extent
in four performance metrics (MAE, MSE, RMES, R?).

4.3 Comparison of prediction performance
results of different models

In order to verify the effectiveness of the established Stacking
fusion model, the prediction performance of different models was
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Residual correlation matrix of different models.

compared and analyzed, as shown Figure 10. All the performance
results are the average values of six experiments.

From Figure 10, Stacking reduces 75.9%, 12.6%, 36.7%, 9.3%,
and 4.1% at the MAE level compared to Ridge, GB, MLP, KNN, and
RF, respectively. At the MSE level compared to Ridge, GB, MLP,
KNN, and RF are 89.1%, 21.1%, 46.2%, 34.5%, and 16.1% lower,
respectively. At the RMSE level it is 67.0%, 11.1%, 26.6%, 19.0%,

TABLE 5 Stacking portfolio composition and selection basis.

Model

" Selection basis
composition

Portfolio

LR DT SVR KNN Fusion of linear, tree, kernel methods and

A CNN neural networks with residual correlation
coefficients ranging from 0.17-0.74
Fusion of regularized linear, integrated
B Ridge GB MLP learning and neural network models, Ridge
KNN RF controls overfitting, RF and GB provide

integration benefits

DT GB SVR MLP Tree modelir?g and gradient boosting a.re at
C XGB the core, with SVR and MLP enhancing
nonlinear fitting capabilities

Mixed linear and nonlinear models, CNN

LR KNN GB
D XGB CNN extracts hi.ghé?r order feat}lres, XGB
optimizes tree fusion
o onw M v
MLP CNN . .
feature learning respectively
Multi-mechanism fusion, XGB and SVR to
LR DT KNN
F R SVRKN handle structured and unstructured data

XGB .
respectively
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and 8.3% lower compared to Ridge, GB, MLP, KNN, and RF,
respectively. At the R* level it improves 14.2%, 1.6%, 2.5%, 2.0%,
and 1.5% compared to Ridge, GB, MLP, KNN, and RF, respectively.

In light of the model comparison results presented in Figure 10
above, the corresponding data are summarized in Table 8.

Based on the analysis of the above experimental data, Stacking
further improves the accuracy of ship energy consumption
prediction compared to the traditional single prediction model at
the level of four performance indicators. Therefore, the Stacking
fusion model constructed in this study has a certain degree
of effectiveness.

4.4 SHAP interpretable model analysis

In Section 4.3, the predictive performance of the model was
quantitatively evaluated using four performance metrics: MAE,
MSE, RMSE, and R?. This validated the advantages of the
Stacking model in energy consumption prediction. However, it
remains unclear how the Stacking model obtains its predictive
results and how different input features influence the final output
of the ensemble model. Therefore, the SHAP interpretability
method is utilized to analyze the interpretability of the Stacking
model at. In the following, a two-layer interpretability analysis will
be performed globally and locally.

4.4.1 Global interpretability

Global interpretability refers to the explanation of the behavior
and decision logic of the whole model, which provides a macro view
to help understand how the model works as a whole.
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4.4.1.1 Interpretability analysis of the contribution of the
base model

In this study, the SHAP values were used to comprehensively
analyze the contribution of the base models to ship energy
consumption. Through two visualization methods, SHAP
Beeswarm plots and SHAP Bar plots, the contributions of each
base model and their impact on the prediction results were revealed,
as shown in Figure 11.

As can be seen from Figure 1la, the SHAP Beeswarm plot
shows the distribution of SHAP values predicted by each base
model for ship energy consumption. The horizontal axis indicates
the magnitude of SHAP values, and the color reflects the high or low
prediction value of the base model (red high and blue low). It can be
clearly seen from the figure that the distribution of SHAP values for
different base models shows significant differences. The SHAP
values of the Random Forest (RF) model are widely distributed
with large positive and negative fluctuations, indicating that it has
an important role in determining the predicted value of ship energy
consumption, while the distribution of the Ridge regression (Ridge)
model is concentrated, with a smaller contribution and a more
stable influence. Figure 11b. The RF model has the highest absolute
average SHAP value (0.2536) and the strongest influence; KNN
(about 0.2448) is the second highest; the GB model (0.1721) also
plays an important role; MLP (0.0728) has relatively small
influence; the Ridge model has the lowest average SHAP value
(0.0110), the weakest contribution, may only provide stability or
auxiliary support.

TABLE 6 Comparative experiment of meta-model.

Model meta_model MAE MSE RMSE R?
Ridge 0.0661 0.0114 ‘ 0.107 0.9894
Stacking MLP 0.0676 0.0117 ‘ 0.1084 | 0.9891
DT 0.0878 0.0195 ‘ 0.1398 | 09818
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4.4.1.2 Interpretability analysis of input feature
contributions

In the experiment to study the contribution of input features to
ship energy consumption, two visualization effect plots, SHAP
Beeswarm plot and SHAP Bar plot, are also used. These input
features cover the ship’s own operating parameters as well as
environmental factors, and the SHAP analysis and visualization
effects are shown to reveal the role of each feature in the model and
its contribution to the prediction of ship’s energy consumption, as
shown in Figure 12.

As can be seen from Figure 12a, the SHAP Beeswarm plot
shows the distribution of the influence of the input features on the
prediction of ship energy consumption. The horizontal axis
indicates the size of the SHAP value and the color represents the
feature taking high or low values (red high and blue low). It can be
seen that GPS speed has the greatest influence on the model output,
and the distribution of SHAP values shows obvious positive and
negative poles, with high-speed corresponding to larger positive
SHAP values and low speed corresponding to negative values,
indicating that it has a key role in energy consumption prediction
under different sailing conditions. Mean draft and Trim also show
strong effects, with high values corresponding to positive SHAP
values, which increase energy consumption, and low values
corresponding to negative values, which help to reduce energy
consumption. In contrast, the distribution of SHAP values for
environmental factors such as wind direction, wave height, and
flow direction is more scattered, and the overall values are small,
contributing less and having a more stable effect.

Figure 12b shows the SHAP bar plot, which further quantifies
the importance of the input features. GPS speed has the highest
average SHAP value (0.4399), with the strongest influence; draft
depth and trim come next, with average values of 0.1395 and 0.1116,
respectively; and the rest of the environmental features, such as
wave direction (0.0297) and wind direction (0.0288) have limited
influences, with average SHAP values generally lower than 0.03.
Opverall, the distribution of environmental factors, such as wave
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TABLE 7 Hyperparameter optimization information in the B-combination model.

10.3389/fmars.2025.1679427

Models Hyperparameter Default value Optimization range
Ridge Ridge 1.0 0.001 - 100
KNN n_neighbors 5 n_neighbors 1-20

n_estimators 100 n_estimators 50 - 300
RF
max_depth max_depth 5-50
n_estimators 100 n_estimators 50 - 300
n_estimators learning_rate 0.1 0.01 - 1.0
max_depth 1-10 1-10
hidden_layer_sizes (100), (50), (100), (150),
MLP alpha 0.0001 0.00001 - 0.01
learning_rate_init 0.001 0.0001 - 0.01
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(a—d) Comparison of prediction performance results of different models.

height and current direction, is more dispersed, with overall values
of less than 0.03, and their influences are more stable. On the whole,
the ship’s own operating conditions contribute significantly to the
energy consumption prediction, while the environmental factors
play a relatively minor role.

The SHAP results indicate that sailing speed is by far the most
dominant factor influencing ship energy consumption. This is
physically consistent with the cubic relationship between
propulsion power and vessel speed: as speed increases, the
required engine power and thus fuel consumption rise
exponentially. This also explains why the modern shipping

TABLE 8 Performance comparison of stacking vs. base models.

Model MAE MSE RMSE R?
Stacking 0.0692 0.0135 0.1161 0.9986
Ridge 0.2886 0.1241 0.3522 0.8746
GB 0.0791 0.0171 0.1306 0.9837
MLP 0.1094 0.0251 0.1582 0.9746
KNN 0.0763 0.0206 0.1434 0.9791
RF 0.0722 0.0161 0.1266 0.9837
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industry increasingly advocates “slow steaming,” which effectively
reduces fuel consumption and greenhouse gas emissions by
operating at moderate speeds.

In addition, the longitudinal trim also exhibits a significant
impact. A negative trim (bow-down condition) increases hull
resistance and propeller load, thereby elevating the overall energy
consumption, whereas maintaining near-neutral or slightly stern
trim can improve hydrodynamic efficiency. These results not only
validate the reliability of the SHAP-based interpretation but also
provide practical guidance for operational optimization and energy-
efficient navigation management.

4.4.2 Local interpretability

Local interpretability refers to the explanation of the prediction
results of a specific sample in the ship energy consumption model,
and focuses on the decision-making process of the model on a
specific sample. Global interpretability provides a macroscopic
understanding of the overall performance of the model, while
local interpretability provides a refined explanation of
individual decisions.

Two samples are randomly selected as examples of local
interpretability, and force diagrams are used to visualize the
contribution of each input feature to the predicted value of ship
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energy consumption, thus making the predicted value of the black-
box model more transparent and interpretable. For example,
Figure 13 In Sample 1, the actual value of SHAP is 126.7600, the
predicted value is 128.4861, and the baseline value is 119.0899, with
an absolute value of error of 1.7261. The GPS speed (20.4179) is the
most dominant positive influencing factor (in red) in this sample,
which dramatically improves the predicted value, due to the
sample’s speed being higher than the average sailing speed in the
dataset (18.2598 Kn). In addition, wave height, mean draft, wind
speed, and wave direction all contributed positively, increasing ship
energy consumption; trim and current direction contributed
negatively, reducing ship energy consumption values.

Figure 14 shows that the actual value of SHAP in Sample 2 is
100.9620, the predicted value is 101.8414, and the baseline value is
119.0892, with an absolute value of error of 0.8794. The main factor
influencing the predicted value of the samples is the GPS speed
(17.4493), which reduces the predicted value considerably due to
the fact that the ship’s speed is lower than the average speed in the
dataset (18.2598 Kn). This is due to the lower speed of the ship than
the average speed in the dataset (18.2598 Kn), followed by trim
(-0.9477) and mean draft (11.5241) which also reduce the
predicted values.

In order to present more clearly the contribution of different
features to the prediction of energy consumption of the ship, all the

input feature SHAP values for both samples are presented in the
table, such as Table 9. A positive SHAP value indicates a positive
effect and a negative one a negative effect. In Sample 1, the GPS
speed of 20.4179 has a SHAP value of 8.4009, which is the largest
positively influenced feature; the wind direction (84.4) and current
direction (4.4111) contribute -0.1146 and -0.3203, respectively,
which are negatively influenced. The total SHAP value of the nine
features is 9.3968, and the baseline value is 119.0899, which results
in a predicted value of 128.4861. The total SHAP value of the 9
features is -17.2479, and the baseline value of 119.0892 gives a
predicted value of 101.8414. The predicted value is 101.8414.

In addition to interpreting the SHAP results, it is also important
to verify the robustness of feature importance to ensure reliable
interpretation. Hu et al. (2021) in the previous study, environmental
features such as wind, wave, and current were examined through
comparative modeling under different input combinations. The
findings indicated that excluding these environmental variables
led to only a slight reduction in prediction accuracy and did not
alter the dominant influence of speed and trim on fuel
consumption. This consistency supports the reliability and
physical validity of the SHAP-derived feature importance
obtained in the present work. Nevertheless, we recognize the
necessity of a more systematic assessment, and future research
will include feature-dropping and substitution sensitivity tests to
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quantitatively evaluate the model’s stability and robustness under
varying feature sets.

5 Conclusion

In order to improve the accuracy and model interpretability of
ship energy consumption prediction, this study proposes a ship
energy consumption prediction framework based on the Stacking
fusion model and SHAP interpretability analysis, which improves
the overall prediction performance of the model by combining the
advantages of multiple single models, and at the same time adopts

TABLE 9 SHAP values of two samples.

the SHAP interpretability analysis to further improve the
transparency of the prediction results of the ship energy
consumption model, and to increase its credibility. A large
container ship is taken as the research object to verify the
effectiveness of the proposed model, and the experimental results
and conclusions obtained are as follows:

1. In terms of model prediction accuracy, the energy
consumption prediction model based on Stacking fusion
constructed in this paper effectively improves the model
performance by introducing heterogeneous base models
such as Ridge, GB, MLP, KNN and RF, and integrating

Sample 1 Sample 2

Feature values SHAP values Feature values SHAP values
GPS speed=20.4179 8.4009 GPS speed=17.4493 -9.6778
Mean draft=9.4846 0.9589 Mean draft=11.5241 -3.7973
Trim=-0.9151 -1.8046 Trim=-0.9477 -4.0276
Wind speed=20.6297 0.6408 Wind speed=6.5043 -0.6910
Wind direction=84.4000 -0.1146 Wind direction=0.0000 -0.8641
Wave height=3.4000 0.9872 Wave height=0.0000 0.4409
Wave direction=175.2111 0.5737 Wave direction=56.8165 0.4324
Current speed=0.2000 0.0748 Current speed=0.0000 0.1192
Current direction=4.4111 -0.3203 Current direction=123.1835 0.8174
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modeling with Ridge as the meta-learners, combined with
Optuna for hyper-parameter optimization. The
experimental results show that the optimized model
achieves 0.0692, 0.0135, 0.1161, and 0.9986 in the four
metrics of MAE, MSE, RMSE, and R?, respectively, which
are 4.1%, 16.1%, 8.3%, and 1.5% higher than the optimal
single model RF. Compared with the base models such as
Ridge, GB, and MLP, the Stacking model achieves the
maximum improvement of 75.9%, 89.1%, 67.0%, and
14.2% in the four metrics, respectively. The above results
show that Stacking overcomes the problems of overfitting
and bias accumulation of a single model by complementing
multiple models, and significantly improves the accuracy of
energy consumption prediction while ensuring stability.

. In terms of model prediction interpretability, in order to
enhance the transparency and credibility of the model, this
paper adopts the SHAP method to analyze the global and
local two-layer interpretability of the Stacking fusion
model. At the base model level, the average SHAP values
of RF, KNN, and GB are 0.2536, 0.2448, and 0.1721,
respectively, with a total contribution of more than 67%,
which is the core support of the fusion model; while the
contributions of MLP (0.0728) and Ridge (0.0110) are
relatively low. At the level of input characteristics, GPS
speed (0.4399), mean draft (0.1395) and longitudinal
inclination (0.1116) are the top three main influences,
accounting for 69.1%, which is in line with ship
propulsion theory. In terms of local interpretation, SHAP
seeks to clearly reveal the positive and negative influence
paths of individual features on the single-sample predicted
values, realizing the visual deconstruction of the black-box
model. The analysis provides quantitative basis and
transparent support for model credibility validation and
energy efficiency optimization in shipping management.

The method proposed in this paper not only achieves better
improvement in prediction accuracy, but also enhances the
interpretability of the model, which provides a theoretical basis
and practical path for constructing a high-performance and high-
transparency ship energy consumption prediction system.

Nevertheless, several limitations should be acknowledged. The
current model was developed and validated using operational data
from a single post-Panamax container vessel within one year, which
may introduce vessel-specific or temporal bias and thus limit its
generalization. Although cross-validation and repeated experiments
were conducted to mitigate possible overfitting, the model may still
capture route- or ship-dependent characteristics. Furthermore,
potential data quality issues—such as sensor noise, missing
records, or inconsistencies in environmental parameters—may
affect prediction reliability.
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To address these limitations, future research will focus on
expanding the database by continuously collecting operational
and energy-consumption data from a wider range of vessels,
routes, and operational conditions. This will support
comprehensive model validation under dynamic, multi-vessel,
multi-route, and multi-year scenarios. In addition, integrating
real-time data streams, uncertainty quantification, and dynamic
weighting mechanisms will further enhance the adaptability and
robustness of the proposed framework in practical maritime
applications. Transparent disclosure of these limitations and
continuous data-driven refinement will contribute to the long-
term reliability and applicability of this research.

Data availability statement

The datasets presented in this article are not readily available
because The data that has been used is confidential. Requests to
access the datasets should be directed to huzhihui@jmu.edu.cn.

Author contributions

LX: Writing - review & editing, Conceptualization, Project
administration, Supervision, Writing — original draft. ZL: Writing -
review & editing, Data curation, Investigation, Software, Validation,
Visualization, Writing - original draft, Formal Analysis,
Methodology. WM: Writing - review & editing, Project
administration, Supervision. ZH: Writing - review & editing,
Funding acquisition, Data curation, Investigation, Software,
Validation, Visualization, Writing — original draft. LC: Writing -
review & editing, Funding acquisition, Project administration,
Supervision. JL: Data curation, Validation, Writing - review
& editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This research was funded
by the Social Science Fund Project of Fujian Province
(FJ2024XZB070) and Natural Science Foundation of Xiamen,
China (35027202372019).

Acknowledgments

We sincerely thank the researchers of the reviewed studies for
their contributions and our collaborators for their dedication to
this work.

frontiersin.org


mailto:huzhihui@jmu.edu.cn
https://doi.org/10.3389/fmars.2025.1679427
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Xu et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial

References

Agand, P., Kennedy, A., Harris, T., Bae, C.,, Chen, M., and Park, E. J. (2023). Fuel
consumption prediction for a passenger ferry using machine learning and in-service
data: A comparative study. Oce. Eng. 284, 115271. doi: 10.1016/j.0ceaneng.2023.115271

Bai, J., Yan, Y., and Bai, X. (2025). A comprehensive review of ship emission
reduction technologies for sustainable maritime transport. Front. Mar. Sci. 12.
doi: 10.3389/fmars.2025.1576661

Baraheni, M., Soudmand, B. H., Amini, S., and Fotouhi, M. (2024). Stacked
generalization ensemble learning strategy for multivariate prediction of delamination
and maximum thrust force in composite drilling. J. Comp. Mat. 58, 3113-3138.
doi: 10.1177/00219983241289494

Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005). Diversity creation methods: a
survey and categorisation. Inf. Fus. 6, 5-20. doi: 10.1016/j.inffus.2004.04.004

Chen, ], Liang, M., Peng, C., Zhang, J., and Huo, S. (2025). Improving maritime data:
A machine learning-based model for missing vessel trajectories reconstruction. IEEE
Trans. Veh. Technol. 1-13. doi: 10.1061/JTEPBS. TEENG-8208

Chen, C, Liu, J., Li, Y., and Zhang, Y. (2024). Explainable stacking-based learning
model for traffic forecasting. J. Transp. Eng. Part A.: Syst. 150, 04024006. doi: 10.1061/
JTEPBS.TEENG-8208

Cheng, R, Liang, M., Li, H., and Yuen, K. F. (2024). Benchmarking feed-forward
randomized neural networks for vessel trajectory prediction. Comput. Elec. Eng. 119,
109499. doi: 10.1016/j.compeleceng.2024.109499

Cira, C.-I, Diaz-Alvarez, A., Serradilla, F., and Manso-Callejo, M.-A. (2023).
Convolutional neural networks adapted for regression tasks: Predicting the
orientation of straight arrows on marked road pavement using deep learning and
rectified orthophotography. Electronics 12, 3980. doi: 10.3390/electronics12183980

Cret, L., Baudry, M., and Lantz, F. (2024). How to implement the 2023 IMO GHG
strategy? Insights on the importance of combining policy instruments and on the role
of uncertainty. Mar. Policy 169, 106332. doi: 10.1016/j.marpol.2024.106332

Cui, X,, Lee, M., Koo, C., and Hong, T. (2024). Energy consumption prediction and
household feature analysis for different residential building types using machine
learning and SHAP: Toward energy-efficient buildings. Energy Bldgs. 309, 113997.
doi: 10.1016/j.enbuild.2024.113997

Fan, A., Wang, Y., Yang, L., Tu, X,, Yang, J., and Shu, Y. (2024). Comprehensive
evaluation of machine learning models for predicting ship energy consumption based
on onboard sensor data. Oce. Coast. Manage. 248, 106946. doi: 10.1016/
j.ocecoaman.2023.106946

Fan, A, Wang, Y., Yang, L., Yang, Z., and Hu, Z. (2025). A novel grey box model for
ship fuel consumption prediction adapted to complex navigating conditions. Energy
315, 134436. doi: 10.1016/j.energy.2025.134436

Gupta, G., Mathur, S., Mathur, J., and Nayak, B. K. (2023). Blending of energy
benchmarks models for residential buildings. Energy Bldgs. 292, 113195. doi: 10.1016/
j.enbuild.2023.113195

Holtrop, J., and Mennen, G. G. J. (1982). An approximate power prediction method.
Int. Shipbldg. Prog. 29, 166-170. doi: 10.3233/ISP-1982-2933501

Hu, Z., Fan, A, Li, J,, and Lin, Z. (2025a). “Data-Driven Interpretable Machine
Learning Methods for the Prediction of Ship Energy Consumption,” in The Proceedings
of 2024 International Conference on Artificial Intelligence and Autonomous
Transportation. Eds. L. Jia, D. Ou, H. Liu, F. Zong, P. Wang and M. Zhang
(Springer Nature, Singapore), 498-506. doi: 10.1007/978-981-96-3961-8_48

Hu, Z., Fan, A,, Mao, W., Shu, Y., Wang, Y., Xia, M., et al. (2025b). Ship energy
consumption prediction: Multi-model fusion methods and multi-dimensional
performance evaluation. Oce. Eng. 322, 120538. doi: 10.1016/j.0ceaneng.2025.120538

Frontiers in Marine Science

21

10.3389/fmars.2025.1679427

intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Hu, Z.,, Zhou, T., Osman, M. T., Li, X,, Jin, Y., and Zhen, R. (2021). A novel hybrid
fuel consumption prediction model for ocean-going container ships based on sensor
data. JMSE 9, 449. doi: 10.3390/jmse9040449

Hu, Z., Zhou, T., Zhen, R, Jin, Y., Li, X,, and Osman, M. T. (2022). A two-step
strategy for fuel consumption prediction and optimization of ocean-going ships. Oce.
Eng. 249, 110904. doi: 10.1016/j.oceaneng.2022.110904

Huang, H., Fang, Z,, Xu, Y., Lu, G, Feng, C., Zeng, M., et al. (2024). Stacking and
ridge regression-based spectral ensemble preprocessing method and its application in
near-infrared spectral analysis. Talanta 276, 126242. doi: 10.1016/j.talanta.2024.126242

Jahagirdar, S., Jahagirdar, S., and Apandkar, A. (2025). GREEN LOGISTICS AND
SUSTAINABLE TRANSPORTATION: AI-BASED ROUTE OPTIMIZATION,
CARBON FOOTPRINT REDUCTION, AND THE FUTURE OF ECO-FRIENDLY
SUPPLY CHAINS. jier 5. doi: 10.52783/jier.v5i1.2323

Kim, Y.-R,, Steen, S., Kramel, D., Muri, H., and Stremman, A. H. (2023). Modelling
of ship resistance and power consumption for the global fleet: The MariTEAM model.
Oce. Eng. 281, 114758. doi: 10.1016/j.oceaneng.2023.114758

Kuncheva, L. I, and Whitaker, C. J. (2003). Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51, 181—
207. doi: 10.1023/A:1022859003006

Lan, T., Huang, L., Ma, R,, Ruan, Z., Ma, S., Li, Z,, et al. (2024). A novel method of
fuel consumption prediction for wing-diesel hybrid ships based on high-dimensional
feature selection and improved blending ensemble learning method. Oce. Eng. 307,
118156. doi: 10.1016/j.0ceaneng.2024.118156

Lin, Y., and Wang, C. (2025). Prediction of ship CO2 emissions and fuel
consumption using voting-BRL model. Sustainability 17, 1726. doi: 10.3390/
sul7041726

Liu, Y., Wang, K, Lu, Y., Zhang, Y., Li, Z,, Ma, R, et al. (2024). A ship energy
consumption prediction method based on TGMA model and feature selection. J. Mar.
Sci. Eng. 12, 1098. doi: 10.3390/jmse12071098

Ma, W, Han, Y., Tang, H., Ma, D., Zheng, H., and Zhang, Y. (2023a). Ship route
planning based on intelligent mapping swarm optimization. Comput. Ind. Eng. 176,
108920. doi: 10.1016/j.cie.2022.108920

Ma, W., Ma, D., Ma, Y., Zhang, J., and Wang, D. (2021). Green maritime: A routing
and speed multi-objective optimization strategy. J. Clnr. Prod. 305, 127179.
doi: 10.1016/j.jclepro.2021.127179

Ma, M., Sun, Z., Han, P., and Yang, H. (2024). A stacking ensemble learning for ship
fuel consumption prediction under cross-training. J. Mech. Sci. Technol. 38, 299-308.
doi: 10.1007/s12206-023-1224-9

Ma, W, Zhang, J., Han, Y., Mao, T., Ma, D., Zhou, B,, et al. (2023b). A decision-
making optimization model for ship energy system integrating emission reduction
regulations and scheduling strategies. J. Ind. Inf. Intg. 35, 100506. doi: 10.1016/
jji1.2023.100506

Ma, Y., Zhao, Y., Yu, J., Zhou, J., and Kuang, H. (2023c). An interpretable gray box
model for ship fuel consumption prediction based on the SHAP framework. J. Mar. Sci.
Eng. 11, 1059. doi: 10.3390/jmse11051059

Mubarak, H., Sanjari, M. J., Stegen, S., and Abdellatif, A. (2023). Improved active and
reactive energy forecasting using a stacking ensemble approach: steel industry case
study. Energies 16, 7252. doi: 10.3390/en16217252

Shen, Y., Hu, Y., Cheng, K, Yan, H, Cai, K, Hua, J, et al. (2024). Utilizing
interpretable stacking ensemble learning and NSGA-III for the prediction and
optimisation of building photo-thermal environment and energy consumption. Bldg.
Sim., 17, 819-838. doi: 10.1007/s12273-024-1108-7

frontiersin.org


https://doi.org/10.1016/j.oceaneng.2023.115271
https://doi.org/10.3389/fmars.2025.1576661
https://doi.org/10.1177/00219983241289494
https://doi.org/10.1016/j.inffus.2004.04.004
https://doi.org/10.1061/JTEPBS.TEENG-8208
https://doi.org/10.1061/JTEPBS.TEENG-8208
https://doi.org/10.1061/JTEPBS.TEENG-8208
https://doi.org/10.1016/j.compeleceng.2024.109499
https://doi.org/10.3390/electronics12183980
https://doi.org/10.1016/j.marpol.2024.106332
https://doi.org/10.1016/j.enbuild.2024.113997
https://doi.org/10.1016/j.ocecoaman.2023.106946
https://doi.org/10.1016/j.ocecoaman.2023.106946
https://doi.org/10.1016/j.energy.2025.134436
https://doi.org/10.1016/j.enbuild.2023.113195
https://doi.org/10.1016/j.enbuild.2023.113195
https://doi.org/10.3233/ISP-1982-2933501
https://doi.org/10.1007/978-981-96-3961-8_48
https://doi.org/10.1016/j.oceaneng.2025.120538
https://doi.org/10.3390/jmse9040449
https://doi.org/10.1016/j.oceaneng.2022.110904
https://doi.org/10.1016/j.talanta.2024.126242
https://doi.org/10.52783/jier.v5i1.2323
https://doi.org/10.1016/j.oceaneng.2023.114758
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.1016/j.oceaneng.2024.118156
https://doi.org/10.3390/su17041726
https://doi.org/10.3390/su17041726
https://doi.org/10.3390/jmse12071098
https://doi.org/10.1016/j.cie.2022.108920
https://doi.org/10.1016/j.jclepro.2021.127179
https://doi.org/10.1007/s12206-023-1224-9
https://doi.org/10.1016/j.jii.2023.100506
https://doi.org/10.1016/j.jii.2023.100506
https://doi.org/10.3390/jmse11051059
https://doi.org/10.3390/en16217252
https://doi.org/10.1007/s12273-024-1108-7
https://doi.org/10.3389/fmars.2025.1679427
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Xu et al.

Shu, Y., Yu, B, Liu, W,, Yan, T,, Liu, Z,, Gan, L., et al. (2024). Investigation of ship
energy consumption based on neural network. Oce. Coast. Manage. 254, 107167.
doi: 10.1016/j.0ocecoaman.2024.107167

Tufail, S., Riggs, H., Tarig, M., and Sarwat, A. I. (2023). Advancements and
challenges in machine learning: A comprehensive review of models, libraries,
applications, and algorithms. Electronics 12, 1789. doi: 10.3390/electronics12081789

Wang, S., and Chi, G. (2024). Cost-sensitive stacking ensemble learning for company
financial distress prediction. Expert Syst. Appl. 255, 124525. doi: 10.1016/
j.eswa.2024.124525

Wang, J., Hou, Y., Ma, Z., and Qi, J. (2024a). Wind power generation forecasting
based on multi-model fusion via blending ensemble learning architecture. Electron.
Lett. 60, e13314. doi: 10.1049/ell2.13314

Wang, K., Hua, Y., Huang, L., Guo, X,, Liu, X,, Ma, Z,, et al. (2023b). A novel GA-
LSTM-based prediction method of ship energy usage based on the characteristics
analysis of operational data. Energy 282, 128910. doi: 10.1016/j.energy.2023.128910

Wang, K,, Liu, X., Guo, X., Wang, J., Wang, Z., and Huang, L. (2024b). A novel high-
precision and self-adaptive prediction method for ship energy consumption based on
the multi-model fusion approach. Energy 310, 133265. doi: 10.1016/
j.energy.2024.133265

Wang, Z., Lu, T., Han, Y., Zhang, C., Zeng, X., and Li, W. (2024c). Improving ship
fuel consumption and carbon intensity prediction accuracy based on a long short-term
memory model with self-attention mechanism. Appl. Sci. 14, 8526. doi: 10.3390/
app14188526

Wang, Z., Wang, X, Liu, X,, Zhang, J., Xu, J., and Ma, J. (2024d). A novel stacked
generalization ensemble-based hybrid SGM-BRR model for ESG score prediction.
Sustainability 16, 6979. doi: 10.3390/sul6166979

Frontiers in Marine Science

22

10.3389/fmars.2025.1679427

Wang, F., Xu, H, Ye, H, Li, Y,, and Wang, Y. (2025). Predicting earthquake
casualties and emergency supplies needs based on PCA-BO-SVM. Systems 13, 24.
doi: 10.3390/systems13010024

Wang, H., Yan, R, Wang, S., and Zhen, L. (2023a). Innovative approaches to
addressing the tradeoff between interpretability and accuracy in ship fuel consumption
prediction. Transp. Res. Part C.: Emerg. Technol. 157, 104361. doi: 10.1016/
j.trc.2023.104361

Xiao, G., Amamoo-Otoo, C., Wang, T., Li, Q., and Biancardo, S. A. (2025).
Evaluating the impact of ECA policy on sulfur emissions from the five busiest ports
in America based on difference in difference model. Front. Mar. Sci. 12. doi: 10.3389/
fmars.2025.1609261

Yan, R, Yang, D., Wang, T., Mo, H., and Wang, S. (2024). Improving ship energy
efficiency: Models, methods, and applications. Appl. Energy 368, 123132. doi: 10.1016/
j-apenergy.2024.123132

Yang, Z,, Qu, W, and Zhuo, J. (2024). Optimization of energy consumption in ship
propulsion control under severe sea conditions. J. Mar. Sci. Eng. 12, 1461. doi: 10.3390/
jmsel2091461

Zhang, M., Tsoulakos, N., Kujala, P., and Hirdaris, S. (2024). A deep learning method
for the prediction of ship fuel consumption in real operational conditions. Eng. Appl.
Artif. Intell. 130, 107425. doi: 10.1016/j.engappai.2023.107425

Zhou, T., Wang, J., Hu, Q,, and Hu, Z. (2024). A novel approach to enhancing the
accuracy of prediction in ship fuel consumption. JMSE 12, 1954. doi: 10.3390/
jmsel2111954

Zhu, S., Wu, H.,, Ngai, E. W,, Ren, J., He, D., Ma, T, et al. (2024). A financial fraud
prediction framework based on stacking ensemble learning. Systems 12, 588.
doi: 10.3390/systems12120588

frontiersin.org


https://doi.org/10.1016/j.ocecoaman.2024.107167
https://doi.org/10.3390/electronics12081789
https://doi.org/10.1016/j.eswa.2024.124525
https://doi.org/10.1016/j.eswa.2024.124525
https://doi.org/10.1049/ell2.13314
https://doi.org/10.1016/j.energy.2023.128910
https://doi.org/10.1016/j.energy.2024.133265
https://doi.org/10.1016/j.energy.2024.133265
https://doi.org/10.3390/app14188526
https://doi.org/10.3390/app14188526
https://doi.org/10.3390/su16166979
https://doi.org/10.3390/systems13010024
https://doi.org/10.1016/j.trc.2023.104361
https://doi.org/10.1016/j.trc.2023.104361
https://doi.org/10.3389/fmars.2025.1609261
https://doi.org/10.3389/fmars.2025.1609261
https://doi.org/10.1016/j.apenergy.2024.123132
https://doi.org/10.1016/j.apenergy.2024.123132
https://doi.org/10.3390/jmse12091461
https://doi.org/10.3390/jmse12091461
https://doi.org/10.1016/j.engappai.2023.107425
https://doi.org/10.3390/jmse12111954
https://doi.org/10.3390/jmse12111954
https://doi.org/10.3390/systems12120588
https://doi.org/10.3389/fmars.2025.1679427
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	A stacking ensemble learning approach for accurate and interpretable prediction of ship energy consumption
	1 Introduction
	1.1 Background
	1.2 Literature review
	1.2.1 Ship energy consumption prediction methods
	1.2.2 Interpretability of ship energy consumption models

	1.3 Research gap and contributions

	2 Methodology
	2.1 Overall framework
	2.2 Fusion model based on the stacking framework
	2.3 SHAP interpretability
	2.4 Evaluation criteria

	3 Case study
	3.1 Data sources
	3.2 Data processing
	3.2.1 Data integration and time synchronization
	3.2.2 Data characterization
	3.2.3 Data processing
	3.2.4 Data feature selection

	3.3 Data analysis

	4 Results and discussion
	4.1 Stacking base model and meta-model selection
	4.1.1 Selection of base model
	4.1.2 Selection of meta model

	4.2 Comparison before and after hyperparameter optimization
	4.3 Comparison of prediction performance results of different models
	4.4 SHAP interpretable model analysis
	4.4.1 Global interpretability
	4.4.1.1 Interpretability analysis of the contribution of the base model
	4.4.1.2 Interpretability analysis of input feature contributions

	4.4.2 Local interpretability


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


